JP2007056007A - 2,3-bis(dialkylphosphino)pyrazine derivative, method for producing the same, and metal complex using the derivative as ligand - Google Patents

2,3-bis(dialkylphosphino)pyrazine derivative, method for producing the same, and metal complex using the derivative as ligand Download PDF

Info

Publication number
JP2007056007A
JP2007056007A JP2006201197A JP2006201197A JP2007056007A JP 2007056007 A JP2007056007 A JP 2007056007A JP 2006201197 A JP2006201197 A JP 2006201197A JP 2006201197 A JP2006201197 A JP 2006201197A JP 2007056007 A JP2007056007 A JP 2007056007A
Authority
JP
Japan
Prior art keywords
general formula
reaction
bis
group
pyrazine derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006201197A
Other languages
Japanese (ja)
Other versions
JP4500289B2 (en
Inventor
Tsuneo Imamoto
恒雄 今本
Kazuhiro Yoshida
和弘 吉田
Keitaro Sugita
敬太郎 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Nippon Chemical Industrial Co Ltd
Original Assignee
Chiba University NUC
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Nippon Chemical Industrial Co Ltd filed Critical Chiba University NUC
Priority to JP2006201197A priority Critical patent/JP4500289B2/en
Publication of JP2007056007A publication Critical patent/JP2007056007A/en
Application granted granted Critical
Publication of JP4500289B2 publication Critical patent/JP4500289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easily synthesized optically active phosphine ligand having good handleability such as preservation stability. <P>SOLUTION: The optically active 2,3-bis(dialkylphosphino)pyrazine derivative is represented by general formula (1). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学活性な2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体及びその製造方法に関する。このピラジン誘導体は不斉合成反応に用いられる金属錯体の不斉触媒の配位子として有用である。また本発明は、該ピラジン誘導体を配位子とする不斉合成触媒用金属錯体に関する。   The present invention relates to an optically active 2,3-bis (dialkylphosphino) pyrazine derivative and a method for producing the same. This pyrazine derivative is useful as a ligand for an asymmetric catalyst of a metal complex used in an asymmetric synthesis reaction. The present invention also relates to a metal complex for an asymmetric synthesis catalyst having the pyrazine derivative as a ligand.

P原子上に不斉中心を有する光学活性なホスフィン配位子は、遷移金属錯体を用いる触媒的不斉合成反応において重要な役割を果たしている。しかし一般に、前記のホスフィン配位子は、出発原料から目的物を得るまでの反応段数が多い場合がしばしばである。従って、今までよりも更に簡便に合成可能なホスフィン配位子が望まれていた。また、前記のホスフィン配位子は空気中での保存安定性が十分でない場合があり、その取り扱いに注意を払う必要があった。   An optically active phosphine ligand having an asymmetric center on the P atom plays an important role in a catalytic asymmetric synthesis reaction using a transition metal complex. However, in general, the phosphine ligand often has a large number of reaction stages until the desired product is obtained from the starting material. Therefore, a phosphine ligand that can be synthesized more simply than before has been desired. In addition, the above phosphine ligand may not have sufficient storage stability in the air, and it is necessary to pay attention to its handling.

本発明者らは先に、P原子上に不斉中心を有する光学活性なホスフィン配位子として、1,2−ビス(ジアルキルホスフィノ)ベンゼン誘導体を提案した(特許文献1参照)。この配位子は、遷移金属に対して非常に安定な単一のキレートコンフォメーションをとるので、中心金属周辺の不斉環境が効率よく基質に転写される。従って、この配位子を用いたロジウム金属錯体を始めとする遷移金属錯体は、不斉水素化反応の不斉触媒として極めて有用である。しかし、このベンゼン誘導体よりも一層合成が容易で、且つ取り扱い性が良好な配位子が望まれていた。   The present inventors previously proposed a 1,2-bis (dialkylphosphino) benzene derivative as an optically active phosphine ligand having an asymmetric center on the P atom (see Patent Document 1). Since this ligand adopts a single chelate conformation that is very stable with respect to the transition metal, the asymmetric environment around the central metal is efficiently transferred to the substrate. Therefore, transition metal complexes such as rhodium metal complexes using this ligand are extremely useful as asymmetric catalysts for asymmetric hydrogenation reactions. However, there has been a demand for a ligand that is easier to synthesize than this benzene derivative and has good handleability.

特開2000−319288号公報JP 2000-319288 A

従って本発明の目的は、従来のホスフィン配位子よりも合成が容易で且つ取り扱い性に優れた光学活性なホスフィン配位子を提供することにある。   Accordingly, an object of the present invention is to provide an optically active phosphine ligand that is easier to synthesize and has better handleability than conventional phosphine ligands.

本発明は、下記一般式(1)で表されることを特徴とする光学活性な2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体を提供することにより前記目的を達成したものである。   The present invention achieves the above object by providing an optically active 2,3-bis (dialkylphosphino) pyrazine derivative represented by the following general formula (1).

Figure 2007056007
Figure 2007056007

また本発明は、前記の一般式(1)で表されるピラジン誘導体の好ましい製造方法であって、下記一般式(3)で表される2,3−ジハロゲノピラジン誘導体に、下記一般式(4)で表されるジアルキルホスフィン−ボランを脱プロトン化させて作用させ求核置換反応を行い、次いで脱ボラン化反応を行うことを特徴とする光学活性な2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体の製造方法を提供するものである。   Moreover, this invention is a preferable manufacturing method of the pyrazine derivative represented by the above general formula (1), and the 2,3-dihalogenopyrazine derivative represented by the following general formula (3) is substituted with the following general formula ( 4) an optically active 2,3-bis (dialkylphosphino), characterized in that a dialkylphosphine-borane represented by 4) is deprotonated to effect a nucleophilic substitution reaction and then a deboraneation reaction. A method for producing a pyrazine derivative is provided.

Figure 2007056007
Figure 2007056007

Figure 2007056007
Figure 2007056007

更に本発明は、前記の一般式(1)で表されるピラジン誘導体を配位子とすることを特徴とする不斉合成触媒用金属錯体を提供するものである。   Furthermore, this invention provides the metal complex for asymmetric synthesis catalysts characterized by using the pyrazine derivative represented by the general formula (1) as a ligand.

本発明のピラジン誘導体は、空気中で安定に存在するので、保存安定性を始めとする取り扱い性が非常に良好である。また本発明の製造方法によれば、本発明のピラジン誘導体を容易に製造することができる。更に本発明のピラジン誘導体を配位子とする金属錯体を不斉合成の触媒として用いた場合に、高いエナンチオ選択性及び反応活性を有し、各種不斉合成に幅広く適用することができる。   Since the pyrazine derivative of the present invention exists stably in the air, handling properties including storage stability are very good. Moreover, according to the manufacturing method of this invention, the pyrazine derivative of this invention can be manufactured easily. Furthermore, when the metal complex having the pyrazine derivative of the present invention as a ligand is used as a catalyst for asymmetric synthesis, it has high enantioselectivity and reaction activity, and can be widely applied to various asymmetric synthesis.

前記の一般式(1)で表される本発明のピラジン誘導体において、R1は、置換されていてもよい直鎖状又は分岐状の2〜10のアルキル基を示す。その例としては、エチル基、イソプロピル基、n−プロピル基、イソブチル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソヘプチル基、n−ヘプチル基、イソヘキシル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。これらの基は、少なくとも一個の一価の置換基で適宜置換されていてもよい。特にR1は、立体障害性を有するバルキーな基であることが好ましい。この観点から、R1が非環式のアルキル基の場合、一級アルキル基よりも二級アルキル基が好ましく、二級アルキル基よりも三級アルキル基が好ましい。また、R1が脂環式のアルキル基であることも好ましい。好ましいアルキル基としてはtert−ブチル基やアダマンチル基が挙げられる。 In the pyrazine derivative of the present invention represented by the general formula (1), R 1 represents an optionally substituted linear or branched 2 to 10 alkyl group. Examples thereof include ethyl group, isopropyl group, n-propyl group, isobutyl group, n-butyl group, sec-butyl group, tert-butyl group, isoheptyl group, n-heptyl group, isohexyl group, n-hexyl group, A cyclopentyl group, a cyclohexyl group, an adamantyl group, etc. are mentioned. These groups may be appropriately substituted with at least one monovalent substituent. In particular, R 1 is preferably a bulky group having steric hindrance. From this viewpoint, when R 1 is an acyclic alkyl group, a secondary alkyl group is preferable to a primary alkyl group, and a tertiary alkyl group is preferable to a secondary alkyl group. It is also preferred that R 1 is an alicyclic alkyl group. Preferred alkyl groups include a tert-butyl group and an adamantyl group.

一方、一般式(1)においてR2は、R1よりも炭素数の少ない、置換されていてもよい直鎖状又は分岐状のアルキル基を示す。R1とR2の炭素数の差は少なくとも1であることが必要である。本発明のピラジン誘導体を、不斉合成触媒用金属錯体の配位子として用いた場合、高度な不斉空間が形成されることを考慮すると、R1とR2の立体障害性に大きな差があることが好ましい。つまり、R1が立体障害性を有するバルキーな基、つまり極大基であるのに対して、R2は極小基であることが好ましい。従ってR1とR2は炭素数の差は大きいほど好ましい。具体的には、R1とR2の炭素数の差は2以上、特に3以上、とりわけ4以上であることが好ましい。R2が極小基であることに鑑みれば、R2として最も好ましい基はメチル基であると言える。しかし、一般的には、R2として用い得る基はR1との関係で相対的に決定される。R1とR2の特に好ましい組み合わせとしては、R1=tert−ブチル基、R2=メチル基の組み合わせや、R1=アダマンチル基、R2=メチル基の組み合わせが挙げられる。 On the other hand, in the general formula (1), R 2 represents an optionally substituted linear or branched alkyl group having a carbon number smaller than that of R 1 . The difference in carbon number between R 1 and R 2 needs to be at least 1. When the pyrazine derivative of the present invention is used as a ligand of a metal complex for an asymmetric synthesis catalyst, there is a large difference in the steric hindrance between R 1 and R 2 in consideration of the formation of a highly asymmetric space. Preferably there is. That is, R 1 is preferably a bulky group having steric hindrance, that is, a maximal group, whereas R 2 is preferably a minimal group. Therefore, R 1 and R 2 are more preferable as the difference in carbon number is larger. Specifically, the difference in carbon number between R 1 and R 2 is preferably 2 or more, particularly 3 or more, particularly 4 or more. Considering that R 2 is a minimal group, the most preferred group as R 2 can be said to be a methyl group. In general, however, the groups that can be used as R 2 are determined relatively in relation to R 1 . Particularly preferred combinations of R 1 and R 2 include a combination of R 1 = tert-butyl group, R 2 = methyl group, a combination of R 1 = adamantyl group, and R 2 = methyl group.

一般式(1)において、R3及びR4は、炭素数1〜6のアルキル基又は水素原子を示す。R3とR4は、同一でもよく或いは異なっていてもよい。R3及びR4としては、例えばエチル基、イソプロピル基、n−プロピル基、イソブチル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソヘプチル基、n−ヘプチル基、イソヘキシル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、少なくとも一個の一価の置換基で適宜置換されていてもよい。またR3及びR4は、互いに結合して飽和又は不飽和の環を形成していてもよい。R3及びR4が結合して形成された環としては、飽和又は不飽和の五員環又は六員環が挙げられる。例えばフェニル基、シクロヘキシル基、シクロペンチル基等が挙げられる。これらの環は、少なくとも一個の一価の置換基で適宜置換されていてもよい。 In general formula (1), R 3 and R 4 represents an alkyl group or a hydrogen atom having 1 to 6 carbon atoms. R 3 and R 4 may be the same or different. Examples of R 3 and R 4 include ethyl group, isopropyl group, n-propyl group, isobutyl group, n-butyl group, sec-butyl group, tert-butyl group, isoheptyl group, n-heptyl group, isohexyl group, n -A hexyl group, a cyclopentyl group, a cyclohexyl group, etc. are mentioned. These groups may be appropriately substituted with at least one monovalent substituent. R 3 and R 4 may be bonded to each other to form a saturated or unsaturated ring. Examples of the ring formed by combining R 3 and R 4 include a saturated or unsaturated 5-membered ring or 6-membered ring. For example, a phenyl group, a cyclohexyl group, a cyclopentyl group, etc. are mentioned. These rings may be appropriately substituted with at least one monovalent substituent.

3及びR4として特に好ましいのは、両者が結合してフェニル基を形成している場合であり、その場合、本発明に係る化合物は以下の一般式(2)で表されるキノキサリン誘導体である。 Particularly preferred as R 3 and R 4 is the case where both are bonded to form a phenyl group, in which case the compound according to the present invention is a quinoxaline derivative represented by the following general formula (2). is there.

Figure 2007056007
Figure 2007056007

前記の一般式(2)中、R5で示される一価の置換基に特に制限はない。R5としては例えばハロゲン原子等が挙げられる。 In the general formula (2), the monovalent substituent represented by R 5 is not particularly limited. Examples of R 5 include a halogen atom.

前記の一般式(1)で表される2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体の具体的な化合物を例示すると、(R,R)−2,3−ビス(tert−ブチルメチルホスフィノ)キノキサリン、(R,R)−2,3−ビス(アダマンチルメチルホスフィノ)キノキサリン、(R,R)−2,3−ビス(tert−ブチルメチルホスフィノ)ピラジン、(R,R)−2,3−ビス(アダマンチルメチルホスフィノ)ピラジン等が挙げられる。   Specific examples of the 2,3-bis (dialkylphosphino) pyrazine derivative represented by the general formula (1) include (R, R) -2,3-bis (tert-butylmethylphosphino). ) Quinoxaline, (R, R) -2,3-bis (adamantylmethylphosphino) quinoxaline, (R, R) -2,3-bis (tert-butylmethylphosphino) pyrazine, (R, R) -2 , 3-bis (adamantylmethylphosphino) pyrazine and the like.

前記の一般式(1)で表されるピラジン誘導体は、ピラジン骨格に起因する電子吸引性によってホスフィン部位のP原子の電子密度が低められている。その結果、ホスフィン部位が空気による酸化に対して不活性になり、保存安定性が高くなる。特に、前記の一般式(1)で表されるピラジン誘導体が、前記の一般式(2)で表されるキノキサリン誘導体である場合、ホスフィン部位が空気による酸化に対して一層不活性になり、保存安定性が一層高くなる。   In the pyrazine derivative represented by the general formula (1), the electron density of the P atom in the phosphine moiety is lowered due to the electron withdrawing attributed to the pyrazine skeleton. As a result, the phosphine moiety becomes inactive against oxidation by air, and the storage stability is increased. In particular, when the pyrazine derivative represented by the above general formula (1) is a quinoxaline derivative represented by the above general formula (2), the phosphine moiety becomes more inactive against oxidation by air and is stored. Stability is further increased.

また前記の一般式(1)で表されるピラジン誘導体は、ピラジン骨格に起因して剛性の高いものとなり、2つのホスフィン部位と遷移金属とで形成される挟角が大きくなる。その結果、該ピラジン誘導体を配位子として有する遷移金属錯体を触媒として用いると、還元的脱離を容易に進行させることができる。特に、前記の一般式(1)で表されるピラジン誘導体が、前記の一般式(2)で表されるキノキサリン誘導体である場合、前記の挟角が一層大きくなり、還元的脱離を一層容易に進行させることができる。   Further, the pyrazine derivative represented by the general formula (1) has high rigidity due to the pyrazine skeleton, and the included angle formed between the two phosphine moieties and the transition metal becomes large. As a result, when a transition metal complex having the pyrazine derivative as a ligand is used as a catalyst, reductive elimination can easily proceed. In particular, when the pyrazine derivative represented by the general formula (1) is a quinoxaline derivative represented by the general formula (2), the included angle is further increased and reductive elimination is further facilitated. Can proceed to.

次に、本発明に係る2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体の製造方法を説明する。先ず、下記の一般式(3)で表される2,3−ジハロゲノピラジン誘導体、例えば2,3−ジクロロキノキサリンを用意する。2,3−ジクロロキノキサリンは商業的に入手可能な化合物である。   Next, a method for producing a 2,3-bis (dialkylphosphino) pyrazine derivative according to the present invention will be described. First, a 2,3-dihalogenopyrazine derivative represented by the following general formula (3), such as 2,3-dichloroquinoxaline, is prepared. 2,3-dichloroquinoxaline is a commercially available compound.

Figure 2007056007
Figure 2007056007

これとは別に、下記の一般式(4)で表されるジアルキルホスフィン−ボランを用意し、これをテトラヒドロフラン等の不活性溶媒中で脱プロトン化する。脱プロトン化には、例えばブチルリチウムが用いられる。   Separately, a dialkylphosphine-borane represented by the following general formula (4) is prepared and deprotonated in an inert solvent such as tetrahydrofuran. For deprotonation, for example, butyl lithium is used.

Figure 2007056007
Figure 2007056007

脱プロトン化された状態のジアルキルホスフィン−ボランを、前記の2,3−ジハロゲノピラジン誘導体に作用させる。2,3−ジハロゲノピラジン誘導体におけるハロゲンが結合している炭素原子の電子は、隣接する窒素原子によって吸引されている。従って、脱プロトン化された状態のジアルキルホスフィン−ボラン、即ち求核試薬は、当該炭素原子を攻撃して求核置換反応が起こる。この反応は、液体窒素環境下ないし室温下で速やかに進行する。この反応によって、反応系内には中間体であるジホスフィン−ボラン体が生成する。   A dialkylphosphine-borane in a deprotonated state is allowed to act on the 2,3-dihalogenopyrazine derivative. The electrons of the carbon atom to which the halogen in the 2,3-dihalogenopyrazine derivative is bonded are attracted by the adjacent nitrogen atom. Therefore, the deprotonated dialkylphosphine-borane, that is, the nucleophile, attacks the carbon atom to cause a nucleophilic substitution reaction. This reaction proceeds rapidly in a liquid nitrogen environment or at room temperature. By this reaction, an intermediate diphosphine-borane body is generated in the reaction system.

引き続き、前記の中間体であるジホスフィン−ボラン体の脱ボラン化反応を行う。脱ボラン化反応には、例えば反応系にN,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)を添加すればよい。脱ボラン化は、室温にて数十分ないし数時間で完了する。これによって、目的とする2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体が得られる。全体の反応スキームは以下の通りであり、付加脱離反応であることが判る。   Subsequently, a deboraneation reaction of the diphosphine-borane body as the intermediate is performed. For the deboration reaction, for example, N, N, N ′, N′-tetramethylethylenediamine (TMEDA) may be added to the reaction system. Deboraneation is completed in several tens of minutes to several hours at room temperature. As a result, the desired 2,3-bis (dialkylphosphino) pyrazine derivative is obtained. The overall reaction scheme is as follows, showing that it is an addition / elimination reaction.

Figure 2007056007
Figure 2007056007

以上の方法によれば、実質的に一段の反応で、出発物質から目的物質を得ることができるという利点がある。また特筆すべきは、前記の反応の間、P原子についての立体性が損なわれていないということである。   According to the above method, there is an advantage that the target substance can be obtained from the starting material in a substantially one-step reaction. Also noteworthy is that the stericity of the P atom is not impaired during the reaction.

なお、前記の反応に用いられる求核試薬であるジアルキルホスフィン−ボランは、公知の方法によって調製することができる。そのような方法としては、例えば特開2001−253889号公報に記載の方法等が挙げられる。具体的には次の方法が挙げられる。   In addition, the dialkyl phosphine-borane which is a nucleophile used for the said reaction can be prepared by a well-known method. Examples of such a method include the method described in JP-A-2001-253889. Specifically, the following method is mentioned.

下記一般式(5)で表されるジアルキル(ヒドロキシメチル)ホスフィン−ボランを、0℃ないし室温下でピリジンに溶解する。この溶液に塩化ベンゾイルを滴下する。   A dialkyl (hydroxymethyl) phosphine-borane represented by the following general formula (5) is dissolved in pyridine at 0 ° C. to room temperature. To this solution is added benzoyl chloride dropwise.

Figure 2007056007
Figure 2007056007

この反応によって下記一般式(6)表されるジアルキル(ベンゾイルオキシメチル)ホスフィン−ボランが生成する。反応系に水を添加して希釈し、エーテルで抽出する。有機層を塩酸で洗浄し、溶媒を除去してジアルキル(ベンゾイルオキシメチル)ホスフィン−ボランの結晶を得る。   This reaction produces a dialkyl (benzoyloxymethyl) phosphine-borane represented by the following general formula (6). The reaction is diluted with water and extracted with ether. The organic layer is washed with hydrochloric acid, and the solvent is removed to obtain dialkyl (benzoyloxymethyl) phosphine-borane crystals.

Figure 2007056007
Figure 2007056007

前記の一般式(6)で表されるジアルキル(ベンゾイルオキシメチル)ホスフィン−ボランの結晶をエタノールに溶解し、そこに水酸化カリウム水溶液を滴下し、加水分解反応を行う。次いで、水酸化カリウム、過硫酸カリウム及び三塩化ルテニウムを含む水溶液を滴下し反応を行う。反応液を塩酸で中和した後、エーテルで抽出を行う。溶媒を除去して、前記の一般式(4)で表されるジアルキルホスフィン−ボランの結晶を得る。   The dialkyl (benzoyloxymethyl) phosphine-borane crystal represented by the general formula (6) is dissolved in ethanol, and an aqueous potassium hydroxide solution is added dropwise thereto to perform a hydrolysis reaction. Next, an aqueous solution containing potassium hydroxide, potassium persulfate and ruthenium trichloride is added dropwise to carry out the reaction. The reaction mixture is neutralized with hydrochloric acid and extracted with ether. The solvent is removed to obtain a dialkylphosphine-borane crystal represented by the general formula (4).

前記の一般式(1)で表される本発明の2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体は、配位子として、遷移金属と共に錯体を形成することができる。この錯体は不斉合成触媒として有用なものである。不斉合成としては、例えば不斉水素化反応、有機ボロン酸を用いた電子不足オレフィンへの不斉1,4−付加反応、不斉ヒドロシリル反応、不斉マイケル反応などが挙げられる。   The 2,3-bis (dialkylphosphino) pyrazine derivative of the present invention represented by the general formula (1) can form a complex with a transition metal as a ligand. This complex is useful as an asymmetric synthesis catalyst. Examples of the asymmetric synthesis include an asymmetric hydrogenation reaction, an asymmetric 1,4-addition reaction to an electron-deficient olefin using an organic boronic acid, an asymmetric hydrosilyl reaction, an asymmetric Michael reaction, and the like.

錯体を形成することができる遷移金属としては、例えば、ロジウム、ルテニウム、イリジウム、パラジウム、ニッケル、鉄等が挙げられる。好ましい金属はロジウムである。一般式(1)で表される2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体を配位子として用い、ロジウムと共に錯体を形成させる方法としては、例えば実験化学講座第4版(日本化学会編、丸善株式会社発行 第18巻327〜353頁)に記載されている方法に従えばよい。具体的には、一般式(1)で表される2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体と、ビス(シクロオクタ−1,5−ジエン)ロジウムテトラフルオロホウ酸塩と反応させることにより、ロジウム錯体を製造することができる。   Examples of the transition metal that can form a complex include rhodium, ruthenium, iridium, palladium, nickel, and iron. A preferred metal is rhodium. As a method of forming a complex with rhodium using a 2,3-bis (dialkylphosphino) pyrazine derivative represented by the general formula (1) as a ligand, for example, Experimental Chemistry Course 4th Edition (Edited by Chemical Society of Japan) , Published by Maruzen Co., Ltd., Vol. 18, pp. 327-353). Specifically, by reacting the 2,3-bis (dialkylphosphino) pyrazine derivative represented by the general formula (1) with bis (cycloocta-1,5-diene) rhodium tetrafluoroborate, Rhodium complexes can be produced.

得られるロジウム錯体を具体的に例示すると、Rh((S,S)−(1))Cl、Rh((S,S)−(1))Br、Rh((S,S)−(1))I、[Rh((S,S)−(1))(cod)]BF4、[Rh((S,S)−(1))(cod)]ClO4、[Rh((S,S)−(1))(cod)]PF6 、[Rh((S,S)−(1))(cod)]BPh4、[Rh((S,S)−(1))(nbd)]BF4、[Rh((S,S)−(1))(ndb)]ClO4、[Rh((S,S)−(1))(ndb)]PF4、[Rh((S,S)−(1))(ndb)]BPh4、Rh((R,R)−(1))Cl、Rh((R,R)−(1))Br、Rh((R,R)−(1))I、[Rh((R,R)−(1))(cod)]BF4、[Rh((R,R)−(1))(cod)]ClO4、[Rh((R,R)−(1))(cod)]PF6、[Rh((R,R)−(1))(cod)]BPh4、[Rh((R,R)−(1))(nbd)]BF4、[Rh((R,R)−(1))(ndb)]ClO4、[Rh((R,R)−(1))(ndb)]PF6、[Rh((R,R)−(1))(ndb)]BPh4等が挙げられる。特に[Rh((S,S)−(1))(cod)]BF4が好ましい。なお、前記のロジウム錯体中の(1)は、一般式(1)で表される2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体を示す。codは1,5−シクロオクタジエンを、nbdはノルボルナジエンを、Phはフェニルを示す。 Specific examples of the resulting rhodium complex include Rh ((S, S)-(1)) Cl, Rh ((S, S)-(1)) Br, Rh ((S, S)-(1) ) I, [Rh ((S, S)-(1)) (cod)] BF 4 , [Rh ((S, S)-(1)) (cod)] ClO 4 , [Rh ((S, S )-(1)) (cod)] PF 6 , [Rh ((S, S)-(1)) (cod)] BPh 4 , [Rh ((S, S)-(1)) (nbd)] BF 4 , [Rh ((S, S)-(1)) (ndb)] ClO 4 , [Rh ((S, S)-(1)) (ndb)] PF 4 , [Rh ((S, S )-(1)) (ndb)] BPh 4 , Rh ((R, R)-(1)) Cl, Rh ((R, R)-(1)) Br, Rh ((R, R)-( 1)) I, [Rh ((R, R)-(1)) (cod)] BF 4 , [Rh ((R, R)-(1)) (cod)] ClO 4 , [Rh ((R, R)-(1)) (cod)] PF 6 , [Rh ((R, R) - (1)) (cod) ] BPh 4, [Rh ((R, R) - (1)) (nbd)] BF 4, [Rh ((R, R) - (1)) (ndb)] ClO 4 , [Rh ((R, R)-(1)) (ndb)] PF 6 , [Rh ((R, R)-(1)) (ndb)] BPh 4 and the like. [Rh ((S, S)-(1)) (cod)] BF 4 is particularly preferable. In addition, (1) in the rhodium complex represents a 2,3-bis (dialkylphosphino) pyrazine derivative represented by the general formula (1). cod represents 1,5-cyclooctadiene, nbd represents norbornadiene, and Ph represents phenyl.

以下、実施例を挙げて本発明を更に具体的に説明する。しかしこれは単に例示であって、本発明を制限するものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the invention.

〔実施例1〕
(1)前記の一般式(4)で表される化合物の合成
以下の手順により、前記の一般式(4)で表される化合物の一種である(R)−tert−ブチルメチルホスフィン−ボラン(9)を合成した。
[Example 1]
(1) Synthesis of Compound Represented by General Formula (4) According to the following procedure, (R) -tert-butylmethylphosphine-borane which is a kind of the compound represented by General Formula (4) ( 9) was synthesized.

Figure 2007056007
Figure 2007056007

(R)−tert−ブチル(ヒドロキシメチル)メチルホスフィン−ボラン(7)(92%ee、2.22g、15.0mmol)を10mlのピリジンに溶解した溶液に、0℃、撹拌下に、塩化ベンゾイル(2.1mL、18mmol)を滴下した。次いで反応混合液を室温まで加熱した。1時間経過後、反応混合液を水で希釈し、エーテルで3回抽出した。得られた有機層を1Mの塩酸、炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムで脱水した。溶媒を除去した後、シリカゲルのカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で残渣を精製した。無色の固体が得られ、この固体を、ヘキサン/酢酸エチル混合溶媒で2回再結晶した。このようにして光学的に純粋なベンゾイルオキシメチル(tert−ブチル)メチルホスフィン−ボラン(8)を得た。収量は2.34g、収率は62%であった。   (R) -tert-butyl (hydroxymethyl) methylphosphine-borane (7) (92% ee, 2.22 g, 15.0 mmol) was dissolved in 10 ml of pyridine at 0 ° C. with stirring, benzoyl chloride. (2.1 mL, 18 mmol) was added dropwise. The reaction mixture was then heated to room temperature. After 1 hour, the reaction mixture was diluted with water and extracted three times with ether. The obtained organic layer was washed with 1M hydrochloric acid, aqueous sodium hydrogen carbonate solution and saturated brine, and dehydrated with sodium sulfate. After removing the solvent, the residue was purified by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1). A colorless solid was obtained, and this solid was recrystallized twice with a mixed solvent of hexane / ethyl acetate. In this way optically pure benzoyloxymethyl (tert-butyl) methylphosphine-borane (8) was obtained. The yield was 2.34 g, and the yield was 62%.

ベンゾイルオキシメチル(tert−ブチル)メチルホスフィン−ボラン(8)(99%ee、6.05g、24.0mmol)を25mLのエタノールに溶解した溶液に、15mLの水に溶解した水酸化カリウム(4.0g、72mmol)を滴下した。約1時間で加水分解が完了した。反応混合液を水で希釈し、エーテルで3回抽出した。抽出液を飽和食塩水で洗浄し、硫酸ナトリウムで脱水した。ロータリーエバポレータで溶媒を除去し、シリカゲルのカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で残渣を精製し、(R)−tert−ブチル(ヒドロキシメチル)メチルホスフィン−ボラン(7)を得た。この化合物を72mLのアセトンに溶解した。水酸化カリウム(13.5g、240mmol)、過硫酸カリウム(19.4g、72.0mmol)及び三塩化ルテニウム三水和物(624mg、2.4mmol)を150mLの水に溶解した水溶液(0℃)に、該水溶液を激しく撹拌した状態で、前記アセトン溶液を徐々に添加した。2時間経過後、反応混合液を3Mの塩酸で中和し、エーテルで3回抽出した。抽出液を飽和食塩水で洗浄し、硫酸ナトリウムで脱水した。ロータリーエバポレータで溶媒を室温下に除去し、シリカゲルのカラムクロマトグラフィー(移動相:ペンタン/エーテル=8/1)で残渣を精製した。このようにして(R)−tert−ブチルメチルホスフィン−ボラン(9)を得た。収量は2.27g、収率は80%であった。   A solution of benzoyloxymethyl (tert-butyl) methylphosphine-borane (8) (99% ee, 6.05 g, 24.0 mmol) in 25 mL of ethanol in potassium hydroxide (4. 0 g, 72 mmol) was added dropwise. Hydrolysis was complete in about 1 hour. The reaction mixture was diluted with water and extracted three times with ether. The extract was washed with saturated brine and dehydrated with sodium sulfate. The solvent was removed by a rotary evaporator, and the residue was purified by column chromatography on silica gel (mobile phase: hexane / ethyl acetate = 3/1), and (R) -tert-butyl (hydroxymethyl) methylphosphine-borane (7) Got. This compound was dissolved in 72 mL of acetone. Aqueous solution (0 ° C.) of potassium hydroxide (13.5 g, 240 mmol), potassium persulfate (19.4 g, 72.0 mmol) and ruthenium trichloride trihydrate (624 mg, 2.4 mmol) dissolved in 150 mL of water In addition, the acetone solution was gradually added while vigorously stirring the aqueous solution. After 2 hours, the reaction mixture was neutralized with 3M hydrochloric acid and extracted three times with ether. The extract was washed with saturated brine and dehydrated with sodium sulfate. The solvent was removed at room temperature with a rotary evaporator, and the residue was purified by silica gel column chromatography (mobile phase: pentane / ether = 8/1). Thus, (R) -tert-butylmethylphosphine-borane (9) was obtained. The yield was 2.27 g, and the yield was 80%.

(2)前記の一般式(1)で表される化合物の合成
以下の手順により、前記の一般式(1)で表される化合物の一種である(R,R)−2,3−ビス(tert−ブチルメチルホスフィノ)キノキサリン(12)を合成した。
(2) Synthesis of Compound Represented by General Formula (1) According to the following procedure, (R, R) -2,3-bis ( tert-Butylmethylphosphino) quinoxaline (12) was synthesized.

Figure 2007056007
Figure 2007056007

236mg(2.0mmol)の(R)−tert−ブチルメチルホスフィン−ボラン(9)を4mLのテトラヒドロフランに溶解して溶液を得た。この溶液を液体窒素で−78℃に冷却し、そこにn−ブチルリチウムのヘキサン溶液(1.6M)を1.25mL滴下した。15分経過後、133mg(0.67mmol)の2,3−ジクロロキノキサリン(10)を4mLのテトラヒドロフランに溶解して得た溶液を、激しく撹拌した状態下に滴下した。これによって中間体であるジホスフィン−ボラン体(11)を得る。1時間かけて液温を室温にした後、3時間撹拌を行った。次いで1mLのTMEDAを添加して、更に2時間撹拌を継続し、脱ボラン化反応を行った。1Mの塩酸を添加して反応を終了させ、反応液をヘキサンで抽出した。抽出液を1Mの塩酸及び飽和食塩水で洗浄し、硫酸ナトリウムで脱水した。溶媒を真空吸引で除去し、シリカゲルのカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=30/1)で残渣を精製した。これにより(R,R)−2,3−ビス(tert−ブチルメチルホスフィノ)キノキサリン(12)の橙色の固体物を得た。この固体物を、熱メタノール(1.7mL)で再結晶した。これにより橙色結晶を得た(>99%ee、収率80%)。この化合物の物性値は以下の通りであった。   236 mg (2.0 mmol) of (R) -tert-butylmethylphosphine-borane (9) was dissolved in 4 mL of tetrahydrofuran to obtain a solution. This solution was cooled to −78 ° C. with liquid nitrogen, and 1.25 mL of a hexane solution (1.6 M) of n-butyllithium was added dropwise thereto. After 15 minutes, 133 mg (0.67 mmol) of 2,3-dichloroquinoxaline (10) dissolved in 4 mL of tetrahydrofuran was added dropwise under vigorous stirring. As a result, an intermediate diphosphine-borane (11) is obtained. The liquid temperature was brought to room temperature over 1 hour, followed by stirring for 3 hours. Next, 1 mL of TMEDA was added, and stirring was continued for another 2 hours to perform a deboranation reaction. 1M hydrochloric acid was added to terminate the reaction, and the reaction solution was extracted with hexane. The extract was washed with 1M hydrochloric acid and saturated brine, and dried over sodium sulfate. The solvent was removed by vacuum suction, and the residue was purified by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 30/1). This gave an orange solid of (R, R) -2,3-bis (tert-butylmethylphosphino) quinoxaline (12). This solid was recrystallized with hot methanol (1.7 mL). This gave orange crystals (> 99% ee, 80% yield). The physical property values of this compound were as follows.

融点102−103℃;〔β〕22 D−54.3(c1.00,CHCl3);1H NMR(395.75MHz,CDCl3):β 1.00−1.03(m,18H)、1.42−1.44(m,6H)、7.70−7.74(m,2H)、8.08−8.12(m,2H);13C NMR(99.45MHz,CDCl3):β 4.77(t,J=4.1Hz)、27.59(t,J=7.4Hz)、31.90(t,J=7.4Hz)、129.50,129.60,141.63,165.12(dd,J=5.7,2.4Hz);31P NMR(202.35MHz,CDCl3):β −17.7(s);IR(KBR)2950,1470,780cm-1;HRMS(FAB)計算値(C182922(M+ +H))335.1809、実測値335.1826 Melting point 102-103 ° C .; [β] 22 D- 54.3 (c1.00, CHCl 3 ); 1 H NMR (395.75 MHz, CDCl 3 ): β 1.00-1.03 (m, 18H), 1.42-1.44 (m, 6H), 7.70-7.74 (m, 2H), 8.08-8.12 (m, 2H); 13 C NMR (99.45 MHz, CDCl 3 ) : Β 4.77 (t, J = 4.1 Hz), 27.59 (t, J = 7.4 Hz), 31.90 (t, J = 7.4 Hz), 129.50, 129.60, 141 .63, 165.12 (dd, J = 5.7, 2.4 Hz); 31 P NMR (202.35 MHz, CDCl 3 ): β-17.7 (s); IR (KBR) 2950, 1470, 780 cm -1 ; HRMS (FAB) calculated value (C 18 H 29 N 2 P 2 (M + + H)) 335.1 809, actual value 335.1826

〔実施例2〕
ロジウム錯体を用いた不斉水素化反応
50mLの反応管に、以下の表1に示す基質を0.5mmol仕込んだ。反応管はステンレス製のチューブで水素ガスタンクに接続されていた。反応管に1気圧の水素ガス(日本酸素製、99.9999%)を充填した。1.9mg(5.0μmol)の[Rh(nbd)2]BF4及び2.0mg(6.0μmol)の(R,R)−2,3−ビス(tert−ブチルメチルホスフィノ)キノキサリン(12)を、脱ガスした1mLのメタノールに添加した液を、シリンジを用いて反応管に添加した。次いで反応管内の水素ガスの圧力を3気圧にした。反応混合液を蒸発させ、残渣をシリカゲルのフラッシュクロマトグラフィーで精製した。溶離液には酢酸エチルを用いた。生成物の絶対配置及びee値は、保持時間と既報値との比較から決定した。
[Example 2]
Asymmetric hydrogenation reaction using rhodium complex A 50 mL reaction tube was charged with 0.5 mmol of the substrate shown in Table 1 below. The reaction tube was connected to a hydrogen gas tank with a stainless steel tube. The reaction tube was filled with 1 atmosphere of hydrogen gas (Nippon Oxygen, 99.9999%). 1.9 mg (5.0 μmol) [Rh (nbd) 2 ] BF 4 and 2.0 mg (6.0 μmol) (R, R) -2,3-bis (tert-butylmethylphosphino) quinoxaline (12 ) Was added to 1 mL of degassed methanol using a syringe. Next, the pressure of hydrogen gas in the reaction tube was set to 3 atm. The reaction mixture was evaporated and the residue was purified by flash chromatography on silica gel. Ethyl acetate was used as the eluent. The absolute configuration and ee value of the product was determined from a comparison of retention time and reported values.

Figure 2007056007
Figure 2007056007

〔実施例3〕
ロジウム錯体を用いた有機ボロン酸のβ,β−不飽和カルボニル化合物への1,4−付加反応
1.8mg(9.0μmol)の[RhCl(C2422及び3.3mg(9.9μmol)の(R,R)−2,3−ビス(tert−ブチルメチルホスフィノ)キノキサリン(12)を、1mLのジオキサンに添加し、室温、窒素雰囲気下で15分間撹拌した。そこに1.5Mの水酸化カリウム水溶液0.1mlを添加し、15分間撹拌した。更に、表2に示す有機ボロン酸(0.60mmol)及びβ,β−不飽和カルボニル化合物(0.30mmol)を添加した。40℃で1時間撹拌した後、飽和炭酸水素ナトリウム水溶液で反応を終了させ、エーテルで5回抽出した。有機層を硫酸ナトリウムで脱水し、減圧下に濃縮した。最後に残渣をTLCで精製した(シリカゲル、ヘキサン/酢酸エチル=3/1)。生成物の絶対配置及びee値は、保持時間と既報値との比較から決定した。
Example 3
1,4-addition reaction of organoboronic acid to β, β-unsaturated carbonyl compound using rhodium complex 1.8 mg (9.0 μmol) of [RhCl (C 2 H 4 ) 2 ] 2 and 3.3 mg ( (9.9 μmol) of (R, R) -2,3-bis (tert-butylmethylphosphino) quinoxaline (12) was added to 1 mL of dioxane and stirred for 15 minutes at room temperature under nitrogen atmosphere. Thereto was added 0.1 ml of a 1.5 M aqueous potassium hydroxide solution, and the mixture was stirred for 15 minutes. Further, organoboronic acid (0.60 mmol) and β, β-unsaturated carbonyl compound (0.30 mmol) shown in Table 2 were added. After stirring at 40 ° C. for 1 hour, the reaction was terminated with a saturated aqueous sodium hydrogen carbonate solution and extracted five times with ether. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. Finally, the residue was purified by TLC (silica gel, hexane / ethyl acetate = 3/1). The absolute configuration and ee value of the product was determined from a comparison of retention time and reported values.

Figure 2007056007
Figure 2007056007

〔実施例4〕
パラジウム触媒を用いた不斉開環反応
7.1mg(0.025mmol)のPdCl2(cod)及び8.3mg(0.025mmol)の(R,R)−2,3−ビス(tert−ブチルメチルホスフィノ)キノキサリン(12)を、1mLのCH2Cl2に添加し、室温、窒素雰囲下で2時間撹拌した。そこに、表3に示すオキサベンゾノルボルナジエン0.5mmolを、15mLのCH2Cl2に溶解した溶液を添加した。引き続き、ジメチル亜鉛の1.0Mヘキサン溶液(0.75mL)又はジエチル亜鉛の1.0Mヘキサン溶液(0.75mL)を添加した。反応が完了するまで液を撹拌した。数滴の水を添加して反応を終了させた。反応混合液をセライト(商品名)に通し、次いで濃縮した。最後に残渣をTLCで精製した(シリカゲル、ヘキサン/酢酸エチル=3/1)。生成物の絶対配置及びee値は、保持時間と既報値との比較から決定した。
Example 4
Asymmetric ring-opening reaction using palladium catalyst 7.1 mg (0.025 mmol) PdCl 2 (cod) and 8.3 mg (0.025 mmol) (R, R) -2,3-bis (tert-butylmethyl) Phosphino) quinoxaline (12) was added to 1 mL of CH 2 Cl 2 and stirred at room temperature under nitrogen atmosphere for 2 hours. A solution prepared by dissolving 0.5 mmol of oxabenzonorbornadiene shown in Table 3 in 15 mL of CH 2 Cl 2 was added thereto. Subsequently, 1.0 M hexane solution of dimethylzinc (0.75 mL) or 1.0 M hexane solution of diethylzinc (0.75 mL) was added. The solution was stirred until the reaction was complete. A few drops of water were added to terminate the reaction. The reaction mixture was passed through Celite (trade name) and then concentrated. Finally, the residue was purified by TLC (silica gel, hexane / ethyl acetate = 3/1). The absolute configuration and ee value of the product was determined from a comparison of retention time and reported values.

Figure 2007056007
Figure 2007056007

〔実施例5〕
(1)前記の一般式(4)で表される化合物の合成
以下の手順により、 前記の一般式(4)で表される化合物の一種である(R)−アダマンチルメチルホスフィン−ボラン(15)を合成した。
Example 5
(1) Synthesis of compound represented by general formula (4) According to the following procedure, (R) -adamantylmethylphosphine-borane (15), which is a kind of compound represented by general formula (4) Was synthesized.

Figure 2007056007
Figure 2007056007

(R)−アダマンチル(ヒドロキシメチル)メチルホスフィン−ボラン(13)(88%ee、1.57g、6.94mmol)と4−ジメチルアミノピリジン(43mg、0.35 mmol)を20mLのテトラヒドロフランに溶解した溶液に、攪拌下に、塩化ベンゾイル(1.22mL、10.5mmol)とトリエチルアミン(1.95mL、14mmol)を加えた。混合物を終夜攪拌した後、反応混合液を1Mの塩酸で処理し、酢酸エチルで3回抽出した。抽出液を炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。ロータリーエバポレータで溶媒を留去した後、シリカゲルのカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=1/1)で残渣を精製した。無色の固体が得られ、この固体をメタノールで2回再結晶した。このようにして光学的に純粋なアダマンチル(ベンゾイルオキシメチル)メチルホスフィン−ボラン(14)を得た。収量は1.09g、収率は47%であった。NMRスペクトルデータは次の通りであった。   (R) -adamantyl (hydroxymethyl) methylphosphine-borane (13) (88% ee, 1.57 g, 6.94 mmol) and 4-dimethylaminopyridine (43 mg, 0.35 mmol) were dissolved in 20 mL of tetrahydrofuran. To the solution, benzoyl chloride (1.22 mL, 10.5 mmol) and triethylamine (1.95 mL, 14 mmol) were added with stirring. After the mixture was stirred overnight, the reaction mixture was treated with 1M hydrochloric acid and extracted three times with ethyl acetate. The extract was washed with aqueous sodium hydrogen carbonate solution and saturated brine, and dried over sodium sulfate. After the solvent was distilled off with a rotary evaporator, the residue was purified by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 1/1). A colorless solid was obtained, which was recrystallized twice with methanol. In this way optically pure adamantyl (benzoyloxymethyl) methylphosphine-borane (14) was obtained. The yield was 1.09 g, and the yield was 47%. The NMR spectrum data was as follows.

1H NMR(396MHz,CDCl3):δ 0.46(br q,3H),1.32−1.35(d,3H),1.68−2.04(m,15H),4.66−4.77(m,2H),7.26−7.49(t,2H),7.58−7.62(t,1H)8.03−8.05(d,2H) 1 H NMR (396 MHz, CDCl 3 ): δ 0.46 (br q, 3H), 1.32-1.35 (d, 3H), 1.68-2.04 (m, 15H), 4.66 -4.77 (m, 2H), 7.26-7.49 (t, 2H), 7.58-7.62 (t, 1H) 8.03-8.05 (d, 2H)

アダマンチル(ベンゾイルオキシメチル)メチルホスフィン−ボラン(14)(99%ee、1.09g、3.3mmol)を10mLのアセトンに溶解した溶液に、1Mの水酸化カリウム水溶液を10mL滴下した。1時間後、反応混合液を水で希釈し、酢酸エチルで3回抽出した。抽出液を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。ロータリーエバポレータで溶媒を留去し、シリカゲルのカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=1/1)で残渣を精製し、(R)−アダマンチル(ヒドロキシメチル)メチルホスフィン−ボラン(13)を得た。この化合物を6mLのアセトンに溶解した。このアセトン溶液を、9mLの水に水酸化カリウム(1.85g、33mmol)と過硫酸カリウム(2.67g、9.9mmol)を溶かした溶液に加えた。反応容器を氷浴に浸し、三塩化ルテニウム三水和物(87mg、0.33mmol)を激しく攪拌しながら加えた。15分後氷浴を除去し、さらに室温で2時間撹拌した後、1Mの塩酸で中和した。混合物を酢酸エチルで3回抽出し、抽出液を飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥した。ロータリーエバポレータで溶媒を留去し、シリカゲルカラムクロマトグラフィー(移動層:ヘキサン/酢酸エチル=5/1)で残渣を精製した。このようにして(R)−アダマンチルメチルホスフィン−ボラン(15)を得た。収量は506mg、収率は78%であった。NMRスペクトルデータは次の通りであった。   To a solution of adamantyl (benzoyloxymethyl) methylphosphine-borane (14) (99% ee, 1.09 g, 3.3 mmol) dissolved in 10 mL of acetone, 10 mL of 1M aqueous potassium hydroxide solution was added dropwise. After 1 hour, the reaction mixture was diluted with water and extracted three times with ethyl acetate. The extract was washed with saturated brine and dried over sodium sulfate. The solvent was distilled off with a rotary evaporator, and the residue was purified by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 1/1), and (R) -adamantyl (hydroxymethyl) methylphosphine-borane (13) was purified. Obtained. This compound was dissolved in 6 mL of acetone. This acetone solution was added to a solution of potassium hydroxide (1.85 g, 33 mmol) and potassium persulfate (2.67 g, 9.9 mmol) in 9 mL of water. The reaction vessel was immersed in an ice bath and ruthenium trichloride trihydrate (87 mg, 0.33 mmol) was added with vigorous stirring. After 15 minutes, the ice bath was removed, and the mixture was further stirred at room temperature for 2 hours, and then neutralized with 1M hydrochloric acid. The mixture was extracted three times with ethyl acetate, and the extract was washed with saturated brine and dried over sodium sulfate. The solvent was distilled off with a rotary evaporator, and the residue was purified by silica gel column chromatography (mobile layer: hexane / ethyl acetate = 5/1). In this way (R) -adamantylmethylphosphine-borane (15) was obtained. The yield was 506 mg and the yield was 78%. The NMR spectrum data was as follows.

1H NMR(396MHz,CDCl3):δ 0.45(br q,3H),1.26(dd,3H),1.71−2.05(m,15H),3.73−3.80,4.63−4.70(m,1H) 1 H NMR (396 MHz, CDCl 3 ): δ 0.45 (br q, 3H), 1.26 (dd, 3H), 1.71-2.05 (m, 15H), 3.73-3.80 4.63-4.70 (m, 1H)

(2)前記の一般式(1)で表される化合物の合成
以下の手順により、前記の一般式(1)で表される化合物の一種である2,3−ビス(アダマンチルメチルホスフィノ)キノキサリン(17)を合成した。
(2) Synthesis of the compound represented by the general formula (1) According to the following procedure, 2,3-bis (adamantylmethylphosphino) quinoxaline which is a kind of the compound represented by the general formula (1) (17) was synthesized.

Figure 2007056007
86mg(0.44mmol)の(R)−アダマンチルメチルホスフィン−ボラン(15)を2mLのジエチレングリコールジメチルエーテルに溶解して溶液を得た。この溶液に窒素雰囲気下でn−ブチルリチウムのヘキサン溶液(2.55M、0.17mL)を0℃でゆっくり滴下した。15分経過後、2,3−ジクロロキノキサリン(10)(40mg、0.2mmol)を加え、室温で3時間撹拌した。これによって中間体であるジホスフィン−ボラン体(16)を得る。次いで0.29mL(2mmol)のTMEDAを添加して、更に3時間攪拌を継続し、脱ボラン化反応を行った。反応混合物を1Mの塩酸で処理し、次いでヘキサンで抽出した。抽出液を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した後、溶媒をロータリーエバポレータで留去した。残渣をシリカゲルカラムクロマトグラフィー(移動層:ヘキサン/酢酸エチル=200/1)で精製することにより,2,3−ビス(アダマンチルメチルホスフィノ)キノキサリン(17)を橙色無定形質固体として得た(収率75%)。この化合物の物性値は次の通りであった。
Figure 2007056007
86 mg (0.44 mmol) of (R) -adamantylmethylphosphine-borane (15) was dissolved in 2 mL of diethylene glycol dimethyl ether to obtain a solution. To this solution, a hexane solution of n-butyllithium (2.55 M, 0.17 mL) was slowly added dropwise at 0 ° C. under a nitrogen atmosphere. After 15 minutes, 2,3-dichloroquinoxaline (10) (40 mg, 0.2 mmol) was added, and the mixture was stirred at room temperature for 3 hours. As a result, an intermediate diphosphine-borane (16) is obtained. Next, 0.29 mL (2 mmol) of TMEDA was added, and stirring was continued for another 3 hours to perform a deboranation reaction. The reaction mixture was treated with 1M hydrochloric acid and then extracted with hexane. The extract was washed with saturated brine and dried over sodium sulfate, and then the solvent was distilled off with a rotary evaporator. The residue was purified by silica gel column chromatography (mobile bed: hexane / ethyl acetate = 200/1) to obtain 2,3-bis (adamantylmethylphosphino) quinoxaline (17) as an orange atypical solid ( Yield 75%). The physical property values of this compound were as follows.

〔α〕24 D=−248;1H NMR(396MHz,CDCl3):δ 1.53−1.85(m,30H),1.39−1.42(m,6H),7.72−7.75(m,2H),8.09−8.13(m,2H);31P NMR(202MHz,CDCl3):δ −17.9(s) [Α] 24 D = −248; 1 H NMR (396 MHz, CDCl 3 ): δ 1.53-1.85 (m, 30H), 1.39-1.42 (m, 6H), 7.72- 7.75 (m, 2H), 8.09-8.13 (m, 2H); 31 P NMR (202 MHz, CDCl 3 ): δ-17.9 (s)

〔実施例6〕
ロジウム錯体を用いた不斉水素化反応
ガラス製の耐圧反応管に、以下の表4に示す基質(0.5mmol)を仕込み、系内を窒素置換した。一方、5mLの丸底フラスコに、1.87mg(5.0μmol)の[Rh(nbd)2]BF4及び2.94mg(6.0μmol)の2,3−ビス(アダマンチルメチルホスフィノ)キノキサリン(17)を入れた。系内を窒素置換した後に、脱ガスした1mLのメタノールを加えて30分間撹拌した。この溶液を耐圧反応管に移し入れ、系内を3気圧の水素ガスで置換した。2時間後、溶媒をロータリーエバポレータで除去し、残渣をシリカゲルクロマトグラフィー(移動層:酢酸エチル)で精製した。生成物の絶対配置及びee値は、高速液体クロマトグラフィーを用い、既報値との比較から決定した。
Example 6
A substrate (0.5 mmol) shown in Table 4 below was charged into a pressure resistant reaction tube made of asymmetric hydrogenation reaction glass using a rhodium complex, and the inside of the system was purged with nitrogen. Meanwhile, in a 5 mL round bottom flask, 1.87 mg (5.0 μmol) [Rh (nbd) 2 ] BF 4 and 2.94 mg (6.0 μmol) 2,3-bis (adamantylmethylphosphino) quinoxaline ( 17) was added. After substituting the system with nitrogen, 1 mL of degassed methanol was added and stirred for 30 minutes. This solution was transferred into a pressure-resistant reaction tube, and the inside of the system was replaced with 3 atmospheres of hydrogen gas. After 2 hours, the solvent was removed by a rotary evaporator, and the residue was purified by silica gel chromatography (mobile layer: ethyl acetate). The absolute configuration and ee value of the product were determined by comparison with previously reported values using high performance liquid chromatography.

Figure 2007056007
Figure 2007056007

Claims (5)

下記一般式(1)で表されることを特徴とする光学活性な2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体。
Figure 2007056007
An optically active 2,3-bis (dialkylphosphino) pyrazine derivative represented by the following general formula (1):
Figure 2007056007
下記一般式(2)で表される請求項1記載のピラジン誘導体。
Figure 2007056007
The pyrazine derivative according to claim 1, which is represented by the following general formula (2).
Figure 2007056007
1がt−ブチル基又はアダマンチル基で、R2がメチル基である請求項1又は2記載のピラジン誘導体。 The pyrazine derivative according to claim 1 or 2, wherein R 1 is a t-butyl group or an adamantyl group, and R 2 is a methyl group. 請求項1記載のピラジン誘導体の製造方法であって、
下記一般式(3)で表される2,3−ジハロゲノピラジン誘導体に、下記一般式(4)で表されるジアルキルホスフィン−ボランを脱プロトン化させて作用させ求核置換反応を行い、次いで脱ボラン化反応を行うことを特徴とする光学活性な2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体の製造方法。
Figure 2007056007
Figure 2007056007
A method for producing a pyrazine derivative according to claim 1,
The 2,3-dihalogenopyrazine derivative represented by the following general formula (3) is allowed to act by deprotonating the dialkylphosphine-borane represented by the following general formula (4), followed by a nucleophilic substitution reaction. A process for producing an optically active 2,3-bis (dialkylphosphino) pyrazine derivative, characterized by carrying out a deboraneation reaction.
Figure 2007056007
Figure 2007056007
請求項1記載のピラジン誘導体を配位子とすることを特徴とする不斉合成触媒用金属錯体。
A metal complex for an asymmetric synthesis catalyst comprising the pyrazine derivative according to claim 1 as a ligand.
JP2006201197A 2005-07-25 2006-07-24 2,3-bis (dialkylphosphino) pyrazine derivative, method for producing the same, and metal complex having the derivative as a ligand Active JP4500289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201197A JP4500289B2 (en) 2005-07-25 2006-07-24 2,3-bis (dialkylphosphino) pyrazine derivative, method for producing the same, and metal complex having the derivative as a ligand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005215003 2005-07-25
JP2006201197A JP4500289B2 (en) 2005-07-25 2006-07-24 2,3-bis (dialkylphosphino) pyrazine derivative, method for producing the same, and metal complex having the derivative as a ligand

Publications (2)

Publication Number Publication Date
JP2007056007A true JP2007056007A (en) 2007-03-08
JP4500289B2 JP4500289B2 (en) 2010-07-14

Family

ID=37919792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201197A Active JP4500289B2 (en) 2005-07-25 2006-07-24 2,3-bis (dialkylphosphino) pyrazine derivative, method for producing the same, and metal complex having the derivative as a ligand

Country Status (1)

Country Link
JP (1) JP4500289B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139176A1 (en) * 2006-06-01 2007-12-06 Nippon Chemical Industrial Co., Ltd Phosphine transition metal complex, method for producing the same and antitumor agent
JP2008260734A (en) * 2007-04-13 2008-10-30 Nippon Chem Ind Co Ltd Method for producing organoboron compound
JP2009029744A (en) * 2007-07-26 2009-02-12 Chiba Univ METHOD FOR PRODUCING OPTICALLY ACTIVE beta-HYDROXYCARBOXYLIC ACID DERIVATIVE
JP2010138136A (en) * 2008-12-15 2010-06-24 Nippon Chem Ind Co Ltd Novel phosphine-borane compound, method for producing the same and method for producing hydrogen-phosphine-borane compound
JP2010189319A (en) * 2009-02-18 2010-09-02 Chiba Univ Method for producing aminooxy compound
WO2011078122A1 (en) 2009-12-21 2011-06-30 日本化学工業株式会社 Anti-cancer agent
WO2011126045A1 (en) * 2010-04-09 2011-10-13 日本化学工業株式会社 Process for preparation of pyrazine derivatives
WO2011129365A1 (en) * 2010-04-14 2011-10-20 日本化学工業株式会社 Antitumor agent
US8076480B2 (en) 2007-07-26 2011-12-13 National University Corporation Chiba University Process of preparing optically active allyl compound
DE102008033164B4 (en) * 2007-07-26 2012-04-26 National University Corporation Chiba University Process for producing an optically active allyl compound
US8198471B2 (en) 2009-03-10 2012-06-12 Nippon Chemical Industrial Co., Ltd. 2, 2′-bis (dialkylphosphino) biphenyl compound, production method thereof, and metal complex comprising the compound as ligand
WO2012176830A1 (en) * 2011-06-23 2012-12-27 日本化学工業株式会社 1,2-bis(dialkylphosphino)-4,5-(methylenedioxy)benzene derivative, method for manufacturing same, metal complex having this 1,2-bis(dialkylphosphino)-4,5-(methylenedioxy)benzene derivative as a ligand, and asymmetric hydrogenation method
WO2019031232A1 (en) * 2017-08-08 2019-02-14 日本化学工業株式会社 Production method for 2,3-bisphosphinopyrazine derivative and production method for phosphine transition metal complex
WO2019172150A1 (en) * 2018-03-07 2019-09-12 日本化学工業株式会社 2,3-bisphosphinopyrazine derivative, method for producing same, transition metal complex, asymmetric catalyst, and method for producing organic boron compound
US11498935B2 (en) 2019-06-24 2022-11-15 Nippon Chemical Industrial Co., Ltd. Optically active bisphosphinomethane, method for producing the same, and transition metal complex and asymmetric catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234729A (en) * 1979-06-18 1980-11-18 E. I. Du Pont De Nemours And Company Phosphine oxide-substituted pyrimidines
JP2008538585A (en) * 2005-04-22 2008-10-30 ダウ グローバル テクノロジーズ インコーポレイティド Asymmetric hydroformylation process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234729A (en) * 1979-06-18 1980-11-18 E. I. Du Pont De Nemours And Company Phosphine oxide-substituted pyrimidines
JP2008538585A (en) * 2005-04-22 2008-10-30 ダウ グローバル テクノロジーズ インコーポレイティド Asymmetric hydroformylation process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009063244, IMAMOTO,T. et al, "An Air−Stable P−Chiral Phosphine Ligand for Highly Enantioselective Transition−Metal−Catalyzed React", Journal of the American Chemical Society, 20050809, Vol.127, No.34, p.11934−11935 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139176A1 (en) * 2006-06-01 2007-12-06 Nippon Chemical Industrial Co., Ltd Phosphine transition metal complex, method for producing the same and antitumor agent
US8278303B2 (en) 2006-06-01 2012-10-02 Nippon Chemical Industrial Co., Ltd. Phosphine transition metal complex, process for producing same, and anticancer agent
JP2008260734A (en) * 2007-04-13 2008-10-30 Nippon Chem Ind Co Ltd Method for producing organoboron compound
JP2009029744A (en) * 2007-07-26 2009-02-12 Chiba Univ METHOD FOR PRODUCING OPTICALLY ACTIVE beta-HYDROXYCARBOXYLIC ACID DERIVATIVE
US8076480B2 (en) 2007-07-26 2011-12-13 National University Corporation Chiba University Process of preparing optically active allyl compound
DE102008033164B4 (en) * 2007-07-26 2012-04-26 National University Corporation Chiba University Process for producing an optically active allyl compound
JP2010138136A (en) * 2008-12-15 2010-06-24 Nippon Chem Ind Co Ltd Novel phosphine-borane compound, method for producing the same and method for producing hydrogen-phosphine-borane compound
US8338391B2 (en) 2008-12-15 2012-12-25 Nippon Chemical Industrial Co., Ltd. Phosphine-borane compound and method for producing the same, and method for producing hydrogen-phosphine-borane compound
JP2010189319A (en) * 2009-02-18 2010-09-02 Chiba Univ Method for producing aminooxy compound
US8198471B2 (en) 2009-03-10 2012-06-12 Nippon Chemical Industrial Co., Ltd. 2, 2′-bis (dialkylphosphino) biphenyl compound, production method thereof, and metal complex comprising the compound as ligand
WO2011078122A1 (en) 2009-12-21 2011-06-30 日本化学工業株式会社 Anti-cancer agent
WO2011126045A1 (en) * 2010-04-09 2011-10-13 日本化学工業株式会社 Process for preparation of pyrazine derivatives
JP2011219413A (en) * 2010-04-09 2011-11-04 Nippon Chem Ind Co Ltd Method for producing pyrazine derivative
WO2011129365A1 (en) * 2010-04-14 2011-10-20 日本化学工業株式会社 Antitumor agent
JP5646606B2 (en) * 2010-04-14 2014-12-24 日本化学工業株式会社 Method for producing anticancer agent
WO2012176830A1 (en) * 2011-06-23 2012-12-27 日本化学工業株式会社 1,2-bis(dialkylphosphino)-4,5-(methylenedioxy)benzene derivative, method for manufacturing same, metal complex having this 1,2-bis(dialkylphosphino)-4,5-(methylenedioxy)benzene derivative as a ligand, and asymmetric hydrogenation method
JP2013006787A (en) * 2011-06-23 2013-01-10 Nippon Chem Ind Co Ltd 1,2-bis(dialkylphosphino)-4,5-(methylenedioxy)benzene derivative, method for producing the same, and metal complex with the same as ligand, and asymmetrically hydrogenating method
US9029571B2 (en) 2011-06-23 2015-05-12 Nippon Chemical Industrial Co., Ltd. Device and method for evaluating organic material for organic solar cell
WO2019031232A1 (en) * 2017-08-08 2019-02-14 日本化学工業株式会社 Production method for 2,3-bisphosphinopyrazine derivative and production method for phosphine transition metal complex
US11021500B2 (en) 2017-08-08 2021-06-01 Nippon Chemical Industrial Co., Ltd. Process for preparing optically active 2,3-bisphosphino-substituted quinoxalines
WO2019172150A1 (en) * 2018-03-07 2019-09-12 日本化学工業株式会社 2,3-bisphosphinopyrazine derivative, method for producing same, transition metal complex, asymmetric catalyst, and method for producing organic boron compound
CN111655708A (en) * 2018-03-07 2020-09-11 日本化学工业株式会社 2, 3-bisphosphinylpyrazine derivative, process for producing the same, transition metal complex, chiral catalyst, and process for producing organoboron compound
US11084835B2 (en) 2018-03-07 2021-08-10 Nippon Chemical Industrial Co., Ltd. 2,3-bisphosphinopyrazine derivative, method for producing same, transition metal complex, asymmetric catalyst, and method for producing organic boron compound
CN111655708B (en) * 2018-03-07 2023-08-25 日本化学工业株式会社 2, 3-biphosphinopyrazine derivative, process for producing the same, complex compound, catalyst, and process for producing organoboron compound
US11498935B2 (en) 2019-06-24 2022-11-15 Nippon Chemical Industrial Co., Ltd. Optically active bisphosphinomethane, method for producing the same, and transition metal complex and asymmetric catalyst

Also Published As

Publication number Publication date
JP4500289B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4500289B2 (en) 2,3-bis (dialkylphosphino) pyrazine derivative, method for producing the same, and metal complex having the derivative as a ligand
US7608709B2 (en) 2, 3-bis(dialkylphosphino)pyrazine derivative, process of producing the same, and metal complex having the same as ligand
JPS63316744A (en) Production of optically active alcohol
US6683208B2 (en) Optically active diphosphines, preparation thereof according to a process for the resolution of the racemic mixture and use thereof
JP5968439B2 (en) Spirobenzylamine-phosphine, process for its production and use thereof
JP4201916B2 (en) Optically active 1,2-bis (dialkylphosphino) benzene derivative, process for producing the same, and rhodium metal complex having the compound as a ligand
JP6547087B1 (en) Optically active 2,3-bisphosphinopyrazine derivative, method for producing the same, method for producing transition metal complex and organic boron compound
EP1661903B1 (en) Novel transition metal complex and process for producing optically active alcohol with the complex
JP5032161B2 (en) Optically active bis (alkynylphosphino) ethane-borane derivative and method for producing the same
US4438033A (en) Steroidal chiral phosphines, methods for their preparation, catalytic systems containing them and catalytic processes in which they are used
JP2000136193A (en) Optically acitive bisphosphinomethane and assymetric synthesis using its phodium or copper complex
JP5546781B2 (en) 2,2&#39;-bis (dialkylphosphino) biphenyl compound, method for producing the same, and metal complex having the compound as a ligand
JP5599664B2 (en) Process for producing optically active 1,2-bis (dialkylphosphino) benzene derivative
US6521795B2 (en) 6,6′-bis-(1-phosphanorbornadiene) diphosphines, their preparation and their uses
JPH1180179A (en) Phosphine compound and rhodium complex containing the same as ligand
JP4685001B2 (en) Phosphine compound, transition metal complex using it as a ligand, and process for producing optically active carboxylic acid
EP1650216B1 (en) Process for producing optically active dimer of phosphorus heterocycle
JP3431749B2 (en) Novel 1-substituted-2-diphenylphosphinonaphthalene and transition metal complex having the same as ligand
CN112204044B (en) Process for producing phosphinobenzeborane derivative, process for producing 1, 2-bis (dialkylphosphino) benzene derivative, and transition metal complex
CN113527360B (en) Phosphine-nitrogen ligand and application of complex thereof in catalyzing asymmetric reaction
WO2006088142A1 (en) Catalyst for asymmetric synthesis, ligand for use therein, and process for producing optically active compound through asymmetric synthesis reaction using them
US6998495B2 (en) Method for producing optically active 3,5-dihydroxycarboxylic acid derivative
JP4845470B2 (en) Process for producing optically active amino alcohols
JP6625013B2 (en) Bisphosphimino ligand having a binaphthol skeleton and catalyst using the same
JP6641328B2 (en) Method for producing 2,3-bisphosphinopyrazine derivative and method for producing phosphine transition metal complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250