JP4962714B2 - Method for forming silicon dioxide film and trench isolation and composition therefor - Google Patents

Method for forming silicon dioxide film and trench isolation and composition therefor Download PDF

Info

Publication number
JP4962714B2
JP4962714B2 JP2007066909A JP2007066909A JP4962714B2 JP 4962714 B2 JP4962714 B2 JP 4962714B2 JP 2007066909 A JP2007066909 A JP 2007066909A JP 2007066909 A JP2007066909 A JP 2007066909A JP 4962714 B2 JP4962714 B2 JP 4962714B2
Authority
JP
Japan
Prior art keywords
carbon atoms
silicon
silicon dioxide
group
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007066909A
Other languages
Japanese (ja)
Other versions
JP2008227389A (en
Inventor
晴生 岩沢
安生 松木
研太郎 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2007066909A priority Critical patent/JP4962714B2/en
Publication of JP2008227389A publication Critical patent/JP2008227389A/en
Application granted granted Critical
Publication of JP4962714B2 publication Critical patent/JP4962714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for forming a silicon dioxide film high in purity and density. <P>SOLUTION: A composition for forming an oxidized silicon contains a silicide shown by a formula (1) (R<SP>1</SP><SB>3</SB>SiO<SB>0.5</SB>)<SB>k</SB>(R<SP>2</SP><SB>2</SB>SiO)<SB>m</SB>(R<SP>3</SP>SiO<SB>1.5</SB>)<SB>n</SB>and a carbonate composition shown by a formula (2), where in the formula (2): R<SP>4</SP>and R<SP>5</SP>are independent from each other, and show an straight-chained or branched alkyl group having a hydrogen atom and 1 to 20 carbon atoms, a monovalent aromatic hydro carbon group having 6 to 20 carbon atoms, or a monovalent halogenated aromatic hydro carbon group having 6 to 20 carbon atoms; and R<SP>6</SP>shows a substituted or unsubstituted organic group having 1 to 20 carbon atoms. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、高純度の二酸化ケイ素膜および半導体素子の素子分離に用いるトレンチアイソレーションの形成方法ならびにそのための組成物に関する。   The present invention relates to a high-purity silicon dioxide film and a method for forming trench isolation used for device isolation of a semiconductor device, and a composition therefor.

多数の素子を高密度に集積して形成される半導体装置の素子間を分離する技術にトレンチアイソレーションがある。トレンチアイソレーション構造は、シリコン基板にドライエッチングによって溝を掘り、その中にSiOを埋め込んで最後は化学機械研磨法(CMP)によって平坦化して形成するのが主流となってきている。このトレンチアイソレーションは、LOCOS法で形成するアイソレーションに比較してバーズビークのようなプロセスに起因するアイソレーション寸法の増加がない。このため、素子の高集積化に適している。上記構造のトレンチアイソレーションは、通常、「初めての半導体プロセス」(前田和夫著、(株)工業調査会)に記載された方法などにより形成される。一般的なトレンチアイソレーションの形成法としては、まず例えば化学的気相成長法によって、シリコン基板の上面に二酸化ケイ素(SiO)膜と酸化用マスクである窒化ケイ素(Si)膜とを積層する。次いで、通常のフォトリソグラフィーにより、窒化ケイ素膜の上面に、レジストにてトレンチパターンを有するエッチングマスクを形成し、反応性イオンエッチングのような異方性エッチングによって、窒化ケイ素膜と酸化シリコン膜とを貫通した状態にてシリコン基板にトレンチを形成する。その後、例えば熱酸化法や化学的気相成長法によってトレンチの内壁に酸化シリコン膜を形成し、次いで、例えば化学的気相成長法によって、トレンチの内部と窒化ケイ素膜の上面とに酸化シリコン堆積層を形成する。そして、化学機械研磨法(CMP)によって埋め込み部を平坦化し、トレンチアイソレーションが形成される。しかしながら、上記の形成方法により形成されたトレンチアイソレーションでは、比較的カバレジのよい化学的気相成長法によって二酸化ケイ素よりなる絶縁体をトレンチ内部に形成しても、トレンチのアスペクト比(トレンチ深さ/トレンチ幅)が1以上になると形成した二酸化ケイ素の内部に局所的なボイドが生じる。このため、その後熱処理工程を行った場合に、発生したボイドが膨張してトレンチアイソレーションを破壊する。そこで局所的なボイドの発生が少ない二酸化ケイ素堆積層の形成方法として、オゾンとテトラエトキシシラン(TEOS)との混合ガスを反応ガスに用いた化学的気相成長法が採用されている。しかしこの方法でも、上記アスペクト比が2以上のトレンチ内部に形成される酸化シリコン堆積層に局所的なボイドが発生する。またこの化学的気相成長法によって形成された二酸化ケイ素堆積層は、他の化学的気相成長法によって形成された二酸化ケイ素堆積層よりも密度が低いために、高抵抗の二酸化ケイ素よりなる絶縁体の形成が困難である。 また、上記した方法にはいずれも高価な真空系装置が必要であるためコスト上の問題があり、また、原料が気体状であるため、装置の汚染や異物発生による生産歩留まりが低い等の解決すべき問題がある。 Trench isolation is a technique for separating elements of a semiconductor device formed by integrating a large number of elements at a high density. The trench isolation structure is mainly formed by digging a groove in a silicon substrate by dry etching, filling SiO 2 therein, and finally flattening by chemical mechanical polishing (CMP). This trench isolation does not increase the isolation size due to a process such as a bird's beak compared to the isolation formed by the LOCOS method. Therefore, it is suitable for high integration of elements. The trench isolation having the above structure is usually formed by the method described in “First Semiconductor Process” (by Kazuo Maeda, Industrial Research Co., Ltd.). As a general method for forming trench isolation, first, for example, by chemical vapor deposition, a silicon dioxide (SiO 2 ) film and a silicon nitride (Si 3 N 4 ) film as an oxidation mask are formed on the upper surface of a silicon substrate. Are laminated. Next, an etching mask having a trench pattern with a resist is formed on the upper surface of the silicon nitride film by ordinary photolithography, and the silicon nitride film and the silicon oxide film are formed by anisotropic etching such as reactive ion etching. A trench is formed in the silicon substrate in a penetrating state. Thereafter, a silicon oxide film is formed on the inner wall of the trench by, for example, thermal oxidation or chemical vapor deposition, and then silicon oxide is deposited on the inside of the trench and the upper surface of the silicon nitride film by, for example, chemical vapor deposition. Form a layer. Then, the buried portion is planarized by chemical mechanical polishing (CMP) to form trench isolation. However, in the trench isolation formed by the above-described forming method, even if an insulator made of silicon dioxide is formed inside the trench by a chemical vapor deposition method with relatively good coverage, the aspect ratio of the trench (trench depth) When the (/ trench width) is 1 or more, local voids are formed inside the formed silicon dioxide. For this reason, when the heat treatment process is performed thereafter, the generated voids expand and destroy the trench isolation. Therefore, a chemical vapor deposition method using a mixed gas of ozone and tetraethoxysilane (TEOS) as a reaction gas is employed as a method for forming a silicon dioxide deposition layer with less local void generation. However, even in this method, local voids are generated in the silicon oxide deposition layer formed in the trench having the aspect ratio of 2 or more. In addition, since the silicon dioxide deposited layer formed by this chemical vapor deposition method has a lower density than the silicon dioxide deposited layer formed by other chemical vapor deposition methods, the insulating layer made of high resistance silicon dioxide is used. The body is difficult to form. In addition, each of the above methods has a problem in terms of cost because an expensive vacuum system is required. Also, since the raw material is in a gaseous state, the production yield due to contamination of the device and generation of foreign matter is low. There is a problem to be done.

本発明の目的は、上記事情に鑑み、有機成分を含まない高純度で且つ高密度の二酸化ケイ素膜またはトレンチアイソレーションを形成する方法ならびにそのための組成物を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a method for forming a high-purity and high-density silicon dioxide film or trench isolation that does not contain an organic component, and a composition therefor.

本発明の他の目的は、CVD法やスパッタリング法等の真空系を用いる方法とは異なり、簡単な操作や装置により、高い歩留りや大きい形成速度で二酸化ケイ素膜またはトレンチアイソレーションを形成するための形成方法およびそのための保存安定性に優れた組成物を提供することにある。   Another object of the present invention is to form a silicon dioxide film or trench isolation with a high yield and a high formation rate by a simple operation and apparatus, unlike a method using a vacuum system such as a CVD method or a sputtering method. It is an object of the present invention to provide a composition having excellent formation stability and storage stability therefor.

本発明のさらに他の目的および利点は、以下の説明から明らかになろう。   Still other objects and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的および利点は、第1に、
下記式(1)で示されるケイ素化合物と下記式(2)で示されるカルバメート化合物とを含有することを特徴とする酸化ケイ素形成用組成物。
(R SiO0.5(R SiO)(RSiO1.5・・・・・(1)
(式(1)中、R、RおよびRは、相互に独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1〜20の直鎖状または分岐状のアルキル基、炭素数1〜20の直鎖状または分岐状のハロゲン化アルキル基、炭素数6〜20の1価の芳香族炭化水素基、あるいは炭素数6〜20の1価のハロゲン化芳香族炭化水素基を示しそしてk、m、nの合計は1である。)
According to the present invention, the above objects and advantages of the present invention are as follows.
A silicon oxide-forming composition comprising a silicon compound represented by the following formula (1) and a carbamate compound represented by the following formula (2).
(R 1 3 SiO 0.5 ) k (R 2 2 SiO) m (R 3 SiO 1.5 ) n (1)
(In formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or a linear or branched alkyl group having 1 to 20 carbon atoms. A linear or branched alkyl halide group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, or a monovalent halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms And the sum of k, m and n is 1.)

Figure 0004962714
Figure 0004962714

(式(2)中、RおよびRは、相互に独立して、水素原子、炭素数1〜20の直鎖状または分岐状のアルキル基、炭素数6〜20の1価の芳香族炭化水素基あるいは炭素数6〜20の1価のハロゲン化芳香族炭化水素基を示し、Rは炭素数1〜20の置換または非置換の有機基を示す。)
によって達成される。
(In formula (2), R 4 and R 5 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or a monovalent aromatic having 6 to 20 carbon atoms. A hydrocarbon group or a monovalent halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 6 represents a substituted or unsubstituted organic group having 1 to 20 carbon atoms.)
Achieved by:

本発明によれば、本発明の上記目的および利点は、第2に、
本発明の酸化ケイ素形成用組成物を基板に塗布し、加熱及び/または光照射することを特徴とする二酸化ケイ素膜の形成方法によって達成される。
According to the present invention, the above objects and advantages of the present invention are secondly,
This is achieved by a method for forming a silicon dioxide film, which comprises applying the composition for forming silicon oxide of the present invention to a substrate and heating and / or irradiating with light.

本発明によれば、本発明の上記目的および利点は、第3に、
シリコン基板に形成する複数の半導体素子を電気的に分離するためのトレンチアイソレーションの形成であって、本発明の酸化ケイ素形成用組成物を基板のトレンチ内が充填されるように基板上に塗膜を形成し、次いで加熱および/または光照射することを特徴とするトレンチアイソレーションの形成方法によって達成される。
According to the present invention, the above objects and advantages of the present invention are thirdly,
A method for forming a trench isolation for electrically isolating a plurality of semiconductor elements formed on a silicon substrate, wherein the silicon oxide forming composition of the present invention is applied onto the substrate so as to fill the trench in the substrate. This is achieved by a method for forming trench isolation, which is characterized by forming a film and then heating and / or light irradiation.

本発明の酸化ケイ素形成用組成物によれば、シリコン基板に複数の半導体素子を電気的に分離するためのトレンチ内を、高純度且つ高密度の二酸化ケイ素で充填することができる。   According to the composition for forming silicon oxide of the present invention, a trench for electrically separating a plurality of semiconductor elements on a silicon substrate can be filled with high-purity and high-density silicon dioxide.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

本発明で使用されるケイ素化合物は、上記式(1)で示される。その構造は鎖状、環状、カゴ状の構造であることができる。
上記式(1)中、R、RおよびRは、互に独立に、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1〜20の直鎖状または分岐状のアルキル基、炭素数1〜20の直鎖状または分岐状のハロゲン化アルキル基、炭素数6〜20の1価の芳香族炭化水素基または炭素数6〜20の1価のハロゲン化芳香族炭化水素基を示す。
炭素数1〜20の直鎖状または分岐状のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、t−ブチル基、アダマンチル基等を挙げることができる。
炭素数1〜20の直鎖状または分岐状のハロゲン化アルキル基としては、上記炭素数1〜20のアルキル基のハロゲン化体が挙げられる。ハロゲンとしては、フッ素、塩素または臭素が挙げられる。
炭素数6〜20の1価の芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等が挙げられる。
炭素数6〜20の1価のハロゲン化芳香族炭化水素基としては、上記炭素数6〜20の1価の芳香族炭化水素基のハロゲン体が挙げられる。ハロゲンとしては、ここでも、フッ素、塩素、臭素が挙げられる。
上記式(1)で表わされるケイ素化合物は単独であるいは2種以上一緒に用いることができる。
上記式(1)で示される溶媒可溶性ケイ素化合物は、例えば下記式(3)で示されるケイ素化合物を、有機溶媒中、塩基性ないし中性条件下で、縮合させて生成させることが可能である。
The silicon compound used in the present invention is represented by the above formula (1). The structure can be a chain, ring, or cage structure.
In the above formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a linear or branched alkyl group having 1 to 20 carbon atoms, A linear or branched alkyl halide group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, or a monovalent halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms. Show.
Examples of the linear or branched alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, a t-butyl group, and an adamantyl group.
Examples of the linear or branched alkyl halide group having 1 to 20 carbon atoms include halogenated products of the above alkyl groups having 1 to 20 carbon atoms. Halogen includes fluorine, chlorine or bromine.
Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group.
Examples of the monovalent halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms include the halogen compounds of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms. Again, halogen includes fluorine, chlorine, and bromine.
The silicon compounds represented by the above formula (1) can be used alone or in combination of two or more.
The solvent-soluble silicon compound represented by the above formula (1) can be produced, for example, by condensing a silicon compound represented by the following formula (3) in an organic solvent under basic or neutral conditions. .

Figure 0004962714
Figure 0004962714

ここで、xは4〜100の整数を示す、
上記縮合反応は、−50℃〜200℃の温度範囲で行うことができ、0℃〜100℃で反応させることが好ましい。
本縮合反応を塩基性条件下で行う場合には、塩基触媒を用いることができる。塩基触媒は、無機塩基および有機塩基のいずれでもよい。無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等を挙げることができる。
Here, x represents an integer of 4 to 100,
The condensation reaction can be performed in a temperature range of −50 ° C. to 200 ° C., and is preferably reacted at 0 ° C. to 100 ° C.
When this condensation reaction is carried out under basic conditions, a basic catalyst can be used. The base catalyst may be either an inorganic base or an organic base. Examples of the inorganic base include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate and the like.

また、有機塩基としては、例えば、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、シクロヘキシルアミン等の直鎖状、分岐状もしくは環状のモノアルキルアミン;
ジ−n−ブチルアミン、ジ−n−ペンチルアミン、ジ−n−ヘキシルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジ−n−ノニルアミン、ジ−n−デシルアミン、シクロヘキシルメチルアミン、ジシクロヘキシルアミン等の直鎖状、分岐状もしくは環状のジアルキルアミン;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デシルアミン、シクロヘキシルジメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等の直鎖状、分岐状もしくは環状のトリアルキルアミン;
アニリン、N−メチルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、4−ニトロアニリン、ジフェニルアミン、トリフェニルアミン、ナフチルアミン等の芳香族アミン;
エチレンジアミン、N,N,N',N’−テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼン、1,3−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼン等のジアミン;
イミダゾール、ベンズイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等のイミダゾール;ピリジン、2−メチルピリジン、4−メチルピリジン、2−エチルピリジン、4−エチルピリジン、2−フェニルピリジン、4−フェニルピリジン、2−メチル−4−フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4−ヒドロキシキノリン、8−オキシキノリン、アクリジン等のピリジン;ピペラジン、1−(2−ヒドロキシエチル)ピペラジン等のピペラジン類のほか、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、モルホリン、4−メチルモルホリン、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等の他の含窒素複素環化合物等を挙げることができる。
これらの塩基触媒は、単独でまたは2種以上を混合して使用することができる。
Examples of the organic base include linear, branched or cyclic monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine and cyclohexylamine;
Di-n-butylamine, di-n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n-decylamine, cyclohexylmethylamine, Linear, branched or cyclic dialkylamines such as dicyclohexylamine; triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptyl Linear, branched or cyclic trialkylamines such as amine, tri-n-octylamine, tri-n-nonylamine, tri-n-decylamine, cyclohexyldimethylamine, dicyclohexylmethylamine, tricyclohexylamine;
Aromatic amines such as aniline, N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline, diphenylamine, triphenylamine, naphthylamine;
Ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4, 4'-diaminodiphenylamine, 2,2-bis (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- ( 3-hydroxyphenyl) propane, 2- (4-aminophenyl) -2- (4-hydroxyphenyl) propane, 1,4-bis [1- (4-aminophenyl) -1-methylethyl] benzene, 1, Diamines such as 3-bis [1- (4-aminophenyl) -1-methylethyl] benzene;
Imidazole such as imidazole, benzimidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole; pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4 -Pyridine such as phenylpyridine, 2-methyl-4-phenylpyridine, nicotine, nicotinic acid, nicotinamide, quinoline, 4-hydroxyquinoline, 8-oxyquinoline, acridine; piperazine, 1- (2-hydroxyethyl) piperazine In addition to piperazines such as pyrazine, pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, morpholine, 4-methylmorpholine, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane, etc. Other nitrogen It can be mentioned heterocyclic compounds.
These base catalysts can be used alone or in admixture of two or more.

本発明において、縮合時に用いられる有機溶剤としては、シリコーン樹脂成分と反応しないものであれば特に限定されない。例えば、塩化メチレン、クロロホルム、四塩化炭素などの塩素系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、デカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素系溶媒;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、エチルブチルエーテル、エチルペンチルエーテル、エチルヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ビス(2−メトキシエチル)エーテル、p−ジオキサン、テトラヒドロフランなどのエーテル系溶媒;およびプロピレンカーボネート、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、アセトニトリルなどの極性溶媒を挙げることができる。これらのうち、該溶液の安定性の点で、塩素系溶媒、エーテル系溶媒、炭化水素系溶媒が好ましい。   In the present invention, the organic solvent used at the time of condensation is not particularly limited as long as it does not react with the silicone resin component. For example, chlorinated solvents such as methylene chloride, chloroform, carbon tetrachloride; n-pentane, n-hexane, n-heptane, n-octane, decane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene , Hydrocarbon solvents such as decahydronaphthalene and squalane; diethyl ether, dipropyl ether, dibutyl ether, ethyl butyl ether, ethyl pentyl ether, ethyl hexyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether , Diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, bis (2-methoxyethyl) ether, - dioxane, ether solvents such as tetrahydrofuran; can be cited, and propylene carbonate, .gamma.-butyrolactone, N- methyl-2-pyrrolidone, dimethylformamide, polar solvents such as acetonitrile. Of these, chlorine-based solvents, ether-based solvents, and hydrocarbon-based solvents are preferable from the viewpoint of the stability of the solution.

また、上記式(1)において、R、R、Rが水素原子以外のケイ素化合物は、それ自体公知の方法に従って、R SiX、RSiXおよびRSiXで表わされる化合物を適宜混合して加水分解、重縮合させることによって製造することができる。
これらの式において、Xはハロゲン原子あるいはアルコキシ基の加水分解性基である。
上記縮合反応により、上記式(1)で表わされるケイ素化合物であるシリコーン樹脂を生成することができる。
In the above formula (1), the silicon compounds in which R 1 , R 2 and R 3 are other than hydrogen atoms are represented by R 1 3 SiX, R 2 SiX 2 and R 3 SiX 3 according to a method known per se. It can be produced by appropriately mixing and hydrolyzing and polycondensing the compounds.
In these formulas, X is a hydrolyzable group of a halogen atom or an alkoxy group.
By the condensation reaction, a silicone resin that is a silicon compound represented by the formula (1) can be produced.

上記式(1)で表わされるケイ素化合物は、k+m+n=1であり、好ましくはkは0〜0.2で、mは0.2〜0.8で、nは0.2〜0.8である。kが0.2より大きいときは十分な膜厚が得られない等の塗布異常が発生しやすい。mが0.2より小さいときはケイ素化合物の溶媒に対する溶解性が低下し組成物の保存安定性が悪くなり、mが0.8より大きいときは成膜性が悪化する。nが0.2より小さいときは成膜性の異常が発生しやすく、nが0.8より大きい場合にはケイ素化合物溶液の保存安定性が悪くなる。ケイ素化合物の分子量は、好ましくは200から500,000であり、より好ましくは1,000〜100,000であり、更に好ましくは2,000〜50,000である。このようなケイ素化合物は、単独で、または分子量、組成の異なる2種以上を混合して使用することができる。
上記式(3)で表わされるケイ素化合物は、有機溶媒中、ジクロロシランを加水分解することで合成することができる。加水分解の際には、有機溶媒、水以外に触媒などの第3成分を加えてもよい。
The silicon compound represented by the above formula (1) is k + m + n = 1, preferably k is 0 to 0.2, m is 0.2 to 0.8, and n is 0.2 to 0.8. is there. When k is larger than 0.2, coating abnormality such as insufficient film thickness is likely to occur. When m is smaller than 0.2, the solubility of the silicon compound in the solvent is lowered and the storage stability of the composition is deteriorated. When m is larger than 0.8, the film formability is deteriorated. When n is less than 0.2, abnormal film formation tends to occur, and when n is greater than 0.8, the storage stability of the silicon compound solution is deteriorated. The molecular weight of the silicon compound is preferably 200 to 500,000, more preferably 1,000 to 100,000, and still more preferably 2,000 to 50,000. Such silicon compounds can be used alone or in admixture of two or more having different molecular weights and compositions.
The silicon compound represented by the above formula (3) can be synthesized by hydrolyzing dichlorosilane in an organic solvent. In the hydrolysis, a third component such as a catalyst may be added in addition to the organic solvent and water.

ここで使用する溶媒としては、シリコーン樹脂成分と反応しないものであれば特に限定されない。例えば、塩化メチレン、クロロホルム、四塩化炭素などの塩素系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、デカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素系溶媒;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、エチルブチルエーテル、エチルペンチルエーテル、エチルヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ビス(2−メトキシエチル)エーテル、p−ジオキサン、テトラヒドロフランなどのエーテル系溶媒;およびプロピレンカーボネート、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、アセトニトリルなどの極性溶媒を挙げることができる。これらのうち、該溶液の安定性の点で、塩素系溶媒、エーテル系溶媒、炭化水素系溶媒が好ましい。   The solvent used here is not particularly limited as long as it does not react with the silicone resin component. For example, chlorinated solvents such as methylene chloride, chloroform, carbon tetrachloride; n-pentane, n-hexane, n-heptane, n-octane, decane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene , Hydrocarbon solvents such as decahydronaphthalene and squalane; diethyl ether, dipropyl ether, dibutyl ether, ethyl butyl ether, ethyl pentyl ether, ethyl hexyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether , Diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, bis (2-methoxyethyl) ether, - dioxane, ether solvents such as tetrahydrofuran; can be cited, and propylene carbonate, .gamma.-butyrolactone, N- methyl-2-pyrrolidone, dimethylformamide, polar solvents such as acetonitrile. Of these, chlorine-based solvents, ether-based solvents, and hydrocarbon-based solvents are preferable from the viewpoint of the stability of the solution.

加水分解のため水の量は、ジクロロシランに対して、好ましくは0.5モル%以上、より好ましくは10モル%以下で、さらに好ましくは、0.9モル%以上、特に好ましくは1.5モル%以下である。水添加量が0.5モル%以下では加水分解反応が未反応のクロル体を残留し、一方、水添加量が10モル%以上では反応が急激に進みゲル化が起こる恐れがある。なお、本反応に使用する水の量は、添加する水の他に、ジクロロシラン、溶剤、その他添加物、雰囲気、装置等反応系中に存在する可能性のある全ての水分を示す。
本加水分解反応は、−78℃〜100℃の温度で行なうのが望ましく、特に−20℃〜50℃の範囲で行なうのが望ましい。
The amount of water for hydrolysis is preferably 0.5 mol% or more, more preferably 10 mol% or less, still more preferably 0.9 mol% or more, particularly preferably 1.5 mol%, based on dichlorosilane. It is less than mol%. If the amount of water added is 0.5 mol% or less, the unreacted chloro compound remains in the hydrolysis reaction. On the other hand, if the amount of water added is 10 mol% or more, the reaction rapidly proceeds and gelation may occur. The amount of water used in this reaction indicates all water that may be present in the reaction system, such as dichlorosilane, solvent, other additives, atmosphere, and apparatus, in addition to the water to be added.
This hydrolysis reaction is desirably performed at a temperature of −78 ° C. to 100 ° C., and particularly desirably within a range of −20 ° C. to 50 ° C.

上記式(3)で示されるケイ素化合物は室温で安定な化合物ではあるが、室温で取り扱う場合は、上記に示した溶媒の溶液状態での取り扱い、保存が好ましく、また、無溶媒状態で取り扱い、保存する場合は0℃以下で行なうのが望ましい。
また、上記式(3)で示されるケイ素化合物は、蒸留精製が可能であり、蒸留時の減圧度は常圧(760mmHg)以下が望ましく、蒸留時の加温温度も200℃以下が望ましく、蒸留により得られた上記式(3)で示されるケイ素化合物も溶液状態で保管するのが望ましい。蒸留により、脱金属、脱ハロゲン等が可能となる。本条件が保持しない場合、ゲル化が進行し、目的物が得られない恐れがある。
The silicon compound represented by the above formula (3) is a stable compound at room temperature, but when handled at room temperature, it is preferably handled and stored in the solution state of the solvent shown above, and is handled in a solvent-free state. When storing, it is desirable to carry out at 0 ° C or less.
Further, the silicon compound represented by the above formula (3) can be purified by distillation, the degree of vacuum during distillation is desirably normal pressure (760 mmHg) or less, and the heating temperature during distillation is desirably 200 ° C. or less. It is also desirable to store the silicon compound represented by the above formula (3) obtained by the above in a solution state. By distillation, demetalization, dehalogenation and the like are possible. When this condition is not maintained, gelation proceeds and the target product may not be obtained.

本発明で用いられるカルバメート化合物は、上記式(2)で表わされる。式(2)中、RおよびRは、互に独立に、水素原子、炭素数1〜20の直鎖状または分岐状のアルキル基、炭素数6〜20の1価の芳香族炭化水素基または炭素数6〜20の1価のハロゲン芳香族炭化水素基である。
これらのアルキル基、芳香族炭化水素基およびハロゲン化芳香族炭化水素基としては、R、RおよびRについて前述したと同じ基を具体例として挙げることができる。
式(2)中、Rは、炭素数1〜20の置換または非置換の有機基を示す。Rの具体例としては、R、RおよびRについて前述したアルキル基、芳香族炭化水素基およびハロゲン化芳香族炭化水素基が挙げられるが、この中でも、t−ブチル基、t−アミル基、1−メチルシクロヘキシル基、1−アダマンチル基、1−メチル−1−フェニルエチル基、1,1−ジフェニルエチル基、トリフェニルメチル基等、カルボニルオキシ基と結合している炭素が3級炭素であることが好ましい。
The carbamate compound used in the present invention is represented by the above formula (2). In formula (2), R 4 and R 5 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon having 6 to 20 carbon atoms. Or a monovalent halogen aromatic hydrocarbon group having 6 to 20 carbon atoms.
Specific examples of these alkyl groups, aromatic hydrocarbon groups and halogenated aromatic hydrocarbon groups are the same as those described above for R 1 , R 2 and R 3 .
In formula (2), R 6 represents a substituted or unsubstituted organic group having 1 to 20 carbon atoms. Specific examples of R 6 include the alkyl groups, aromatic hydrocarbon groups, and halogenated aromatic hydrocarbon groups described above for R 1 , R 2, and R 3. Among these, t-butyl group, t- Carbon bonded to carbonyloxy group such as amyl group, 1-methylcyclohexyl group, 1-adamantyl group, 1-methyl-1-phenylethyl group, 1,1-diphenylethyl group, triphenylmethyl group is tertiary. Carbon is preferred.

上記式(2)で表わされるカルバメート化合物のうち、Rがt−ブチル基の化合物としては、例えば、N−t−ブトキシカルボニルジ−n−オクチルアミン、N−t−ブトキシカルボニルジ−n−ノニルアミン、N−t−ブトキシカルボニルジ−n−デシルアミン、N−t−ブトキシカルボニルジシクロヘキシルアミン、N−t−ブトキシカルボニル−1−アダマンチルアミン、N−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N,N’−ジ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N,N’N’−テトラ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N’−ジ−t−ブトキシカルボニル−1,7−ジアミノヘプタン、N,N’−ジ−t−ブトキシカルボニル−1,8−ジアミノオクタン、N,N’−ジ−t−ブトキシカルボニル−1,9−ジアミノノナン、N,N’−ジ−t−ブトキシカルボニル−1,10−ジアミノデカン、N,N’−ジ−t−ブトキシカルボニル−1,12−ジアミノドデカン、
N,N’−ジ−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N−t−ブトキシカルボニルベンズイミダゾール、N−t−ブトキシカルボニル−2−メチルベンズイミダゾール、N−t−ブトキシカルボニル−2−フェニルベンズイミダゾール等のN−t−ブトキシカルボニル基含有アミノ化合物のほか、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン等を挙げることができる。
上記カルバメート化合物は単独であるいは2種以上一緒に用いることができる。
Among the carbamate compounds represented by the above formula (2), examples of the compound in which R 6 is a t-butyl group include Nt-butoxycarbonyldi-n-octylamine and Nt-butoxycarbonyldi-n-. Nonylamine, Nt-butoxycarbonyldi-n-decylamine, Nt-butoxycarbonyldicyclohexylamine, Nt-butoxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-N-methyl-1-adamantylamine N, N-di-t-butoxycarbonyl-1-adamantylamine, N, N-di-t-butoxycarbonyl-N-methyl-1-adamantylamine, Nt-butoxycarbonyl-4,4′-diamino Diphenylmethane, N, N′-di-t-butoxycarbonylhexamethylenediamine, N, N N′N′-tetra-t-butoxycarbonylhexamethylenediamine, N, N′-di-t-butoxycarbonyl-1,7-diaminoheptane, N, N′-di-t-butoxycarbonyl-1,8- Diaminooctane, N, N′-di-t-butoxycarbonyl-1,9-diaminononane, N, N′-di-t-butoxycarbonyl-1,10-diaminodecane, N, N′-di-t-butoxy Carbonyl-1,12-diaminododecane,
N, N′-di-t-butoxycarbonyl-4,4′-diaminodiphenylmethane, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2-methylbenzimidazole, Nt-butoxycarbonyl-2 -Nt-butoxycarbonyl group-containing amino compounds such as phenylbenzimidazole, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, Examples thereof include benzamide, pyrrolidone, N-methylpyrrolidone and the like.
The carbamate compounds can be used alone or in combination of two or more.

本発明の組成物は、上記式(1)で表わされるケイ素化合物と上記式(2)で表わされるカルバメート化合物を、両者の合計に基づいて、それぞれ、好ましくは70〜99.9重量%、より好ましくは75〜99重量%および好ましくは0.1〜30重量%、より好ましくは1〜25重量%で含有する。
上記式(1)で表わされるケイ素化合物に、上記式(2)で表わされるカルバメート化合物を併用することで、溶液中では安定で、成膜後加熱することにより、膜中該ケイ素化合物のSi−O−Si結合を構築、架橋度を高度化させて二酸化ケイ素膜の膜密度を高めることができる。
本発明の組成物中には、必要に応じ、溶剤など他成分が存在していてもよい。
本発明の二酸化ケイ素膜の形成方法およびトレンチアイソレーションの形成方法では上記組成物が用いられる。
In the composition of the present invention, the silicon compound represented by the above formula (1) and the carbamate compound represented by the above formula (2) are preferably 70 to 99.9% by weight, respectively, based on the total of both. Preferably it contains 75 to 99 wt% and preferably 0.1 to 30 wt%, more preferably 1 to 25 wt%.
When the carbamate compound represented by the above formula (2) is used in combination with the silicon compound represented by the above formula (1), it is stable in a solution and heated after film formation, so that Si— It is possible to increase the density of the silicon dioxide film by constructing O-Si bonds and increasing the degree of crosslinking.
In the composition of this invention, other components, such as a solvent, may exist as needed.
The above composition is used in the method for forming a silicon dioxide film and the method for forming a trench isolation of the present invention.

上記組成物は上記式(1)のケイ素化合物および上記式(2)のカルバメート化合物を溶媒に溶解して形成される。ここで使用する溶媒としては、これらの成分と反応しないものであれば特に限定されない。例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、デカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素系溶媒;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、エチルブチルエーテル、エチルペンチルエーテル、エチルヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ビス(2−メトキシエチル)エーテル、p−ジオキサン、テトラヒドロフランなどのエーテル系溶媒;およびプロピレンカーボネート、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、アセトニトリルなどの極性溶媒を挙げることができる。これらのうち、該溶液の安定性の点でエーテル系溶媒、炭化水素系溶媒が好ましい。これらの溶媒は、単独でもあるいは2種以上の混合物としても使用できる。上記の溶媒を使用する場合、その使用量は、所望のシリコン酸化膜の膜厚に応じて適宜調整することができる。好ましくは上記ケイ素化合物およびカルバメート化合物の合計1重量部に対し1,000重量部以下であり、特に好ましくは500重量部以下である。1,000重量部を越えると、塗布液の成膜が困難な場合があり好ましくない。   The composition is formed by dissolving the silicon compound of the above formula (1) and the carbamate compound of the above formula (2) in a solvent. The solvent used here is not particularly limited as long as it does not react with these components. For example, hydrocarbon solvents such as n-pentane, n-hexane, n-heptane, n-octane, decane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, squalane; diethyl Ether, dipropyl ether, dibutyl ether, ethyl butyl ether, ethyl pentyl ether, ethyl hexyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, bis (2- Ether solvents such as methoxyethyl) ether, p-dioxane, tetrahydrofuran; And propylene carbonate, .gamma.-butyrolactone, N- methyl-2-pyrrolidone, dimethyl formamide, may be mentioned polar solvents such as acetonitrile. Of these, ether solvents and hydrocarbon solvents are preferred in view of the stability of the solution. These solvents can be used alone or as a mixture of two or more. When the above solvent is used, the amount used can be appropriately adjusted according to the desired film thickness of the silicon oxide film. The amount is preferably 1,000 parts by weight or less, particularly preferably 500 parts by weight or less, based on 1 part by weight of the total of the silicon compound and carbamate compound. If the amount exceeds 1,000 parts by weight, it may be difficult to form a coating solution, which is not preferable.

上記組成物には、本発明の目的と機能を損なわない範囲で必要に応じて界面活性剤を添加することができる。このような界面活性剤は、カチオン系、アニオン系、両イオン系、または非イオン系であることができる。このうち、非イオン系界面活性剤は、組成物の塗布対象物への濡れ性を良好化し、塗布した膜のレベルリング性を改良し、塗膜のぶつぶつの発生、ゆず肌の発生などの防止に役立つ点で好ましく使用できる。かかる非イオン性界面活性剤としては、例えばフッ化アルキル基もしくはパーフルオロアルキル基を有するフッ素系界面活性剤、またはオキシアルキル基を有するポリエーテルアルキル系界面活性剤を挙げることができる。   A surfactant can be added to the above composition as necessary within a range not impairing the object and function of the present invention. Such surfactants can be cationic, anionic, amphoteric, or nonionic. Among these, nonionic surfactants improve the wettability of the composition to the object to be coated, improve the leveling of the applied film, and prevent the occurrence of coating crushing and distortion skin. It can be preferably used in terms of usefulness. Examples of the nonionic surfactant include a fluorine-based surfactant having a fluorinated alkyl group or a perfluoroalkyl group, or a polyether alkyl-based surfactant having an oxyalkyl group.

前記フッ素系界面活性剤としては、例えばエフトップEF301、同EF303、同EF352(新秋田化成(株)製)、メガファックF171、同F173(大日本インキ(株)製)、アサヒガードAG710(旭硝子(株)製)、フロラードFC−170C、同FC430、同FC431(住友スリーエム(株)製)、サーフロンS−382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(旭硝子(株)製)、BM−1000、同1100(B.M−Chemie社製)、Schsego−Fluor(Schwegmann社製)、C19CONHC1225、C17SONH−(CO)H、C17O(プルロニックL−35)C17、C17O(プルロニックP−84)C17、C17O(テトロニック−704)(C17)2などを挙げることができる。(ここで、プルロニックL−35:旭電化工業(株)製、ポリオキシプロピレン−ポリオキシエチレンブロック共重合体、平均分子量1,900;プルロニックP−84:旭電化工業(株)製、ポリオキシプロピレン−ポリオキシエチレンブロック共重合体、平均分子量4,200;テトロニック−704:旭電化工業(株)製、N,N,N’,N’−テトラキス(ポリオキシプロピレン−ポリオキシエチレンブロック共重合体)、平均分子量5,000である。)
またポリエーテルアルキル系界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアリルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンオキシプロピレンブロックポリマーなどを挙げることができる。これらのポリエーテルアルキル系界面活性剤の具体例としては、エマルゲン105、同430、同810、同920、レオドールSP−40S、同TW−L120、エマノール3199、同4110、エキセルP−40S、ブリッジ30、同52、同72、同92、アラッセル20、エマゾール320、ツィーン20、同60、マージ45(いずれも(株)花王製)、ノニボール55(三洋化成(株)製)などを挙げることができる。
Examples of the fluorosurfactant include F-top EF301, EF303, EF352 (manufactured by Shin-Akita Kasei Co., Ltd.), MegaFuck F171, F173 (manufactured by Dainippon Ink Co., Ltd.), Asahi Guard AG710 (Asahi Glass) ), FLORARD FC-170C, FC430, FC431 (Sumitomo 3M), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC105, Asahi Glass ( Ltd.)), BM-1000, the 1100 (B.M-Chemie Co.), Schsego-Fluor (Schwegmann Co., Ltd.), C 9 F 19 CONHC 12 H 25, C 8 F 17 SO 2 NH- (C 2 H 4 O) 6 H, C 9 F 17 O ( Pluronic L-35) C 9 F 17 , C 9 F 17 O (Pluronic P-84) C 9 F 17 , C 9 F 17 O (Tetronic-704) (C 9 F 17 ) 2 and the like can be mentioned. (Here, Pluronic L-35: manufactured by Asahi Denka Kogyo Co., Ltd., polyoxypropylene-polyoxyethylene block copolymer, average molecular weight 1,900; Pluronic P-84: manufactured by Asahi Denka Kogyo Co., Ltd., polyoxy Propylene-polyoxyethylene block copolymer, average molecular weight 4,200; Tetronic-704: manufactured by Asahi Denka Kogyo Co., Ltd., N, N, N ′, N′-tetrakis (polyoxypropylene-polyoxyethylene block copolymer) Polymer), average molecular weight 5,000.)
Examples of the polyether alkyl surfactant include polyoxyethylene alkyl ether, polyoxyethylene allyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, oxyethyleneoxy A propylene block polymer etc. can be mentioned. Specific examples of these polyether alkyl surfactants include Emulgen 105, 430, 810, 920, Rhedol SP-40S, TW-L120, Emanol 3199, 4110, Excel P-40S, Bridge 30. 52, 72, 92, Alassell 20, Emazole 320, Tween 20, 60, Merge 45 (all manufactured by Kao Corporation), Noniball 55 (manufactured by Sanyo Chemical Co., Ltd.), and the like. .

上記以外の非イオン性界面活性剤としては、例えばポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリアルキレンオキサイドブロック共重合体などがあり、具体的にはケミスタット2500(三洋化成工業(株)製)、SN−EX9228(サンノプコ(株)製)、ノナール530(東邦化学工業(株)製)などを挙げることができる。このような界面活性剤の使用量は、ケイ素化合物およびカルバメート化合物の合計100重量部に対して、好ましくは10重量部以下、特に好ましくは0.1〜5重量部である。ここで、10重量部を超えると得られる組成物が発泡し易くなると共に、熱変色を起こす場合があり好ましくない。   Nonionic surfactants other than the above include, for example, polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyalkylene oxide block copolymers, and the like. Specifically, Chemistat 2500 (Sanyo Chemical Industries, Ltd.) Manufactured), SN-EX9228 (manufactured by San Nopco), Nonal 530 (manufactured by Toho Chemical Co., Ltd.), and the like. The amount of the surfactant used is preferably 10 parts by weight or less, particularly preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the total of the silicon compound and the carbamate compound. Here, when the amount exceeds 10 parts by weight, the resulting composition tends to foam, and thermal discoloration may occur, which is not preferable.

また本発明の組成物には、適当な分散媒に分散されたコロイド状シリカを添加することもできる。このコロイド状シリカは、本発明の組成物の動的粘弾性特性を変えるために使用されるもので、塗布方法や得られる所望の膜厚により変量することができる。なお、コロイド状シリカを用いる場合には、その使用量は本発明で用いられるケイ素化合物および任意添加成分との分散性を考慮して適宜選択使用するのが好ましい。また本発明の組成物には、組成物のゲル化防止および増粘、得られるシリコン酸化膜の耐熱性、耐薬品性、硬度、および密着性の向上、更には静電防止などを目的として、酸化アルミニウム、酸化ジルコニウム、酸化チタンなどの金属酸化物の微粉末を適宜配合することもできる。   Moreover, the colloidal silica disperse | distributed to the appropriate dispersion medium can also be added to the composition of this invention. This colloidal silica is used to change the dynamic viscoelastic properties of the composition of the present invention, and can be varied depending on the coating method and the desired film thickness obtained. When colloidal silica is used, the amount used is preferably selected and used appropriately in consideration of dispersibility with the silicon compound used in the present invention and optional components. In addition, the composition of the present invention has the purpose of preventing gelation and thickening of the composition, improving the heat resistance, chemical resistance, hardness, and adhesion of the resulting silicon oxide film, and further preventing static electricity. Fine powders of metal oxides such as aluminum oxide, zirconium oxide, and titanium oxide can be appropriately blended.

本発明の組成物は基板に塗布した後、光照射及び/または加熱することにより二酸化ケイ素膜へ変換される。塗布方法は特に限定されないが通常スピンコート、スプレーコート、カーテンコート、バーコートの他に、印刷法、インクジェット塗布などの方法が適応できる。半導体用途では通常スピンコート法が好ましい。また塗布環境としては特に限定されないが窒素、アルゴン、ヘリウムなどの不活性雰囲気、水素を含む還元性ガス雰囲気、一般的な空気雰囲気で行ってもよい。   After the composition of the present invention is applied to a substrate, it is converted into a silicon dioxide film by light irradiation and / or heating. The application method is not particularly limited, but usually, in addition to spin coating, spray coating, curtain coating, and bar coating, methods such as printing and ink jet coating can be applied. For semiconductor applications, spin coating is usually preferred. The coating environment is not particularly limited, but may be performed in an inert atmosphere such as nitrogen, argon or helium, a reducing gas atmosphere containing hydrogen, or a general air atmosphere.

また、塗布したケイ素化合物は、加熱及び/または光照射により二酸化ケイ素膜へ変換される。処理条件としては、加熱の場合は通常空気中、もしくは窒素などの不活性雰囲気中で熱処理が施される。上記加熱は、ホットプレート、オーブンなどの一般的な加熱手段を用いて行われる。加熱温度は、好ましくは100〜1,000℃であり、より好ましくは200〜900℃で、さらに好ましくは300〜800℃である。加熱処理時間は好ましくは1〜300分、より好ましくは5〜120分、さらに好ましくは10〜60分である。加熱温度が100℃より低いと膜密度は低くケイ素化合物膜の二酸化ケイ素膜化反応が不十分である場合があり、一方加熱温度が1,000℃より高い場合には得られる二酸化ケイ素膜にクラックが入ることがあり、好ましくない。また、加熱時間が1分より短いと酸化反応が不十分である場合があり、一方、300分を越えて長時間加熱する必要はない。   The applied silicon compound is converted into a silicon dioxide film by heating and / or light irradiation. As processing conditions, in the case of heating, heat treatment is usually performed in air or in an inert atmosphere such as nitrogen. The heating is performed using a general heating means such as a hot plate or an oven. The heating temperature is preferably 100 to 1,000 ° C, more preferably 200 to 900 ° C, and still more preferably 300 to 800 ° C. The heat treatment time is preferably 1 to 300 minutes, more preferably 5 to 120 minutes, and further preferably 10 to 60 minutes. When the heating temperature is lower than 100 ° C., the film density is low and the silicon compound film may not be sufficiently formed into a silicon dioxide film. On the other hand, when the heating temperature is higher than 1,000 ° C., the resulting silicon dioxide film is cracked. Is not preferable. If the heating time is shorter than 1 minute, the oxidation reaction may be insufficient, while it is not necessary to heat for more than 300 minutes.

窒素中一定温度での加熱と空気中一定温度での加熱を組み合わせた処理でもよい。また光照射する際には、可視光線、紫外線、遠紫外線の他、低圧あるいは高圧の水銀ランプ、重水素ランプあるいはアルゴン、クリプトン、キセノン等の希ガスの放電光の他、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、XeF、XeCl、XeBr、KrF、KrCl、ArF、ArClなどのエキシマレーザーなどを光源として使用することができる。これらの光源としては、好ましくは10〜5,000Wの出力のものが用いられる。通常100〜1,000Wで十分である。これらの光源の波長は組成物または塗膜中のケイ素化合物が多少でも吸収するものであれば特に限定されないが、170nm〜600nmが好ましい。更に光と熱の両方を使用する場合として、上記光照射処理を行う際の温度は、好ましくは室温〜500℃以下である。処理時間は0.1〜60分程度である。光照射処理は、照射光の波長により異なり波長は220nm以下の場合は窒素中で行うのが好ましく、波長は220nm以上の場合には空気中で行うことが好ましい。   The treatment may be a combination of heating at a constant temperature in nitrogen and heating at a constant temperature in air. When irradiating light, in addition to visible light, ultraviolet light, far ultraviolet light, low pressure or high pressure mercury lamp, deuterium lamp or rare gas discharge light such as argon, krypton, xenon, YAG laser, argon laser, An excimer laser such as a carbon dioxide laser, XeF, XeCl, XeBr, KrF, KrCl, ArF, or ArCl can be used as a light source. As these light sources, those having an output of 10 to 5,000 W are preferably used. Usually 100 to 1,000 W is sufficient. Although the wavelength of these light sources will not be specifically limited if the silicon compound in a composition or a coating film absorbs to some extent, 170 nm-600 nm are preferable. Furthermore, when using both light and heat, the temperature when performing the light irradiation treatment is preferably room temperature to 500 ° C. or less. The processing time is about 0.1 to 60 minutes. The light irradiation treatment varies depending on the wavelength of the irradiation light, and is preferably performed in nitrogen when the wavelength is 220 nm or less, and is preferably performed in air when the wavelength is 220 nm or more.

本発明のトレンチアイソレーションの形成方法においては、上記組成物を、トレンチ構造を有する基板上に、例えばスプレー法、ロールコート法、カーテンコート法、スピンコート法、スクリーン印刷法、オフセット印刷法、インクジェット法などの適宜の方法により塗布成膜し、上記の加熱及び/または光照射を施した後の膜厚としては、好ましくは5〜1,000nm、さらに好ましくは25〜500nm程度になるように塗布する。なお、組成物が溶媒を含有するものであるとき、上記膜厚は溶媒除去後の膜厚として理解されるべきである。   In the method for forming trench isolation according to the present invention, the composition is applied onto a substrate having a trench structure, for example, a spray method, a roll coating method, a curtain coating method, a spin coating method, a screen printing method, an offset printing method, an inkjet method. Coating is performed by an appropriate method such as a method, and the film thickness after being subjected to the above heating and / or light irradiation is preferably 5 to 1,000 nm, more preferably about 25 to 500 nm. To do. In addition, when a composition contains a solvent, the said film thickness should be understood as a film thickness after solvent removal.

基板上にトレンチを形成する方法としては、それ自体公知の方法、例えば前記したマスク窒化膜/パッド酸化膜からなる絶縁膜を堆積することを含む方法を挙げることができる。トレンチは、好ましくは30〜100,000nm、より好ましくは50〜50,000nmの線巾を有することができる。トレンチのアスペクト比は好ましくは50以下、より好ましくは10以下である。また、本発明の組成物の塗膜を密着性よくかつ緻密に基板上に成膜するために、塗布前および後のうちの少なくとも一回、光照射処理を施すことが好ましい。このような光照射処理に際しては、可視光線、紫外線、遠紫外線の他、低圧あるいは高圧の水銀ランプ、重水素ランプあるいはアルゴン、クリプトン、キセノン等の希ガスの放電光の他、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、XeF、XeCl、XeBr、KrF、KrCl、ArF、ArClなどのエキシマレーザーなどを光源として使用することができる。これらの光源としては、好ましくは10〜5,000Wの出力のものが用いられる。通常100〜1,000Wで十分である。これらの光源の波長は組成物または塗膜中のポリシラン化合物が多少でも吸収するものであれば特に限定されないが170nm〜600nmが好ましい。光照射処理を行う際の温度は、好ましくは室温〜300℃である。処理時間は0.1〜30分程度である。これらの光照射処理は、シリコーン樹脂の成膜工程と同様の雰囲気下で行うことが好ましい。   Examples of a method for forming a trench on a substrate include a method known per se, for example, a method including depositing an insulating film made of the mask nitride film / pad oxide film described above. The trench can preferably have a line width of 30 to 100,000 nm, more preferably 50 to 50,000 nm. The aspect ratio of the trench is preferably 50 or less, more preferably 10 or less. Moreover, in order to form a coating film of the composition of the present invention on the substrate with good adhesion and denseness, it is preferable to perform a light irradiation treatment at least once before and after coating. In such light irradiation treatment, in addition to visible light, ultraviolet light, far ultraviolet light, low pressure or high pressure mercury lamp, deuterium lamp, or discharge light of rare gas such as argon, krypton, xenon, YAG laser, argon laser An excimer laser such as carbon dioxide laser, XeF, XeCl, XeBr, KrF, KrCl, ArF, ArCl, or the like can be used as a light source. As these light sources, those having an output of 10 to 5,000 W are preferably used. Usually 100 to 1,000 W is sufficient. Although the wavelength of these light sources will not be specifically limited if the polysilane compound in a composition or a coating film absorbs to some extent, 170 nm-600 nm are preferable. The temperature when performing the light irradiation treatment is preferably room temperature to 300 ° C. The processing time is about 0.1 to 30 minutes. These light irradiation treatments are preferably performed in the same atmosphere as in the film formation step of the silicone resin.

本発明のトレンチアイソレーションの形成に使用するトレンチ基板としては特に限定されない。基板としては、例えば通常の石英、ホウ珪酸ガラス、ソーダガラスの他、ITOなどの透明電極、金、銀、銅、ニッケル、チタン、アルミニウム、タングステンなどの金属基板、さらにこれらの金属またはこれらの金属の酸化物を表面に有するガラス、あるいはプラスチック基板などを使用することができる。   The trench substrate used for forming the trench isolation of the present invention is not particularly limited. Examples of substrates include ordinary quartz, borosilicate glass, soda glass, transparent electrodes such as ITO, metal substrates such as gold, silver, copper, nickel, titanium, aluminum, and tungsten, and these metals or these metals. It is possible to use glass having a surface of the above oxide or a plastic substrate.

塗膜を形成する面は平面でも、段差のある非平面でもよく、その形態は特に限定されない。本発明において、上記の如くして二酸化ケイ素膜がトレンチ内部に局所的な空孔を生じることなく埋め込まれる。また、シリコーン樹脂塗膜を光照射にて行う場合には、所望のパターンを有するフォトマスクの使用等により、塗膜の一部に選択的に光照射すれば、任意の部分のみにトレンチアイソレーションを形成することも可能である。   The surface on which the coating film is formed may be a flat surface or a non-planar surface having a step, and the form is not particularly limited. In the present invention, as described above, the silicon dioxide film is buried without generating local vacancies inside the trench. In addition, when the silicone resin coating film is irradiated with light, if a part of the coating film is selectively irradiated with light by using a photomask having a desired pattern, trench isolation is applied only to an arbitrary portion. It is also possible to form

本発明により基板の面積や形状に関わらずに局所的なボイドがない二酸化ケイ素膜を形成することができ、高信頼性が要求されるデバイスを製造するために好適に使用することができる。また、本発明の方法は、真空装置などの高価な装置が不要なので低コストである。本発明により従来の方法では実現できなかったアスペクト比2以上のトレンチの埋込みを容易に行うことが可能となった。   According to the present invention, a silicon dioxide film free from local voids can be formed regardless of the area and shape of the substrate, and can be suitably used for manufacturing a device that requires high reliability. Further, the method of the present invention is low in cost because an expensive apparatus such as a vacuum apparatus is not necessary. According to the present invention, trenches having an aspect ratio of 2 or more that could not be realized by the conventional method can be easily filled.

以下、実施例により本発明を詳述する。本発明はこれらの実施例により何ら制限されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. The present invention is not limited in any way by these examples.

合成例1
500mLの4口フラスコにデュアコンデンサー、空気導入管、温度計、セプタムを装備し、窒素雰囲気中、トルエン200mlを仕込んだ。この反応系をドライアイス−アセトンバスにより−60℃に冷却した後、液化したHSiCl(24.3g,240mmol)をシリンジにて注入した。同温度−60℃において、蒸留水(4.10ml、228mmol)を3分間かけて、滴下し、その後、2時間かけて、室温まで昇温させた。更に、そのまま室温で1時間撹拌した。その後、反応液を分液ロートに移し、トルエン層を蒸留水100mlで5回洗浄し、トルエン層を硫酸マグネシウムで乾燥後、濾過し、シリコン樹脂溶液を得た。
得られたシリコン樹脂溶液を、150mmHg、80℃、更に、0.5mmHgで、80℃まで温度をかけ減圧蒸留し、蒸留液(イ)198gを得た。蒸留液(イ)について、H−NMR、29Si−NMR、測定を行なった。H−NMR測定では、4.8〜4.7ppmの領域に、Si−H由来のピークが観察された。また、4.8ppm〜4.7ppmの領域に現れるSi−H由来のピークと、トルエン由来のピークの積分比から、蒸留液(イ)には、シリコン樹脂が3.0重量%溶解していることが判明した。
Synthesis example 1
A 500 mL four-necked flask was equipped with a dual condenser, an air inlet tube, a thermometer, and a septum, and 200 ml of toluene was charged in a nitrogen atmosphere. After this reaction system was cooled to −60 ° C. with a dry ice-acetone bath, liquefied H 2 SiCl 2 (24.3 g, 240 mmol) was injected with a syringe. At the same temperature of −60 ° C., distilled water (4.10 ml, 228 mmol) was added dropwise over 3 minutes, and then the temperature was raised to room temperature over 2 hours. Furthermore, it stirred at room temperature for 1 hour as it was. Thereafter, the reaction solution was transferred to a separatory funnel, the toluene layer was washed 5 times with 100 ml of distilled water, the toluene layer was dried over magnesium sulfate, and then filtered to obtain a silicon resin solution.
The obtained silicone resin solution was distilled under reduced pressure at 150 mmHg, 80 ° C. and 0.5 mmHg to 80 ° C. to obtain 198 g of a distillate (I). 1 H-NMR, 29 Si-NMR, and measurement were performed on the distillate (I). In 1 H-NMR measurement, a peak derived from Si—H 2 was observed in the region of 4.8 to 4.7 ppm. Moreover, from the integration ratio of the peak derived from Si—H 2 appearing in the region of 4.8 ppm to 4.7 ppm and the peak derived from toluene, 3.0% by weight of silicon resin was dissolved in the distillate (A). Turned out to be.

合成例2
大気中、50ml茄子型フラスコに、上記蒸留液(イ)(トルエンに対してシリコン樹脂が3.0%(w/w)含まれている)を50gとり、室温にて攪拌、更にトリエチルアミンをトルエンに溶解し1%(w/w)溶液とした溶液0.33mlを3分間かけ滴下し、その後、室温にて16時間攪拌した。
その後、反応液に1%シュウ酸水を加え、反応を停止し、次いで分液ロートに移し、更にn−ブチルエーテル30mlを加え、水槽を分液し、再度1%シュウ酸水を加え、分液した後、蒸留水で3回水洗を行なった。その後、溶媒留去、更にn−ブチルエーテルで3回、減圧留去による溶剤置換作業を行ない、均一で透明な、シリコン樹脂−n−ブチルエーテル溶液(ロ)14.3gを得た。
Synthesis example 2
In the atmosphere, 50 g of the above distillate (ii) (containing 3.0% (w / w) of silicon resin with respect to toluene) is taken in a 50 ml cocoon flask, stirred at room temperature, and triethylamine is added to toluene. Then, 0.33 ml of a 1% (w / w) solution was added dropwise over 3 minutes, and then stirred at room temperature for 16 hours.
Then, 1% oxalic acid water is added to the reaction solution to stop the reaction, and then transferred to a separatory funnel, 30 ml of n-butyl ether is further added, the water tank is separated, 1% oxalic acid water is added again, and liquid separation is performed. Then, it was washed with distilled water three times. Thereafter, the solvent was distilled off, and further, the solvent was replaced with n-butyl ether three times under reduced pressure to obtain 14.3 g of a uniform and transparent silicon resin-n-butyl ether solution (b).

シリコン樹脂−n−ブチルエーテル溶液(ロ)について、H−NMR、29Si−NMR、測定を行なった。H−NMR測定では、4.8ppm〜4.6ppmの領域にSi−H由来のブロードなピークが、4.5ppm〜4.3ppmの領域にSi−H由来のブロードなピークが、観察され、双方の積分比は51:49であった。一方、29Si−NMR測定では、−47ppm〜−51ppmの領域にHSi(−O)のピークと−80ppm〜87ppmの領域にHSi(−O)ピークが観察され、双方の積分比は51:49であった。また、H−NMR測定によるn−ブチルエーテル由来のピークの積分比から、シリコン樹脂−n−ブチルエーテル溶液(ロ)には、シリコン樹脂が10.0%溶解していることが判明した。
また、シリコン樹脂−n−ブチルエーテル溶液(ロ)について、燃焼ガス吸収法によるイオンクロマト分析により、溶液中の塩素濃度を測定した所、測定法検出限界の1ppm以下であることが解った。
1 H-NMR, 29 Si-NMR, and measurement were performed on the silicon resin-n-butyl ether solution (b). In 1 H-NMR measurement, a broad peak derived from Si—H 2 was observed in the region of 4.8 ppm to 4.6 ppm, and a broad peak derived from Si—H was observed in the region of 4.5 ppm to 4.3 ppm. The integration ratio of both was 51:49. On the other hand, in the 29 Si-NMR measurement, a peak of H 2 Si (—O) 2 and a HSi (—O) 3 peak in the region of −80 ppm to 87 ppm are observed in the region of −47 ppm to −51 ppm, and the integral ratio of both Was 51:49. Moreover, from the integral ratio of the peak derived from n-butyl ether by 1 H-NMR measurement, it was found that 10.0% of the silicon resin was dissolved in the silicon resin-n-butyl ether solution (B).
Moreover, about the silicon resin n-butyl ether solution (b), when the chlorine concentration in a solution was measured by the ion chromatography analysis by a combustion gas absorption method, it turned out that it is 1 ppm or less of a measurement method detection limit.

合成例3
300mLの3口フラスコに空気導入管、滴下ロートを装備し、窒素雰囲気中、ジクロロメタン100mlを加え、N,N−ジメチルアミノピリジンを120mg添加、更に、表1に示す量のアミンを添加し攪拌、次いで室温にてジ−t−ブチルジカーボネート21.8g(100mmol)を塩化メチレン20mlに溶解し、15分間かけ滴下した。
滴下終了後、室温にて1時間攪拌後、反応液を分液ロートに移し、蒸留水100mlを加え塩化メチレン層を計5回洗浄した。次いで、有機層を硫酸マグネシウムで乾燥後塩化メチレンを留去、式(2)に示す反応生成物カルバメート化合物(2−a)〜(2−l)を表1に記載の収量で得た。
Synthesis example 3
A 300 mL three-necked flask is equipped with an air introduction tube and a dropping funnel. In a nitrogen atmosphere, 100 ml of dichloromethane is added, 120 mg of N, N-dimethylaminopyridine is added, and the amount of amine shown in Table 1 is added and stirred. Next, 21.8 g (100 mmol) of di-t-butyl dicarbonate was dissolved in 20 ml of methylene chloride at room temperature and added dropwise over 15 minutes.
After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour, and then the reaction solution was transferred to a separatory funnel, 100 ml of distilled water was added, and the methylene chloride layer was washed 5 times in total. Subsequently, the organic layer was dried over magnesium sulfate, and then methylene chloride was distilled off. The reaction product carbamate compounds (2-a) to (2-1) represented by the formula (2) were obtained in the yields shown in Table 1.

Figure 0004962714
Figure 0004962714

次いで、合成例2のシリコン樹脂−n−ブチルエーテル溶液(ロ)10gに対して、それぞれ、上記表のカルバメート化合物(2−a)〜(2−l)を表1に記載の添加量で添加し、均一液(ロ−a)〜(ロ−l)とした。室温にて1日放置したが、特に外観上の変化等は観察されなかった。   Next, the carbamate compounds (2-a) to (2-1) in the above table were added in the addition amounts shown in Table 1 to 10 g of the silicone resin-n-butyl ether solution (b) in Synthesis Example 2, respectively. The uniform liquids (Lo-a) to (Ro-1) were used. Although it was allowed to stand at room temperature for 1 day, no change in appearance was observed.

評価例1
上記合成例3で得たカルバメート化合物添加シリコン樹脂−n−ブチルエーテル溶液(ロ−a)〜(ロ−l)と、カルバメート化合物無添加のシリコン樹脂−n−ブチルエーテル溶液(ロ)について、0.5μmPTFEフィルターで濾過後、シリコンウエハー上に回転数1,000rpmでスピンコートして成膜し、次いで、100℃で1時間焼成し、二酸化ケイ素膜(ハ−a)〜(ハ−l)並びに(ハ:無添加)を得た。ここで得られた二酸化ケイ素膜についてFT−IRによる分析を実施した所、カルバメート化合物無添加二酸化ケイ素膜(ハ)の場合、2,200cm−1付近に観察されるSi−H基由来のピークが観察されたのに対し、カルバメート化合物を添加した12種の液により成膜した二酸化ケイ素膜(ハ−a)〜(ハ−l)では2,200cm−1付近にはSi−H基由来のピークは殆ど観察されなかった。また、カルバメート化合物無添加、シリコン膜(ハ)の場合、1,000〜1,100cm−1付近に観察されるSi−O−Si基由来のピークが観察されるのに対し、カルバメート化合物を添加した12種の液により成膜した二酸化ケイ素膜(ハ−a)〜(ハ−l)では、更にSi−O−Si基由来のピーク範囲が広がり、1,000〜1,200cm−1の範囲に広がり、Si−O−Si結合が相対的に増加していることが解った。
Evaluation Example 1
For the carbamate compound-added silicon resin-n-butyl ether solutions (b-a) to (b-l) obtained in Synthesis Example 3 and the carbamate compound-free silicon resin-n-butyl ether solution (b), 0.5 μm PTFE was used. After filtration through a filter, a silicon wafer was spin-coated at a rotation speed of 1,000 rpm to form a film, and then baked at 100 ° C. for 1 hour to obtain silicon dioxide films (ha) to (ha) and (ha). : No addition). When the silicon dioxide film obtained here was analyzed by FT-IR, in the case of the silicon dioxide film without addition of a carbamate compound (c), there was a peak derived from the Si—H group observed in the vicinity of 2,200 cm −1. In contrast to the observation, in the silicon dioxide films (ha) to (hal) formed by 12 kinds of liquids to which the carbamate compound was added, a peak derived from the Si—H group was present in the vicinity of 2,200 cm −1. Was hardly observed. In the case of no addition of a carbamate compound and a silicon film (c), a peak derived from Si—O—Si groups observed in the vicinity of 1,000 to 1,100 cm −1 is observed, whereas a carbamate compound is added. In the silicon dioxide films (ha) to (ha) formed by the 12 kinds of liquids, the peak range derived from the Si—O—Si group further expands, and ranges from 1,000 to 1,200 cm −1 . It was found that the Si—O—Si bond increased relatively.

評価例2
上記評価例1で得た二酸化ケイ素膜(ハ−a)〜(ハ−l)並びに(ハ:無添加)について、それぞれ二酸化ケイ素膜としての膜厚を測定した所、何れも約200Nmの膜厚であることが判明した。次いで、二酸化ケイ素膜(ハ−a)〜(ハ−l)並びに(ハ:無添加)について、1%フッ酸溶液に10秒間浸潤させ、蒸留水で洗浄後の膜について観察した所、二酸化ケイ素膜(ハ:無添加)並びに二酸化ケイ素膜(ハ−a)、(ハ−b)、(ハ−c)では基板上に二酸化ケイ素膜の存在が確認出来なかった一方で、二酸化ケイ素膜(ハ−d)〜(ハ−l)では酸化膜がエッチングされずに基板上に残っていることが確認できた。
Evaluation example 2
Regarding the silicon dioxide films (ha) to (ha) and (ha: unadded) obtained in the evaluation example 1, the thickness of each silicon dioxide film was measured. It turned out to be. Next, silicon dioxide films (ha) to (ha) and (ha: no addition) were infiltrated in a 1% hydrofluoric acid solution for 10 seconds and observed after washing with distilled water. The presence of the silicon dioxide film on the substrate could not be confirmed in the film (c: additive-free) and the silicon dioxide films (c-a), (c-b), and (c-c). In (d) to (ha), it was confirmed that the oxide film remained on the substrate without being etched.

評価例3
上記評価例1で得た二酸化ケイ素膜(ハ−a)〜(ハ−l)並びに(ハ:無添加)についてESCA分析を行ったところ、何れの膜からも珪素と酸素原子以外の元素は観察されなかった。
Evaluation Example 3
When the ESCA analysis was performed on the silicon dioxide films (ha) to (ha) and (ha: no addition) obtained in Evaluation Example 1, elements other than silicon and oxygen atoms were observed from any film. Was not.

合成例4
テトラメトキシシラン30.1gおよびメチルトリメトキシシラン20.1gをプロピレングリコールモノプロピルエーテル154gに溶解させて攪拌し、溶液の温度を60℃に安定させた。この溶液に、マレイン酸0.12gをイオン交換水15.7gに溶解させた水溶液を1時間かけて添加した。その後、60℃で4時間反応させ、反応液を室温まで冷却した。そして、反応によって副生したメタノールを含む溶液51gを反応液から減圧留去し、プロピレングリコールモノプロピルエーテル51gを加えて反応生成液(ニ)を得た。
この反応生成液(ニ)10gに対して、合成例3で合成した表2のカルバメート化合物をそれぞれ、表2記載の添加量で添加し、均一液(ニ−d)〜(ニ−l)とした。室温にて1日放置したが、特に外観上の変化等は観察されなかった。
Synthesis example 4
30.1 g of tetramethoxysilane and 20.1 g of methyltrimethoxysilane were dissolved in 154 g of propylene glycol monopropyl ether and stirred to stabilize the temperature of the solution at 60 ° C. To this solution, an aqueous solution in which 0.12 g of maleic acid was dissolved in 15.7 g of ion exchange water was added over 1 hour. Then, it was made to react at 60 degreeC for 4 hours, and the reaction liquid was cooled to room temperature. And 51 g of the solution containing methanol by-produced by the reaction was distilled off from the reaction solution under reduced pressure, and 51 g of propylene glycol monopropyl ether was added to obtain a reaction product solution (d).
To 10 g of this reaction product liquid (d), the carbamate compounds of Table 2 synthesized in Synthesis Example 3 were added in the amounts shown in Table 2, respectively, and uniform liquids (ni-d) to (ni-l) and did. Although it was allowed to stand at room temperature for 1 day, no change in appearance was observed.

Figure 0004962714
Figure 0004962714

評価例4
上記合成例4で得たカルバメート化合物添加シリコン樹脂−n−ブチルエーテル溶液(ニ−d)〜(ニ−l)と、カルバメート化合物無添加のシリコン樹脂−n−ブチルエーテル溶液(ニ)について、0.5μmPTFEフィルターで濾過後、シリコンウエハー上に回転数1,000rpmでスピンコートで成膜し、次いで、100℃で1時間焼成し、二酸化ケイ素膜(ホ−d)〜(ホ−l)並びに(ホ:無添加)を得た。ここで得た二酸化ケイ素膜(ホ−d)〜(ホ−l)並びに(ホ:無添加)について、それぞれ二酸化ケイ素膜としての膜厚を測定した所、何れも約300nmの膜厚であることが判明した。次いで、二酸化ケイ素膜(ホ−d)〜(ホ−l)並びに(ホ:無添加)について、1%フッ酸溶液に10秒間浸潤させ、蒸留水で洗浄後の膜について観察した所、二酸化ケイ素膜(ホ:無添加)では基板上に二酸化ケイ素膜の存在が確認出来なかった一方で、二酸化ケイ素膜(ホ−d)〜(ホ−l)では酸化膜がエッチングされずに基板上に残っていることが確認できた。
二酸化ケイ素膜(ホ:無添加)、並びに、二酸化ケイ素膜(ホ−d)、(ホ−g)、(ホ−l)について、この二酸化ケイ素膜の内部応力をTenchor社製応力計で測定したところ、(ホ)は80MPa、(ホ−d)は120MPa、(ホ−g)は130MPa、(ホ−l)は150MPa、の圧縮応力を示した。
Evaluation Example 4
For the carbamate compound-added silicon resin-n-butyl ether solutions (ni-d) to (ni-l) and the carbamate compound-free silicon resin-n-butyl ether solution (d) obtained in Synthesis Example 4, 0.5 μm PTFE was used. After filtration with a filter, a film was formed on a silicon wafer by spin coating at a rotation speed of 1,000 rpm, and then baked at 100 ° C. for 1 hour to obtain silicon dioxide films (ho-d) to (hol) and (e: Additive-free) was obtained. Regarding the silicon dioxide films (ho-d) to (hol) and (e: no addition) obtained here, the thicknesses of the silicon dioxide films were measured, respectively, and the film thickness was about 300 nm. There was found. Next, silicon dioxide films (ho-d) to (hol) and (e: non-added) were infiltrated with a 1% hydrofluoric acid solution for 10 seconds and observed after washing with distilled water. Silicon dioxide In the film (e: no addition), the presence of the silicon dioxide film could not be confirmed on the substrate, while in the silicon dioxide films (hod) to (hol), the oxide film was not etched and remained on the substrate. It was confirmed that
With respect to the silicon dioxide film (e: additive-free) and the silicon dioxide films (ho-d), (ho-g), (hol), the internal stress of the silicon dioxide film was measured with a Tencor stress meter. However, (e) showed a compressive stress of 80 MPa, (ho-d) 120 MPa, (ho-g) 130 MPa, and (hol) 150 MPa.

評価例5
上記合成例3で得たカルバメート化合物添加シリコン樹脂−n−ブチルエーテル溶液(ニ−f)について、0.5μmPTFEフィルターで濾過後、PETフィルム上に回転数1,000rpmでスピンコートで成膜し、次いで、100℃で1時間焼成し、二酸化ケイ素膜を得た。ここで得た二酸化ケイ素膜について、1%フッ酸溶液に10秒間浸潤させ、蒸留水で洗浄後の膜について観察した所、酸化膜がエッチングされずに基板上に残っていることが確認できた。
以上、本発明により、上記式(1)のシリコン化合物に対して、上記式(2)のカルバメート化合物類を加えることで、安定なシリコン樹脂組成物溶液を得ることができ、この樹脂組成物溶液を用いて成膜し、低温焼成することで、不純物が少なく、且つ、高密度な二酸化ケイ素膜が得られることが判明した。
Evaluation Example 5
The carbamate compound-added silicon resin-n-butyl ether solution (ni-f) obtained in Synthesis Example 3 above was filtered through a 0.5 μm PTFE filter, then formed on a PET film by spin coating at a rotation speed of 1,000 rpm, and then Baked at 100 ° C. for 1 hour to obtain a silicon dioxide film. The silicon dioxide film obtained here was infiltrated with a 1% hydrofluoric acid solution for 10 seconds, and the film after washing with distilled water was observed. As a result, it was confirmed that the oxide film remained on the substrate without being etched. .
As described above, according to the present invention, a stable silicon resin composition solution can be obtained by adding the carbamate compounds of the above formula (2) to the silicon compound of the above formula (1). It has been found that a silicon dioxide film having a small amount of impurities and a high density can be obtained by forming a film using this and baking at a low temperature.

合成例1で得られたシリコーン樹脂(環状ポリシロキサン)のH−NMRスペクトル図。 1 H-NMR spectrum of the resulting silicone resin in Synthesis Example 1 (cyclic polysiloxane). 合成例1で得られた上記と同じシリコーン樹脂の29Si−NMRスペクトル図。 29 Si-NMR spectrum of the same silicone resin as obtained above in Synthesis Example 1. 合成例2で得られたシリコーン樹脂(重合後のポリシロキサン)のH−NMRスペクトル図。 1 H-NMR spectrum of the resulting silicone resin in Synthesis Example 2 (post-polymerization polysiloxanes). 合成例2で得られた上記と同じシリコーン樹脂の29Si−NMRスペクトル図。 29 Si-NMR spectrum of the same silicone resin as described above obtained in Synthesis Example 2.

Claims (4)

下記式(1)で示されるケイ素化合物と下記式(2)で示されるカルバメート化合物とを含有することを特徴とする酸化ケイ素形成用組成物。
(R SiO0.5(R SiO)(RSiO1.5・・・・・(1)
(式(1)中、R、RおよびRは、相互に独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1〜20の直鎖状または分岐状のアルキル基、炭素数1〜20の直鎖状または分岐状のハロゲン化アルキル基、炭素数6〜20の1価の芳香族炭化水素基、あるいは炭素数6〜20の1価のハロゲン化芳香族炭化水素基を示しそしてk、m、nの合計は1である。)
Figure 0004962714
(式(2)中、RおよびRは、相互に独立して、水素原子、炭素数1〜20の直鎖状または分岐状のアルキル基、炭素数6〜20の1価の芳香族炭化水素基あるいは炭素数6〜20の1価のハロゲン化芳香族炭化水素基を示し、Rは炭素数1〜20の置換または非置換の有機基を示す。)
A silicon oxide-forming composition comprising a silicon compound represented by the following formula (1) and a carbamate compound represented by the following formula (2).
(R 1 3 SiO 0.5 ) k (R 2 2 SiO) m (R 3 SiO 1.5 ) n (1)
(In formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or a linear or branched alkyl group having 1 to 20 carbon atoms. A linear or branched alkyl halide group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, or a monovalent halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms And the sum of k, m and n is 1.)
Figure 0004962714
(In formula (2), R 4 and R 5 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or a monovalent aromatic having 6 to 20 carbon atoms. A hydrocarbon group or a monovalent halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 6 represents a substituted or unsubstituted organic group having 1 to 20 carbon atoms.)
請求項1記載の酸化ケイ素形成用組成物を基材に塗布し、加熱及び/または光照射することを特徴とする二酸化ケイ素膜の形成方法。 A method for forming a silicon dioxide film, comprising applying the composition for forming silicon oxide according to claim 1 to a substrate, and heating and / or irradiating with light. 二酸化ケイ素膜が圧縮応力を有する請求項2に記載の二酸化ケイ素膜の形成方法。 The method for forming a silicon dioxide film according to claim 2, wherein the silicon dioxide film has a compressive stress. シリコン基板に形成する複数の半導体素子を電気的に分離するためのトレンチアイソレーションの形成方法であって、請求項1記載の組成物を基板のトレンチ内が充填されるように基板上に塗膜を形成し、次いで加熱および/または光照射を行うことを特徴とするトレンチアイソレーションの形成方法。 A method for forming trench isolation for electrically separating a plurality of semiconductor elements formed on a silicon substrate, wherein the composition is coated on the substrate so that the trench in the substrate is filled. , Followed by heating and / or light irradiation.
JP2007066909A 2007-03-15 2007-03-15 Method for forming silicon dioxide film and trench isolation and composition therefor Active JP4962714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066909A JP4962714B2 (en) 2007-03-15 2007-03-15 Method for forming silicon dioxide film and trench isolation and composition therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066909A JP4962714B2 (en) 2007-03-15 2007-03-15 Method for forming silicon dioxide film and trench isolation and composition therefor

Publications (2)

Publication Number Publication Date
JP2008227389A JP2008227389A (en) 2008-09-25
JP4962714B2 true JP4962714B2 (en) 2012-06-27

Family

ID=39845608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066909A Active JP4962714B2 (en) 2007-03-15 2007-03-15 Method for forming silicon dioxide film and trench isolation and composition therefor

Country Status (1)

Country Link
JP (1) JP4962714B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746704B2 (en) * 2009-06-24 2011-08-10 旭化成イーマテリアルズ株式会社 Polysiloxane condensation reaction product
JP5732121B2 (en) * 2013-10-02 2015-06-10 旭化成イーマテリアルズ株式会社 Condensation reaction product for filling polysiloxane trench and method for producing trench filling film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902699B2 (en) * 1997-12-04 2007-04-11 クラリアント インターナショナル リミティド Coating composition and method for producing silica-based ceramic film
JP2007043055A (en) * 2005-07-08 2007-02-15 Sekisui Chem Co Ltd Thin film transistor and gate insulating film
JP5087807B2 (en) * 2006-02-22 2012-12-05 東京応化工業株式会社 Method for producing organic semiconductor element and composition for forming insulating film used therefor
JP5030478B2 (en) * 2006-06-02 2012-09-19 株式会社アルバック Precursor composition of porous film and preparation method thereof, porous film and preparation method thereof, and semiconductor device

Also Published As

Publication number Publication date
JP2008227389A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
EP2065428B1 (en) Method for forming a silicone resin
TWI290573B (en) Composition for film formation and method of film formation
KR20010052442A (en) Process for the Formation of Silicon Oxide Films
TW200424237A (en) Polymer synthesized from silsesquioxane derivative
JP5821761B2 (en) Siloxane compounds and cured products thereof
KR101054569B1 (en) Silicone-containing polymer compound, process for producing the same, heat-resistant resin composition and heat-resistant film
WO2013061823A1 (en) Siloxane-based composition and cured product thereof, and use therefor
TWI398446B (en) A silicon-containing film-forming material, a silicon-containing insulating film, and a method for forming the same
TW201723664A (en) Organic layer composition, and method of forming patterns
US11881400B2 (en) Silicon-containing layer-forming composition, and method for producing pattern-equipped substrate which uses same
TW200844180A (en) High silicon content siloxane polymers for integrated circuits
JP4962714B2 (en) Method for forming silicon dioxide film and trench isolation and composition therefor
JP2003115532A (en) Method for forming trench isolation
US8318582B2 (en) Method of forming a trench isolation
JP5024527B2 (en) Film forming method and trench isolation forming method
TW202112971A (en) Low dielectric constant siliceous film manufacturing composition and methods for producing cured film and electronic device using the same
JP2008266119A (en) Silicone resin, silicone resin composition and method for forming trench isolation
WO2014061632A1 (en) Siloxane compound and curable composition and cured body comprising same
KR101868430B1 (en) Composition for forming silica layer, method for manufacturing silica layer, and silica layer
KR101887212B1 (en) Novel silazane copolymer, composition for forming silica layer and method for manufacturing silica layer, and silica layer
TW200900467A (en) Film-forming composition, silica-based film and method for forming the same
JP6673845B2 (en) Silane polymerization inhibitor
US20060199934A1 (en) Composition, insulating film and process for producing the same
KR20190072130A (en) Manufaturing method for tetrakis(trialkylsilyloxy) silane, semiconductor thin film having polymer derived from tetrakis(trialkylsilyloxy) silane, and manufaturing method for semiconductor thin film
TW200521158A (en) Organo-silsesuioxane polymers for forming low-k dielectrics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4962714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250