JP4962143B2 - Hydraulic drive - Google Patents

Hydraulic drive Download PDF

Info

Publication number
JP4962143B2
JP4962143B2 JP2007145068A JP2007145068A JP4962143B2 JP 4962143 B2 JP4962143 B2 JP 4962143B2 JP 2007145068 A JP2007145068 A JP 2007145068A JP 2007145068 A JP2007145068 A JP 2007145068A JP 4962143 B2 JP4962143 B2 JP 4962143B2
Authority
JP
Japan
Prior art keywords
pressure
valve
circuit
variable pump
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007145068A
Other languages
Japanese (ja)
Other versions
JP2008298185A (en
Inventor
康治 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2007145068A priority Critical patent/JP4962143B2/en
Publication of JP2008298185A publication Critical patent/JP2008298185A/en
Application granted granted Critical
Publication of JP4962143B2 publication Critical patent/JP4962143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可変容量形油圧ポンプ(以下、可変ポンプとする)の吐出圧と複数のアクチュエータの最高負荷圧との差圧に応じて作動し、可変ポンプの吐出圧油をタンクに連通・遮断するアンロード弁を有する油圧駆動装置に関する。     The present invention operates according to the differential pressure between the discharge pressure of a variable displacement hydraulic pump (hereinafter referred to as a variable pump) and the maximum load pressure of a plurality of actuators. The present invention relates to a hydraulic drive device having an unloading valve.

従来技術、この種のアンロード弁にはポンプ圧と、複数のアクチュエータの最高負荷圧力を導くとともに、電磁比例減圧弁で制御する制御圧力を導いている。実機において、操作レバー(操作用バルブ)の操作に対しアクチュエータの応答性をよくするため、この電磁比例減圧弁の制御圧力によって予めアンロード開始圧を設定することができるようにしている。アンロード開始圧を希望の値に設定することで、予め可変ポンプの吐出流量を多くして、アクチュエータの応答性を高めている(例えば、特許文献1参照)。
特開平11−315805号公報
In the prior art, this type of unload valve introduces the pump pressure and the maximum load pressure of a plurality of actuators, as well as the control pressure controlled by the electromagnetic proportional pressure reducing valve. In an actual machine, in order to improve the response of the actuator to the operation of the operation lever (operation valve), the unload start pressure can be set in advance by the control pressure of the electromagnetic proportional pressure reducing valve. By setting the unload start pressure to a desired value, the discharge flow rate of the variable pump is increased in advance to enhance the response of the actuator (see, for example, Patent Document 1).
JP-A-11-315805

しかしながら、特許文献1ではアンロード開始圧を設定するために、電磁比例減圧弁を余分に使用しており、該電磁比例減圧弁を制御するコントローラも必要であるのでコスト高になってしまう。
本発明は、電磁比例減圧弁等のバルブを追加することなく、実機操作レバーの操作に対してアクチュエータの応答性を高めるため、アクチュエータ毎に予め可変ポンプの吐出圧を設定するアンロード弁を有する油圧駆動装置を提供することを目的とする。
However, in Patent Document 1, an extra electromagnetic proportional pressure reducing valve is used to set the unloading start pressure, and a controller for controlling the electromagnetic proportional pressure reducing valve is also required, resulting in an increase in cost.
The present invention has an unload valve that sets the discharge pressure of the variable pump in advance for each actuator in order to increase the response of the actuator to the operation of the actual operation lever without adding a valve such as an electromagnetic proportional pressure reducing valve. An object is to provide a hydraulic drive device.

前記の目的を達成するために、本発明は、可変ポンプの吐出圧と少なくとも1つのアクチュエータの最高負荷圧との差圧に応じて可変ポンプの吐出圧油をタンクに導くアンロード弁を有する油圧駆動装置において、
前記アンドロード弁は、第一受圧部に作用する可変ポンプの吐出圧によって連通方向に作動し、第二受圧部に受ける最高負荷圧によって遮断方向に作動するように構成され、
操作切換弁は、スプールの中立位置では第1の回路、切換位置には第2の回路、第3の回路が構成され、かつ前記第2の回路及び第3の回路は所定面積だけ開口するよう構成され、さらにパイロットポンプの下流に第一の固定絞りを設け、該第一の固定絞りのタンクに連通する前記操作切換弁の回路の面積が、該操作切換弁の切換位置によって変化することで制御される制御圧が第三受圧部に作用して、前記操作切換弁の切換位置毎の回路の面積の設定により、操作切換弁の切換位置によって制御圧が変化して可変ポンプの吐出圧の高さの度合が変化することを特徴とする。
本発明によれば、操作切換弁がストロークしたときの第一の固定絞りの下流からタンクへの回路の面積を任意に設定することで、制御圧が異なり、その結果、作動させるアクチュエータに合わせて可変ポンプの吐出圧が設定できる。このためアクチュエータの負荷に合わせ適切な可変ポンプの吐出圧を設定できるので、該アクチュエータの応答性が高くなりすぎることによる実機のショックなどを防止できる。
In order to achieve the above-described object, the present invention provides a hydraulic pressure having an unload valve that guides the discharge pressure oil of the variable pump to the tank in accordance with the differential pressure between the discharge pressure of the variable pump and the maximum load pressure of at least one actuator. In the drive device,
The and load valve is configured to operate in a communication direction by a discharge pressure of a variable pump acting on a first pressure receiving part, and to operate in a blocking direction by a maximum load pressure received by the second pressure receiving part,
The operation switching valve includes a first circuit in the neutral position of the spool, a second circuit and a third circuit in the switching position, and the second circuit and the third circuit are opened by a predetermined area. is configured, further a first fixed throttle is provided downstream of the pilot pump, that area of the circuit of the operating switching valve communicating with the tank of the first fixed throttle is changed by the switching position of the operating selector valve The control pressure to be controlled acts on the third pressure receiving portion, and by setting the circuit area for each switching position of the operation switching valve, the control pressure changes depending on the switching position of the operation switching valve, and the discharge pressure of the variable pump is reduced. It is characterized in that the degree of height changes.
According to the present invention, by arbitrarily setting the area of the circuit from the downstream of the first fixed throttle to the tank when the operation switching valve is stroked, the control pressure differs, and as a result, the actuator is operated. Variable pump discharge pressure can be set. For this reason, an appropriate variable pump discharge pressure can be set in accordance with the load of the actuator, so that it is possible to prevent a shock of the actual machine due to an excessively high response of the actuator.

本発明は、作動させるアクチュエータに合わせて可変ポンプの吐出圧が設定できる。このためアクチュエータの負荷に合わせ適切な可変ポンプの吐出圧を設定できるので、該アクチュエータの応答性が高くなりすぎることによる実機のショックなどを防止できる。   In the present invention, the discharge pressure of the variable pump can be set according to the actuator to be operated. For this reason, an appropriate variable pump discharge pressure can be set in accordance with the load of the actuator, so that it is possible to prevent a shock of the actual machine due to an excessively high response of the actuator.

以下、本発明に係る油圧駆動装置につき好適の実施の形態を挙げ、添付図面を参照して詳細に説明する。
図1は、本発明の第一の実施の形態に係る油圧駆動装置10の油圧回路図である。
図1に示す油圧駆動装置10は、可変ポンプ11の吐出圧Pと1つのアクチュエータ17の最高負荷圧との差圧を検出する差圧減圧弁25に応じ可変ポンプ11の吐出圧油をタンク18に導くアンロード弁14を有する。
前記アンロード弁14は、第一受圧部21に作用する可変ポンプ11の吐出圧Pが吐出ライン13を経て連通方向(図1で左位置)に作動し、第二受圧部22に受ける最高負荷圧PLmaxによって遮断方向(図1で右位置)に作動するように構成されている。図1中、参照符号24はリリーフ弁を示す。さらに、参照符号26は圧力補償弁を示し、操作切換弁19の前後の差圧を補償する機能を有する。
Preferred embodiments of the hydraulic drive apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a hydraulic circuit diagram of a hydraulic drive apparatus 10 according to the first embodiment of the present invention.
The hydraulic drive device 10 shown in FIG. 1 supplies the discharge pressure oil of the variable pump 11 to the tank 18 in accordance with the differential pressure reducing valve 25 that detects the differential pressure between the discharge pressure P of the variable pump 11 and the maximum load pressure of one actuator 17. An unloading valve 14 leading to
The unload valve 14 is operated by the discharge pressure P of the variable pump 11 acting on the first pressure receiving portion 21 via the discharge line 13 in the communication direction (left position in FIG. 1), and the maximum load received by the second pressure receiving portion 22. It is configured to operate in the blocking direction (right position in FIG. 1) by the pressure PLmax. In FIG. 1, reference numeral 24 indicates a relief valve. Further, reference numeral 26 denotes a pressure compensation valve, which has a function of compensating for the differential pressure before and after the operation switching valve 19.

さらに、アクチュエータ(シリンダ)17を作動する操作切換弁19の上流に第一の固定絞り16を設け、該第一の固定絞り16の下流が操作切換弁19によってタンク18へ連通・遮断して、制御される制御圧Puがアンロード弁14の第三受圧部23に作用することで遮断方向に作動することを特徴としている。
図2は、操作切換弁19の拡大回路図を示す。図2において、操作切換弁19はスプール(図示しない)の中立位置では回路(第1の回路)27a、切換位置、例えば左位置19a及び右位置19bには、油路面積が調整される回路(第2の回路)27b、回路(第3の回路)27cが構成されている。前記左位置19a、右位置19bでは、第一の固定絞り16の下流とタンク18の油路を絞って連通される回路27b乃至27cとなっており、中立位置では第一の固定絞り16の下流とタンク18を連通する回路27aとなっている。これによって、操作切換弁19が中立のとき第一の固定絞り16の上流側の圧力20が一定ならアンロード弁14の第三受圧部23に作用する制御圧Puが操作切換弁19の切換位置19aの回路27b,及び切換位置19bの回路27cの面積(図示せず)により変わることになる。
よって、シリンダ17を作動させる操作切換弁19の切換位置19a,19bのときは第三受圧部23に作用する制御圧Puが高くなり、可変ポンプ11の吐出圧Pが予め高く設定できシリンダ17の応答性を高めることができる。

Further, a first fixed throttle 16 is provided upstream of the operation switching valve 19 that operates the actuator (cylinder) 17, and the downstream of the first fixed throttle 16 is communicated / blocked to the tank 18 by the operation switching valve 19, The control pressure Pu to be controlled acts on the third pressure receiving portion 23 of the unload valve 14 to operate in the shut-off direction.
FIG. 2 shows an enlarged circuit diagram of the operation switching valve 19. In FIG. 2, the operation switching valve 19 has a circuit (first circuit) 27a in a neutral position (not shown) of a spool (not shown ) 27a, and a circuit in which an oil passage area is adjusted ( for example, a left position 19a and a right position 19b ). The second circuit 27b and the circuit (third circuit) 27c are configured. In the left position 19a and the right position 19b, there are circuits 27b to 27c communicating with the downstream of the first fixed throttle 16 and the oil passage of the tank 18, and downstream of the first fixed throttle 16 in the neutral position. And a circuit 27 a that communicates with the tank 18. As a result, if the pressure 20 upstream of the first fixed throttle 16 is constant when the operation switching valve 19 is neutral, the control pressure Pu acting on the third pressure receiving portion 23 of the unloading valve 14 is changed to the switching position of the operation switching valve 19. It changes depending on the area (not shown) of the circuit 27b of 19a and the circuit 27c of the switching position 19b.
Therefore, at the switching positions 19a and 19b of the operation switching valve 19 for operating the cylinder 17, the control pressure Pu acting on the third pressure receiving portion 23 becomes high, and the discharge pressure P of the variable pump 11 can be set high in advance. Responsiveness can be improved.

図3は、アンロード弁14を模写的に示した構造図である。図3においてアンロード弁14は弁本体32にスプール33が摺動自在に嵌挿され、該弁本体32の両端は栓34,35によって液密的に封止されている。スプール33の一側(図3で左側)には、接触子36がばね部材37を介して当接している。前記ばね部材37は栓34と接触子36との間に設けられている。スプール33の他側(図3で右側)にはピストン38が摺動自在に嵌挿されている。   FIG. 3 is a structural diagram schematically showing the unload valve 14. In FIG. 3, the unload valve 14 has a spool 33 slidably inserted into a valve body 32, and both ends of the valve body 32 are sealed fluid-tightly by plugs 34 and 35. A contact 36 is in contact with one side of the spool 33 (left side in FIG. 3) via a spring member 37. The spring member 37 is provided between the stopper 34 and the contact 36. A piston 38 is slidably fitted on the other side of the spool 33 (right side in FIG. 3).

図3において、ピストン38の断面積、すなわちアンロード弁14の第一受圧部21の断面積をA1、スプール33の第二受圧部22の断面積をA2,第三受圧部23の断面積をA3、ばね部材37の弾発力Wspとすると、
可変ポンプ11の吐出ライン13とタンクポート28とを連通させる方向に作用する力は、 P×A1・・・式1 で表わせる。
また、可変ポンプ11の吐出ライン13とタンクポート28とを遮断させる方向に作用する力は、(Pu×A3)+(PL×A2)+Wsp・・・式2 で表わせる。
従って、アンロード弁14のスプール33における圧力バランスは、
Wsp+(Pu×A3)+(PL×A2)=P×A1・・・式3 となるように、アンロード弁14が制御される。なお、PLは負荷圧力、Puは制御圧を表わす。
ここで、A1=A2=A3とすると、
操作切換弁19が中立時(シリンダ17に圧油の供給がない)は、PL=0であることより、 式3は、P=Pu+Wsp/A1・・・式4 となる。
よって、アンロード状態の可変ポンプ11のポンプ圧Pは、制御圧Puによって、変化することがわかる。
In FIG. 3, the cross-sectional area of the piston 38, that is, the cross-sectional area of the first pressure receiving portion 21 of the unload valve 14 is A1, the cross-sectional area of the second pressure receiving portion 22 of the spool 33 is A2, and the cross-sectional area of the third pressure receiving portion 23. Assuming that the elastic force Wsp of the spring member 37 is A3,
The force acting in the direction in which the discharge line 13 of the variable pump 11 and the tank port 28 communicate with each other can be expressed by P × A1.
Further, the force acting in the direction of blocking the discharge line 13 and the tank port 28 of the variable pump 11 can be expressed by (Pu × A3) + (PL × A2) + Wsp (Equation 2).
Therefore, the pressure balance in the spool 33 of the unload valve 14 is
The unload valve 14 is controlled so that Wsp + (Pu × A3) + (PL × A2) = P × A1 (Equation 3). Note that PL represents a load pressure and Pu represents a control pressure.
Here, if A1 = A2 = A3,
When the operation switching valve 19 is neutral (no pressure oil is supplied to the cylinder 17), since PL = 0, Equation 3 becomes P = Pu + Wsp / A1.
Therefore, it can be seen that the pump pressure P of the variable pump 11 in the unloaded state changes depending on the control pressure Pu.

次に制御圧Puの設定方法を図2により説明する。第一の固定絞り16の上流側の圧力20をPpとし、第一の固定絞り16の面積をa1、操作切換弁19における該第一の固定絞り16側の下流とタンク18間の回路27a乃至27cの面積をa2、タンク18の圧力をPtとすると、面積a1,a2の流量はオリフィスの式より、
Q=c×a1×√(Pp−Pu)・・・式5
Q=c×a2×√(Pu−Pt)・・・式6で表わせる。
Pt=0とすると、 a1×√(Pp−Pu)=a2×√(Pu)
整理すると、Pu=(a1)/(a1+a2)Pp・・・式7で表わせる。
よって、第一の固定絞り16の上流側の圧力20をPpの値と第一の固定絞り16の面積a1と、操作切換弁19における該第一の固定絞り16の下流とタンク18間の回路27a乃至27cの面積との関係で、制御圧Puは決まる。
Next, a method for setting the control pressure Pu will be described with reference to FIG. The pressure 20 on the upstream side of the first fixed throttle 16 is Pp, the area of the first fixed throttle 16 is a1, the circuit 27a to the circuit 18a between the downstream of the first fixed throttle 16 side of the operation switching valve 19 and the tank 18. Assuming that the area of 27c is a2 and the pressure of the tank 18 is Pt, the flow rates of the areas a1 and a2 are obtained from the orifice equation:
Q = c × a1 × √ (Pp−Pu) Equation 5
Q = c × a2 × √ (Pu−Pt) (6)
When Pt = 0, a1 × √ (Pp−Pu) = a2 × √ (Pu)
In summary, Pu = (a1 2 ) / (a1 2 + a2 2 ) Pp (7)
Therefore, the pressure 20 on the upstream side of the first fixed throttle 16 is the value of Pp, the area a1 of the first fixed throttle 16, and the circuit between the downstream of the first fixed throttle 16 and the tank 18 in the operation switching valve 19. The control pressure Pu is determined by the relationship with the areas 27a to 27c.

図4は操作切換弁19(図1参照)の構造を示す要部拡大縦断面図で、該操作切換弁19は弁本体39のスプール穴43にスプール40が摺動自在に嵌挿されている。前記スプール40には、第一の固定絞り16側の下流とタンク18(図1参照)の間の回路27a乃至27cの形状が例えば、図5及び図6のように形成されている。
図5では、第一の固定絞り16側,タンク18側の連通孔41,42が間隔をおいて設けられ、該連通孔41、42に連通する内部環状溝44、45がスプール40の外周面に臨んで弁本体39に設けられている。スプール40の軸心方向には内部環状溝44、45の幅の一側端面(図5で内部環状溝44の右側及び内部環状溝45の左側を指す)に対してアンダーラップ量X1を有する段付面46、47が形成され、該段付面46、47は環状溝48により連通している。
FIG. 4 is an enlarged longitudinal sectional view showing a main part of the structure of the operation switching valve 19 (see FIG. 1). The operation switching valve 19 has a spool 40 slidably inserted into a spool hole 43 of the valve body 39. . In the spool 40, the shapes of the circuits 27a to 27c between the downstream on the first fixed throttle 16 side and the tank 18 (see FIG. 1) are formed as shown in FIGS. 5 and 6, for example.
In FIG. 5, communication holes 41, 42 on the first fixed throttle 16 side and tank 18 side are provided at intervals, and internal annular grooves 44, 45 communicating with the communication holes 41, 42 are outer peripheral surfaces of the spool 40. It is provided in the valve body 39 so as to face. A step having an underlap amount X1 in the axial direction of the spool 40 with respect to one end face of the width of the inner annular grooves 44, 45 (referring to the right side of the inner annular groove 44 and the left side of the inner annular groove 45 in FIG. Attached surfaces 46 and 47 are formed, and the stepped surfaces 46 and 47 communicate with each other by an annular groove 48.

前記段付面46、47はそれぞれスプール40の軸径よりも若干小さい軸部49、50を形成している。このため、例えばスプール40が図5で右方向にストロークした場合は、スプール穴43と軸部49との間に隙間51が形成され、かつ隙間51は図5で示す中立位置のスプール穴43と軸部48の隙間よりも小さいため連通孔41より連通孔42に流れる圧油の流量は絞られている。逆にスプール40が図5で左方向にストロークした場合は、スプール穴43と軸部50との間に隙間52が形成され、かつ隙間52も図5で示す中立位置のスプール穴43と軸部48の隙間よりも小さいため連通孔41より連通孔42に流れる圧油の流量は絞られている。また、隙間51より隙間52の方が小さく、スプール40が左方向にストロークした方が、連通孔41より連通孔42に流れる圧油の流量はより絞られていることになる。   The stepped surfaces 46 and 47 form shaft portions 49 and 50 that are slightly smaller than the shaft diameter of the spool 40, respectively. Therefore, for example, when the spool 40 strokes in the right direction in FIG. 5, a gap 51 is formed between the spool hole 43 and the shaft portion 49, and the gap 51 is separated from the spool hole 43 in the neutral position shown in FIG. Since it is smaller than the clearance of the shaft portion 48, the flow rate of the pressure oil flowing from the communication hole 41 to the communication hole 42 is reduced. On the contrary, when the spool 40 strokes in the left direction in FIG. 5, a gap 52 is formed between the spool hole 43 and the shaft portion 50, and the gap 52 is also formed between the spool hole 43 and the shaft portion in the neutral position shown in FIG. 5. Since the clearance is smaller than 48, the flow rate of the pressure oil flowing from the communication hole 41 to the communication hole 42 is reduced. Further, when the gap 52 is smaller than the gap 51 and the spool 40 is stroked to the left, the flow rate of the pressure oil flowing from the communication hole 41 to the communication hole 42 is further reduced.

図6では、連通孔41、42に連通し、スプール40の軸心方向に指向するノッチ53、54を間隔をおいて外周部に複数個設け、該ノッチ53、54の一端面と環状溝44、45の一側端面(図6で内部環状溝44の右側及び内部環状溝45の左側を指す)に対して距離X1を有する。ノッチ53及び54は環状溝48により連通している。このため、例えばスプール40が図6の右方向にストロークした場合は、ノッチ53で連通孔41より連通孔42に流れる圧油の流量は絞られている。逆にスプール40が図6の左方向にストロークした場合は、ノッチ54で連通孔41より連通孔42に流れる圧油の流量は絞られている。また、ノッチ53よりノッチ54の方が深さが浅く、スプール40が左方向にストロークした方が、連通孔41より連通孔42に流れる圧油の流量はより絞られていることになる。   In FIG. 6, a plurality of notches 53, 54 that communicate with the communication holes 41, 42 and that are oriented in the axial direction of the spool 40 are provided on the outer peripheral portion at intervals, and one end face of the notches 53, 54 and the annular groove 44 , 45 with a distance X1 with respect to one end face (referring to the right side of the inner annular groove 44 and the left side of the inner annular groove 45 in FIG. 6). Notches 53 and 54 communicate with each other by an annular groove 48. For this reason, for example, when the spool 40 strokes in the right direction of FIG. 6, the flow rate of the pressure oil flowing from the communication hole 41 to the communication hole 42 is reduced by the notch 53. Conversely, when the spool 40 strokes in the left direction in FIG. 6, the flow rate of the pressure oil flowing from the communication hole 41 to the communication hole 42 is reduced by the notch 54. Further, when the notch 54 is shallower than the notch 53 and the spool 40 is stroked to the left, the flow rate of the pressure oil flowing from the communication hole 41 to the communication hole 42 is further reduced.

図4に示す操作切換弁19のスプール40に設けた回路27a乃至27cにおいて、第一の固定絞り16の下流とタンク18への流路が絞られるまでの距離をX1とする。さらに、圧力ポートPからシリンダ17(図1参照)のポート(図示しない)への開口面積が開き始めるまでのストロークをX2とする。
ここで、X1<X2の関係に設定すると、図7に示すように負荷圧力PLが低い場合は
、該負荷圧力PLに対し可変ポンプの吐出圧も高くする必要がなく、回路27b、27cの面積を大きめにして、制御圧Puを低くすることで、可変ポンプ11の吐出圧Pが低くできる。また、負荷圧PLが高い場合は、回路27b、27cの面積を小さめにして、制御圧Puを高くすることで可変ポンプ11のポンプ圧Pを高くできる。負荷圧PLの特性に合わせて、負荷圧PLより可変ポンプ11のポンプ圧Pを僅か高くできる。
In the circuits 27a to 27c provided on the spool 40 of the operation switching valve 19 shown in FIG. 4, the distance from the downstream of the first fixed throttle 16 to the throttle of the flow path to the tank 18 is X1. Furthermore, let X2 be the stroke until the opening area from the pressure port P to the port (not shown) of the cylinder 17 (see FIG. 1) begins to open.
Here, when the relationship X1 <X2 is set, when the load pressure PL is low as shown in FIG. 7, it is not necessary to increase the discharge pressure of the variable pump with respect to the load pressure PL, and the areas of the circuits 27b and 27c. The discharge pressure P of the variable pump 11 can be lowered by increasing the pressure and lowering the control pressure Pu. When the load pressure PL is high, the pump pressure P of the variable pump 11 can be increased by reducing the areas of the circuits 27b and 27c and increasing the control pressure Pu. In accordance with the characteristics of the load pressure PL, the pump pressure P of the variable pump 11 can be slightly higher than the load pressure PL.

図8は、従前の操作切換弁の開口面積と可変ポンプの吐出圧との関係を示す説明図である。図8では、操作切換弁19のスプール40(図4参照)の開口面積が開き始めるまでのストロークX2してから負荷圧力PLが上昇し、それに伴い、可変ポンプのポンプ圧Pが遅れて上昇するので、P<PLのストローク範囲X3の間は、シリンダ17(図1参照)は作動しない。
図9は本発明の第二の実施の形態に係る油圧駆動装置60の油圧回路図を示す。図10中、図1の構成要素と同一の構成要素は同一符号を付して詳細な説明を省略する。 以下、同様とする。
図9の油圧駆動装置60は、パイロットポンプ12の下流に第一の固定絞り16とは別に第二の固定絞り61を設け、第二の固定絞り61の前後の差圧Prを検出する差圧減圧弁62を設け、前後の差圧Prを第一の固定絞り16へ供給し、該第一の固定絞り16の下流とタンク18への流路面積が操作切換弁19の切換位置によって変化することで、制御される制御圧Puがアンロード弁14の第三受圧部23に作用することで遮断方向に作動することを特徴する。但し、原動機の回転で可変ポンプ11のポンプ圧Pが変わる。なお、参照符号63は第二の固定絞り61の上流側の圧力ラインを示す。
FIG. 8 is an explanatory diagram showing the relationship between the opening area of the conventional operation switching valve and the discharge pressure of the variable pump. In FIG. 8, the load pressure PL increases after the stroke X2 until the opening area of the spool 40 (see FIG. 4) of the operation switching valve 19 starts to open, and accordingly, the pump pressure P of the variable pump increases with a delay. Therefore, the cylinder 17 (see FIG. 1) does not operate during the stroke range X3 where P <PL.
FIG. 9 shows a hydraulic circuit diagram of a hydraulic drive device 60 according to the second embodiment of the present invention. 10, the same components as those of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. The same shall apply hereinafter.
9 is provided with a second fixed throttle 61 separately from the first fixed throttle 16 downstream of the pilot pump 12, and detects a differential pressure Pr before and after the second fixed throttle 61. A pressure reducing valve 62 is provided to supply the front and rear differential pressure Pr to the first fixed throttle 16, and the flow path area downstream of the first fixed throttle 16 and to the tank 18 varies depending on the switching position of the operation switching valve 19. Thus, the control pressure Pu to be controlled acts on the third pressure receiving portion 23 of the unload valve 14 to operate in the shut-off direction. However, the pump pressure P of the variable pump 11 changes with the rotation of the prime mover. Reference numeral 63 indicates a pressure line upstream of the second fixed throttle 61.

図10は本発明の第三の実施の形態に係る油圧駆動装置70の油圧回路図を示す。図10の油圧駆動装置70の特徴は、図1の油圧駆動装置10に油圧モータ71を付加して、該油圧モータ71の操作を行う操作切換弁72、圧力補償弁73を設けている。
この油圧駆動装置70では、操作切換弁19、及び72の切換ストロークに応じて、シリンダ17及び油圧モータ71に適した可変ポンプ11の吐出圧Pに予め高めることができ、応答性を高めることができる。
FIG. 10 is a hydraulic circuit diagram of a hydraulic drive device 70 according to the third embodiment of the present invention. 10 is provided with an operation switching valve 72 and a pressure compensation valve 73 for operating the hydraulic motor 71 by adding a hydraulic motor 71 to the hydraulic drive apparatus 10 of FIG.
In the hydraulic drive device 70, the discharge pressure P of the variable pump 11 suitable for the cylinder 17 and the hydraulic motor 71 can be increased in advance according to the switching stroke of the operation switching valves 19 and 72, and the responsiveness can be improved. it can.

図11は本発明の第四の実施の形態に係る油圧駆動装置80の油圧回路図を示す。図11の油圧駆動装置80の特徴は、図9の油圧駆動装置60に油圧モータ81を付加して、該油圧モータ81の操作を行う操作切換弁82、圧力補償弁83を設けている。   FIG. 11 shows a hydraulic circuit diagram of a hydraulic drive unit 80 according to the fourth embodiment of the present invention. 11 is provided with an operation switching valve 82 and a pressure compensation valve 83 for operating the hydraulic motor 81 by adding a hydraulic motor 81 to the hydraulic drive device 60 of FIG.

図1、図9乃至図11に示す油圧駆動装置10、60、70及び80によれば、前記第一の固定絞りの断面積と前記操作切換弁によって制御されるタンクへの流路面積の設定条件によって、制御圧が選定可能であるので、操作切換弁が作動した際のタンクへの流路面積を任意に設定することで、制御圧が異なり、その結果、作動させるアクチュエータに合わせ可変ポンプの吐出圧を設定できる。このためアクチュエータの負荷に合わせ適切な可変ポンプの吐出圧を設定できるので、各アクチュエータとも応答性を高めることができ、かつ可変ポンプ吐出圧が高すぎることによる実機のショックを防止できる。また無駄ポンプ圧が高くなることもない。   According to the hydraulic drive devices 10, 60, 70 and 80 shown in FIGS. 1 and 9 to 11, the cross-sectional area of the first fixed throttle and the flow passage area to the tank controlled by the operation switching valve are set. Since the control pressure can be selected depending on the conditions, the control pressure differs by arbitrarily setting the flow path area to the tank when the operation switching valve is activated. The discharge pressure can be set. For this reason, it is possible to set an appropriate discharge pressure of the variable pump in accordance with the load of the actuator, so that the response of each actuator can be improved and the shock of the actual machine due to the variable pump discharge pressure being too high can be prevented. In addition, the waste pump pressure does not increase.

本発明の第一の実施の形態に係る油圧駆動装置の油圧回路図である。1 is a hydraulic circuit diagram of a hydraulic drive device according to a first embodiment of the present invention. 図1に示す操作切換弁の拡大油圧回路図である。FIG. 2 is an enlarged hydraulic circuit diagram of the operation switching valve shown in FIG. 1. 図1のアンロード弁の概略構造図である。FIG. 2 is a schematic structural diagram of the unload valve in FIG. 1. 図1の操作切換弁の要部拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of a main part of the operation switching valve in FIG. 1. 図4のスプールの拡大詳細図である。FIG. 5 is an enlarged detail view of the spool of FIG. 4. 図4のスプールの変形例を示す拡大詳細図である。FIG. 5 is an enlarged detail view showing a modified example of the spool of FIG. 4. 図1に示す操作切換弁の開口面積とアンロード弁の可変ポンプの吐出圧との関係を示す1 shows the relationship between the opening area of the operation switching valve shown in FIG. 1 and the discharge pressure of the variable pump of the unload valve. 従前の操作切換弁の開口面積と可変ポンプの吐出圧との関係を示す説明図である。It is explanatory drawing which shows the relationship between the opening area of a conventional operation switching valve, and the discharge pressure of a variable pump. 本発明の第二の実施の形態に係る油圧駆動装置の油圧回路図である。FIG. 4 is a hydraulic circuit diagram of a hydraulic drive device according to a second embodiment of the present invention. 本発明の第三の実施の形態に係る油圧駆動装置の油圧回路図である。FIG. 5 is a hydraulic circuit diagram of a hydraulic drive device according to a third embodiment of the present invention. 本発明の第四の実施の形態に係る油圧駆動装置の油圧回路図である。FIG. 6 is a hydraulic circuit diagram of a hydraulic drive device according to a fourth embodiment of the present invention.

符号の説明Explanation of symbols

10、60、70,80 油圧駆動装置 11 可変ポンプ
14 アンロード弁 16、61、 第一の固定絞り1
19、72、82 操作切換弁 21、22、23 受圧部
24 リリーフ弁 25、62 差圧減圧弁
26、73、83 圧力補償弁
10, 60, 70, 80 Hydraulic drive device 11 Variable pump 14 Unload valve 16, 61, First fixed throttle 1
19, 72, 82 Operation switching valve 21, 22, 23 Pressure receiving portion 24 Relief valve 25, 62 Differential pressure reducing valve 26, 73, 83 Pressure compensation valve

Claims (1)

可変ポンプの吐出圧と少なくとも1つのアクチュエータの最高負荷圧との差圧に応じて可変ポンプの吐出圧油をタンクに導くアンロード弁を有する油圧駆動装置において、
前記アンドロード弁は、第一受圧部に作用する可変ポンプの吐出圧によって連通方向に作動し、第二受圧部に受ける最高負荷圧によって遮断方向に作動するように構成され、
操作切換弁は、スプールの中立位置では第1の回路、切換位置には第2の回路、第3の回路が構成され、かつ前記第2の回路及び第3の回路は所定面積だけ開口するよう構成され、さらにパイロットポンプの下流に第一の固定絞りを設け、該第一の固定絞りのタンクに連通する前記操作切換弁の回路の面積が、該操作切換弁の切換位置によって変化することで制御される制御圧が第三受圧部に作用して、前記操作切換弁の切換位置毎の回路の面積の設定により、操作切換弁の切換位置によって制御圧が変化して可変ポンプの吐出圧の高さの度合が変化することを特徴とする油圧駆動装置。
In the hydraulic drive device having an unload valve for guiding the discharge pressure oil of the variable pump to the tank according to the differential pressure between the discharge pressure of the variable pump and the maximum load pressure of at least one actuator,
The and load valve is configured to operate in a communication direction by a discharge pressure of a variable pump acting on a first pressure receiving part, and to operate in a blocking direction by a maximum load pressure received by the second pressure receiving part,
The operation switching valve includes a first circuit in the neutral position of the spool, a second circuit and a third circuit in the switching position, and the second circuit and the third circuit are opened by a predetermined area. is configured, further a first fixed throttle is provided downstream of the pilot pump, that area of the circuit of the operating switching valve communicating with the tank of the first fixed throttle is changed by the switching position of the operating selector valve The control pressure to be controlled acts on the third pressure receiving portion, and by setting the circuit area for each switching position of the operation switching valve, the control pressure changes depending on the switching position of the operation switching valve, and the discharge pressure of the variable pump is reduced. A hydraulic drive device characterized in that the degree of height changes.
JP2007145068A 2007-05-31 2007-05-31 Hydraulic drive Expired - Fee Related JP4962143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145068A JP4962143B2 (en) 2007-05-31 2007-05-31 Hydraulic drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145068A JP4962143B2 (en) 2007-05-31 2007-05-31 Hydraulic drive

Publications (2)

Publication Number Publication Date
JP2008298185A JP2008298185A (en) 2008-12-11
JP4962143B2 true JP4962143B2 (en) 2012-06-27

Family

ID=40171887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145068A Expired - Fee Related JP4962143B2 (en) 2007-05-31 2007-05-31 Hydraulic drive

Country Status (1)

Country Link
JP (1) JP4962143B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644745A1 (en) * 1986-12-30 1988-07-14 Rexroth Mannesmann Gmbh CONTROL ARRANGEMENT FOR AT LEAST TWO HYDRAULIC CONSUMERS SUPPLIED BY AT LEAST ONE PUMP
JP3216816B2 (en) * 1991-01-23 2001-10-09 株式会社小松製作所 Pressure oil supply device
JPH0893706A (en) * 1994-09-29 1996-04-09 Toshiba Mach Co Ltd Hydraulic driving circuit
JP3859818B2 (en) * 1997-06-03 2006-12-20 株式会社タダノ Start-up prediction device for double-acting hydraulic actuator
JPH11315805A (en) * 1998-03-04 1999-11-16 Komatsu Ltd Unload valve
JP2001193704A (en) * 2000-01-12 2001-07-17 Kayaba Ind Co Ltd Hydraulic control circuit

Also Published As

Publication number Publication date
JP2008298185A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
US8505581B2 (en) Pressure compensated electromagnetic proportional directional flow control valve
JP6603560B2 (en) Pressure compensation unit
KR101808680B1 (en) Control valve
JP4976920B2 (en) Pump discharge control device
JP4951269B2 (en) Valve that gradually communicates the pressure signal
US9222594B2 (en) Directional valve equipped with pressure control
JP6440451B2 (en) Load sensing valve device
EP1375927B1 (en) Hydraulic control device and industrial vehicle with hydraulic control device
JP3531758B2 (en) Directional control valve device with pressure compensating valve
JP4962143B2 (en) Hydraulic drive
JP2008298184A (en) Hydraulic driving device
JP5092550B2 (en) Hydraulic drive
KR20190008375A (en) Valve device
JP5217454B2 (en) Hydraulic drive
JP3534324B2 (en) Pressure compensating valve
JP4791823B2 (en) Hydraulic control valve used in load sensing type hydraulic control device
WO2018043401A1 (en) Hydraulic drive system for construction machine
JP2008298183A (en) Hydraulic driving device
KR20030052723A (en) hydraulic apparatus for construction heavy equipment
JPWO2019215883A1 (en) Priority flow control valve
CN213655278U (en) Control device and work apparatus
JP6781646B2 (en) Fluid pressure control device equipped with an electromagnetic pressure reducing valve and an electromagnetic pressure reducing valve
JP2018128066A (en) Hydraulic drive device
KR101988784B1 (en) Hydraulic control circuit
JP2020139589A (en) Flow rate regulating valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees