JP4961756B2 - Carbon material and manufacturing method thereof - Google Patents

Carbon material and manufacturing method thereof Download PDF

Info

Publication number
JP4961756B2
JP4961756B2 JP2006021644A JP2006021644A JP4961756B2 JP 4961756 B2 JP4961756 B2 JP 4961756B2 JP 2006021644 A JP2006021644 A JP 2006021644A JP 2006021644 A JP2006021644 A JP 2006021644A JP 4961756 B2 JP4961756 B2 JP 4961756B2
Authority
JP
Japan
Prior art keywords
carbon material
furnace
heat treatment
exhaust gas
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006021644A
Other languages
Japanese (ja)
Other versions
JP2007204283A (en
Inventor
哲志 小野
龍朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006021644A priority Critical patent/JP4961756B2/en
Publication of JP2007204283A publication Critical patent/JP2007204283A/en
Application granted granted Critical
Publication of JP4961756B2 publication Critical patent/JP4961756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、炭素材及びその製造方法に関するものである。   The present invention relates to a carbon material and a method for producing the same.

還元雰囲気中での排気ガスを発生しながら処理される炭素前駆体の熱処理による炭素材の製造においては、熱処理炉内の圧力や雰囲気の状態により炭素材の物性に大きな違いが現れる。熱処理炉内の圧力上昇を抑える為、雰囲気ガスの流量調整や、圧力をかけない発生ガスによる雰囲気置換にて圧力上昇を抑えている。又、雰囲気を一定に保つ為、導入雰囲気ガス流量を過剰に流し特性維持又は向上に努める方法(例えば、特許文献1参照)がある。これら従来方法は雰囲気ガスまたは熱処理温度条件を変更する必要があり、大規模設備条件に合わない場合があった。あるいは、小規模設備処理条件と比べて大規模設備処理条件を大きく変えないと熱処理後の炭素材物性が同じ特性を得られなかったり、処理時間が長くなることがあるため、小規模設備から大規模設備への移行は難しいのが現状である。   In the production of a carbon material by heat treatment of a carbon precursor that is processed while generating exhaust gas in a reducing atmosphere, a large difference appears in the physical properties of the carbon material depending on the pressure in the heat treatment furnace and the state of the atmosphere. In order to suppress the pressure increase in the heat treatment furnace, the pressure increase is suppressed by adjusting the flow rate of the atmospheric gas or replacing the atmosphere with the generated gas without applying pressure. Further, in order to keep the atmosphere constant, there is a method (see, for example, Patent Document 1) in which an introduced atmosphere gas flow rate is excessively flowed to maintain or improve characteristics. These conventional methods need to change the atmospheric gas or heat treatment temperature conditions, and may not be suitable for large-scale equipment conditions. Alternatively, if the large-scale equipment treatment conditions are not changed significantly compared to the small-scale equipment treatment conditions, the same physical properties of the carbon material after heat treatment may not be obtained, or the treatment time may become longer. Currently, it is difficult to move to scale equipment.

特開平06−089721号公報Japanese Patent Laid-Open No. 06-098721

本発明は、大量生産が可能な大規模設備で生産したものでありながら、従来の小規模設備で生産したものと同等の特性を有する炭素材及びその製造方法を提供するものである。   The present invention provides a carbon material having characteristics equivalent to those produced by a conventional small-scale facility, while being produced by a large-scale facility capable of mass production, and a method for producing the same.

このような目的は、下記の本発明(1)〜()により達成される。
(1)排気ガス用配管を有する熱処理炉を用いて、炭素前駆体を熱処理してなる炭素材の製造方法であって、前記熱処理炉容積が前記炭素前駆体1g当たり0.002L以上であり、前記排気ガス用配管の内面積は、前記炭素前駆体1kg当たり0.1cm 2 以上であり、炉内排気ガス出口圧力は2kPa以下であることを特徴とする炭素材の製造方法。
(2)前記熱処理は、不活性ガス雰囲気下で行われるものである(1)に記載の炭素材の製造方法。
)(1)又は(2)に記載の炭素材の製造方法によって得られることを特徴とする炭素材。
Such an object is achieved by the following present inventions (1) to ( 3 ).
(1) using a heat treatment furnace having an exhaust gas pipe, a method for producing a carbon material obtained by heat-treating the carbon precursor state, and are the heat treatment furnace volume wherein the carbon precursor 1g per 0.002L more The method for producing a carbon material , wherein an inner area of the exhaust gas pipe is 0.1 cm 2 or more per kg of the carbon precursor , and an exhaust gas outlet pressure in the furnace is 2 kPa or less .
(2) The carbon material manufacturing method according to (1), wherein the heat treatment is performed in an inert gas atmosphere.
( 3 ) A carbon material obtained by the method for producing a carbon material according to (1) or (2) .

本発明によれば、大量生産が可能な大規模設備で生産したものでありながら、従来の小規模設備で生産したものと同等の特性を有する炭素材を得ることができる。   According to the present invention, it is possible to obtain a carbon material having characteristics equivalent to those produced by a conventional small-scale facility while being produced by a large-scale facility capable of mass production.

本発明は、排気ガス配管を有する熱処理炉を用いて、炭素前駆体を熱処理してなる炭素材の製造方法であって、前記熱処理炉容積が前記炭素前駆体1g当たり0.002L以上であることを特徴とする炭素材の製造方法である。
また、本発明は上記炭素材の製造方法で得られることを特徴とする炭素材である。
まず、本発明の炭素材の製造方法(以下、単に「製造方法」ということがある)について詳細に説明する。
The present invention is a method for producing a carbon material obtained by heat treating a carbon precursor using a heat treatment furnace having an exhaust gas pipe, wherein the heat treatment furnace volume is 0.002 L or more per 1 g of the carbon precursor. Is a method for producing a carbon material.
Moreover, this invention is a carbon material characterized by the above-mentioned.
First, a method for producing a carbon material of the present invention (hereinafter sometimes simply referred to as “manufacturing method”) will be described in detail.

本発明の製造方法においては、上記熱処理炉容積が炭素前駆体1g当たり0.002L以上であることを特徴とする。さらに好ましくは0.005L以上である。特に好ましくは0.01L以上である。
炭素前駆体1gに対して熱処理炉容積を上記とすることで、熱処理の際に炭素前駆体より発生する揮発分が炉内に拡散しやすく、揮発分の発生を促すことになり、大規模設備に移行しても小規模設備で熱処理して得られるものと同等の細孔を有する炭素材を得ることができる。
In the production method of the present invention, the volume of the heat treatment furnace is 0.002 L or more per 1 g of the carbon precursor. More preferably, it is 0.005L or more. Especially preferably, it is 0.01L or more.
By setting the heat treatment furnace volume to 1 g of the carbon precursor, the volatile matter generated from the carbon precursor during the heat treatment is easily diffused into the furnace, and the generation of the volatile matter is promoted. Even if it moves to, the carbon material which has the pore equivalent to what is obtained by heat-processing with a small-scale installation can be obtained.

本発明の製造方法における上記熱処理は、不活性ガス雰囲気下で行われることが好ましい。不活性ガス雰囲気下で熱処理することで、特に処理時の過剰な酸化劣化による品質低下を防ぐことができる。
上記不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素等を用いることができる。この中でも汎用性、コスト及び品質制御の観点から窒素を用いることが好ましい。
又、通常、還元ガスを流すことにより炉内排ガス出口付近の圧力は5kPa以下が好ましい。この炉内排ガス出口圧力で熱処理することで炭素材の構造を壊すことなく処理することができる。
The heat treatment in the production method of the present invention is preferably performed in an inert gas atmosphere. By performing the heat treatment in an inert gas atmosphere, it is possible to prevent deterioration in quality due to excessive oxidative deterioration during the treatment.
As said inert gas, nitrogen, argon, a carbon dioxide etc. can be used, for example. Among these, it is preferable to use nitrogen from the viewpoint of versatility, cost, and quality control.
In general, the pressure near the exhaust gas outlet in the furnace is preferably 5 kPa or less by flowing a reducing gas. It can process without destroying the structure of a carbon material by heat-processing by this exhaust gas exit pressure in a furnace.

熱処理温度は、800℃以上で行われることが好ましい。800℃以上で熱処理が行われることで活性な能基反応が減少し、環縮合反応がメインとなり品質を安定させることができる。
熱処理温度までの昇温速度は400℃/時間以下が好ましい。昇温速度400℃/時間以下で処理を行うことで、熱源への付加も抑えられるとともに、処理内温度が昇温スピードへ追いつき、品質の安定化を図ることができる。
また、熱処理温度に到達後の処理時間は30分以上が好ましい。処理時間を30分以上とすることで、到達温度での反応が落ち着き、処理品の品質を安定させることができる。
The heat treatment temperature is preferably 800 ° C. or higher. By heat treatment at 800 ° C. or higher is performed active government functional group reaction is reduced, the quality cyclocondensation reaction becomes the main can be stabilized.
The heating rate up to the heat treatment temperature is preferably 400 ° C./hour or less. By performing the treatment at a temperature increase rate of 400 ° C./hour or less, addition to the heat source can be suppressed, and the temperature in the process can catch up with the temperature increase rate, thereby stabilizing the quality.
The treatment time after reaching the heat treatment temperature is preferably 30 minutes or more. By setting the treatment time to 30 minutes or more, the reaction at the ultimate temperature is settled, and the quality of the treated product can be stabilized.

また、本発明の製造方法に用いられる排気ガス用配管を有する熱処理炉においては、排出ガス用配管の内面積が炭素前駆体1kg当り0.1cm2以上であることが好ましい。更に好ましくは、0.35cm2以上である。排出ガス用配管の内面積を上記範囲とすることで、大規模設備に移行しても炉内で発生した揮発性ガスを炉外に容易に排出することができ、熱処理雰囲気の変化が少なく、安定した品質の炭素材を生産することができる。
Further, in the heat treatment furnace having the exhaust gas pipe used in the production method of the present invention, the inner area of the exhaust gas pipe is preferably 0.1 cm 2 or more per 1 kg of the carbon precursor. More preferably, it is 0.35 cm 2 or more. By setting the inner area of the exhaust gas pipe within the above range, the volatile gas generated in the furnace can be easily discharged out of the furnace even when shifting to a large-scale facility, and there is little change in the heat treatment atmosphere, Stable quality carbon material can be produced.

次に、本発明の炭素材について説明する。
本発明の炭素材は、上記本発明の製造方法によって得られることを特徴とする。上記製造方法によって得られる本発明の炭素材は、大規模設備で生産されたものでありながら、小規模設備で製造されたものと同等の性能を有し、大量生産による大幅なコストダウンが可能となるものである。
Next, the carbon material of the present invention will be described.
The carbon material of the present invention is obtained by the production method of the present invention. The carbon material of the present invention obtained by the above production method has the same performance as that produced by a small-scale facility, while being produced by a large-scale facility, and can greatly reduce the cost by mass production. It will be.

以下、本発明の製造方法を実施例により説明する。しかし、本発明は実施例に限定されるものではない。   Hereinafter, the production method of the present invention will be described with reference to examples. However, the present invention is not limited to the examples.

(基準例)炉内容積32L、炉外に発生ガスを排出する排ガス用配管内面積0.5cm2、雰囲気窒素ガスの熱処理炉にて600℃処理フェノール樹脂系炭素前駆体(住友ベークライト社製PR−217の600℃処理品、炭素組成比89%)0.5kgを高さ50mm、200mm角の匣鉢に仕込み、窒素雰囲気下、昇温100℃/h、1000℃3h処理し、炭素材A0.45kgを得た。(炉容積:0.064L/g、排ガス用配管内面積:1cm2/kg、炉内排ガス出口圧力:2kPa)
得られた炭素材Aの炭素組成比、及び比表面積を評価した。
(Reference Example) Furnace volume 32 L, exhaust gas piping area 0.5 cm 2 for discharging generated gas outside the furnace, 600 ° C. phenolic resin carbon precursor (PR manufactured by Sumitomo Bakelite Co., Ltd.) in a heat treatment furnace of atmospheric nitrogen gas -217, 600 ° C treated product, carbon composition ratio 89%) 0.5 kg in a 50 mm high, 200 mm square mortar, heated at 100 ° C / h, 1000 ° C for 3 h in a nitrogen atmosphere, and carbon material A0 .45 kg was obtained. (Furnace volume: 0.064 L / g, exhaust gas piping area: 1 cm 2 / kg, furnace exhaust gas outlet pressure: 2 kPa)
The carbon composition ratio and specific surface area of the obtained carbon material A were evaluated.

(実施例1)炉内容積500L、炉外に発生ガスを排出する排ガス用配管内面積78.5cm2、雰囲気窒素ガスの熱処理炉にて600℃処理フェノール樹脂系炭素前駆体(住友ベークライト社製PR−217の600℃処理品、炭素組成比89%)30kgを高さ50mm、250mm角の匣鉢に1kgづつ仕込み、計30個を2列3段で炉内に配置させた以外は基準例と同法で行い、炭素材B24kgを得た。(炉容積:0.017L/g、排ガス用配管内面積:2.6cm2/kg、炉内圧力:1kPa)
(実施例2)600℃処理フェノール樹脂系炭素前駆体60kgを実施例1と同形状の匣鉢を用い1.2kgづつ仕込み、計50個を2列5段で炉内に配置させた以外は実施例1と同法で行い炭素材C48kgを得た。(炉容積:0.008L/g、排ガス用配管内面積:1.3cm2/kg、炉内排ガス出口圧力:2kPa)
(実施例3)炉内容積を2000Lにし、炉外に発生ガスを排出する排ガス用配管内面積を28.3cm2にした以外は実施例2と同法で行い、炭素材D48kgを得た。(炉容積:0.033L/g、排ガス用配管内面積:0.47cm2/kg、炉内排ガス出口圧力:2kPa)
(Example 1) Furnace volume 500 L, exhaust gas piping internal area 78.5 cm 2 for exhausting generated gas outside the furnace, 600 ° C. phenol resin carbon precursor (manufactured by Sumitomo Bakelite Co., Ltd.) in a heat treatment furnace of atmospheric nitrogen gas PR-217 treated product at 600 ° C, carbon composition ratio 89%) 30 kg of 50kg high and 250mm square mortars were charged 1kg at a time, and a total of 30 pieces were placed in the furnace in two rows and three stages. In the same manner, 24 kg of carbon material B was obtained. (Furnace volume: 0.017 L / g, exhaust gas piping area: 2.6 cm 2 / kg, furnace pressure: 1 kPa)
(Example 2) 60 kg of a phenol resin-based carbon precursor treated at 600 ° C. was charged in 1.2 kg using a mortar having the same shape as in Example 1, and a total of 50 pieces were arranged in a furnace in two rows and five stages. It carried out by the same method as Example 1, and obtained carbon material C48kg. (Furnace volume: 0.008 L / g, exhaust gas pipe area: 1.3 cm 2 / kg, furnace exhaust gas outlet pressure: 2 kPa)
(Example 3) A carbon material D of 48 kg was obtained in the same manner as in Example 2 except that the furnace volume was 2000 L and the area inside the exhaust gas pipe for discharging the generated gas to the outside of the furnace was 28.3 cm 2 . (Furnace volume: 0.033 L / g, exhaust gas piping area: 0.47 cm 2 / kg, furnace exhaust gas outlet pressure: 2 kPa)

(比較例1)熱処理炉内容積32L、炉外に発生ガスを排出する排ガス用配管内面積78.5cm2、雰囲気窒素ガスの熱処理炉にて600℃処理フェノール樹脂系炭素前駆体(住友ベークライト社製PR−217の600℃処理品、炭素組成比89%)25kgを高さ100mm、100×315mm角の匣鉢に仕込み、計1個を炉内に配置させた以外は基準例1と同法で行い、炭素材E20kgを得た。(炉容積:0.00128L/g、排ガス用配管内面積:3.14cm2/kg、炉内排ガス出口圧力:4kPa)
(比較例2)炉外に発生ガスを排出する排ガス用配管内面積12.56cm2、600℃処理フェノール樹脂系炭素前駆体300kgを実施例1と同様な容器に2.4kgづつ仕込み、計125個にした以外は実施例1と同法で行い、炭素材F24kgを得た。(炉容積:0.0017L/g、排ガス用配管内面積:0.04cm2/kg、炉内排ガス出口圧力:23kPa)
(Comparative Example 1) Heat treatment furnace internal volume 32L, exhaust gas piping internal area 78.5cm 2 for discharging generated gas outside the furnace, 600 ° C treated phenol resin carbon precursor (Sumitomo Bakelite Co., Ltd.) in a heat treatment furnace of atmospheric nitrogen gas PR-217 manufactured at 600 ° C., carbon composition ratio 89%) 25 kg in a 100 mm high, 100 × 315 mm square mortar, and placed in the furnace in the same way as in Reference Example 1 The carbon material E20kg was obtained. (Furnace volume: 0.00128 L / g, exhaust gas piping area: 3.14 cm 2 / kg, furnace exhaust gas outlet pressure: 4 kPa)
(Comparative example 2) The inside area of the exhaust gas pipe for discharging the generated gas to the outside of the furnace was 12.56 cm 2 , and 300 kg of a 600 ° C.-treated phenol resin-based carbon precursor was charged into a container similar to that of Example 1 in an amount of 2.4 kg. A carbon material F24 kg was obtained in the same manner as in Example 1 except that the carbon material F was used. (Furnace volume: 0.0017 L / g, exhaust gas piping area: 0.04 cm 2 / kg, furnace exhaust gas outlet pressure: 23 kPa)

(炭素材の評価)
1.炭素材の元素組成比
パーキンエルナー社製元素分析装置CHNS2400を用いて測定した。
(Evaluation of carbon materials)
1. Elemental composition ratio of carbon material The carbon material was measured using an element analyzer CHNS2400 manufactured by Perkin Elner.

2.比表面積
ユアサアイオニクス社製NOVA1200を用い、窒素ガスBET3点法にて測定した。
以上の評価結果を表1に示す。
2. Specific surface area Using a NOVA 1200 manufactured by Yuasa Ionics Co., Ltd., a nitrogen gas BET three-point method was used for measurement.
The above evaluation results are shown in Table 1.

Figure 0004961756
Figure 0004961756

表1の結果より、実施例1は、基準例の約60倍量の処理を行い、実施例2、3は、基準例の約120倍量の処理を行ったものであるが、熱処理炉容積が炭素前駆体1g当たり0.002L以上である本発明の製造方法を用いたことにより、基準例で得られた炭素材の元素組成比、比表面積と同等の炭素材を得ることできた。すなわち、本発明の製造方法によって、大規模生産設備ながら小規模設備で生産しものと同等の特性を有する炭素材を得ることができることを証明できた。
一方、熱処理炉容積が炭素前駆体1g当たり0.002L以下であった比較例1、2は炭素材の元素組成比は良好であったが、比表面積は基準例に比較し、大幅に小さなものであった。
From the results in Table 1, Example 1 was processed about 60 times the amount of the reference example, and Examples 2 and 3 were processed about 120 times the amount of the reference example. By using the production method of the present invention in which the amount is 0.002 L or more per 1 g of carbon precursor, a carbon material equivalent to the elemental composition ratio and specific surface area of the carbon material obtained in the reference example could be obtained. That is, it has been proved that the carbon material having the same characteristics as those produced by the small-scale equipment can be obtained by the production method of the present invention.
On the other hand, Comparative Examples 1 and 2 in which the volume of the heat treatment furnace was 0.002 L or less per 1 g of the carbon precursor had a good elemental composition ratio of the carbon material, but the specific surface area was significantly smaller than that of the reference example. Met.

Claims (3)

排気ガス用配管を有する熱処理炉を用いて、炭素前駆体を熱処理してなる炭素材の製造方法であって、前記熱処理炉容積が前記炭素前駆体1g当たり0.002L以上であり、前記排気ガス用配管の内面積は、前記炭素前駆体1kg当たり0.1cm 2 以上であり、炉内排気ガス出口圧力は2kPa以下であることを特徴とする炭素材の製造方法。 Using a heat treatment furnace having an exhaust gas pipe, a method for producing a carbon material obtained by heat-treating the carbon precursor state, and are the heat treatment furnace volume wherein the carbon precursor 1g per 0.002L above, the exhaust The method for producing a carbon material , wherein an inner area of the gas pipe is 0.1 cm 2 or more per kg of the carbon precursor , and an exhaust gas outlet pressure in the furnace is 2 kPa or less . 前記熱処理は、不活性ガス雰囲気下で行われるものである請求項1に記載の炭素材の製造方法。 The method for producing a carbon material according to claim 1, wherein the heat treatment is performed in an inert gas atmosphere. 請求項1又は2に記載の炭素材の製造方法によって得られることを特徴とする炭素材。 Carbon material characterized by being obtained by the process for producing a carbon material according to claim 1 or 2.
JP2006021644A 2006-01-31 2006-01-31 Carbon material and manufacturing method thereof Expired - Fee Related JP4961756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021644A JP4961756B2 (en) 2006-01-31 2006-01-31 Carbon material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021644A JP4961756B2 (en) 2006-01-31 2006-01-31 Carbon material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007204283A JP2007204283A (en) 2007-08-16
JP4961756B2 true JP4961756B2 (en) 2012-06-27

Family

ID=38484073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021644A Expired - Fee Related JP4961756B2 (en) 2006-01-31 2006-01-31 Carbon material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4961756B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084099A (en) * 2007-09-28 2009-04-23 Sumitomo Bakelite Co Ltd Method for producing carbon material, carbon material, and negative electrode material for lithium-ion secondary batteries using the same
CN102249212B (en) * 2010-12-20 2013-02-20 福建兴朝阳硅材料股份有限公司 Pressurization roasting method for carbon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330321A (en) * 1994-05-31 1995-12-19 Tokai Carbon Co Ltd Carbonization apparatus
JP3489600B2 (en) * 1994-12-14 2004-01-19 三菱瓦斯化学株式会社 Carbon material for negative electrode of non-aqueous solvent secondary battery
JPH10180227A (en) * 1996-10-17 1998-07-07 Takeshi Ukaji Waste treatment and waste treating device
JP2002198053A (en) * 2000-12-26 2002-07-12 Mitsubishi Chemicals Corp Negative electrode material for lithium ion battery
JP4892838B2 (en) * 2004-03-01 2012-03-07 三菱瓦斯化学株式会社 Carbonized product production method and carbonized product obtained by the method

Also Published As

Publication number Publication date
JP2007204283A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US6627169B1 (en) Silicon carbide powder and production method thereof
US6013236A (en) Wafer
US11208357B2 (en) Method for producing silicon carbide sintered body
ZA200407366B (en) Mullite bodies and methods of forming mullite bodies.
JP7145488B2 (en) Method for producing aluminum silicon carbide
JP4961756B2 (en) Carbon material and manufacturing method thereof
JP2007055825A (en) Method and apparatus for producing activated carbon
JP5400550B2 (en) Method and apparatus for producing activated carbon
GB2130192A (en) Silicon carbide-based molded member for use in semiconductor manufacture
JP5371525B2 (en) Method for producing silicon carbide powder
JP5709856B2 (en) Method for continuously and thermally removing a binder from a metal and / or ceramic molding produced by injection molding, extrusion molding or pressing using a thermoplastic molding composition
JP2019189865A (en) Phenol resin particle cured article, and manufacturing method of spherical active charcoal
EP3489195A1 (en) Activated carbon production method, activated carbon and canister
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
JP6013940B2 (en) Oil quenching heat treatment furnace tray manufacturing method and carburizing method
EP3597621A1 (en) Method for producing silicon-carbide-based complex
JP2015057373A (en) Porous carbon and method for producing the same
JPH0648837A (en) Silicon carbide-based member for production of semiconductor
FR2629077A1 (en) PROCESS FOR PREPARING A SINTERED BODY WITH SILICON CARBIDE
RU2609802C1 (en) Method for production of activated carbon from plant raw material
JP2003277129A (en) Plate brick for sliding nozzle apparatus and method for manufacturing the same
JP2006232565A (en) Method of manufacturing carbon material and method of purifying the same
KR20230091712A (en) Manufacturing method of activated carbon preparation for ammonia gas removal using chemical vapor deposition
JP2001130909A (en) Method for producing silicon carbide powder
RU85902U1 (en) COMPLEX FOR GAS THERMAL AND CHEMICAL-THERMAL TREATMENT OF PRODUCTS IN THE "BOILING LAYER" OF THE NANOSTRUCTURED CATALYST

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4961756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees