JP4958667B2 - Scarfing device and slag removal method - Google Patents

Scarfing device and slag removal method Download PDF

Info

Publication number
JP4958667B2
JP4958667B2 JP2007185633A JP2007185633A JP4958667B2 JP 4958667 B2 JP4958667 B2 JP 4958667B2 JP 2007185633 A JP2007185633 A JP 2007185633A JP 2007185633 A JP2007185633 A JP 2007185633A JP 4958667 B2 JP4958667 B2 JP 4958667B2
Authority
JP
Japan
Prior art keywords
scarfing
water
slab
air
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007185633A
Other languages
Japanese (ja)
Other versions
JP2009022961A (en
Inventor
覚 青木
修康 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Speng Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Speng Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Speng Co Ltd, Sumitomo Metal Industries Ltd filed Critical Nippon Speng Co Ltd
Priority to JP2007185633A priority Critical patent/JP4958667B2/en
Publication of JP2009022961A publication Critical patent/JP2009022961A/en
Application granted granted Critical
Publication of JP4958667B2 publication Critical patent/JP4958667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、鋳片の溶削作業において溶削部に発生したスラグを除去(スカーフィング)するための装置及び方法に関する。   The present invention relates to an apparatus and a method for removing (scarfing) slag generated in a cut portion in a slab cutting operation.

鋳片溶削作業は、図1に示すように、鋳片1上に配置された溶削火口2により機械的に行なうことが多い。この時、鋳片1の表面1aにおける酸化反応箇所(溶削部1b)から、スラグSが発生する。
このスラグSは、高圧水または圧縮空気を溶削方向と直交する方向から溶削部1bに噴射することにより除去される。例えば、特許文献1では、溶削火口2に供給される酸素を溶削終点の手前で漸減させる等の方法により溶削終点におけるスラグSの発生を防止するとともに、それまでの溶削部1bに発生したスラグSを高圧水にて除去している。
特許第657166号公報(第2及び3頁、図1)
As shown in FIG. 1, the slab cutting work is often mechanically performed by a swarf crater 2 arranged on the slab 1. At this time, slag S is generated from an oxidation reaction site (welded portion 1b) on the surface 1a of the slab 1.
The slag S is removed by injecting high-pressure water or compressed air from the direction perpendicular to the cutting direction to the cutting part 1b. For example, in Patent Document 1, generation of slag S at the end point of the welding is prevented by a method such as gradually decreasing the oxygen supplied to the welding crater 2 before the end point of the cutting, and the previous cutting portion 1b The generated slag S is removed with high-pressure water.
Japanese Patent No. 657166 (2nd and 3rd pages, FIG. 1)

しかしながら、上記従来のスラグ除去方法は、部分的なスラグの除去には有効であるが、鋳片の表面を全面にわたり溶削する場合や、溶削量の多い溶削の場合には、大量のスラグが発生するためスラグを完全に除去できず、その結果、溶削部1bの凹凸が増加したり、フィンが発生するという問題があった。また、高圧水を使用した方法では、スラグの除去に大量の水を使用するため、排水設備や集塵設備等の設備投資が高額となるという問題もあった。   However, the above-mentioned conventional slag removal method is effective for removing partial slag, but in the case where the entire surface of the slab is subjected to cutting or when the amount of cutting is large, a large amount of slag is removed. Since the slag is generated, the slag cannot be completely removed. As a result, there are problems that the unevenness of the welded portion 1b is increased and fins are generated. In addition, the method using high-pressure water has a problem that capital investment for drainage facilities, dust collection facilities, etc. is expensive because a large amount of water is used for removing slag.

本発明は上記事情に鑑みてなされたもので、スラグを安価かつ確実に除去するための装置及び方法の提供を目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an apparatus and a method for removing slag at low cost and with certainty.

本発明は、鋳片の溶削作業において溶削部に発生したスラグを除去するための装置であって、空気と水とを混合してなる流体を前記溶削部に向け噴射するノズルを備え、前記ノズルが、前記鋳片の溶削方向に沿って延びる管路の後端に形成されていることを特徴とする。 The present invention is an apparatus for removing slag generated in a slab in a slab shave, and includes a nozzle that injects a fluid formed by mixing air and water toward the slab. the nozzle is characterized that you have been formed at the rear end of the conduit extending along the scarfing direction of the slab.

この場合、前記ノズルが、前記溶削部の左右にそれぞれ設けられていることが望ましい。   In this case, it is desirable that the nozzles are respectively provided on the left and right sides of the welding portion.

また前記ノズルが、前記鋳片の溶削方向に対し所定の角度αだけ内側に屈曲していることが更に望ましく、特に、前記所定の角度αが、35°以上45°以下であることが更に望ましい。
また、この場合、前記ノズルが、前記鋳片の表面に対し所定の角度θだけ下方に屈曲していることが更に望ましく、特に、前記所定の角度θが、10°以上20°以下であることが更に望ましい。
Further, the nozzle, it is further desirable that respect scarfing direction of the slab is bent inwardly by a predetermined angle alpha, in particular, that the predetermined angle alpha is at 35 ° to 45 ° More desirable.
In this case, it is further desirable that the nozzle bends downward by a predetermined angle θ with respect to the surface of the slab, and in particular, the predetermined angle θ is 10 ° or more and 20 ° or less. Is more desirable.

また、本発明は、鋳片の溶削作業において溶削部に発生したスラグを除去するための方法であって、空気と水とを混合してなる流体を、前記鋳片の溶削方向に対し35°以上45°以下の角度で、前記溶削方向の前方外側から前記溶削部に向け噴射することを特徴とする。 Further, the present invention is a method for removing slag generated in a welded portion in a slab slabing operation , wherein a fluid formed by mixing air and water in the direction of slab cutting. On the other hand, it is sprayed from the front outer side in the cutting direction toward the cutting portion at an angle of not less than 35 ° and not more than 45 ° .

この場合、前記流体を、左右から前記溶削物に向け噴射することが望ましい。   In this case, it is desirable to inject the fluid from the left and right toward the cut material.

また前記流体を、前記鋳片の表面に対し10°以上20°以下の角度で、前記溶削方向の前方上側から前記溶削物に向け噴射することが更に望ましい。
Further, the fluid, in 20 ° angle of less than 10 ° or more with respect to the surface of the slab, it is further desirable to inject toward the scarfing object from the front upper side of the scarfing direction.

また、前記流体に供給される空気の圧力が0.35MPa以上0.45MPa以下であることが望ましい。同様に、前記流体に供給される水の圧力が0.12MPa以上0.20MPa以下であることが望ましい。また、前記流体における空気と水との混合比が、空気1に対し水0.38〜0.42であることが更に望ましい。   The pressure of the air supplied to the fluid is preferably 0.35 MPa or more and 0.45 MPa or less. Similarly, it is desirable that the pressure of water supplied to the fluid is 0.12 MPa or more and 0.20 MPa or less. The mixing ratio of air and water in the fluid is more preferably 0.38 to 0.42 of water with respect to air 1.

本発明のスカーフィング装置及びそれを用いたスラグ除去方法によれば、使用水量を削減しつつ、溶削部のスラグを確実に除去することが可能となる。よって、本発明のスカーフィング装置及びそれを用いたスラグ除去方法によれば、スラグを安価かつ確実に除去することが可能となる。   According to the scarfing device of the present invention and the slag removing method using the same, it is possible to reliably remove the slag in the welded portion while reducing the amount of water used. Therefore, according to the scarfing device of the present invention and the slag removing method using the same, it is possible to remove the slag cheaply and reliably.

以下、図面に基づき、本発明の実施形態について説明する。
本発明に係るスカーフィング装置の構造の例を図1に示す。なお、図1において、溶削火口2としては、従来から使用されているものが使用される。
溶削火口2は、鋳片1の表面1aに向け、表面1aと平行に形成されたスリット状の噴射口3を備え、マニホールド4を介して、スライダ5に、上下動可能に支持されている。また、噴射口3には、溶削用の酸素供給管6及び燃料供給管7とが連結され、酸素供給管6及び燃料供給管7からそれぞれ供給される酸素と燃料との混合気を噴射口3から鋳片1の表面1aに向け噴射し、この混合気に点火して得た火炎により鋳片1の表面1aを加熱しつつ、溶削火口2を、噴射口3の延設方向と直交する方向に、鋳片1の表面1aと平行に相対移動させることにより、溶削が行なわれる。なお、本発明において、溶削火口2による溶削方向(図1中矢印A方向)を前方、噴射口3の延設方向(図1中矢印B方向)を左右とそれぞれ定義する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
An example of the structure of the scarfing device according to the present invention is shown in FIG. In addition, in FIG. 1, what is used conventionally is used as the cutting crater 2.
The welding crater 2 is provided with a slit-like injection port 3 formed in parallel with the surface 1a toward the surface 1a of the slab 1, and is supported by the slider 5 through the manifold 4 so as to be movable up and down. . Further, the oxygen supply pipe 6 and the fuel supply pipe 7 for cutting are connected to the injection port 3, and the mixture of oxygen and fuel supplied from the oxygen supply pipe 6 and the fuel supply pipe 7, respectively, is injected into the injection port. 3, the surface 1 a of the slab 1 is heated by a flame obtained by injecting the slab 1 toward the surface 1 a of the slab 1 and igniting the air-fuel mixture. In this direction, the slab 1 is relatively moved parallel to the surface 1a of the slab 1 to perform the cutting. In the present invention, the direction of cutting by the welding crater 2 (direction of arrow A in FIG. 1) is defined as the front, and the extending direction of the injection port 3 (direction of arrow B in FIG. 1) is defined as the left and right.

本発明の場合、溶削火口2は、溶削後のスラグSを除去するスカーフィング装置10を備えている。スカーフィング装置10は、溶削火口2を左右から挟むよう、溶削火口2の両側に配置された左右一対の部材で、下方に延びるエア配管11と、エア配管11に斜め上方から合流する水配管12と、エア配管11と水配管12との合流部から更に下方に延びた後、鋳片1の表面1a近傍にて後方に屈曲し、溶削火口2の側方にて鋳片1の表面1aと平行に延びる管路13と、管路13の後端に開口するノズル14とからそれぞれ構成されている。   In the case of the present invention, the cutting crater 2 includes a scarfing device 10 that removes the slag S after the cutting. The scarfing device 10 is a pair of left and right members disposed on both sides of the welding crater 2 so as to sandwich the welding crater 2 from the left and right, and an air pipe 11 that extends downward, and water that joins the air pipe 11 obliquely from above. After extending further downward from the joining portion of the pipe 12, the air pipe 11 and the water pipe 12, it bends backward in the vicinity of the surface 1 a of the slab 1, The pipe 13 extends in parallel with the surface 1a, and the nozzle 14 opens at the rear end of the pipe 13 respectively.

個々のノズル14は、内側及び下方に屈曲している。具体的には、個々のノズル14は、図1に示すように、前後方向に対し所定の角度(水平角度)αだけ溶削部1b側を向くよう、内側に屈曲している。ここで、角度αの範囲は、35°以上45°以下に設定することが望ましい。また、個々のノズル14は、図2に示すように、鋳片1の表面1aに対し所定の角度(垂直角度)θだけ表面1a側を向くよう、下方に屈曲している。ここで、角度θの範囲は、10°以上20°以下に設定することが望ましい。角度α及びθを上記範囲に設定した理由は、角度α及びθを上記範囲に設定すると、後述するように、空気と水とを混合してなる流体をノズル14からスラグSに向け噴射した際に、溶削部1bの凹凸が適正範囲内(例えば、鋳片1の表面1aを基準面(水平面)とした場合、基準面±3mm以内)に維持され、平滑な溶削部1bが得られるためである。   Each nozzle 14 is bent inward and downward. Specifically, as shown in FIG. 1, each nozzle 14 is bent inward so as to face the side of the welded portion 1 b by a predetermined angle (horizontal angle) α with respect to the front-rear direction. Here, it is desirable to set the range of the angle α to 35 ° or more and 45 ° or less. Further, as shown in FIG. 2, each nozzle 14 is bent downward so as to face the surface 1 a side by a predetermined angle (vertical angle) θ with respect to the surface 1 a of the slab 1. Here, the range of the angle θ is preferably set to 10 ° or more and 20 ° or less. The reason why the angles α and θ are set in the above range is that when the angles α and θ are set in the above range, a fluid formed by mixing air and water is injected from the nozzle 14 toward the slag S, as will be described later. Furthermore, the unevenness of the welded portion 1b is maintained within an appropriate range (for example, when the surface 1a of the slab 1 is used as a reference surface (horizontal plane), the reference surface is within ± 3 mm), and a smooth welded portion 1b is obtained. Because.

また、一対の管路13の左右の間隔及び個々の管路13の長さは、個々のノズル14を上記角度α及びθで屈曲させ、前記流体をノズル14から噴射した際に、流体が左右の外側斜め前方から溶削部1bに噴射されるよう、それぞれ設定されている。   Further, the distance between the left and right of the pair of pipes 13 and the length of each pipe 13 are determined by bending the individual nozzles 14 at the angles α and θ and ejecting the fluid from the nozzles 14. These are set so as to be sprayed from the outer oblique front side to the cutting portion 1b.

次に、上記構成を有するスカーフィング装置10を用いたスラグ除去方法について以下に説明する。
スラグSの除去に際しては、エア配管11から空気を供給するとともに水配管12から水を供給し、両者を混合してなる流体を、管路13を介して個々のノズル14から溶削部1bに向けそれぞれ噴射する。その結果、噴射された高圧の流体により、溶削部1bのスラグSが適宜粉砕されつつ除去され、溶削部1bが平滑化されるとともに、フィンの発生も防止される。また、平滑な溶削部1bを有する高品質な鋳片1が得られるため、圧延等の後工程を経た加工品の表面における疵の発生も防止され、高品質な加工品を得ることができる。
Next, the slag removal method using the scarfing apparatus 10 having the above configuration will be described below.
When removing the slag S, air is supplied from the air pipe 11 and water is supplied from the water pipe 12, and a fluid obtained by mixing both is supplied from the individual nozzles 14 through the pipes 13 to the cutting part 1 b. Inject each towards. As a result, the slag S of the welded portion 1b is removed while being appropriately crushed by the injected high-pressure fluid, the welded portion 1b is smoothed, and generation of fins is also prevented. Moreover, since the high quality cast piece 1 which has the smooth cutting part 1b is obtained, generation | occurrence | production of the flaw on the surface of the processed goods which passed through post processes, such as rolling, is also prevented, and a high quality processed goods can be obtained. .

ここで、エア配管11から供給される空気の圧力は、0.35MPa以上0.45MPa以下、水配管12から供給される水の圧力は、0.12MPa以上0.20MPa以下、空気と水との混合比は、空気1に対し水0.38〜0.42に設定することが望ましい。空気及び水の圧力並びに空気と水との混合比を上記の範囲に設定した理由は、上記圧力及び混合比を上記範囲に設定すると、後述するように、空気と水とを混合してなる流体をノズル14から溶削部1bに向け噴射した際に、溶削部1bの凹凸が適正範囲内(鋳片1の表面1aを基準面(水平面)とした場合、基準面±3mm以内)に維持され、平滑な溶削部1bが得られるためである。また、水の使用量も、例えば、従来のスラグ除去方法(特許文献1に開示の方法)では圧力1.2MPaで11m/時間であるのに対し、本発明の方法では、圧力0.5MPaで1.4m/時間に減少する。なお、空気の使用量は、圧力0.4MPaで3.6Nm/時間である。 Here, the pressure of the air supplied from the air pipe 11 is 0.35 MPa to 0.45 MPa, the pressure of the water supplied from the water pipe 12 is 0.12 MPa to 0.20 MPa, and the air and water The mixing ratio is desirably set to 0.38 to 0.42 of water with respect to the air 1. The reason why the pressure ratio of air and water and the mixing ratio of air and water are set in the above range is that when the pressure and mixing ratio are set in the above range, a fluid formed by mixing air and water as will be described later. When the nozzle 14 is sprayed from the nozzle 14 toward the cut portion 1b, the unevenness of the cut portion 1b is maintained within an appropriate range (when the surface 1a of the slab 1 is set as a reference plane (horizontal plane), the reference plane is within ± 3 mm). This is because a smooth cut portion 1b is obtained. The amount of water used is, for example, 11 m 3 / hour at a pressure of 1.2 MPa in the conventional slag removal method (the method disclosed in Patent Document 1), whereas in the method of the present invention, the pressure is 0.5 MPa. At 1.4 m 3 / hour. The amount of air used is 3.6 Nm 3 / hour at a pressure of 0.4 MPa.

すなわち、本発明のスカーフィング装置10を用いたスラグ除去方法によれば、少ない使用水量で溶削部1bのスラグSが確実に除去され、溶削部1bが平滑化される。また、使用水量が少ないため、スカーフィング装置10の設置に要する設備投資も少なくて済む。よって、本発明のスカーフィング装置10を用いたスラグ除去方法によれば、スラグSを安価かつ確実に除去することが可能となる。   That is, according to the slag removal method using the scarfing apparatus 10 of the present invention, the slag S of the welding part 1b is reliably removed with a small amount of water used, and the welding part 1b is smoothed. Further, since the amount of water used is small, the capital investment required for installing the scarfing device 10 can be reduced. Therefore, according to the slag removal method using the scarfing apparatus 10 of the present invention, the slag S can be removed inexpensively and reliably.

次に、実施例を示し、本発明の効果について説明する。
図1に示した溶削火口2及びスカーフィング装置10を用いて、空気と水とを混合してなる流体をスラグSに向けて噴射し、ノズル14の水平角度α及び垂直角度θ、エア配管11から供給される空気の圧力、水配管12から供給される水の圧力、並びに空気と水との混合比と、溶削部1bにおけるスラグSの除去効果(噴射後の溶削部1bの凹凸)との関係を検討した。
Next, an example is shown and the effect of the present invention is explained.
A fluid formed by mixing air and water is sprayed toward the slag S using the cutting crater 2 and the scarfing device 10 shown in FIG. 1, and the horizontal angle α and vertical angle θ of the nozzle 14, air piping 11, the pressure of water supplied from the water pipe 12, the mixing ratio of air and water, and the removal effect of the slag S in the welding part 1 b (the unevenness of the welding part 1 b after injection) ).

(1)ノズル14の水平角度αの検討
ノズル14の水平角度αを30°〜53°の範囲で変更して、上記流体をスラグSに向けて噴射し、溶削部1bの凹凸を測定した。その結果を図3に示す。
図3より、角度αの範囲が35°以上45°以下であれば、溶削部1bの凹凸が適正範囲内(鋳片1の表面1aを基準面(水平面)とした場合、基準面±3mm以内)に維持される。
(1) Examination of horizontal angle α of nozzle 14 The horizontal angle α of the nozzle 14 was changed within a range of 30 ° to 53 °, the fluid was sprayed toward the slag S, and the unevenness of the welded portion 1b was measured. . The result is shown in FIG.
As shown in FIG. 3, when the range of the angle α is 35 ° or more and 45 ° or less, the unevenness of the welded portion 1b is within an appropriate range (when the surface 1a of the slab 1 is a reference plane (horizontal plane), the reference plane ± 3 mm Within).

(2)ノズル14の垂直角度θの検討
ノズル14の垂直角度θを5°〜28°の範囲で変更して、上記流体をスラグSに向けて噴射し、溶削部1bの凹凸を測定した。その結果を図4に示す。
図4より、角度θの範囲が10°以上20°以下であれば、溶削部1bの凹凸が上記適正範囲内に維持される。
(2) Examination of the vertical angle θ of the nozzle 14 The vertical angle θ of the nozzle 14 was changed in the range of 5 ° to 28 °, the fluid was sprayed toward the slag S, and the unevenness of the welded portion 1b was measured. . The result is shown in FIG.
From FIG. 4, if the range of angle (theta) is 10 degrees or more and 20 degrees or less, the unevenness | corrugation of the welding part 1b is maintained in the said appropriate range.

(3)エア配管11から供給される空気の圧力の検討
エア配管11から供給される空気の圧力を0.30MPa〜0.47MPaの範囲で変更し、水配管12から供給される水の圧力を0.16MPaとして、上記流体をスラグSに向けて噴射し、溶削部1bの凹凸を測定した。その結果を図5に示す。
図5より、エア配管11から供給される空気の圧力が0.35MPa以上0.45MPa以下であれば、溶削部1bの凹凸が上記適正範囲内に維持される。
(3) Examination of the pressure of the air supplied from the air pipe 11 The pressure of the air supplied from the air pipe 11 is changed in the range of 0.30 MPa to 0.47 MPa, and the pressure of the water supplied from the water pipe 12 is changed. The fluid was sprayed toward the slag S at 0.16 MPa, and the unevenness of the welded portion 1b was measured. The result is shown in FIG.
From FIG. 5, if the pressure of the air supplied from the air piping 11 is 0.35 MPa or more and 0.45 MPa or less, the unevenness of the welded portion 1b is maintained within the above-described appropriate range.

(4)水配管12から供給される水の圧力の検討
水配管12から供給される水の圧力を0.08MPa〜0.25MPaの範囲で変更し、エア配管11から供給される空気の圧力を0.40MPaとして、上記流体をスラグSに向けて噴射し、溶削部1bの凹凸を測定した。その結果を図6に示す。
図6より、水配管12から供給される水の圧力が0.12MPa以上0.20MPa以下であれば、溶削部1bの凹凸が上記適正範囲内に維持される。
(4) Examination of the pressure of the water supplied from the water pipe 12 The pressure of the water supplied from the water pipe 12 is changed in the range of 0.08 MPa to 0.25 MPa, and the pressure of the air supplied from the air pipe 11 is changed. The fluid was sprayed toward the slag S at 0.40 MPa, and the unevenness of the welded portion 1b was measured. The result is shown in FIG.
From FIG. 6, if the pressure of the water supplied from the water pipe 12 is 0.12 MPa or more and 0.20 MPa or less, the unevenness of the welded portion 1b is maintained within the above-mentioned appropriate range.

(5)空気と水との混合比の検討
エア配管11から供給される空気の圧力を0.35MPa〜0.45MPa、水配管12から供給される水の圧力を0.12MPa〜0.20MPaとし、更に、空気と水との混合比を、空気1に対し水0.34〜0.45の範囲で変更し、上記流体をスラグSに向けて噴射し、溶削部1bの凹凸を測定した。その結果を図7に示す。
図7より、空気と水との混合比が、空気1に対し水0.38〜0.42であれば、溶削部1bの凹凸が上記適正範囲内に維持される。
(5) Examination of mixing ratio of air and water The pressure of air supplied from the air pipe 11 is 0.35 MPa to 0.45 MPa, and the pressure of water supplied from the water pipe 12 is 0.12 MPa to 0.20 MPa. Furthermore, the mixing ratio of air and water was changed in the range of water 0.34 to 0.45 with respect to air 1, the fluid was sprayed toward the slag S, and the unevenness of the welded portion 1b was measured. . The result is shown in FIG.
From FIG. 7, if the mixing ratio of air and water is 0.38 to 0.42 of water with respect to air 1, the unevenness of the welded portion 1 b is maintained within the appropriate range.

なお、以上、本発明の好ましい実施形態及び実施例を説明したが、本発明はこれらの実施形態及び実施例に限定されることはなく、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、及びその他の変更を行ったものも、本発明に含まれる。
例えば、本実施形態では、設備投資を抑制するために分割型溶削方式を採用しているが、全幅型溶削方式を採用してもよい。
また、スカーフィング装置10を、溶削火口2の片側のみに設けた1基のエア配管11、水配管12、管路13及びノズル14にて構成してもよいが、スラグSを確実に除去するためには、本実施形態に示すように、スカーフィング装置10を、溶削加工2の両側に配置された左右一対のエア配管11、水配管12、管路13及びノズル14にて構成することが望ましい。
In the above, preferred embodiments and examples of the present invention have been described. However, the present invention is not limited to these embodiments and examples, and addition of configurations without departing from the spirit of the present invention, Omissions, substitutions, and other changes are also included in the present invention.
For example, in the present embodiment, the split-type cutting method is adopted to suppress capital investment, but a full-width type cutting method may be adopted.
Further, the scarfing device 10 may be constituted by one air pipe 11, water pipe 12, pipe 13 and nozzle 14 provided only on one side of the cutting crater 2, but the slag S is reliably removed. In order to do this, as shown in the present embodiment, the scarfing device 10 is constituted by a pair of left and right air pipes 11, water pipes 12, pipe lines 13, and nozzles 14 arranged on both sides of the machining process 2. It is desirable.

本発明に係るスカーフィング装置を備える溶削火口の上方斜視図である。It is an upper perspective view of a cutting crater provided with the scarfing device concerning the present invention. 本発明に係るスカーフィング装置のノズル垂直角度を説明する、図1中矢印IIに沿った拡大図である。It is an enlarged view along arrow II in Drawing 1 explaining the nozzle perpendicular angle of the scarfing device concerning the present invention. 本発明に係るスカーフィング装置における、ノズルの水平角度と溶削部の凹凸との関係を示すグラフである。It is a graph which shows the relationship between the horizontal angle of a nozzle and the unevenness | corrugation of a welding part in the scarfing apparatus which concerns on this invention. 本発明に係るスカーフィング装置における、ノズルの垂直角度と溶削部の凹凸との関係を示すグラフである。It is a graph which shows the relationship between the vertical angle of a nozzle and the unevenness | corrugation of a welding part in the scarfing apparatus which concerns on this invention. 本発明に係るスラグ除去方法における、エア配管から供給される空気の圧力と溶削部の凹凸との関係を示すグラフである。It is a graph which shows the relationship between the pressure of the air supplied from air piping, and the unevenness | corrugation of a welding part in the slag removal method which concerns on this invention. 本発明に係るスラグ除去方法における、水配管から供給される水の圧力と溶削部の凹凸との関係を示すグラフである。It is a graph which shows the relationship between the pressure of the water supplied from water piping, and the unevenness | corrugation of a welding part in the slag removal method which concerns on this invention. 本発明に係るスラグ除去方法における、エア配管から供給される空気と水配管から供給される水との混合比と溶削部の凹凸との関係を示すグラフである。It is a graph which shows the relationship between the mixing ratio of the air supplied from air piping, and the water supplied from water piping, and the unevenness | corrugation of a welding part in the slag removal method which concerns on this invention.

符号の説明Explanation of symbols

1…鋳片、1a…鋳片の表面、1b…溶削部、2…溶削火口、10…スカーフィング装置、11…エア配管、12…水配管、13…管路、14…ノズル、α…ノズルの水平角度、θ…ノズルの垂直角度   DESCRIPTION OF SYMBOLS 1 ... Cast slab, 1a ... Slab surface, 1b ... Cutting part, 2 ... Cutting crater, 10 ... Scarfing device, 11 ... Air piping, 12 ... Water piping, 13 ... Pipe line, 14 ... Nozzle, (alpha) ... Horizontal angle of nozzle, θ ... Vertical angle of nozzle

Claims (12)

鋳片の溶削作業において溶削部に発生したスラグを除去するための装置であって、
空気と水とを混合してなる流体を前記溶削部に向け噴射するノズルを備え、前記ノズルが、前記鋳片の溶削方向に沿って延びる管路の後端に形成されていることを特徴とするスカーフィング装置。
An apparatus for removing slag generated in a cut portion in a slab cutting operation,
A nozzle for ejecting toward the fluid obtained by mixing air and water to the scarfing unit, the nozzle, that you have been formed at the rear end of the conduit extending along the scarfing direction of said slab Features a scarfing device.
前記ノズルが、前記溶削部の左右にそれぞれ設けられていることを特徴とする請求項1に記載のスカーフィング装置。   The scarfing device according to claim 1, wherein the nozzle is provided on each of the left and right sides of the welding portion. 前記ノズルが、前記鋳片の溶削方向に対し所定の角度αだけ内側に屈曲していることを特徴とする請求項に記載のスカーフィング装置。 The scarfing device according to claim 1 , wherein the nozzle is bent inward by a predetermined angle α with respect to a cutting direction of the cast slab. 前記所定の角度αが、35°以上45°以下であることを特徴とする請求項に記載のスカーフィング装置。 The scarfing device according to claim 3 , wherein the predetermined angle α is not less than 35 ° and not more than 45 °. 前記ノズルが、前記鋳片の表面に対し所定の角度θだけ下方に屈曲していることを特徴とする請求項ないしに記載のスカーフィング装置。 The nozzle, the cast strip scarfing apparatus according possible to 4 claims 1, characterized in that bent downward by a predetermined angle θ to the surface of the. 前記所定の角度θが、10°以上20°以下であることを特徴とする請求項に記載のスカーフィング装置。 The scarfing device according to claim 5 , wherein the predetermined angle θ is not less than 10 ° and not more than 20 °. 鋳片の溶削作業において溶削部に発生したスラグを除去するための方法であって、
空気と水とを混合してなる流体を、前記鋳片の溶削方向に対し35°以上45°以下の角度で、前記溶削方向の前方外側から前記溶削部に向け噴射することを特徴とするスラグ除去方法。
It is a method for removing slag generated in the welded part in the slab melting work,
A fluid formed by mixing air and water is sprayed from the front outer side in the cutting direction toward the cutting portion at an angle of 35 ° to 45 ° with respect to the cutting direction of the slab. And slag removal method.
前記流体を、左右から前記溶削物に向け噴射することを特徴とする請求項に記載のスラグ除去方法。 The slag removing method according to claim 7 , wherein the fluid is sprayed from the left and right toward the workpiece. 前記流体を、前記鋳片の表面に対し10°以上20°以下の角度で、前記溶削方向の前方上側から前記溶削物に向け噴射することを特徴とする請求項7または8に記載のスラグ除去方法。 Said fluid, at 20 ° angle of less than 10 ° or more with respect to the surface of the slab, from the front upper side of the scarfing direction according to claim 7 or 8, characterized in that injecting toward the scarfing product Slag removal method. 前記流体に供給される空気の圧力が0.35MPa以上0.45MPa以下であることを特徴とする請求項ないしに記載のスラグ除去方法。 Deslagging process according to claims 7 to 9, characterized in that the pressure of air supplied to said fluid is less than 0.45MPa least 0.35 MPa. 前記流体に供給される水の圧力が0.12MPa以上0.20MPa以下であることを特徴とする請求項ないし10に記載のスラグ除去方法。 Deslagging process according to claim 7 to 10, wherein the pressure of the water supplied to the fluid is less than 0.20MPa least 0.12 MPa. 前記流体における空気と水との混合比が、空気1に対し水0.38〜0.42であることを特徴とする請求項7ないし11に記載のスラグ除去方法。 Deslagging process according to 11 to claims 7, wherein the mixing ratio of air and water in said fluid, to the air 1 is water from 0.38 to 0.42.
JP2007185633A 2007-07-17 2007-07-17 Scarfing device and slag removal method Active JP4958667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007185633A JP4958667B2 (en) 2007-07-17 2007-07-17 Scarfing device and slag removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007185633A JP4958667B2 (en) 2007-07-17 2007-07-17 Scarfing device and slag removal method

Publications (2)

Publication Number Publication Date
JP2009022961A JP2009022961A (en) 2009-02-05
JP4958667B2 true JP4958667B2 (en) 2012-06-20

Family

ID=40395288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185633A Active JP4958667B2 (en) 2007-07-17 2007-07-17 Scarfing device and slag removal method

Country Status (1)

Country Link
JP (1) JP4958667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513609A (en) * 2017-01-13 2017-03-22 张鹏 Plate blank continuous casting flame cutting machine slag flushing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562883A (en) * 2015-12-14 2016-05-11 芜湖新兴铸管有限责任公司 Slag removing method of continuously-casting finishing flame-cutting slag online treatment device
KR101779151B1 (en) * 2016-03-15 2017-09-18 주식회사 포스코 Treated water supply apparatus and scale treatment apparatus of having it
CN113798461B (en) * 2021-11-08 2023-01-24 上海东震冶金工程技术有限公司 Molten pool retainer of continuous casting billet scarfing machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734757Y1 (en) * 1971-12-02 1972-10-20
JPS5691676A (en) * 1979-12-26 1981-07-24 Toshiba Corp Gate circuit of gate turn-off thyristor
CA1323828C (en) * 1986-10-22 1993-11-02 Ronald Elmer Fuhrhop Scarfing nozzles
JPS6475171A (en) * 1987-09-18 1989-03-20 Nippon Kokan Kk Scarfer
JP2515445B2 (en) * 1991-06-04 1996-07-10 日本スピング株式会社 How to prevent slag from sticking
JP2000197966A (en) * 1998-12-28 2000-07-18 Nippon Steel Corp Shaping device for slab cut surface
JP3987751B2 (en) * 2002-04-11 2007-10-10 新日本製鐵株式会社 Injection nozzle and injection method
JP2005313180A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Hot scarfing device and hot scarfing method for slab
JP2006068748A (en) * 2004-08-31 2006-03-16 Nippon Steel Corp Slag deposition prevention apparatus, and slag deposition prevention method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513609A (en) * 2017-01-13 2017-03-22 张鹏 Plate blank continuous casting flame cutting machine slag flushing device

Also Published As

Publication number Publication date
JP2009022961A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4958667B2 (en) Scarfing device and slag removal method
CN101472703A (en) Method of and device for butt welding without weld filler materials thin metal sheets using clamping pressing devices, at least one pressing element being suitable for applying two or more distinct pr
CN105081683B (en) Vertical masonry joint steel pipe crimping processing technology
CN103008898B (en) Tack welding method, and welding method of box beam
CN103331504A (en) Single-side welding and double-side forming welding method for ceramic gasket
CN102172814A (en) Method for manufacturing longitudinal submerged arc welded pipe
CN103495795A (en) Gas protection bottoming automatic welding process of carbon steel pipeline consumable electrode
CN103495604A (en) Method of lock catch type vacuum rolling metal composite plate
EP2371474A1 (en) Clad welding method
JP5071206B2 (en) Gas cutting method and gas cutting machine for continuous casting material
CN104942411A (en) Multi-electrode single-side submerged arc welding method
JPWO2010082484A1 (en) Billet cutting apparatus and billet cutting method
JP4218461B2 (en) Welding equipment
CN105364430A (en) Laser welding method capable of realizing synchronous rolling of edge joints of sheets
TWI771066B (en) Simulation test method for welding lamellar tearing of high-strength steel plate for offshore underwater foundation
CN101352775B (en) Method for avoiding terminal crack when butt welding of large-sized sheet material
JP2009220232A (en) Cutting method and cutting device for steel
JP5068730B2 (en) Billet cutting apparatus and nozzle clogging detection method
KR101787250B1 (en) Scarfing device for slab
JP4400685B1 (en) Manufacturing method of forged steel pipe with excellent workability
CN106563871A (en) Method for controlling deformation of manual metal arc welding
JP5229996B2 (en) Gas cutting method
JP5097601B2 (en) Billet cutting equipment
JP2006068748A (en) Slag deposition prevention apparatus, and slag deposition prevention method using the same
KR101448602B1 (en) Device for scarfing slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4958667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250