JP4958622B2 - Sample analysis system and sample transport method - Google Patents

Sample analysis system and sample transport method Download PDF

Info

Publication number
JP4958622B2
JP4958622B2 JP2007118477A JP2007118477A JP4958622B2 JP 4958622 B2 JP4958622 B2 JP 4958622B2 JP 2007118477 A JP2007118477 A JP 2007118477A JP 2007118477 A JP2007118477 A JP 2007118477A JP 4958622 B2 JP4958622 B2 JP 4958622B2
Authority
JP
Japan
Prior art keywords
sample
substrate
surfactant
analysis system
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007118477A
Other languages
Japanese (ja)
Other versions
JP2008275412A5 (en
JP2008275412A (en
Inventor
邦男 原田
修大 塚田
作一郎 足立
英雄 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007118477A priority Critical patent/JP4958622B2/en
Publication of JP2008275412A publication Critical patent/JP2008275412A/en
Publication of JP2008275412A5 publication Critical patent/JP2008275412A5/ja
Application granted granted Critical
Publication of JP4958622B2 publication Critical patent/JP4958622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,試料中に含まれる成分量を検出する分析装置に係わり,微少量の試料で分析するために試料や試薬等を液滴として扱う技術に関する。   The present invention relates to an analyzer for detecting the amount of a component contained in a sample, and relates to a technique for handling a sample, a reagent, or the like as a droplet in order to analyze with a very small amount of sample.

試料中に含まれる成分量を検出する分析装置として,ハロゲンランプ等からの白色光を試料溶液に照射し,試料溶液を透過してきた光を回折格子で分光して必要な波長成分を取り出し,その吸光度を割り出すことで目的の成分量を測定する分光分析装置が広く用いられている。あるいは,白色光を回折格子で分光した後,試料溶液に照射する場合もある。これらの分析装置においては,従来,プラスチックやガラスの反応容器内に試料と試薬を分注し,これらを混合して試料溶液とした物に光を照射し,成分量を測定していた。   As an analyzer for detecting the amount of components contained in a sample, the sample solution is irradiated with white light from a halogen lamp, etc., and the light transmitted through the sample solution is dispersed by a diffraction grating to extract the necessary wavelength component. Spectroscopic analyzers that measure the amount of a target component by determining the absorbance are widely used. Alternatively, the sample solution may be irradiated after white light is separated by a diffraction grating. Conventionally, in these analyzers, a sample and a reagent are dispensed into a plastic or glass reaction container, and these components are mixed to irradiate light into a sample solution to measure the amount of components.

しかし近年,試薬コストの削減や,環境への負荷低減のため,分析に用いる試料溶液の微少量化が求められており,従来方式での試料溶液微少量化では液の取り扱いが困難になり,分注,混合時に発生する気泡等により正確な測定ができなくなるという問題もあった。そこで,微少量の液体を何らかの方法で流通し,流通の途中で液体の成分量を計測する方法が考えられる。   However, in recent years, in order to reduce reagent costs and reduce the burden on the environment, it has been required to use a small amount of sample solution for analysis, and it has become difficult to handle liquids by using a small amount of sample solution in the conventional method. There is also a problem that accurate measurement cannot be performed due to bubbles generated during mixing. Therefore, a method is considered in which a very small amount of liquid is circulated by some method, and the component amount of the liquid is measured during the distribution.

微少量の液体を流通する一つ目の方法として,基板に形成された電極上の液体を電気的な制御により流通する方式が上げられる。この方法には一般的に次の二つの方式が知られている。   As a first method for distributing a very small amount of liquid, there is a method in which the liquid on the electrode formed on the substrate is distributed by electrical control. The following two methods are generally known for this method.

電気的な制御により流通する一つ目の方式は,複数の電極を形成した二つの対向する基板間に流通する液体を粒状にして挟みこみ,二つの対向する基板間の電極に電圧を印加することで,粒状の液体を駆動する方式である(特開昭59-206868号公報)。この方式では,通常,片方の基板上に液体を流通させる液体流通路に沿って多数の電極が形成され,もう一方の基板上にはほぼ全面にグランドに接続された一つの電極を備える。多数の電極それぞれの形状は,一般的に長方形や三角形が多い。粒状の液体がいくつかの電極にまたがって静置している状態で粒状の液体下部の電極の一つに電圧を印加すると,電気毛管現象(M. G. Lippmann, Ann. Chim. Phys. 5, 494 1875)と表現されるように,電圧を印加した電極上の粒状の液体の濡れ性が変化したように電極に吸い寄せられ,最終的にその電圧を印加した電極の真上にその粒状の液体が移動する。これを繰り返し,流通する。   In the first method, which is distributed by electrical control, the liquid flowing between two opposing substrates on which a plurality of electrodes are formed is sandwiched in a granular form, and a voltage is applied to the electrodes between the two opposing substrates. Therefore, this is a system for driving a granular liquid (Japanese Patent Laid-Open No. 59-206868). In this system, usually, a large number of electrodes are formed along a liquid flow path through which a liquid flows on one substrate, and one electrode connected to the ground is provided on the other substrate. The shape of each of a large number of electrodes is generally rectangular or triangular. When a voltage is applied to one of the electrodes below the granular liquid while the granular liquid is standing across several electrodes, electrocapillary phenomenon (MG Lippmann, Ann. Chim. Phys. 5, 494 1875 ), The wettability of the granular liquid on the electrode to which the voltage is applied is attracted to the electrode, and the granular liquid finally moves directly above the electrode to which the voltage is applied. To do. This is repeated and distributed.

電気的な制御により流通するもう一つの方式として,前述と同様の形状からなる多数の電極を有した一つの基板の上に流通する液体を粒状にして供給し,粒状の液体付近の電極に電圧を印加して,粒状の液体を駆動する方式がある(特開平10-267801号公報)。多数の電極は粒状の液体を流通させる液体流通路に沿って配置される。液体の下部に存在する電極と液体付近の電極との間に電界を形成し,電界の力を利用し,駆動させる。これを繰り返し,流通する。   As another method of distributing by electric control, the liquid flowing on one substrate having a number of electrodes having the same shape as described above is supplied in a granular form, and a voltage is applied to the electrodes near the granular liquid. There is a system in which granular liquid is driven by applying a voltage (Japanese Patent Laid-Open No. 10-267801). A large number of electrodes are arranged along a liquid flow path through which a granular liquid flows. An electric field is formed between the electrode existing in the lower part of the liquid and the electrode near the liquid, and driven by using the force of the electric field. This is repeated and distributed.

これらの両方式とも微少量の液体を流通することは可能である。また,二つの微少量の粒状の液体同士を同じ電極上に流通することにより混合させることも可能であり,さらには一つの微少量の粒状の液体を二つに分割することも可能である。前述した二つの方式は電圧を印加して液体を駆動する力を生じる点で同じであり,本発明では両方式に用いている液体の駆動力を静電力と呼ぶ。   Both of these systems can circulate a minute amount of liquid. It is also possible to mix two minute amounts of granular liquid by circulating them on the same electrode, and it is also possible to divide one minute amount of granular liquid into two. The two methods described above are the same in that a force for driving a liquid is generated by applying a voltage. In the present invention, the driving force of the liquid used in both methods is called an electrostatic force.

静電力を用いて粒状の液体を流通し,分析するシステムの利点は,周囲が壁に囲まれたプラスチックやガラスの反応容器を用いる方式に比べ,単一もしくは二枚の基板を利用するため気泡の影響を受けにくいことや,電極に電圧を印加するだけで基板内の自由な場所で多数の粒状の液体を独立して駆動できること,また電圧を印加することにより粒状の液体を置く場所を指定できるため,試料,試薬や試料溶液がいつ測定部に到達するのか,タイミングを計りやすいことなどが挙げられる。   The advantage of a system that circulates and analyzes granular liquids using electrostatic force is that bubbles are used because a single or two substrates are used, compared to a method using a plastic or glass reaction vessel surrounded by a wall. Designate where to place granular liquid by applying voltage and applying voltage to electrode so that many granular liquids can be driven independently at any place in the substrate. Therefore, it is easy to measure the timing of when the sample, reagent or sample solution reaches the measurement unit.

微少量の液体を流通する二つ目の方式として,特開2005-257407号公報のように表面弾性波を用いて搬送する方法がある。この方法は表面弾性波を伝播可能なチタン酸ジルコン酸鉛(PZT)等の圧電体上に表面弾性波発生部となる電極部を設け,表面弾性波発生部で発生した表面弾性波により粒状の微少液体を流通するものである。本方式では,微少量の液体を流通したい部分が圧電体であれば,表面弾性波発生部となる電極部は1ヶ所にあれば良く,前述の静電力による微少液体の流通方法のように複雑な電極配置は不要という特徴がある。   As a second method for distributing a very small amount of liquid, there is a method using a surface acoustic wave as disclosed in JP-A-2005-257407. In this method, an electrode part serving as a surface acoustic wave generating part is provided on a piezoelectric material such as lead zirconate titanate (PZT) capable of propagating surface acoustic waves, and the surface acoustic wave generated by the surface acoustic wave generating part is used to form particles. A micro liquid is distributed. In this method, if the part that wants to circulate a small amount of liquid is a piezoelectric body, it is only necessary to have one electrode part as a surface acoustic wave generating part, which is as complicated as the above-mentioned method of circulating a minute liquid by electrostatic force. There is a feature that no electrode arrangement is required.

微少量の液体を流通する三つ目の方式として,内部に媒体を詰めたチューブや細管を用い,媒体に圧力を加えて細管の中を流し,媒体の中に微量の試料溶液を入れ,媒体の流れによって試料溶液を伝播する方法がある(特開2003-20041号公報,米国特許第4,259,291号)。この媒体の流れによって試料溶液を伝播する方法では,静電力を用いる例や表面弾性波を用いる例に比べ,搬送する微少液体が細管内側の壁面に吸着しにくい。その理由は,微少液体と共に媒体が細管の中を流れているため,細管内側の壁面近傍と細管の中心付近とに流速の差が発生し,壁面近傍には媒体の膜が保たれることや,静電力を用いる場合のように,静電力により微少液体を壁面に吸着する力が発生しないためである。   As a third method of circulating a small amount of liquid, a tube or a narrow tube filled with a medium is used, pressure is applied to the medium, the flow is made through the narrow tube, a small amount of sample solution is placed in the medium, and the medium There is a method of propagating the sample solution by the flow of the liquid (Japanese Patent Laid-Open No. 2003-20041, US Pat. No. 4,259,291). In this method of propagating the sample solution by the flow of the medium, the transported micro liquid is less likely to be adsorbed on the inner wall surface of the thin tube than in the example using electrostatic force or the example using surface acoustic wave. The reason is that the medium flows along with the micro liquid in the narrow tube, so there is a difference in flow velocity between the inner wall of the narrow tube and the center of the narrow tube, and the medium film is maintained near the wall. This is because, as in the case of using an electrostatic force, a force for adsorbing a minute liquid to the wall surface is not generated by the electrostatic force.

特開昭59-206868号公報JP 59-206868 特開平10-267801号公報Japanese Patent Laid-Open No. 10-267801 特開2005-257407号公報JP 2005-257407 A 特開2003-20041号公報JP2003-20041 米国特許第4,259,291号明細書U.S. Pat.No. 4,259,291 M. G. Lippmann, Ann. Chim. Phys. 5, 494 1875M. G. Lippmann, Ann. Chim. Phys. 5, 494 1875

微少量の液体を搬送することには課題が多い。静電力を用いた液体の流通では,液性の違いによって搬送不可能な液体が存在する。例えば,アルブミン等のたんぱく質を多く含む液体は基板に吸着し易く,吸着してしまうと静電力により動かすことは不可能である。また,界面活性剤を多く含む液体等は動かしにくい。表面弾性波を用いて搬送する方法では,基板表面が表面弾性波によって微少液体を押し動かすため,静電力による微少液体の流通と同様にアルブミン等のたんぱく質を多く含む液体は基板に吸着し易く,吸着する場合は搬送不可能である。内部に媒体を詰めたチューブや細管を用いる方法は,細管内の流れが一定時間以上停止した場合などは,やはり細管内側の壁面に試料溶液が接触するため,一旦接触して吸着した後媒体に流れを発生すれば微少液体を強制的に移動できるが,細管内側の壁面に付着が残ることになる。細管内側の壁面を撥水処理しておけば,細管内の流れが一定時間以上停止しても水溶性の液体であれば付着を防止できるが,アルブミン等のたんぱく質を多く含む液体は細管内側の壁面に吸着してしまい,吸着した場合は強制的に搬送しても細管内側の壁面に液体の一部が付着して残ることになる。   There are many problems in transporting a small amount of liquid. In the circulation of liquids using electrostatic force, there are liquids that cannot be transported due to differences in liquidity. For example, a liquid containing a large amount of protein such as albumin is easily adsorbed on the substrate, and once adsorbed, it cannot be moved by electrostatic force. Also, liquids containing a large amount of surfactant are difficult to move. In the method of transporting using surface acoustic waves, since the substrate surface pushes and moves micro liquids by surface elastic waves, liquids containing a large amount of proteins such as albumin are easily adsorbed to the substrate as in the case of micro liquid flow by electrostatic force. When adsorbing, it cannot be transported. In the method using a tube or narrow tube packed with a medium inside, when the flow in the narrow tube stops for a certain time or longer, the sample solution still contacts the wall inside the narrow tube. If a flow is generated, a minute liquid can be forcibly moved, but adhesion remains on the inner wall of the narrow tube. If the inner wall of the narrow tube is treated with water repellency, even if the flow in the narrow tube stops for a certain period of time, it can be prevented from adhering to water-soluble liquids. If it is adsorbed on the wall surface, even if it is forcibly transported, a part of the liquid remains attached to the wall surface inside the narrow tube.

このように上記従来技術では,搬送しようとする微少液体の液性の違いによって搬送不可能であったり,吸着が残るという問題があった。特にアルブミン等のたんぱく質を多く含む液体は基板に吸着し易く,吸着してしまうと搬送不可能,又は,搬送しても壁面に液体の一部が付着して残ることが問題であった。   As described above, the prior art has a problem in that it cannot be transported or adsorption remains due to the difference in liquid properties of the micro liquid to be transported. In particular, a liquid containing a large amount of protein such as albumin is easily adsorbed to the substrate, and if adsorbed, it cannot be transported, or even if it is transported, a part of the liquid remains attached to the wall surface.

本発明では,アルブミン等のたんぱく質を多く含む微少液体が,静電力を用いた液体の流通や表面弾性波を用いて搬送する方法では基板に,媒体の流れによって試料溶液を伝播する方法では壁面に吸着するのを防止し,従来搬送が困難であった微小液体の搬送を的確に行い,微少量の試料での安定分析が可能な液体分析システムを提供することを目的としている。   In the present invention, a micro liquid containing a large amount of protein such as albumin is transferred to a substrate in a method of transporting a liquid using electrostatic force or using surface acoustic waves, and to a wall surface in a method of propagating a sample solution by a medium flow. The objective is to provide a liquid analysis system that prevents adsorption and accurately transports micro liquids, which were difficult to transport in the past, and enables stable analysis with a small amount of sample.

本発明では,平行に配置された2枚の基板の間を搬送する液体に界面活性剤を添加することで上記目的を達成する。界面活性剤の添加濃度は臨界ミセル濃度程度とするのが好ましい。試料液体の搬送方法は,静電力搬送,超音波搬送,搬送媒体の流れによる搬送のいずれでもよい。   In the present invention, the above object is achieved by adding a surfactant to the liquid transported between two substrates arranged in parallel. The addition concentration of the surfactant is preferably about the critical micelle concentration. The sample liquid may be transferred by any of electrostatic force transfer, ultrasonic transfer, and transfer by the flow of the transfer medium.

本発明によれば,微少量の試料で分析するために試料や試薬等を液滴として扱う際,液滴の吸着を防止し,液滴を安定搬送することで微少量の試料での安定分析が可能となる。   According to the present invention, when a sample, a reagent, or the like is handled as a droplet for analysis with a very small amount of sample, the adsorption of the droplet is prevented and the stable analysis with a very small amount of sample is achieved by stably transporting the droplet. Is possible.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1から図10を用い,本発明による液体分析システムについて説明する。本実施例では試料,試薬の搬送に静電力搬送を用いた例を説明する。   A liquid analysis system according to the present invention will be described with reference to FIGS. In this embodiment, an example in which electrostatic force conveyance is used for conveyance of a sample and a reagent will be described.

初めに,図1,図2,及び図3により本実施例での液体分析システムの構成を説明する。図1及び図2は液体分析システムの構成を示す略図であり,図1は装置の平面図,図2は装置の断面図,図3は試料を入れたチューブを複数本保持する試料カセット部分を断面して示す。   First, the configuration of the liquid analysis system in this embodiment will be described with reference to FIGS. 1, 2, and 3. FIG. 1 and 2 are schematic views showing the configuration of the liquid analysis system. FIG. 1 is a plan view of the apparatus, FIG. 2 is a sectional view of the apparatus, and FIG. 3 is a sample cassette portion for holding a plurality of tubes containing samples. Shown in cross section.

本実施例での液体分析システムは主に,試料カセット投入搬送部1,試料カセット2,攪拌機構3,試料用ディスペンサ洗浄機構4,試料用ディスペンサ5,試料調整ディスク6,界面活性剤タンク7,界面活性剤用ディスペンサ8,及び,洗浄機構9からなる試料調整部10と,調整試料投入ディスペンサ11,調整試料投入ディスペンサ洗浄機構12,試料搬送デバイス13,試薬投入部14,計測部15,試薬投入部14’,計測部15’,及び,廃液回収部16からなる試料搬送計測部17とから構成されている。試料カセット2には,図3に示すように試料18を入れた試料チューブ19が複数本セットされており,同様に試料調整ディスク6には試料18と界面活性剤21を混ぜるための試料調整チューブ20が複数本セットされている。また,界面活性剤タンク7には界面活性剤21もしくは界面活性剤を含む希釈液21’が入れてあり,同様に試薬投入部14及び14’には,調整試料に添加混合し特定の反応を起こす試薬22,22’が入れてある。   The liquid analysis system in this embodiment is mainly composed of a sample cassette loading / conveying section 1, a sample cassette 2, a stirring mechanism 3, a sample dispenser cleaning mechanism 4, a sample dispenser 5, a sample adjustment disk 6, a surfactant tank 7, A sample adjusting unit 10 including a surfactant dispenser 8 and a cleaning mechanism 9, an adjusted sample charging dispenser 11, an adjusted sample charging dispenser cleaning mechanism 12, a sample transport device 13, a reagent charging unit 14, a measuring unit 15, and a reagent charging The unit 14 ′, the measurement unit 15 ′, and the sample transport measurement unit 17 including the waste liquid recovery unit 16 are configured. As shown in FIG. 3, a plurality of sample tubes 19 containing the sample 18 are set in the sample cassette 2, and similarly, a sample adjustment tube for mixing the sample 18 and the surfactant 21 on the sample adjustment disk 6. A plurality of 20 are set. The surfactant tank 7 contains a surfactant 21 or a dilute solution 21 ′ containing a surfactant. Similarly, in the reagent charging sections 14 and 14 ′, a specific reaction is performed by adding and mixing to the adjusted sample. There are reagents 22 and 22 'for waking up.

次に,試料搬送計測部17の構成を図4,図5,図6,及び図7により詳細に説明する。図4は試料搬送計測部のみを抜き出した図で,平面図を部分的に断面して示す。図5は図4を正面から見た断面図で示す。図6及び図7は,図5の部分拡大図を示す。   Next, the configuration of the sample transport measurement unit 17 will be described in detail with reference to FIGS. 4, 5, 6, and 7. FIG. 4 is a diagram in which only the sample transport measurement unit is extracted, and a plan view is partially shown in section. FIG. 5 is a sectional view of FIG. 4 as viewed from the front. 6 and 7 show partially enlarged views of FIG.

図4及び図5に示すように,試料搬送計測部17は,透明なガラス,セラミック,若しくは樹脂製の第1基板30,第1基板30と並行に配置された同様の材質からなる第2基板31,第1基板30と第2基板31を並行かつ一定距離に保つスペーサ32から構成されており,第1基板30と第2基板31との間には,搬送媒体としてシリコーン若しくはフッ素系のオイル33が満たされている。   As shown in FIGS. 4 and 5, the sample transport measurement unit 17 includes a first substrate 30 made of transparent glass, ceramic, or resin, and a second substrate made of a similar material arranged in parallel with the first substrate 30. 31 and a spacer 32 that keeps the first substrate 30 and the second substrate 31 parallel and at a constant distance. Between the first substrate 30 and the second substrate 31, a silicone or fluorine-based oil is used as a carrier medium. 33 is satisfied.

第1基板30には,第2基板31と向かい合う側に導電薄膜による複数の第1の電極34が,前記調整試料や試薬22,22’の複数の搬送路となるように配列されており,電極34の表面は絶縁膜35で覆われ,更に,第2基板31と向かい合う側の表面は撥水処理されている。第1の電極34と絶縁膜35は非常に薄く,拡大しても書き表せないため,図では,必要に応じて図6のように厚さ方向を誇張して表す。第1の電極34それぞれは,図7や後述する図8のように交流矩形波の電源51とスイッチ44で配線されている。   On the first substrate 30, a plurality of first electrodes 34 made of a conductive thin film are arranged on the side facing the second substrate 31 so as to be a plurality of transport paths for the adjustment sample and the reagents 22, 22 ′. The surface of the electrode 34 is covered with an insulating film 35, and the surface on the side facing the second substrate 31 is subjected to water repellent treatment. Since the first electrode 34 and the insulating film 35 are very thin and cannot be written even if enlarged, in the figure, the thickness direction is exaggerated as shown in FIG. Each of the first electrodes 34 is wired by an AC rectangular wave power source 51 and a switch 44 as shown in FIG. 7 and FIG.

第2基板31には,第1基板30と向かい合う側の全面に,若しくは少なくとも第1の電極34と向かい合う部分をカバーする範囲に第2の電極36が配置されており,第1の電極34同様に絶縁膜37で覆われ,更に,第1基板30と向かい合う側の表面は撥水処理されている。尚,絶縁膜37は必ずしも必要ではなく,第1基板30と向かい合う側の面が撥水処理されていれば良い。   On the second substrate 31, the second electrode 36 is disposed on the entire surface facing the first substrate 30 or in a range covering at least a portion facing the first electrode 34. Further, the surface on the side facing the first substrate 30 is subjected to water repellent treatment. Note that the insulating film 37 is not always necessary, and the surface on the side facing the first substrate 30 may be water-repellent.

第2基板31には,試料搬送計測部17に調整試料を導入する試料導入口38,試薬22,22’を導入する試薬導入口39,39’,及び分析が終了した試料を廃液として取り出す廃液回収口40が,円筒状に立ち上がった状態で設けられている。試料導入口38,試薬導入口39,39’,廃液回収口40は,平面から見た時に電極34と重なる位置に配置されている。   In the second substrate 31, a sample introduction port 38 for introducing the adjustment sample into the sample transport measurement unit 17, a reagent introduction port 39, 39 'for introducing the reagent 22, 22', and a waste solution for taking out the sample after the analysis as a waste solution The collection port 40 is provided in a state where it rises in a cylindrical shape. The sample introduction port 38, the reagent introduction ports 39 and 39 ', and the waste liquid collection port 40 are arranged at positions that overlap the electrode 34 when viewed from the plane.

スペーサ32は,前述のように第1基板30と第2基板31を並行かつ一定距離に保つためと,第1基板30と第2基板31との間をシールし,その間にオイル33を保持するために設けられる。その場合,試料導入口38,試薬導入口39,39’,廃液回収口40のいずれかの口をオイル導入部とすると,別の口から空気が押し出され,オイルで満たされる。オイルが接触する部分は,試料や試薬が搬送路から外れる等の不測の事態に備え,撥水処理しておくのが望ましい。第1基板30と第2基板31との間にオイル33を満たす方法は,スペーサ32でシールせず,第1基板30と第2基板31をオイル33で満たされた槽に浸すことでも可能である。その場合,第1基板30と第2基板31の隙間がオイル導入部となり,試料導入口38,試薬導入口39,39’,廃液回収口40のいずれかの口から空気が押し出され,オイルで満たされる。この場合も,試料や試薬が搬送路から外れる等の不測の事態に備え,オイルが接触する部分を撥水処理しておくのが望ましい。   As described above, the spacer 32 seals between the first substrate 30 and the second substrate 31 in order to keep the first substrate 30 and the second substrate 31 parallel and at a constant distance, and holds the oil 33 therebetween. Provided for. In that case, if any of the sample introduction port 38, the reagent introduction ports 39 and 39 ', and the waste liquid collection port 40 is an oil introduction portion, air is pushed out from another port and filled with oil. It is desirable that the oil contact part should be water-repellent in preparation for unforeseen circumstances such as the sample or reagent coming off the transport path. The method of filling the oil 33 between the first substrate 30 and the second substrate 31 can be performed by immersing the first substrate 30 and the second substrate 31 in a tank filled with the oil 33 without sealing with the spacer 32. is there. In that case, the gap between the first substrate 30 and the second substrate 31 serves as an oil introduction portion, and air is pushed out from any of the sample introduction port 38, the reagent introduction ports 39 and 39 ′, and the waste liquid collection port 40, and the oil It is filled. In this case as well, it is desirable to perform a water-repellent treatment on the part where the oil comes into contact in preparation for an unexpected situation such as the sample or reagent coming off the conveyance path.

次に,本実施例での液体分析システムを用いた分析方法を図1から図3,及び図6から図10により説明する。図1,図2において,最初に分析対象の試料用溶液を,その対象毎に試料18として試料チューブ19に入れ,試料カセット2に装着し,液体分析システムの試料カセット投入搬送部1に装填する。   Next, an analysis method using the liquid analysis system in this embodiment will be described with reference to FIGS. 1 to 3 and FIGS. 6 to 10. FIG. 1 and 2, first, a sample solution to be analyzed is put into a sample tube 19 as a sample 18 for each target, mounted in the sample cassette 2, and loaded into the sample cassette loading and conveying section 1 of the liquid analysis system. .

分析動作を開始すると,液体分析システムは最初に試料調整のための動作を行う。まず,界面活性剤用ディスペンサ8が界面活性剤タンク7の中の界面活性剤21もしくは界面活性剤を含む希釈液21’を吸引し,吸引した界面活性剤21もしくは界面活性剤を含む希釈液21’を試料調整ディスク6にセットされた試料調整チューブ20内に吐出する。同時に試料カセット投入搬送部1に装填された試料カセット2が,所望の試料18が入った試料チューブ19が試料用ディスペンサ5の吸引可能位置にくるように移動し,試料用ディスペンサ5によって試料18が一定量吸引される。続いて試料調整ディスク6が回転し,界面活性剤21もしくは界面活性剤を含む希釈液21’が吐出された試料調整チューブ20が試料用ディスペンサ5の吐出位置に移動すると,試料用ディスペンサ5によって試料18が試料調整チューブ20内に一定量吐出される。ここで試料調整チューブ20内には,界面活性剤21もしくは界面活性剤を含む希釈液21’と試料18がそれぞれ一定量入っており,試料調整ディスク6がさらに回転し攪拌機構3の位置でそれらが攪拌され,調整試料23となる。尚,試料用ディスペンサ5は試料18を吸引,吐出後,試料用ディスペンサ洗浄機構4で洗浄される。また,試料調整チューブ20も必要に応じて洗浄機構9で洗浄される。試料調整チューブ20を毎回洗浄せず必要に応じて洗浄する理由は,試料調整チューブ20内にある調整試料23は複数回の分析に必要な量が調整されているためであり,必要な項目数の分析,必要な回数の分析,あるいは不測の事態の再検査等が終了した時点で洗浄が行われる。   When the analysis operation is started, the liquid analysis system first performs an operation for sample preparation. First, the surfactant dispenser 8 sucks the surfactant 21 or the diluent 21 ′ containing the surfactant in the surfactant tank 7 and sucks the surfactant 21 or the diluent 21 containing the surfactant. 'Is discharged into the sample adjusting tube 20 set on the sample adjusting disk 6. At the same time, the sample cassette 2 loaded in the sample cassette loading / conveying section 1 moves so that the sample tube 19 containing the desired sample 18 comes to a position where the sample dispenser 5 can be sucked. A certain amount is aspirated. Subsequently, when the sample adjusting disk 6 rotates and the sample adjusting tube 20 from which the surfactant 21 or the diluent 21 ′ containing the surfactant is discharged moves to the discharge position of the sample dispenser 5, the sample dispenser 5 causes the sample to be sampled. 18 is discharged into the sample adjusting tube 20 by a certain amount. Here, the sample adjusting tube 20 contains a fixed amount of a surfactant 21 or a diluting liquid 21 ′ containing a surfactant and a sample 18, respectively, and the sample adjusting disk 6 is further rotated at the position of the stirring mechanism 3. Is agitated and becomes the adjusted sample 23. The sample dispenser 5 is cleaned by the sample dispenser cleaning mechanism 4 after sucking and discharging the sample 18. The sample adjustment tube 20 is also cleaned by the cleaning mechanism 9 as necessary. The reason for cleaning the sample adjusting tube 20 as needed without cleaning it is that the amount of the adjusting sample 23 in the sample adjusting tube 20 is adjusted for a plurality of analyzes, and the number of necessary items is as follows. Cleaning is performed when the analysis, the required number of times analysis, or the re-examination of the unexpected situation is completed.

続いて液体分析システムは,試料搬送計測部17において調整試料23を搬送しながら分析を行う。まず,試料調整ディスク6がさらに回転し,試料調整チューブ20は,前述の攪拌機構3の位置から調整試料投入ディスペンサ11の吸引可能位置に移動して停止する。ここで,調整試料投入ディスペンサ11は分析に必要な一定量の調整試料23を吸引し,その後旋回移動して試料導入口38から試料搬送デバイス13内に調整試料23を吐出する。調整試料投入ディスペンサ11が試料搬送デバイス13内に調整試料23を吐出する時の状態を図7で説明する。図7は,図6に調整試料投入ディスペンサ11先端のノズル41が入り込み,調整試料23を吐出している状態を示す。ノズル41は導電性を持つ材料で構成されており,調整試料23の吐出時に図7のように,電源51の電圧がノズル41,及び第2の電極36と調整試料23が吐出される領域の第1の電極34間に印加されるようスイッチ43,及び,スイッチ44をONにする。調整試料23の吐出終了後,スイッチ43のみをOFFにすることで,調整試料23はノズル41を上方に退避してもノズル41先端に付着することなく第1の電極34と第2の電極36との間,つまり第1基板30と第2基板31との間に保持され,試料搬送計測部17中への導入が終了する。試料搬送計測部17中への調整試料23の導入動作と略同時に,試薬導入口39,39’から試薬投入部14,14’内部の試薬22,22’一定量を図8(1)のように,前述の調整試料23の導入と同じ方法で試料搬送計測部17中へ導入しておく。   Subsequently, the liquid analysis system performs analysis while transporting the adjusted sample 23 in the sample transport measurement unit 17. First, the sample adjustment disk 6 further rotates, and the sample adjustment tube 20 moves from the position of the agitation mechanism 3 to the position where the adjustment sample input dispenser 11 can be sucked and stops. Here, the adjusted sample charging dispenser 11 sucks a fixed amount of the adjusted sample 23 necessary for the analysis, and then pivots to discharge the adjusted sample 23 from the sample introduction port 38 into the sample transport device 13. A state when the adjusted sample charging dispenser 11 discharges the adjusted sample 23 into the sample transport device 13 will be described with reference to FIG. FIG. 7 shows a state in which the nozzle 41 at the tip of the adjustment sample charging dispenser 11 has entered and discharged the adjustment sample 23 in FIG. The nozzle 41 is made of a conductive material. When the adjustment sample 23 is discharged, the voltage of the power source 51 is applied to the nozzle 41, the second electrode 36 and the adjustment sample 23 in the region where the adjustment sample 23 is discharged as shown in FIG. The switch 43 and the switch 44 are turned on so as to be applied between the first electrodes 34. By turning off only the switch 43 after the discharge of the adjustment sample 23, the adjustment sample 23 does not adhere to the tip of the nozzle 41 even when the nozzle 41 is retracted upward. , That is, between the first substrate 30 and the second substrate 31, and the introduction into the sample transport measurement unit 17 is completed. At substantially the same time as the operation of introducing the adjusted sample 23 into the sample transport measuring unit 17, a certain amount of the reagent 22, 22 'inside the reagent introduction unit 14, 14' from the reagent introduction port 39, 39 'is as shown in FIG. In addition, the sample is introduced into the sample transport measurement unit 17 in the same manner as the introduction of the adjustment sample 23 described above.

図8(1)から図8(5)は,試料搬送計測部17の部分断面図であり,(1)から(5)で調整試料23の移動の様子を時系列に表している。
試料搬送計測部17中へ導入された調整試料23は,図8(1)から図8(5)で示すように各第1の電極34に配線されたスイッチ44を順次切り替えることで,交流矩形波電源51からの電圧を第1の電極34に順次印加して静電力により移動し,試薬22,22’と混ぜ合わされ,さらに移動し計測部15の位置に至る。尚,第1の電極34に印加する電圧に交流矩形波を用いるのは,直流電圧を印加し続けることにより第1の電極34や第2の電極36表面の絶縁膜や撥水処理剤で帯電が起こり,静電力による搬送ができなくなることを交流電圧を印加することにより防止することと,交流正弦波よりも交流矩形波の方が大きな駆動力が得られることが,実験により確認されたためである。印加する交流矩形波の周波数は10Hz以上10kHz以下が好ましい。周波数が10Hzより小さいと,調整試料の液滴が印加周波数に追随して動き,振動を起こす。また,周波数が10kHzより大きいと隣の電極に移動させる駆動力が低下してしまう。
8 (1) to 8 (5) are partial cross-sectional views of the sample transport measurement unit 17, and (1) to (5) show the movement of the adjustment sample 23 in time series.
The adjustment sample 23 introduced into the sample transport measurement unit 17 is switched to an AC rectangular shape by sequentially switching the switches 44 wired to the first electrodes 34 as shown in FIGS. 8 (1) to 8 (5). The voltage from the wave power source 51 is sequentially applied to the first electrode 34 and moved by electrostatic force, mixed with the reagents 22 and 22 ′, and further moved to the position of the measuring unit 15. Note that an AC rectangular wave is used as the voltage applied to the first electrode 34 because charging is performed by the insulating film or the water repellent agent on the surface of the first electrode 34 or the second electrode 36 by continuously applying the DC voltage. This is because it was confirmed by experiments that AC voltage is applied to prevent the occurrence of transport due to electrostatic force by applying AC voltage, and that AC square wave can provide greater driving force than AC sine wave. is there. The frequency of the applied AC rectangular wave is preferably 10 Hz or more and 10 kHz or less. When the frequency is less than 10 Hz, the droplet of the adjusted sample moves following the applied frequency and causes vibration. If the frequency is higher than 10 kHz, the driving force for moving to the adjacent electrode is reduced.

図9は,試料搬送計測部17の,計測部15,15’領域の部分断面図である。計測部15に移動した調整試料23は,図9のような状態でその成分量を分析される。すなわち,計測部15には特定の1種類,若しくは2種類の波長の光52を出力する光源53と,調整試料23を透過した光52を受光し電気信号に変換する受光部54が配置されている。詳細は割愛するが,試薬22,22’と混ぜ合わされた調整試料23は,そこに含まれる特定の成分に応じて反応し,特定の波長の光を吸収するため,受光部54での受光量から調整試料23に含まれる特定の成分の量を割り出すことができる。割り出したい成分の種類により,試薬22,22’,及び光52の波長が違うため,文頭の第1の電極34の説明で述べた複数の搬送路各々にそれらを割り当て,試料導入口38から導入した調整試料23を希望する成分分析のための搬送路に送ることができるようになっている。計測部15,及び,計測部15’には,図9のように複数の光源53と受光部54の組合せが配置されており,調整試料23と試薬22,若しくは試薬22’との反応後,複数回の計測,若しくは異なった波長での計測が可能になっている。   FIG. 9 is a partial cross-sectional view of the measurement unit 15, 15 ′ region of the sample transport measurement unit 17. The adjustment sample 23 moved to the measurement unit 15 is analyzed for the amount of components in the state shown in FIG. That is, the measurement unit 15 is provided with a light source 53 that outputs light 52 of one or two specific wavelengths and a light receiving unit 54 that receives the light 52 that has passed through the adjustment sample 23 and converts it into an electrical signal. Yes. Although the details are omitted, the adjustment sample 23 mixed with the reagents 22 and 22 ′ reacts according to a specific component contained therein and absorbs light of a specific wavelength. From this, the amount of a specific component contained in the adjustment sample 23 can be determined. Since the wavelengths of the reagents 22, 22 ′ and the light 52 are different depending on the type of component to be indexed, they are assigned to each of the plurality of transport paths described in the description of the first electrode 34 at the beginning of the sentence and introduced from the sample introduction port 38. The adjusted sample 23 can be sent to a conveying path for a desired component analysis. In the measuring unit 15 and the measuring unit 15 ′, a combination of a plurality of light sources 53 and a light receiving unit 54 is arranged as shown in FIG. 9, and after the reaction between the adjustment sample 23 and the reagent 22 or the reagent 22 ′, Multiple measurements or measurements at different wavelengths are possible.

また,1種類,若しくは2種類の波長の光52を調整試料23に透過し受光部54で電気信号に変換すると述べたが,白色光を調整試料23に透過し,透過後回折格子やフィルタで分光し,特定の1種類,若しくは2種類の波長の光を電気信号に変換する方法でも良い。   In addition, it has been described that the light 52 having one or two wavelengths is transmitted through the adjustment sample 23 and converted into an electric signal by the light receiving unit 54. However, the white light is transmitted through the adjustment sample 23 and is transmitted by a diffraction grating or a filter after transmission. It is also possible to use a method in which light is split and light of one specific type or two types of wavelengths is converted into an electrical signal.

本発明では,調整試料23を試料搬送計測部17へ導入してからここまでの動作,つまり,調整試料23と試薬22を混ぜ合わせて反応させ,計測部15で成分量を分析するまでの動作を,一つの搬送路で2回行うような構成になっている。すなわち,計測部15で成分量を分析した後,調整試料23を静電力により更に移動し,試薬22’を混ぜ合わせて反応させた後,計測部15’で計測する。これは,夾雑物の影響を排除する等の目的で,反応と計測を2度行うためである。   In the present invention, the operation up to this point after the adjustment sample 23 is introduced into the sample transport measurement unit 17, that is, the operation until the adjustment sample 23 and the reagent 22 are mixed and reacted and the measurement unit 15 analyzes the component amount. Is configured to be performed twice on one conveyance path. That is, after the component amount is analyzed by the measurement unit 15, the adjusted sample 23 is further moved by electrostatic force, and the reagent 22 'is mixed and reacted, and then measured by the measurement unit 15'. This is because the reaction and measurement are performed twice in order to eliminate the influence of impurities.

計測部15’で計測が終了した調整試料23は廃液55となり,静電力により更に移動され,廃液回収部16で回収される。図10に,試料搬送計測部17の廃液回収部16の断面を拡大して示す。廃液回収部16にはシッパー56があり,その先端部分のノズル57が試料搬送計測部17の廃液回収口40から試料搬送計測部17に挿入されている。シッパー56のノズル57と反対側は,バルブ58を介してサクションポンプ等(図示せず)に接続されている。   The adjusted sample 23 that has been measured by the measuring unit 15 ′ becomes waste liquid 55, is further moved by electrostatic force, and is collected by the waste liquid collecting unit 16. FIG. 10 shows an enlarged cross section of the waste liquid recovery unit 16 of the sample transport measurement unit 17. The waste liquid collection unit 16 has a sipper 56, and a nozzle 57 at the tip of the waste liquid collection unit 16 is inserted into the sample conveyance measurement unit 17 from the waste liquid collection port 40 of the sample conveyance measurement unit 17. The side of the sipper 56 opposite to the nozzle 57 is connected to a suction pump or the like (not shown) via a valve 58.

試料搬送計測部17の廃液回収部16は,静電力による搬送路の終端にあり,ここから第1基板30と第2基板31との隙間が広くなっている。この広くなった領域59に廃液55が送り込まれると,それまで第1基板30と第2基板31とで押しつぶされた形状をしていた廃液55が解放され,廃液55自体の表面張力により球状に変形する。すると廃液は第1基板30と第2基板31との隙間に入り込むことはなくなり,オイル33の比重より重い廃液55は沈殿して下方に,オイル33の比重より軽い廃液55は浮上して上方に蓄積される。これらの蓄積された廃液を,バルブ58を開きシッパー56で吸引し,回収する。   The waste liquid recovery unit 16 of the sample transport measurement unit 17 is located at the end of the transport path by electrostatic force, and the gap between the first substrate 30 and the second substrate 31 is widened from here. When the waste liquid 55 is sent to the widened area 59, the waste liquid 55 that has been crushed by the first substrate 30 and the second substrate 31 until then is released, and it becomes spherical due to the surface tension of the waste liquid 55 itself. Deform. As a result, the waste liquid does not enter the gap between the first substrate 30 and the second substrate 31, the waste liquid 55 heavier than the specific gravity of the oil 33 settles down, and the waste liquid 55 lighter than the specific gravity of the oil 33 floats upward. Accumulated. These accumulated waste liquids are sucked with the sipper 56 by opening the valve 58 and collected.

以上が本実施例での液体分析システムの構成と,液体分析システムを用いた分析方法についての説明である。次に,本発明での大きな特徴である界面活性剤の添加について説明する。   The above is the description of the configuration of the liquid analysis system and the analysis method using the liquid analysis system in the present embodiment. Next, addition of a surfactant, which is a major feature of the present invention, will be described.

先に説明した本発明での液体分析システムの構成と液体分析システムを用いた分析方法では,試料18に界面活性剤21もしくは界面活性剤を含む希釈液21’を添加し,試料搬送計測部17に導入している。そのようにすることで,試薬が第1基板30や第2基板31の表面に吸着するのを防止することができ,静電力による搬送を安定して行うことができる。以下にその理由を説明する。   In the configuration of the liquid analysis system and the analysis method using the liquid analysis system according to the present invention described above, the surfactant 21 or the diluent 21 ′ containing the surfactant is added to the sample 18, and the sample transport measurement unit 17 is added. Has been introduced. By doing so, it is possible to prevent the reagent from adsorbing to the surfaces of the first substrate 30 and the second substrate 31 and to stably carry by the electrostatic force. The reason will be described below.

図11は,試料搬送計測部17の部分断面図であり,図11(a)は界面活性剤の添加されていない試料18を導入した場合の模式図,図11(b)は界面活性剤を添加した調整試料23を導入した場合の模式図を表す。   FIG. 11 is a partial cross-sectional view of the sample transport measuring unit 17, FIG. 11 (a) is a schematic view when a sample 18 to which a surfactant is not added is introduced, and FIG. The schematic diagram at the time of introduce | transducing the added adjustment sample 23 is represented.

図11(a)において,試料18は通常,人の血清や血漿であるため,その中にアルブミン等のタンパク質60を平均して1mlあたり80mg程度含んでいる。このような試料18を静電力等で搬送しようとすると,タンパク質60が第1基板30や第2基板31の表面に吸着するため,搬送力に対する抵抗力が大きく,搬送が不可能となる。仮に搬送媒体であるオイル33等に流れを生じさせ,強制的に搬送しようとすると,タンパク質60の一部が付着物として第1基板30や第2基板31の表面に残ってしまう。   In FIG. 11A, since the sample 18 is usually human serum or plasma, it contains about 80 mg of protein 60 such as albumin per ml on average. When such a sample 18 is to be transported by an electrostatic force or the like, the protein 60 is adsorbed on the surface of the first substrate 30 or the second substrate 31, so that the resistance to the transport force is large and the transport becomes impossible. If a flow is generated in the oil 33 or the like, which is a transfer medium, and forced transfer is performed, a part of the protein 60 remains on the surface of the first substrate 30 or the second substrate 31 as a deposit.

それに対し図11(b)では,試料18に界面活性剤を添加した調整試料23を用いている。調整試料23の中の界面活性剤61は,図12の模式図に示すように親水基62と疎水基63からなり,調整試料23の内部では,図11(b)に示すように界面活性剤の疎水基63がタンパク質60と結合して包み込み,第1基板30や第2基板31の表面にタンパク質60が吸着することがない。そのため,静電力等による搬送でも,抵抗力が小さいため安定して搬送することができ,また,タンパク質60の一部が第1基板30や第2基板31の表面に付着して残ることもない。   On the other hand, in FIG. 11B, an adjusted sample 23 in which a surfactant is added to the sample 18 is used. The surfactant 61 in the adjustment sample 23 is composed of a hydrophilic group 62 and a hydrophobic group 63 as shown in the schematic diagram of FIG. 12, and inside the adjustment sample 23, as shown in FIG. The hydrophobic group 63 is bound to the protein 60 and encapsulated, and the protein 60 is not adsorbed on the surface of the first substrate 30 or the second substrate 31. Therefore, even when transported by an electrostatic force or the like, since the resistance is small, it can be transported stably, and part of the protein 60 does not remain attached to the surface of the first substrate 30 or the second substrate 31. .

試料18に添加する界面活性剤の量は,静電力による試薬の搬送時の吸着防止のためであれば,試料中の界面活性剤濃度が飽和ミセル化濃度程度になるように添加すればよい。通常飽和ミセル化濃度は界面活性剤の量が0.1重量%程度であり,厳密には決めることができない。市販されている洗濯用の洗剤等で指定されている使用量では,飽和ミセル化濃度の2倍から3倍の量が指定されている。そのため,試料18に添加する界面活性剤の量は,上限が0.3重量%と言うことができる。   The amount of the surfactant added to the sample 18 may be added so that the surfactant concentration in the sample is about the saturated micellar concentration, in order to prevent adsorption during transport of the reagent by electrostatic force. Normally, the saturation micelle concentration is about 0.1% by weight of the surfactant and cannot be determined strictly. In the usage amount specified for commercially available laundry detergents, the amount is specified to be 2 to 3 times the saturation micelle concentration. Therefore, it can be said that the upper limit of the amount of the surfactant added to the sample 18 is 0.3% by weight.

本明細書の従来の技術でも述べたが,静電力を用いた微量液体の移動では,界面活性剤を多く含む液体は界面張力が小さすぎると動かしにくい。また,界面活性剤が多く含まれると分析精度にも影響を与えることが考えられる。そのため,界面活性剤の添加量は少ないに越したことはなく,静電力による試薬の搬送時の吸着を防止した上で安定に搬送可能で,分析精度に与える影響が極力少ない界面活性剤の下限濃度が重要になる。図13は,第1の電極サイズ2mm×2mm,絶縁膜の厚さ1μm以下,第1基板30と第2基板31との距離1mm,調整試料23に相当する液体の量10μlでの条件(他に材質の違いによる条件等があるが割愛する)で,静電力を用いた微量液体の移動時の駆動力と抵抗力を求めたものである。図中の界面活性剤濃度の単位は重量%である。駆動力は図14の式(1)により求めた理論値,抵抗力は駆動する液体の界面活性剤濃度と電極に印加する直流電圧を可変し,実験で求めた値であり,駆動力が抵抗力よりも大きければ搬送可能となる。尚,電圧を上げると共に大きくなる駆動力に対し,この図には表していないが,一般的に用いられる今回の条件では,直流電圧では約20V以上になると液体が電極に吸引される力が大きくなり,搬送不可能になることがわかっている。以上のことを勘案し,図13に示す結果から,前述の条件に適した界面活性剤の下限濃度は0.01重量%と言うことができる。   As described in the prior art of this specification, in the movement of a small amount of liquid using electrostatic force, a liquid containing a large amount of surfactant is difficult to move if the interfacial tension is too small. In addition, the analysis accuracy may be affected if a large amount of surfactant is contained. For this reason, the amount of surfactant added is never small, it can be stably transported while preventing adsorption during transport of the reagent due to electrostatic force, and the lower limit of the surfactant that has the least influence on analysis accuracy. Concentration becomes important. FIG. 13 shows the conditions under the condition that the first electrode size is 2 mm × 2 mm, the thickness of the insulating film is 1 μm or less, the distance between the first substrate 30 and the second substrate 31 is 1 mm, and the amount of liquid corresponding to the adjustment sample 23 is 10 μl. In this case, the driving force and resistance force when moving a small amount of liquid using electrostatic force are obtained. The unit of the surfactant concentration in the figure is% by weight. The driving force is a theoretical value obtained by equation (1) in FIG. 14, and the resistance force is a value obtained by experiment by varying the surfactant concentration of the liquid to be driven and the DC voltage applied to the electrode. If it is larger than the force, it can be conveyed. Note that the driving force that increases as the voltage is increased is not shown in this figure, but under the generally used conditions, the force with which the liquid is attracted to the electrode is greater when the DC voltage is about 20 V or more. It is known that it becomes impossible to carry. Considering the above, from the results shown in FIG. 13, it can be said that the lower limit concentration of the surfactant suitable for the above-mentioned conditions is 0.01% by weight.

次に,使用する界面活性剤の種類に付いて説明する。
界面活性剤には,大きく分けて非イオン性界面活性剤とイオン性界面活性剤がある。また,界面活性剤は,高分子系と低分子系に分けられる。静電力を用いた微少液体の搬送による液体分析システムでは,先に述べたように,試薬の搬送時の吸着を防止した上で安定に搬送可能で,分析精度に与える影響が極力少ない界面活性剤が求められる。具体的には,界面張力の低下が少なくタンパク質をミセル化しやすい,タンパク質を変性させない等である。これらを勘案すると,静電力を用いた微少液体の搬送による液体分析システムに適した界面活性剤は,非イオン性の高分子系界面活性剤が選択できる。その理由は,一般的に非イオン性界面活性剤はタンパク質に対する作用が温和であり,逆に,イオン性はタンパク質変性作用が強く,また,高分子系界面活性剤は低分子の物に比べて表面張力をあまり下げずに乳化・分散性に優れるため,タンパク質をミセル化しやすいためである。非イオン性の高分子系界面活性剤としては,Polyoxyethylene(10)Octylphenyl Ether,Polyoxyethylene(20)Sorbitan Monolaurate,Polyoxyethylene(20)Sorbitan Monopalmitate,Polyoxyethylene(20)Sorbitan Monostearate,Polyoxyethylene(20)Sorbitan Monooleate等を含む物が挙げられる。
Next, the type of surfactant used will be described.
Surfactants are roughly classified into nonionic surfactants and ionic surfactants. Surfactants are classified into high molecular weight and low molecular weight. In a liquid analysis system that transports micro liquids using electrostatic force, as described above, a surfactant that can be stably transported while preventing adsorption during transport of reagents, and has minimal impact on analysis accuracy. Is required. Specifically, there is little decrease in the interfacial tension, and the protein is easily micellized, and the protein is not denatured. Taking these into consideration, a nonionic polymer surfactant can be selected as a surfactant suitable for a liquid analysis system by transporting a minute liquid using electrostatic force. The reason for this is that nonionic surfactants generally have a mild effect on proteins. Conversely, ionicity has a strong protein-denaturing effect, and high-molecular surfactants have a lower molecular weight than low molecular weight ones. This is because it has excellent emulsification and dispersibility without reducing the surface tension so much that it is easy to micelleize proteins. Nonionic polymeric surfactants include Polyoxyethylene (10) Octylphenyl Ether, Polyoxyethylene (20) Sorbitan Monolaurate, Polyoxyethylene (20) Sorbitan Monopalmitate, Polyoxyethylene (20) Sorbitan Monostearate, Polyoxyethylene (20) Sorbitan Monooleate Things.

以上のような構成により,従来搬送が困難であったアルブミン等のタンパク質を多く含む血清や血漿等の試料を静電力等により安定して搬送し,微少量の試料での安定した分析が可能な液体分析システムを提供することが可能となる。   With the above configuration, serum and plasma samples that contain a large amount of protein such as albumin, which has been difficult to transport in the past, can be transported stably by electrostatic force, etc., enabling stable analysis with very small samples. A liquid analysis system can be provided.

図15から図19を用い,本発明による液体分析システムについて,試料搬送計測部に超音波搬送を用いた例を説明する。本実施例の液体分析システムは,試料搬送計測部17の搬送方式が,静電力搬送方式から超音波搬送方式に変わっていること以外は実施例1と同じであるため,試料搬送計測部を17’とし,搬送方式のみ説明する。   With reference to FIGS. 15 to 19, an example in which ultrasonic conveyance is used for the sample conveyance measurement unit in the liquid analysis system according to the present invention will be described. The liquid analysis system of this example is the same as that of Example 1 except that the transport method of the sample transport measurement unit 17 is changed from the electrostatic force transport method to the ultrasonic transport method. Only the transfer method will be explained.

最初に超音波搬送方式の原理を説明する。図15は超音波搬送方式の原理図を示す平面図である。超音波搬送方式では,圧電体基板70の表面で液滴71を移動して搬送する。圧電体基板70は表面弾性波を伝播可能なチタン酸ジルコン酸鉛(PZT)やニオブ酸リチウム(LiNb03)等からなり,表面上に櫛型パターン72,櫛型パターン72’を対とした電極73が,必要に応じて配置されている。各電極73は,スイッチ74を介し交流電源75に接続される。この状態で圧電体基板70上に液滴71を配置し,特定の場所のスイッチ74を接続状態にすると,接続された電極73の部分から圧電体基板70表面に矢印方向に進行する表面弾性波が発生し,液滴71を該電極73から遠ざける方向に移動,搬送することができる。図15では,長方形の圧電体基板70上に電極73を4ヶ所配置しているため,ハッチングで示す移動領域76内での搬送が可能である。本実施例では,搬送中の液滴が移動領域76から外れないようにするために,圧電体基板70表面の移動領域76以外の部分を移動領域76よりも撥水性が高くなるように表面処理をしている。 First, the principle of the ultrasonic conveyance method will be described. FIG. 15 is a plan view showing the principle diagram of the ultrasonic conveyance system. In the ultrasonic conveyance method, the droplet 71 is moved and conveyed on the surface of the piezoelectric substrate 70. The piezoelectric substrate 70 is made of lead zirconate titanate (PZT), lithium niobate (LiNb0 3 ) or the like capable of propagating surface acoustic waves, and has a comb pattern 72 and a comb pattern 72 ′ on the surface as a pair. 73 is arranged as necessary. Each electrode 73 is connected to an AC power source 75 via a switch 74. In this state, when the droplet 71 is placed on the piezoelectric substrate 70 and the switch 74 at a specific location is connected, the surface acoustic wave that travels in the direction of the arrow from the connected electrode 73 to the surface of the piezoelectric substrate 70. Is generated, and the droplet 71 can be moved and conveyed in a direction away from the electrode 73. In FIG. 15, since four electrodes 73 are arranged on a rectangular piezoelectric substrate 70, it is possible to carry within a moving region 76 indicated by hatching. In the present embodiment, in order to prevent the droplets being conveyed from coming off the moving region 76, the surface treatment is performed so that the portion other than the moving region 76 on the surface of the piezoelectric substrate 70 has higher water repellency than the moving region 76. I am doing.

以上の原理を用いた試料搬送計測部17’の構成を図16,図17,図18,及び図19により説明する。図16は試料搬送計測部のみを抜き出した図で,平面図を部分的に断面して示す。図17は図16を正面から見た断面図で示す。図18及び図19は,図17の部分拡大図を示す。   The configuration of the sample transport measurement unit 17 ′ using the above principle will be described with reference to FIGS. 16, 17, 18, and 19. FIG. 16 is a diagram in which only the sample transport measurement unit is extracted, and a plan view is partially shown in section. FIG. 17 is a sectional view of FIG. 16 viewed from the front. 18 and 19 show a partially enlarged view of FIG.

図16及び図17に示すように,試料搬送計測部17’は,透明な圧電体材料であるニオブ酸リチウム製の第1基板80,第1基板80と並行に配置された透明なガラス,セラミック,若しくは樹脂製の第2基板81,第1基板80と第2基板81を並行かつ一定距離に保つスペーサ82から構成されている。第1基板80の第2基板81と向かい合う側には,前記原理図で説明した電極73が図のように複数配置され,少なくとも第1基板80,若しくは第2基板81どちらかには,移動領域76がハッチングで示すような領域になるように構成され,第1基板80と第2基板81それぞれの向かい合う面側の移動領域76以外の部分は,移動領域76よりも撥水性が高くなっている。電極73それぞれは,スイッチ74を介し,交流電源75に接続されている。   As shown in FIGS. 16 and 17, the sample transport measurement unit 17 ′ includes a first substrate 80 made of lithium niobate, which is a transparent piezoelectric material, and a transparent glass or ceramic disposed in parallel with the first substrate 80. Or a second substrate 81 made of resin, and a spacer 82 that keeps the first substrate 80 and the second substrate 81 parallel and at a constant distance. On the side of the first substrate 80 facing the second substrate 81, a plurality of electrodes 73 described in the principle diagram are arranged as shown in the figure, and at least either the first substrate 80 or the second substrate 81 has a moving region. The area 76 is indicated by hatching, and the water repellency is higher than the movement area 76 in the portions other than the movement area 76 on the facing surfaces of the first substrate 80 and the second substrate 81. . Each electrode 73 is connected to an AC power source 75 via a switch 74.

第2基板81には,試料搬送計測部17’に調整試料を導入する試料導入口88,試薬22,22’を導入する試薬導入口89,89’が長円筒状に,分析が終了した試料を廃液として取り出す廃液回収口40が円筒状に立ち上がった状態で設けられている。スペーサ82は,前述のように第1基板80と第2基板81を並行かつ一定距離に保つためのものであり,第1基板80と第2基板81との間をシールし,内部の湿度を保つことが可能である。   In the second substrate 81, the sample introduction port 88 for introducing the adjustment sample into the sample transport measurement unit 17 ′, and the reagent introduction ports 89 and 89 ′ for introducing the reagents 22 and 22 ′ are formed into a long cylindrical shape, and the analysis is completed. The waste liquid collection port 40 for taking out the waste liquid as a waste liquid is provided in a state of rising in a cylindrical shape. The spacer 82 is for maintaining the first substrate 80 and the second substrate 81 in parallel and at a constant distance as described above, and seals between the first substrate 80 and the second substrate 81 to reduce the internal humidity. It is possible to keep.

図18,図19は,試料導入口88と試薬導入口89,89’部分の断面であり,どちらも長円筒状の立ち上がりの長手方向に断面して示している。試料導入口88と試薬導入口89,89’から試料搬送計測部17’内部に調整試料23若しくは試薬22,22’を導入する場合は,先端が水平方向にL型に折れ曲がった試薬投入部14,14’,若しくは,先端が水平方向にL型に折れ曲がったノズル41を図18,図19に示す順に移動し,前記L型の水平部分が第1基板30と第2基板31との間に入り込み,調整試料23もしくは,試薬22,22’を吐出して行う。   18 and 19 are cross sections of the sample introduction port 88 and the reagent introduction ports 89 and 89 ', both of which are shown in a cross section in the longitudinal direction of the rise of the long cylindrical shape. When the adjustment sample 23 or the reagents 22 and 22 ′ are introduced into the sample transport measurement unit 17 ′ from the sample introduction port 88 and the reagent introduction ports 89 and 89 ′, the reagent introduction unit 14 whose tip is bent in an L shape in the horizontal direction. , 14 ′, or the nozzle 41 whose tip is bent in the L-shape in the horizontal direction is moved in the order shown in FIGS. 18 and 19, and the L-shaped horizontal portion is located between the first substrate 30 and the second substrate 31. It enters and discharges the adjustment sample 23 or the reagents 22 and 22 '.

試料搬送計測部17’中へ導入された調整試料23,及び,試薬22,22’は,図16に示すスイッチ74を選択的に接続,切断することで移動,停止しながら実施例1と同様に計測部15,及び,計測部15’で計測され,廃液回収口40で回収される。   The adjustment sample 23 and the reagents 22 and 22 ′ introduced into the sample transport measurement unit 17 ′ are the same as in the first embodiment while moving and stopping by selectively connecting and disconnecting the switch 74 shown in FIG. Then, it is measured by the measuring unit 15 and the measuring unit 15 ′ and collected by the waste liquid collecting port 40.

本実施例2の最初に述べたように,調整試料23,及び試薬22,22’の搬送方式以外は実施例1と同じであるため,搬送方式以外の説明は割愛する。特に,本発明での大きな特徴である界面活性剤の添加に関して,本実施例においても大きな効果を発揮する。   As described at the beginning of the second embodiment, since the adjustment sample 23 and the reagents 22, 22 'are the same as those in the first embodiment except for the transfer method, the description other than the transfer method is omitted. In particular, regarding the addition of the surfactant, which is a major feature of the present invention, a great effect is exhibited also in this example.

図20から図23を用い,本発明による液体分析システムについて,試料搬送計測部に搬送媒体流を用いた例を説明する。本実施例による液体分析システムも,前述の実施例2同様に,試料搬送計測部17の搬送方式が,静電力搬送方式から搬送媒体流搬送方式に変わっていること以外は実施例1と同じであるため,試料搬送計測部を17”として搬送方式のみ説明する。   An example in which the transport medium flow is used for the sample transport measurement unit in the liquid analysis system according to the present invention will be described with reference to FIGS. The liquid analysis system according to the present embodiment is the same as that of the first embodiment except that the transport method of the sample transport measurement unit 17 is changed from the electrostatic force transport method to the transport medium flow transport method as in the second embodiment. Therefore, only the transfer method will be described assuming that the sample transfer measurement unit is 17 ″.

最初に搬送媒体流搬送方式の原理を説明する。図20は搬送媒体流搬送方式による試料搬送計測部を17”を示す図であり,部分的に断面した平面図である。図21は図20のAA部の断面図である。   First, the principle of the transport medium flow transport system will be described. 20 is a view showing a sample conveyance measuring unit 17 ″ by the conveyance medium flow conveyance method, and is a partially sectional plan view. FIG. 21 is a sectional view of the AA portion of FIG.

試料搬送計測部17”は,透明なガラス,セラミック,若しくは樹脂製の第1基板90,第1基板90と並行に配置された同様の材質からなる第2基板91,第1基板90と第2基板91を並行かつ一定距離に保つ外側スペーサ92,内側スペーサ93,93’,から構成されており,内部の空間から被搬送液体や搬送用媒体が漏れないように接合された後,第1基板90と第2基板91との間には,搬送媒体としてシリコーン若しくはフッ素系のオイル94が満たされている。第1基板90,第2基板91,外側スペーサ92からなる内部の空間に満たされたオイル94は,内側スペーサ93,93’により形成される流路内を媒体流発生部95により内部を循環する。媒体流発生部95は,試料などを搬送させるための搬送用媒体について,液流を発生させるものであり,一方端部から取り込んだ媒体を他方端部から吐き出し,媒体に循環する流れを発生させるポンプや水車状の部材を内部に持つ部品であり,流れを発生させる原理は問わない。流れの負荷に応じて流量を制御可能としてもよい。第1の基板90には,試料などの搬送される液体を捕捉する被搬送液体捕捉手段96を持つ。   The sample transport measuring unit 17 ″ includes a first substrate 90 made of transparent glass, ceramic, or resin, a second substrate 91 made of the same material arranged in parallel with the first substrate 90, the first substrate 90 and the second substrate 90. The substrate 91 is composed of an outer spacer 92 and inner spacers 93 and 93 ′ that keep the substrate 91 parallel and at a constant distance. After being joined so that the liquid to be transported and the transport medium do not leak from the internal space, the first substrate 90 or the second substrate 91 is filled with silicone or fluorine-based oil 94 as a transport medium, filled with an internal space consisting of the first substrate 90, the second substrate 91, and the outer spacer 92. The oil 94 circulates inside the flow path formed by the inner spacers 93 and 93 ′ by the medium flow generation unit 95. The medium flow generation unit 95 is attached to a transport medium for transporting a sample or the like. , Which generates a liquid flow, is a part that has a pump or water wheel-like member inside that generates a flow that circulates to the medium by discharging the medium taken in from one end to the other end, and generates a flow Regardless of the principle, the flow rate may be controlled according to the flow load, and the first substrate 90 has a transported liquid capturing means 96 for capturing a transported liquid such as a sample.

第2基板91には,試料搬送計測部17”に調整試料を導入する試料導入口97,試薬22,22’を導入する試薬導入口98,98’が長円筒状に,分析が終了した試料を廃液として取り出す廃液回収口99が,円筒状に立ち上がった状態で設けられている。試料導入口97から導入された調整試料23,試薬導入口98,98’から導入された試薬22,22’は,媒体流発生部95により発生されたオイル94の流れにより搬送され,被搬送液体捕捉手段96により捕捉されて停止する。この時,媒体流発生部95により発生されたオイル94の流れは滞ることなく,図22のように流れるように,流路幅Wよりも搬送液体捕捉手段96の幅Xと調整試料,試薬,若しくはその混合液の直径Dが小さくなるように設定されている。   In the second substrate 91, the sample introduction port 97 for introducing the adjustment sample into the sample transport measurement unit 17 ″ and the reagent introduction ports 98 and 98 ′ for introducing the reagents 22 and 22 ′ are formed into a long cylindrical shape, and the sample which has been analyzed. A waste liquid recovery port 99 is provided in a state where the liquid recovery port 99 rises in a cylindrical shape, and the adjustment sample 23 introduced from the sample introduction port 97 and the reagents 22 and 22 ′ introduced from the reagent introduction ports 98 and 98 ′. Is transported by the flow of the oil 94 generated by the medium flow generation unit 95, and is captured and stopped by the transported liquid capturing means 96. At this time, the flow of the oil 94 generated by the medium flow generation unit 95 is stagnant. Instead, the width X of the transport liquid capturing means 96 and the diameter D of the adjusted sample, reagent, or mixed liquid thereof are set smaller than the flow path width W so as to flow as shown in FIG.

本実施例による被搬送液体捕捉手段96の捕捉原理を図23により説明する。図23は図21の部分拡大図である。第1の基板90の第2基板91と向かい合う側に導電薄膜による第1の電極100が被搬送液体捕捉位置に配置されており,電極100の表面は絶縁膜101で覆われ,更に,第2基板91と向かい合う側の表面は撥水処理されている。第1の電極100と絶縁膜101は非常に薄く,拡大しても書き表せないため,必要に応じて図23のように厚さ方向を誇張して表す。第2基板91には,第1基板90と向かい合う側の全面に,若しくは少なくとも第1の電極100と向かい合う部分をカバーする範囲に第2の電極102が配置されており,第1の電極100同様に絶縁膜103で覆われ,更に,第1基板90と向かい合う側の表面は撥水処理されている。尚,絶縁膜103は必ずしも必要ではなく,第1基板90と向かい合う側の面が撥水処理されていれば良い。第1の電極100と第2の電極102はスイッチ104を介し交流矩形波電源105に接続されている。また,第1の電極100は全て同電位になるように配線されていても良く,その場合はスイッチ104も1個で良い。   The capturing principle of the transported liquid capturing means 96 according to this embodiment will be described with reference to FIG. FIG. 23 is a partially enlarged view of FIG. On the side of the first substrate 90 facing the second substrate 91, the first electrode 100 made of a conductive thin film is disposed at the transported liquid capturing position, the surface of the electrode 100 is covered with the insulating film 101, and the second electrode The surface facing the substrate 91 is water repellent. Since the first electrode 100 and the insulating film 101 are very thin and cannot be written even if enlarged, the thickness direction is exaggerated as shown in FIG. On the second substrate 91, the second electrode 102 is disposed on the entire surface facing the first substrate 90 or in a range covering at least the portion facing the first electrode 100, similar to the first electrode 100. In addition, the surface on the side facing the first substrate 90 is subjected to water repellent treatment. Note that the insulating film 103 is not necessarily required, and the surface on the side facing the first substrate 90 may be water-repellent. The first electrode 100 and the second electrode 102 are connected to an AC rectangular wave power source 105 via a switch 104. Further, all the first electrodes 100 may be wired so as to have the same potential, and in that case, only one switch 104 may be provided.

この状態でオイル94の流れにより搬送されてきた調整試料23,試薬22,22’は,図23(a)のようにスイッチ104を接続状態にしておくと,静電力により搬送液体捕捉手段96の位置で捕捉され,図23(b)のようにスイッチ104を解放状態にするとオイル94の流れにより搬送され,廃液回収口99で回収される。   In this state, the adjustment sample 23 and the reagents 22 and 22 ′ conveyed by the flow of the oil 94 have the switch 104 connected as shown in FIG. When the switch 104 is released as shown in FIG. 23B, it is transported by the flow of the oil 94 and recovered at the waste liquid recovery port 99.

本実施例3の最初に述べたように,調整試料23,及び,試薬22,22’の搬送方式以外は実施例1と同じであるため,搬送方式以外の説明は割愛する。特に,本発明での大きな特徴である界面活性剤の添加に関して,本実施例においても大きな効果を発揮する。また,第1の電極100と第2の電極102に印加する交流矩形波電源105からの電圧が交流矩形波であることにより,電極表面の絶縁膜や撥水処理剤の帯電を防止し,長時間安定に動作することを可能にしている。   As described in the beginning of the third embodiment, the method other than the transport method for the adjustment sample 23 and the reagents 22 and 22 ′ is the same as that of the first embodiment, and the description other than the transport method is omitted. In particular, regarding the addition of the surfactant, which is a major feature of the present invention, a great effect is exhibited also in this example. In addition, since the voltage from the AC rectangular wave power source 105 applied to the first electrode 100 and the second electrode 102 is an AC rectangular wave, the insulating film on the electrode surface and the water repellent agent are prevented from being charged, It makes it possible to operate stably over time.

本発明による液体分析システムの構成例を示す平面図である。It is a top view which shows the structural example of the liquid analysis system by this invention. 本発明による液体分析システムの構成例を示す正面側からの断面図である。It is sectional drawing from the front side which shows the structural example of the liquid analysis system by this invention. 試料カセット部の断面図である。It is sectional drawing of a sample cassette part. 試料搬送計測部を部分断面した平面図である。It is the top view which carried out the partial cross section of the sample conveyance measurement part. 図4を正面から見た断面図である。It is sectional drawing which looked at FIG. 4 from the front. 図5の部分断面図である。It is a fragmentary sectional view of FIG. 図5の部分断面図である。It is a fragmentary sectional view of FIG. 調整試料の移動の様子を時系列に表わした,試料搬送計測部の部分断面図である。It is a fragmentary sectional view of a sample conveyance measurement part showing a situation of movement of an adjustment sample in time series. 計測部領域を表した,試料搬送計測部の部分断面図である。It is a fragmentary sectional view of a sample conveyance measurement part showing a measurement part field. 廃液回収部を表した,試料搬送計測部の部分断面図である。It is a fragmentary sectional view of a sample conveyance measurement part showing a waste liquid recovery part. 試料搬送計測部の部分断面図である。It is a fragmentary sectional view of a sample conveyance measurement part. 界面活性剤の模式図である。It is a schematic diagram of surfactant. 静電力を用いた微量液体の移動時の駆動力と抵抗力を求めたグラフである。It is the graph which calculated | required the driving force and the resistance force at the time of the movement of the trace amount liquid using an electrostatic force. 静電力を用いた微量液体の移動時の駆動力を求める式である。It is a formula for obtaining a driving force when moving a trace amount liquid using an electrostatic force. 超音波搬送方式の原理図を示す平面図である。It is a top view which shows the principle figure of an ultrasonic conveyance system. 超音波搬送方式の試料搬送計測部の説明図である。It is explanatory drawing of the sample conveyance measurement part of an ultrasonic conveyance system. 図16を正面から見た断面図である。It is sectional drawing which looked at FIG. 16 from the front. 試料導入口と試薬導入口部分の断面図である。It is sectional drawing of a sample inlet and a reagent inlet. 試料導入口と試薬導入口部分の断面図である。It is sectional drawing of a sample inlet and a reagent inlet. 搬送媒体流搬送方式による試料搬送計測部の説明図である。It is explanatory drawing of the sample conveyance measurement part by a conveyance medium flow conveyance system. 図20のAA部の断面図である。It is sectional drawing of the AA part of FIG. 流路幅に対する搬送液体捕捉手段と液の直径を表す平面図である。It is a top view showing the diameter of a conveyance liquid capture | acquisition means with respect to a flow path width, and a liquid. 図21の部分拡大図である。It is the elements on larger scale of FIG.

符号の説明Explanation of symbols

1…試料カセット投入搬送部,2…試料カセット,3…攪拌機構,4…試料用ディスペンサ洗浄機構,5…試料用ディスペンサ,6…試料調整ディスク,7…界面活性剤タンク,8…界面活性剤用ディスペンサ,9…洗浄機構,10…試料調整部,11…調整試料投入ディスペンサ,12…調整試料投入ディスペンサ洗浄機構,13…試料搬送デバイス,14…試薬投入部,14’…試薬投入部,15…計測部,15’…計測部,16…廃液回収部,17…試料搬送計測部,18…試料,19…試料チューブ,20…試料調整チューブ,21…界面活性剤,21’…界面活性剤を含む希釈液,22…試薬,22’…試薬,23…調整試料,30…第1基板,31…第2基板,32…スペーサ,33…オイル,34…第1の電極,35…絶縁膜,36…第2の電極,37…絶縁膜,38…試料導入口,39…試薬導入口,39’…試薬導入口,40…廃液回収口,41…ノズル,42…電源,43…スイッチ,44…スイッチ,50…スイッチ,51…交流矩形波電源,52…光,53…光源,54…受光部,55…廃液,56…シッパー,57…ノズル,58…バルブ,60…タンパク質,61…界面活性剤,62…親水基,63…疎水基,70…圧電体基板,71…液滴,72…櫛型パターン,72’…櫛型パターン,73…電極,74…スイッチ,75…交流電源,76…移動領域,80…第1基板,81…第2基板,82…スペーサ,88…試料導入口,89’…試薬導入口,89…試薬導入口,90…第1基板,91…第2基板,92…外側スペーサ,93…内側スペーサ,93’…内側スペーサ,94…オイル,95…媒体流発生部,96…被搬送液体捕捉手段,97…試料導入口,98…試薬導入口,98’…試薬導入口,99…廃液回収口,100…第1の電極,101…絶縁膜,102…第2の電極,103…絶縁膜,104…スイッチ,105…交流矩形波電源。   DESCRIPTION OF SYMBOLS 1 ... Sample cassette insertion conveyance part, 2 ... Sample cassette, 3 ... Agitation mechanism, 4 ... Sample dispenser washing mechanism, 5 ... Sample dispenser, 6 ... Sample adjustment disk, 7 ... Surfactant tank, 8 ... Surfactant Dispenser, 9 ... cleaning mechanism, 10 ... sample adjusting unit, 11 ... adjusted sample loading dispenser, 12 ... adjusted sample loading dispenser cleaning mechanism, 13 ... sample transport device, 14 ... reagent loading unit, 14 '... reagent loading unit, 15 ... Measurement unit, 15 '... Measurement unit, 16 ... Waste liquid collection unit, 17 ... Sample transport measurement unit, 18 ... Sample, 19 ... Sample tube, 20 ... Sample adjustment tube, 21 ... Surfactant, 21' ... Surfactant 22 ... Reagent, 22 '... Reagent, 23 ... Preparation sample, 30 ... First substrate, 31 ... Second substrate, 32 ... Spacer, 33 ... Oil, 34 ... First electrode, 35 ... Insulating film 36 ... second electrode 37 ... insulating film 38 ... sample introduction port 39 ... reagent introduction port 39 '... reagent introduction port 40 ... waste liquid recovery port 41 ... nozzle 42 ... power source 43 ... switch 44 ... Switch, 50 ... Switch, 51 ... AC rectangular wave power supply, 52 ... Light, 53 ... Light source, 54 ... Light receiving part, 55 ... Waste liquid, 56 ... Sipper, 57 ... Nozzle, 58 ... Valve, 60 ... Protein, 61 ... Interface Activator, 62 ... hydrophilic group, 63 ... hydrophobic group, 70 ... piezoelectric substrate, 71 ... droplet, 72 ... comb pattern, 72 '... comb pattern, 73 ... electrode, 74 ... switch, 75 ... AC power supply, 76 ... moving region, 80 ... first substrate, 81 ... second substrate, 82 ... spacer, 88 ... sample inlet, 89 '... reagent inlet, 89 ... reagent inlet, 90 ... first substrate, 91 ... second Substrate, 92 ... outer spacer, 93 ... inner spacer, 3 ... inner spacer, 94 ... oil, 95 ... medium flow generating section, 96 ... transported liquid capturing means, 97 ... sample inlet, 98 ... reagent inlet, 98 '... reagent inlet, 99 ... waste liquid recovery port, DESCRIPTION OF SYMBOLS 100 ... 1st electrode, 101 ... Insulating film, 102 ... 2nd electrode, 103 ... Insulating film, 104 ... Switch, 105 ... AC rectangular wave power supply.

Claims (10)

試料に界面活性剤を添加する試料調整部と,
第1基板と前記第1基板に実質的に平行な第2基板と,
前記第1基板と前記第2基板との間に前記界面活性剤が添加された試料を導入する試料導入部と,
前記第1基板と前記第2基板との間に導入された前記界面活性剤添加された試料を,前記第1基板と前記第2基板の間に設定された搬送路に沿って搬送する搬送部と,
前記第1基板と前記第2基板との間に設定された前記搬送路上に試薬を導入する試薬導入部と,
前記第1基板と前記第2基板との間に搬送媒体を導入する搬送媒体導入部と,
前記試料に含まれる成分量を分析する分析部とを有し,
前記搬送部は,前記界面活性剤が添加された試料に電圧を印加して搬送を行い,
前記試料調整部は,前記試料に対して添加後の対重量濃度が0.01%以上となるように前記界面活性剤を添加することを特徴とする試料分析システム。
A sample preparation unit for adding a surfactant to the sample;
A first substrate and a second substrate substantially parallel to the first substrate;
A sample introduction part for introducing a sample to which the surfactant is added between the first substrate and the second substrate;
Transport for transporting said first substrate a sample the surfactant introduced is added between the second substrate, along a transport path which is set between the first substrate and the second substrate Part,
A reagent introduction part for introducing a reagent onto the transport path set between the first substrate and the second substrate;
A carrier medium introducing section for introducing a carrier medium between the first substrate and the second substrate;
Possess an analysis unit for analyzing a component amount contained in the sample,
The transport unit performs transport by applying a voltage to the sample to which the surfactant is added,
The sample analysis system , wherein the sample preparation unit adds the surfactant so that a weight concentration after addition to the sample is 0.01% or more .
請求項1記載の試料分析システムにおいて,前記試料調整部は,前記試料に対して添加後の界面活性剤の濃度が臨界ミセル濃度程度となるように前記界面活性剤を添加することを特徴とする試料分析システム。   2. The sample analysis system according to claim 1, wherein the sample preparation unit adds the surfactant to the sample so that the concentration of the surfactant after the addition is about a critical micelle concentration. Sample analysis system. 請求項1記載の試料分析システムにおいて,前記試料調整部は,前記試料に対して添加後の対重量濃度が0.3%以下となるように前記界面活性剤を添加することを特徴とする試料分析システム。 2. The sample analysis system according to claim 1, wherein the sample preparation unit has a concentration with respect to weight of 0 . A sample analysis system, wherein the surfactant is added so as to be 3% or less. 請求項1記載の試料分析システムにおいて,前記界面活性剤は非イオン性界面活性剤であることを特徴とする試料分析システム。   2. The sample analysis system according to claim 1, wherein the surfactant is a nonionic surfactant. 請求項1記載の試料分析システムにおいて,前記界面活性剤は非イオン性の高分子系界面活性剤であることを特徴とする試料分析システム。   2. The sample analysis system according to claim 1, wherein the surfactant is a nonionic polymer surfactant. 請求項1記載の試料分析システムにおいて,前記界面活性剤は,Polyoxyethylene(10)Octylphenyl Ether,Polyoxyethylene(20)Sorbitan Monolaurate,Polyoxyethylene(20)Sorbitan Monopalmitate,Polyoxyethylene(20)Sorbitan Monostearate,Polyoxyethylene(20)Sorbitan Monooleateのいずれかを含むことを特徴とする試料分析システム。   2. The sample analysis system according to claim 1, wherein the surfactant is Polyoxyethylene (10) Octylphenyl Ether, Polyoxyethylene (20) Sorbitan Monolaurate, Polyoxyethylene (20) Sorbitan Monopalmitate, Polyoxyethylene (20) Sorbitan Monostearate, Polyoxyethylene (20) Sorbitan Monooleate. A sample analysis system comprising any of the above. 請求項1記載の試料分析システムにおいて,前記搬送媒体はシリコーンオイルもしくはフッ素オイルであることを特徴とする試料分析システム。   2. The sample analysis system according to claim 1, wherein the carrier medium is silicone oil or fluorine oil. 請求項1記載の試料分析システムにおいて,前記搬送部は,交流矩形波を印加することを特徴とする試料分析システム。 The specimen processing system according to claim 1, wherein the transport section, the sample analysis system, wherein the benzalkonium to apply an AC rectangular wave. 請求項1記載の試料分析システムにおいて,前記搬送部は,周波数が10Hz以上10kHz以下の交流矩形波を印加することを特徴とする試料分析システム。 The specimen processing system according to claim 1, wherein the transport section, the sample analysis system frequency is characterized and Turkey to apply an AC rectangular wave of 10Hz or 10kHz or less. 試料に界面活性剤を添加し調整試料とする工程と,
第1基板と前記第1基板に実質的に平行な第2基板との間に搬送媒体を導入する工程と,
前記第1基板と前記第2基板との間に前記調整試料を導入する工程と,
導入された前記調整試料を前記第1基板と前記第2基板との間で搬送する工程とを有し,
前記調整試料とする工程では,前記試料に対して添加後の対重量濃度が0.01%以上となるように前記界面活性剤を添加し,
前記搬送は,前記調整試料に電圧を印加して行う
ことを特徴とする試料搬送方法。
Adding a surfactant to the sample to make an adjusted sample;
Introducing a carrier medium between a first substrate and a second substrate substantially parallel to the first substrate;
Introducing the adjustment sample between the first substrate and the second substrate;
Introduced the adjustment sample possess a step of conveying between the first substrate and the second substrate,
In the step of preparing the preparation sample, the surfactant is added so that the weight concentration after addition to the sample is 0.01% or more,
The sample transport method , wherein the transport is performed by applying a voltage to the adjusted sample .
JP2007118477A 2007-04-27 2007-04-27 Sample analysis system and sample transport method Active JP4958622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007118477A JP4958622B2 (en) 2007-04-27 2007-04-27 Sample analysis system and sample transport method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118477A JP4958622B2 (en) 2007-04-27 2007-04-27 Sample analysis system and sample transport method

Publications (3)

Publication Number Publication Date
JP2008275412A JP2008275412A (en) 2008-11-13
JP2008275412A5 JP2008275412A5 (en) 2010-04-02
JP4958622B2 true JP4958622B2 (en) 2012-06-20

Family

ID=40053543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007118477A Active JP4958622B2 (en) 2007-04-27 2007-04-27 Sample analysis system and sample transport method

Country Status (1)

Country Link
JP (1) JP4958622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083622A1 (en) * 2012-11-28 2014-06-05 株式会社日立製作所 Liquid transfer device and liquid analytical apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018265A (en) * 2000-07-03 2002-01-22 Tosoh Corp Adsorption inhibitor of protein
US20060177350A1 (en) * 2003-03-19 2006-08-10 Nec Corporation Microchip, sampling method, sample separating method, sample analyzing method, and sample recovering method
JP2006058031A (en) * 2004-08-17 2006-03-02 Hitachi High-Technologies Corp Chemical analyzer
JP4185904B2 (en) * 2004-10-27 2008-11-26 株式会社日立ハイテクノロジーズ Liquid transfer substrate, analysis system, and analysis method
JP2006292599A (en) * 2005-04-13 2006-10-26 Hitachi High-Technologies Corp Liquid feed mechanism
JP4500733B2 (en) * 2005-05-30 2010-07-14 株式会社日立ハイテクノロジーズ Chemical analyzer
JP4268955B2 (en) * 2005-05-30 2009-05-27 株式会社日立ハイテクノロジーズ Chemical analyzer
JP4547304B2 (en) * 2005-05-31 2010-09-22 株式会社日立ハイテクノロジーズ Liquid transfer substrate and analysis system

Also Published As

Publication number Publication date
JP2008275412A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4547301B2 (en) Liquid transport device and analysis system
US6331277B2 (en) Magnetic material attracting/releasing pipette device and analyzer using pipette
US8834810B2 (en) Method and apparatus for programmable fluidic processing
US20100122586A1 (en) Automatic analyzer and dispensing method
WO2005107939A1 (en) Equipment using piezoelectric device
US20100279429A1 (en) Method and Apparatus for Increasing the Sensitivity of a Biosensor Used in a Planar Waveguide
JP4268955B2 (en) Chemical analyzer
JP2001149097A (en) Automatic nucleic acid examination apparatus
US20160116491A1 (en) Blood coagulation test method
JP4958622B2 (en) Sample analysis system and sample transport method
WO2018190336A1 (en) Liquid delivery device and liquid delivery method
JP6496668B2 (en) Automatic analyzer
JPH09210999A (en) Chemical analyzing device
WO2016035197A1 (en) Cartridge for electrochemical immunity sensor and measurement device using same
JP4651715B2 (en) Liquid analyzer
JPH01254871A (en) Method for cleaning dispensing nozzle for analysis apparatus and dispensing nozzle device
JP2005318834A (en) On-line chemical reaction device
JP3237799B2 (en) Automatic cleaning equipment for continuous processing tools for various liquids
JP2008134152A (en) Chemical analyzer
JP2005308731A (en) Stirring method, cell, measuring apparatus using the same, and measuring method
CN110691975A (en) Automatic analysis device and analysis method
JP3035393B2 (en) Cleaning method using charge on solid surface
JP4547304B2 (en) Liquid transfer substrate and analysis system
JP5040534B2 (en) Dispensing device
JP2007068334A (en) Transport system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150