JP4957946B2 - Gas dissolving device - Google Patents

Gas dissolving device Download PDF

Info

Publication number
JP4957946B2
JP4957946B2 JP2005380985A JP2005380985A JP4957946B2 JP 4957946 B2 JP4957946 B2 JP 4957946B2 JP 2005380985 A JP2005380985 A JP 2005380985A JP 2005380985 A JP2005380985 A JP 2005380985A JP 4957946 B2 JP4957946 B2 JP 4957946B2
Authority
JP
Japan
Prior art keywords
gas
pressurized gas
valve
reservoir space
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005380985A
Other languages
Japanese (ja)
Other versions
JP2007160293A (en
Inventor
陽一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Able Corp
Original Assignee
Able Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Able Corp filed Critical Able Corp
Priority to JP2005380985A priority Critical patent/JP4957946B2/en
Publication of JP2007160293A publication Critical patent/JP2007160293A/en
Application granted granted Critical
Publication of JP4957946B2 publication Critical patent/JP4957946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、ガス、例えば、炭酸ガス、酸素ガス等を、水等の液相、例えば、生物の飼育・育成、観賞用等の水槽水、湖沼等の水質浄化のために水棲植物の生育を促進させる際の湖沼水、浴用炭酸水を製造するための温水、微生物、細胞等の培養液等の液相(対象液)に溶解させるガ溶解装置に関する。The present invention uses a gas, for example, carbon dioxide gas, oxygen gas, etc., to grow aquatic plants for water phase purification, for example, aquatic liquids such as water, for example, aquarium water for ornamental purposes, lake water, etc. lake water when accelerating, hot water for the production of bath carbonated water, microorganisms, liquid phase relates Ruga scan dissolution apparatus dissolved in (target fluid) such as a culture solution, such as cells.

従来、一般的な液相へのガス溶解方法として、例えば、液相に直接ガスを噴出させる方法、これと撹拌を併用する方法等が挙げられるが、これらの方法は、相当量の溶解しないガスが大気中に放出されるため、ガスの浪費が著しい。
上記方法よりも効率的なガ溶解方法として、ガス透過性膜を介して液相にガスを溶解させる方法、例えば、末端を閉じたシリコンチューブ(ガス透過性膜の一種)や一部にガス透過性膜を有する密閉容器等を液相に配置し、その内部に加圧ガスを送給する方法等が知られている(例えば、特許文献1参照)。
特開2000−334488号公報
Conventionally, as a general method for dissolving a gas in a liquid phase , for example, a method of jetting a gas directly into a liquid phase, a method of using this together with stirring, and the like can be mentioned. Is exhausted into the atmosphere, so gas is wasted.
As an efficient gas dissolution method than the method, a method of dissolving a gas into a liquid phase through the gas permeable membrane, for example, (a kind of gas permeable membrane) silicone tube closed end and part gas A method is known in which a sealed container or the like having a permeable membrane is disposed in a liquid phase and pressurized gas is fed into the inside (for example, see Patent Document 1).
JP 2000-334488 A

しかしながら、かかる従来のガス透過性膜を用いるガ溶解方法においては、加圧ガスを長期間連続で送給して液相に溶解させているうちに、このガス透過性膜に接する加圧ガス側の加圧ガス溜空間部内にドレインが徐々に溜まり、そして、この溜まったドレインが加圧ガスの送給を遮断したり、ガス透過性膜の一部を塞いだりして液相へのガス透過を妨げ、その結果、液相へのガスの溶解量が漸次減少していくという問題点がある。However, such the conventional Ruga scan dissolution method using a gas permeable membrane, while that of the pressurized gas dissolved in a long period of time the liquid phase was fed in a continuous, pressurized in contact with the gas permeable membrane The drain gradually accumulates in the pressurized gas reservoir space on the gas side, and this accumulated drain blocks the supply of the pressurized gas or blocks a part of the gas permeable membrane to enter the liquid phase. hinder gas permeation, As a result, there is a problem that the amount of dissolved gas in the liquid phase is gradually progressively reduced.

本発明は、このような従来技術が有する課題に鑑みてなされたものであって、その目的とするところは、ガス透過性膜を用いるガ溶解装置において、液相にガスを長期間連続して安定的に溶解させることができるガ溶解装置を提供することにある。The present invention was made in view of the problems of the prior art has, and has an object, in Ruga scan dissolution apparatus using a gas permeable membrane, the gas in the liquid phase a long period of time and to provide a Ruga scan dissolving device can Rukoto is stably dissolved in succession.

本発明者は、上記目的を達成すべく鋭意検討した結果、上記加圧ガス溜空間部内に溜まったドレインによるガス透過性膜のガス透過の妨げが増すにつれ、この加圧ガス溜空間部の内圧が徐々に上昇すること、そして、この内圧がある値を超えた時にドレインを上記加圧ガス溜空間部外に自動的に排出してドレインによるガス透過性膜のガス透過の妨げを解消するようにすれば、液相にガスを長期間連続して安定的に溶解させることができること等の新知見を得、これらの知見に基づき本発明を完成するに至った。As a result of diligent investigations to achieve the above object, the present inventor has found that the internal pressure of the pressurized gas reservoir space increases as the gas permeation of the gas permeable membrane by the drain accumulated in the pressurized gas reservoir space increases. As the pressure rises gradually, and when the internal pressure exceeds a certain value, the drain is automatically discharged out of the pressurized gas reservoir space so as to eliminate the hindrance of gas permeation of the gas permeable membrane by the drain. if, the obtained new findings of the can Rukoto is stably dissolved continuously for long periods of time the gas in the liquid phase, thereby completing the present invention based on these findings.

すなわち、本発明のガ溶解装置は、加圧ガス供給源と、ガス透過性膜を介して液相に上記ガスを溶解させる手段であって、上記ガス透過性膜はその一方の側に液相が接し、また、上記ガス透過性膜の他方の側に接する加圧ガス側に加圧ガス溜空間部を有し、上記加圧ガス溜空間部の一部で上記加圧ガス供給源と連通し、かつ、上記加圧ガス空間部の別の一部には溜まったドレインを排出する開閉弁を有するガス溶解手段を備えたガ溶解装置において、
上記加圧ガス溜空間部の内圧を検出する圧力検出機構及びこの圧力検出機構で検出された内圧があらかじめ設定された圧力値を超えると上記開閉弁を開にする弁開閉制御機構を設けたことを特徴とする。
That is, gas dissolution apparatus of the present invention includes a pressurized gas supply source, a means for dissolving the gas into the liquid phase through the gas permeable membrane, the gas permeable membrane is liquid on one side thereof A pressurized gas reservoir space is provided on the pressurized gas side in contact with the other side of the gas permeable membrane, and the pressurized gas supply source is provided in a part of the pressurized gas reservoir space. communicates with, and in gas dissolution apparatus equipped with a gas dissolving means having an opening and closing valve for discharging the drain accumulated in another portion of the pressurized gas space,
A pressure detection mechanism for detecting the internal pressure of the pressurized gas reservoir space and a valve opening / closing control mechanism for opening the on / off valve when the internal pressure detected by the pressure detection mechanism exceeds a preset pressure value It is characterized by.

また、本発明のガ溶解装置の好適形態は、上記開閉弁が上記圧力検出機構と上記弁開閉制御機構の両機能を有する安全弁であることを特徴とする。Moreover, a preferred embodiment of the gas dissolution apparatus of the present invention, the on-off valve is characterized in that it is a safety valve having the functions of both the pressure detection mechanism and the valve opening and closing control mechanism.

更に、本発明のガ溶解装置の他の好適形態は、上記加圧ガス供給源の1に対して、上記ガス溶解手段の複数を上記加圧ガス供給源に並列に連通してなることを特徴とするFurther, another preferred embodiment of the gas dissolution apparatus of the present invention, with respect to 1 of the pressurized gas supply source, that a plurality of said gas dissolution device comprising communicating in parallel with said source of pressurized gas Characterize

本発明によれば、ガス透過性膜を用いるガ溶解装置において、上記ガス溶解手段におけるガス透過性膜の加圧ガス側の加圧ガス溜空間部の内圧が上昇してあらかじめ設定された圧力値を超えると、自動的に開閉弁を開にして、この加圧ガス溜空間部内に溜まったドレインをガス溜空間部外に排出する等としてドレインによるガス透過性膜のガス透過の妨げを解消するようにしたため、液相にガスを長期間連続して安定的に溶解させることができる。According to the present invention, in Ruga scan dissolution apparatus using a gas permeable membrane, the internal pressure of the pressurized gas reservoir space of pressurized gas side of the gas permeable membrane in the gas dissolving means is preset to rise When the pressure value is exceeded, the on-off valve is automatically opened, and the drain accumulated in the pressurized gas reservoir space is discharged out of the gas reservoir space. due to so as to eliminate, it is Rukoto continuously for long periods of time by stably dissolved gas in the liquid phase.

以下、本発明のガ溶解装置について詳細に説明する。It will be described in detail below gas dissolution apparatus of the present invention.

本発明のガ溶解装置は、水槽で生物を飼育・生育、観賞等したり、湖沼等の水質浄化のため水棲植物の生育を促進させたり、温浴効果が期待される浴用炭酸水を製造したり、更には、微生物や細胞を培養したりする等の際の水等の液相(対象液)にガスを溶解させるための装置として使用される Gas dissolution apparatus of the present invention, breeding and growth of organisms in a water bath, or watch or the like, or to promote the growth of aquatic plants for water purification in lakes, etc., to produce a bath carbonated water bath effects are expected or, furthermore, is used as a liquid phase system in order to dissolve the gas in the (target fluid) such as water during such or culturing a microorganism or cell

上記加圧ガス供給源のガスとしては、例えば、炭酸ガス、酸素ガス、空気等が挙げられるが、これらには限定されない。
また、この加圧ガス供給源における加圧ガス源(加圧ガス貯蔵手段等)としては、例えば、ガスボンベ、コンプレッサー等が通常好適に用いられる。
更に、この加圧ガス供給源として、常法に従い、加圧ガス源の下流にガス圧力調節手段、例えば、減圧弁、調圧弁等、圧力計、ガス流量調節手段、例えば、ガス流量調節弁(例えば、オリフィス、ニードル弁等)、ガス流量計(例えば、面積式流量計、マスフローコントローラ等)等の各種手段等を必要により設けることができる。このようにすることにより、ガス供給圧力を定圧にしたり、ガス流量を調節したり等して、上記ガス溶解手段におけるガスの膜(ガス透過性膜)透過に適したガス圧力、ガス流量に適宜調整される。
そして、上記加圧ガス供給源の下流には、液相に接する上記ガス溶解手段における加圧ガス溜空間部の一部が連通状態で連結されている。上記加圧ガス溜空間部の上記加圧ガス供給源との連結位置については、具体的には、上記ガス溶解手段を液相に水平に配置するような場合で、後記するガス溶解手段の態様例(1)や(3)のときにはその一端(上流側の先端部)に、その態様例(2)のときには適宜の部分に、そして、上記ガス溶解手段を液相に垂直に配置するような場合では、その態様例(1)〜(3)のいずれのときにもその上端部とするのが好ましい。
Examples of the gas of the pressurized gas supply source include, but are not limited to, carbon dioxide gas, oxygen gas, and air.
Moreover, as a pressurized gas source (pressurized gas storage means or the like) in the pressurized gas supply source, for example, a gas cylinder, a compressor, or the like is usually preferably used.
Further, as this pressurized gas supply source, a gas pressure adjusting means such as a pressure reducing valve or a pressure regulating valve, a pressure gauge, a gas flow rate adjusting means such as a gas flow rate adjusting valve ( For example, various means such as an orifice, a needle valve, etc.) and a gas flow meter (for example, an area type flow meter, a mass flow controller, etc.) can be provided as necessary. By doing so, the gas supply pressure is set to a constant pressure, the gas flow rate is adjusted, etc., so that the gas pressure and gas flow rate suitable for the gas film (gas permeable membrane) permeation in the gas dissolving means are appropriately set. Adjusted.
A part of the pressurized gas reservoir space in the gas dissolving means in contact with the liquid phase is connected downstream of the pressurized gas supply source. The connection position of the pressurized gas reservoir space with the pressurized gas supply source is specifically the case where the gas dissolving means is disposed horizontally in the liquid phase, and the mode of the gas dissolving means described later. In the case of Example (1) or (3), at one end (upstream end), in the case of Embodiment (2), at an appropriate part, and the gas dissolving means is arranged perpendicular to the liquid phase. In some cases, it is preferable to use the upper end portion in any of the embodiments (1) to (3).

上記ガス透過性膜を介して液相にガスを溶解させるガス溶解手段は、上記のごとく、このガス透過性膜に接する加圧ガス側に、加圧ガスを貯留しつつ継続的に膜透過させるための上記加圧ガス溜空間部を有し、そして、この加圧ガス溜空間部の別の一部には、加圧ガス溜空間部内に徐々に溜まったドレインを排出するための開閉弁を有している。  As described above, the gas dissolving means for dissolving the gas in the liquid phase through the gas permeable membrane continuously permeates the membrane while storing the pressurized gas on the pressurized gas side in contact with the gas permeable membrane. An open / close valve for discharging a drain gradually accumulated in the pressurized gas reservoir space. Have.

上記ガス溶解手段の態様としては、液相にガスを効率的に溶解させ得るものであればよく、特に限定されないが、次のようなものが例示される(図1(a)〜(c)の概略説明図参照)。
なお、開閉弁については、ここでは省略し、後記する。
(1)図1(a)に示すごとく、管状(チューブ状)のガス透過性膜1aの一方の側(外側又は内側)には液相Lが、他方の側(内側又は外側)には加圧ガス溜空間部2a内の加圧ガスが接するように構成されているもの(Gは加圧ガスで、以下同じ。)(同図は、ガス透過性膜1aの外側に液相Lが、内側に加圧ガスが接する場合の例示)。
(2)図1(b)に示すごとく、平膜状のガス透過性膜1bの一方の側には液相Lが、他方の側には加圧ガス溜空間部2b内の加圧ガスが接するように構成されているもの。
(3)図1(c)に示すごとく、ガス透過性膜1cである複数の中空糸膜の先端及び末端が開口状態を保ったままポッティング材pで固定された集合体で、その各端部には共通開口空間部2c’(この共通開口空間部も加圧ガス溜空間部として機能する。)を有するものであって、上記態様例(1)の場合と同様に、ガス透過性膜1cの一方の側(外側又は内側)には液相Lが、他方の側(内側又は外側)には加圧ガス溜空間部2c内の加圧ガスが接するように構成されているもの(この集合体の軸方向の水平断面の中空糸膜配置形状は、特に制限されないが、略円形状が好適。)(同図は、ガス透過性膜1cの外側に液相Lが、内側に加圧ガスが接する場合の例示。)。 等
The embodiment of the gas dissolving means is not particularly limited as long as it can efficiently dissolve the gas in the liquid phase, and the following are exemplified (FIGS. 1A to 1C). (Refer to the schematic explanatory diagram).
The on-off valve is omitted here and will be described later.
(1) As shown in FIG. 1 (a), the liquid phase L is applied to one side (outer side or inner side) of the tubular (tube-like) gas permeable membrane 1a, and the other side (inner side or outer side) is applied. A structure in which the pressurized gas in the pressurized gas reservoir space 2a is in contact (G is a pressurized gas, the same shall apply hereinafter) (the figure shows the liquid phase L outside the gas permeable membrane 1a, Example when pressurized gas is in contact with the inside).
(2) As shown in FIG. 1B, the liquid phase L is on one side of the flat membrane-like gas permeable membrane 1b, and the pressurized gas in the pressurized gas reservoir space 2b is on the other side. What is configured to touch.
(3) As shown in FIG. 1 (c), a plurality of hollow fiber membranes that are gas permeable membranes 1c are aggregates that are fixed with a potting material p while maintaining the open ends thereof and the end portions thereof. Has a common opening space portion 2c ′ (this common opening space portion also functions as a pressurized gas reservoir space portion), and in the same manner as in the above-described embodiment (1), the gas permeable membrane 1c. The liquid phase L is in contact with one side (outside or inside), and the pressurized gas in the pressurized gas reservoir space 2c is in contact with the other side (inside or outside) (this set) The arrangement of the hollow fiber membranes in the horizontal cross section in the axial direction of the body is not particularly limited, but is preferably a substantially circular shape.) (The figure shows the liquid phase L outside the gas permeable membrane 1c and the pressurized gas inside. An example of the case of contact.) etc

上記ガス溶解手段の態様例(1)及び(3)において、管状又は中空糸膜(管状の一種)のガス透過性膜の内側を上記加圧ガス溜空間部とする(外側を液相とする)場合には、これらのガス透過性膜自体が送給される加圧ガスに対し耐圧性を有していればよいが、その逆の外側を加圧ガス溜空間部とする(内側を液相とする)場合には、ハウジング部材等で耐圧性の加圧ガス溜空間部が形成される。
なお、上記態様例(3)は、ガス溶解モジュールとして公知であり、外部灌流式通液法(中空糸膜の外側に液相、内側に加圧ガス)又は内部灌流式通液法(中空糸膜の内部に液相、外側に加圧ガス)がある。
また、上記態様例(2)において、平膜状のガス透過性膜は、それ自体耐圧性のもの、あるいは剛材の合成樹脂、金属等の補強材で耐圧性が付与されたものが用いられ、また、上記加圧ガス溜空間部は、ガス透過性膜の部分を除いて、ハウジング部材等で耐圧性を有するように形成される。
更に、上記ガス溶解手段におけるガス透過性膜は、上記のごとく、その液相に接する部分の全面(上記態様例(1)及び(3))でもよく、また、一部(上記態様例(2))でもよい。
In embodiments (1) and (3) of the gas dissolving means, the inside of the tubular or hollow fiber membrane (a kind of tubular) gas permeable membrane is the pressurized gas reservoir space (the outside is the liquid phase). ), The gas permeable membrane itself may have pressure resistance against the pressurized gas to be fed, but the opposite outer side is the pressurized gas reservoir space (the inner side is the liquid In the case of a phase), a pressure-resistant pressurized gas reservoir space is formed by a housing member or the like.
In addition, the said example (3) is well-known as a gas dissolution module, and the external perfusion-type liquid flow method (a liquid phase is outside a hollow fiber membrane, a pressurized gas is inside) or an internal perfusion-type liquid flow method (hollow fiber) There is a liquid phase inside the membrane and a pressurized gas outside).
Further, in the above-described embodiment (2), the flat membrane-like gas permeable membrane itself has a pressure resistance, or a material provided with a pressure resistance with a reinforcing material such as a synthetic resin of a rigid material or a metal. Further, the pressurized gas reservoir space is formed so as to have pressure resistance by a housing member or the like except for the gas permeable membrane.
Further, as described above, the gas permeable membrane in the gas dissolving means may be the entire surface in contact with the liquid phase (the above embodiment examples (1) and (3)) or a part (the above embodiment example (2). )).

上記ガス透過性膜の材質としては、ガスは透過するが水等の液相は透過しないものであればよく、特に制限されないが、例えば、シリコンゴム、セグメント化ポリウレタン、スチレン系熱可塑性エラストマーとポリオレフィンとのポリマーブレンド等が挙げられる。
なお、上記ガス透過性膜は、長期間の使用により徐々に親水化して水が逆透過する虞がない非多孔質膜であることが好ましい。
また、上記管状のガス透過性膜の内径、長さ等、平膜状のガス透過性膜の面積等、中空糸膜の内径、本数、長さ等は、液相量、必要溶存ガス濃度、溶存ガス消費量等を総合的に勘案する等して、適宜選択決定すればよい。
The material of the gas permeable membrane is not particularly limited as long as it allows gas to permeate but does not permeate a liquid phase such as water. Examples thereof include silicon rubber, segmented polyurethane, styrene thermoplastic elastomer and polyolefin. And polymer blends.
The gas permeable membrane is preferably a non-porous membrane that is gradually hydrophilized by long-term use and has no risk of reverse water permeation.
In addition, the inner diameter, length, etc. of the tubular gas permeable membrane, the area of the flat gas permeable membrane, the inner diameter, number, length, etc. of the hollow fiber membrane are the liquid phase amount, required dissolved gas concentration, What is necessary is just to select and determine suitably, considering the dissolved gas consumption etc. comprehensively.

上記加圧ガス溜空間部における別の一部への開閉弁の取り付けについては、溜まったドレインを効果的に排出できる位置である、加圧ガス供給源との連結部と反対側の部分が好適である。例えば、上記ガス溶解手段を液相に水平に配置するような場合で、上記態様例(1)や(3)のときには上記加圧ガス溜空間部の末端部に、上記態様例(2)のときには上記加圧ガス溜空間部における加圧ガス供給源との連結部と反対側の部分に、そして、上記ガス溶解手段を液相に垂直に配置するような場合では、上記態様例(1)〜(3)のいずれのときにもその下端部に取り付けるのが好ましい。
また、上記開閉弁としては、一般的には、例えば、通電開の電磁弁等が好適例として挙げられる。
As for the attachment of the open / close valve to another part of the pressurized gas reservoir space, a portion on the opposite side of the connecting portion with the pressurized gas supply source, which is a position where the accumulated drain can be effectively discharged, is suitable. It is. For example, in the case where the gas dissolving means is arranged horizontally in the liquid phase, in the case of the above-described embodiments (1) and (3), the end of the pressurized gas reservoir space is formed at the end of the above-described embodiment (2). In some cases, in the case where the gas dissolving means is arranged perpendicularly to the liquid phase in the portion of the pressurized gas reservoir space opposite to the connecting portion with the pressurized gas supply source, the embodiment (1) It is preferable to attach to the lower end part in any case of (3).
Moreover, as said on-off valve, generally a solenoid valve etc. of energization opening etc. are mentioned as a suitable example generally, for example.

次に、本発明は、上記したごとく、上記ガス溶解手段において、加圧ガス溜空間部内に溜まったドレインによるガス透過性膜のガス透過の妨げが増すにつれ、この加圧ガス溜空間部の内圧が徐々に上昇するという本発明者の新知見に基づくものであって、その最も特徴とする点は、このドレインを、上記加圧ガス溜空間部において上昇する内圧値を指標として制御される上記開閉弁により、上記加圧ガス溜空間部外へ自動的に排出して、ドレインによるガス透過性膜のガス透過の妨げを解消するようにしたことにある。  Next, according to the present invention, as described above, in the gas dissolving means, as the hindrance of gas permeation of the gas permeable membrane by the drain accumulated in the pressurized gas reservoir space increases, the internal pressure of the pressurized gas reservoir space is increased. Is based on the new knowledge of the present inventor that the temperature gradually rises, and the most characteristic point is that the drain is controlled by using the internal pressure value rising in the pressurized gas reservoir space as an index. The on-off valve automatically discharges the pressurized gas reservoir space to eliminate the gas permeation of the gas permeable membrane by the drain.

上記加圧ガス溜空間部の内圧の上昇は、溜まったドレインがガス透過性膜を塞いでガス透過を妨げることによるものであって、その上昇状況は、ドレインの生成(液相からガス透過性膜を介して加圧ガス溜空間部に水蒸気(ガス)が入る(透過する)と、この水蒸気は温度の低下により結露し、ドレインになる。)の状態の他、溶解手段の態様やその設置方法等によっても異なる。
すなわち、生成し、溜まったドレインが直ちにガス透過性膜を塞ぐようになる場合には、その時からこの内圧が徐々に上昇し始め、また、生成したドレインがガス透過性膜部外の空間部に先ず溜り、その後、ガス透過性膜を塞ぐようになる場合には、このガス透過性膜を塞ぐようになった時からこの内圧が徐々に上昇し始める。
前者の例としては、上記溶解手段の態様例(1)の水平配置された溶解手段(図1(a))の場合が挙げられ、また、後者の例としては、態様例(2)の水平配置された溶解手段(図1(b))や態様例(3)で垂直に配置された溶解手段(図1(c))の場合(生成したドレインは、それぞれ、加圧ガス溜空間部2b、下方の共通開口空間部2c’に先ず溜り、その後、ガス透過性膜1b、1cを塞ぐようになる)が挙げられる。
The increase in the internal pressure of the pressurized gas reservoir space is due to the accumulated drain blocking the gas permeable membrane and hindering gas permeation, and this rise is due to the generation of drain (gas permeability from the liquid phase). When water vapor (gas) enters (permeates) the pressurized gas reservoir space through the membrane, the water vapor condenses due to a decrease in temperature and becomes a drain.) It depends on the method.
That is, when the drain that has been generated and accumulated immediately closes the gas permeable membrane, the internal pressure begins to gradually increase from that time, and the generated drain enters the space outside the gas permeable membrane. In the case where the gas permeable membrane is blocked first, and then the gas permeable membrane is blocked, the internal pressure starts to gradually increase when the gas permeable membrane is blocked.
As an example of the former, the case of the horizontally arranged dissolving means (FIG. 1 (a)) of the above-described example (1) of the dissolving means can be mentioned, and as an example of the latter, the horizontal means of the embodiment (2). In the case of the dissolving means arranged (FIG. 1 (b)) and the dissolving means arranged vertically in the embodiment (3) (FIG. 1 (c)) (the generated drains are respectively pressurized gas reservoir spaces 2b). , First accumulated in the lower common opening space 2c ′, and thereafter, the gas permeable membranes 1b and 1c are blocked).

上記ガス溶解手段における開閉弁の開閉は、上記したごとく、上記加圧ガス溜空間部の内圧を検出する圧力検出機構と、これにより検出された内圧がある設定された圧力値を超えると弁を開とする弁開閉制御機構とにより制御されていて、上記加圧ガス溜空間部内に徐々に溜まったドレインは、上記両機構により、自動的に上記加圧ガス溜空間部外に排出される。
また、このドレインの排出によって、上記加圧ガス溜空間部の内圧が設定の圧力値を下回ると、この開閉弁が閉になるように上記弁開閉制御機構によって制御されていて、再びガス透過性膜を介してのガスの溶解が継続される。
上記構成により、上記加圧ガス溜空間部内に溜まったドレインがこの加圧ガス溜空間部外に、ガスの浪費を防止しつつ、効果的に、かつ、自動的に排出してドレインによるガス透過性膜のガス透過の妨げを解消するようにしたため、液相にガスを長期間連続して安定的に溶解させることができる。
As described above, the opening and closing of the on-off valve in the gas dissolving means includes a pressure detection mechanism for detecting the internal pressure of the pressurized gas reservoir space, and the valve when the internal pressure detected thereby exceeds a set pressure value. The drain which is controlled by the valve opening / closing control mechanism to be opened and gradually accumulates in the pressurized gas reservoir space is automatically discharged out of the pressurized gas reservoir space by both mechanisms.
In addition, when the internal pressure of the pressurized gas reservoir space falls below a set pressure value due to the discharge of the drain, the valve open / close control mechanism is controlled so that the open / close valve is closed. Dissolution of the gas through the membrane continues.
With the above-described configuration, the drain accumulated in the pressurized gas reservoir space is effectively and automatically discharged outside the pressurized gas reservoir space while preventing gas from being wasted. due to so as to eliminate the obstacle to the gas permeable sex film can Rukoto is stably dissolved continuously for long periods of time the gas in the liquid phase.

上記圧力検出機構は、上記ガス溶解手段の上流近傍のガス送給路又はこのガス溶解手段の適宜の位置に取り付けられる。
この圧力検出機構としては、特に制限なく、通常のものが有効に用いられるが、例えば、半導体式圧力センサー(圧力を電圧に変換するもの等)等を好適例として挙げることができる。
また、上記弁開閉制御機構としては、検出された上記加圧ガス溜空間部の内圧があらかじめ設定された圧力値を超えると弁を開(常時閉)とする制御がなされるものであれば、特に制限はなく、通常のものが有効に用いられる。
The pressure detection mechanism is attached to a gas supply path near the upstream of the gas dissolving means or an appropriate position of the gas dissolving means.
The pressure detection mechanism is not particularly limited and a normal one can be used effectively. For example, a semiconductor pressure sensor (such as one that converts pressure into voltage) can be cited as a suitable example.
In addition, as the valve opening / closing control mechanism, if the detected internal pressure of the pressurized gas reservoir space exceeds a preset pressure value, the valve is opened (normally closed). There is no particular limitation, and ordinary ones can be used effectively.

なお、上記加圧ガス溜空間部内に溜まったドレインを排出する方法として、タイマーにより一定時間毎に開閉弁を開にする方法も考えられる。
しかしながら、このタイマー設定法では、ドレインの生成速度、生成量等は、ガス透過性膜のガス透過度、液相の温度、送給するガス圧力等、種々の要因により変動することから、溜まったドレインを排出するための適切なタイマー設定が困難であり、このため短目の時間設定になり易く、従って、供給ガスの浪費につながる。
As a method of discharging the drain accumulated in the pressurized gas reservoir space, a method of opening the on-off valve at regular intervals using a timer is also conceivable.
However, in this timer setting method, the generation rate of the drain, the generation amount, etc. accumulated due to fluctuations due to various factors such as the gas permeability of the gas permeable membrane, the temperature of the liquid phase, the gas pressure to be delivered, etc. It is difficult to set an appropriate timer for discharging the drain, and therefore, it is easy to set a short time, which leads to wasted supply gas.

更に、本発明のガ溶解装置においては、上記開閉弁として、上記圧力検出機構と弁開閉制御機構の両機能を有する安全弁を用いるのが好ましい。
上記安全弁として、各種開放圧力値が設定できるもの、一定の開放圧力値に設定されたもの等を用いることにより、上記加圧ガス溜空間部の内圧がこの設定圧力値を超えると、弁が開となってドレインが自動的に加圧ガスによって排出され、そして、この加圧ガス溜空間部の内圧が設定圧力値を下回ると弁が閉に復帰され(全てのドレインが排出されるとは限らない。)、再びガスの効率的溶解が継続される。
本発明のガ溶解装置のこの形態は、上記加圧ガス溜空間部の末端部、下端部等、溜まったドレインが効果的に排出できる位置に単に安全弁を取り付けるという極めて簡単な構造で、しかも、液相にガスを長期間連続して安定的に溶解させるものであり、好適である。
Further, the gas dissolution apparatus of the present invention, as the on-off valve, it is preferable to use a safety valve having the functions of both the pressure detection mechanism and the valve opening and closing control mechanism.
By using a safety valve that can set various open pressure values, a valve that is set to a constant open pressure value, etc., when the internal pressure of the pressurized gas reservoir space exceeds this set pressure value, the valve opens. The drain is automatically discharged by the pressurized gas, and when the internal pressure of the pressurized gas reservoir space falls below the set pressure value, the valve is returned to the closed state (not all drains are discharged). No.) Again, efficient gas dissolution continues.
This form of gas dissolution apparatus of the present invention, the terminal portion of the pressurized gas reservoir space, the lower end or the like, merely an extremely simple structure of attaching a safety valve in a position accumulated drain can be effectively discharged, moreover a it shall not stably dissolved by extended periods of time the gas in the liquid phase, is suitable.

また、本発明のガ溶解装置の他の好適形態は、上記加圧ガス供給源の1に対して、上記ガス溶解手段の複数をこの加圧ガス供給源に並列に連通状態で連結したものである。
この形態においては、並列に連結された複数の上記ガス溶解手段の上流に、それぞれガス流量調節弁を設けることもできる。
また、複数の上記ガス溶解手段の弁の開閉を、上記圧力検出機構と弁開閉制御機構とによって行う場合には、上記ガス溶解手段毎にこれらの圧力検出機構と弁開閉制御機構とを設ける。
上記ガス溶解手段のセット数については、液相量、必要溶存ガス濃度、溶存ガス消費量等を総合的に勘案する等して適宜選択決定される。
上記構成としたため、構造が簡単である上に、大容量の液相にガスを効率的に長期間連続して安定的に溶解させることができる。
Further, another preferred embodiment of the gas dissolution apparatus of the present invention are those for one of the pressurized gas supply source, and connected by communication to parallel a plurality of said gas dissolving means to the pressurized gas source It is.
In this embodiment, a gas flow rate adjusting valve can be provided upstream of the plurality of gas dissolving means connected in parallel.
Further, when the valves of the plurality of gas dissolving means are opened and closed by the pressure detecting mechanism and the valve opening / closing control mechanism, the pressure detecting mechanism and the valve opening / closing control mechanism are provided for each gas dissolving means.
The number of sets of the gas dissolving means is appropriately selected and determined by comprehensively considering the liquid phase amount, the necessary dissolved gas concentration, the dissolved gas consumption amount, and the like.
Since the above-described configuration, structure on is simple, it is Rukoto gas efficiently continuously for long periods of time by stably dissolved in the liquid phase of the high-capacity.

以下、本発明を図面を参照しつつ若干の実施例により更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail by way of some examples with reference to the drawings, but the present invention is not limited to these examples.

(実施例1)
図2は、本発明のガ溶解装置の一実施例を示す概略説明図である。
同図に示したガ溶解装置は、加圧ガス源であるガスボンベ11の下流に調圧弁12、圧力計13、ガス流量調節弁14及びガス流量計15が順次連通状態で連結されてなる加圧ガス供給源16と、この加圧ガス供給源16の下流にその一端(先端部)が連通状態で連結された管状のガス溶解手段4(図1(a)に示した態様例)を備えている。
このガス溶解手段4は、その外側が液相(対象液)に接する管状のガス透過性膜1a(例えば、シリコンゴム製チューブ等)と、その中空部の加圧ガス溜空間部2aと、その他端(末端部)に連通状態で連結されたドレイン排出用の開閉弁である電磁弁3とを有している。
そして、このガ溶解装置は、更に、ガス溶解手段4の先端部近傍の位置に設けられた、加圧ガス溜空間部2aの内圧を検出する圧力検出機構10と、この検出された内圧があらかじめ設定された圧力値を超えると電磁弁(常時閉)3を開とする弁開閉制御機構20を備えている。
なお、加圧ガス供給源16として、ガス流量調節弁14、ガス流量計15の取り付け等を適宜省略して調圧弁12のみにより、ガスの圧力と流量を調節するようにすることもできる。
Example 1
Figure 2 is a schematic explanatory view showing an embodiment of a gas dissolution apparatus of the present invention.
Gas dissolution apparatus shown in the figure, downstream pressure regulating valve 12 of the gas cylinder 11 is a pressurized gas source, a pressure gauge 13, are connected in a sequential communication with the gas flow rate control valve 14 and the gas flow meter 15 pressure A pressurized gas supply source 16 and a tubular gas dissolving means 4 (an example shown in FIG. 1A) having one end (tip portion) connected in a communicating state downstream of the pressurized gas supply source 16 are provided. ing.
The gas dissolving means 4 includes a tubular gas permeable membrane 1a (for example, a silicone rubber tube) whose outer side is in contact with a liquid phase (target liquid), a pressurized gas reservoir space 2a in a hollow portion thereof, and the like. It has the solenoid valve 3 which is the on-off valve for drain discharge connected with the end (terminal part) in communication.
Pressure The gas dissolution apparatus this is further provided at a position near the tip of the gas dissolution device 4, the pressure detection mechanism 10 for detecting the internal pressure of the pressurized gas reservoir space 2a, that is the detection Is provided with a valve opening / closing control mechanism 20 that opens the electromagnetic valve (normally closed) 3 when the pressure value exceeds a preset pressure value.
Note that the pressure and flow rate of the gas can be adjusted only by the pressure regulating valve 12 by appropriately omitting the attachment of the gas flow rate adjusting valve 14 and the gas flow meter 15 as the pressurized gas supply source 16.

次に、本実施例のガ溶解装置の使用方法について説明する。
先ず、ガ溶解装置におけるガス溶解手段4(内径3mm、長さ1mのシリコン製チューブ)を液相(60Lの水槽)に水平に配置し、ガスボンベ11(炭酸ガス)の圧力及びガス流量を調圧弁12、ガス流量調節弁14等により適切に調整して(ガス圧力20kPa、ガス流量5ml/分)中空部の加圧ガス溜空間部2aに加圧ガスを送給する(加圧ガス送給開始時は、加圧ガス溜空間部2aの内圧は低いが、平衡時には5kPaに達する。)。送給された加圧ガスは、加圧ガス溜空間部2aを形成するガス透過性膜1aを透過して液相に徐々に溶解されていく。
なお、この加圧ガス送給開始時の加圧ガス溜空間部2aの内圧は、ドレインの生成がなくガス透過性膜1aよりのガス透過が良好であるため、調圧弁12により調整された圧力よりも低い。
Next, a method using a gas dissolution apparatus of the present embodiment.
First, the gas dissolving means 4 (inner diameter 3 mm, silicone tubing length 1m) is arranged horizontally in the liquid phase (water tank 60L) in gas dissolution device, regulating the pressure and flow rate of the gas cylinder 11 (carbon dioxide) The pressure gas is appropriately adjusted by the pressure valve 12, the gas flow rate control valve 14, etc. (gas pressure 20 kPa, gas flow rate 5 ml / min), and the pressurized gas is fed to the pressurized gas reservoir space 2a of the hollow portion (pressurized gas feed) At the start, the internal pressure of the pressurized gas reservoir space 2a is low, but reaches 5 kPa at equilibrium.) The supplied pressurized gas permeates through the gas permeable membrane 1a forming the pressurized gas reservoir space 2a and is gradually dissolved in the liquid phase.
Note that the internal pressure of the pressurized gas reservoir space 2a at the start of the pressurized gas supply is the pressure adjusted by the pressure regulating valve 12 because there is no generation of drain and gas permeation through the gas permeable membrane 1a is good. Lower than.

加圧ガスの送給時間の経過と共に、加圧ガス溜空間部2a内にドレインが徐々に溜まり、そして、ガス透過性膜1aのガス透過の妨げが増すにつれ、加圧ガス溜空間部2aの内圧が上昇してくる(加圧ガスの送給開始後24時間、内圧10kPa)。
圧力検出機構10で検出された加圧ガス溜空間部2aの内圧があらかじめ設定された圧力値(10kPa)を超えると、弁開閉制御機構20により電磁弁3が通電開になってドレインが加圧ガス溜空間部2a外に自動的に若干のガスと共に排出され、そして、加圧ガス溜空間部2aの内圧が短時間で設定の圧力値を下回ると、弁開閉制御機構20により電磁弁3が閉になり、再びガスの効率的溶解が継続される。
本実施例のガ溶解装置によれば、液相にガスを長期間連続して安定的に溶解させることができる。
As the pressurized gas feed time elapses, the drain gradually accumulates in the pressurized gas reservoir space 2a, and as the hindrance to gas permeation of the gas permeable membrane 1a increases, The internal pressure rises (24 hours after the start of feeding pressurized gas, internal pressure 10 kPa).
When the internal pressure of the pressurized gas reservoir space 2a detected by the pressure detection mechanism 10 exceeds a preset pressure value (10 kPa), the solenoid valve 3 is energized and the drain is pressurized by the valve opening / closing control mechanism 20. When the internal pressure of the pressurized gas reservoir space 2a falls below the set pressure value in a short time, the solenoid valve 3 is opened by the valve opening / closing control mechanism 20 when the gas is automatically discharged together with some gas to the outside of the gas reservoir space 2a. It is closed and the efficient dissolution of the gas is continued again.
According to gas dissolution apparatus of the present embodiment, it is Rukoto is stably dissolved continuously for long periods of time the gas in the liquid phase.

(実施例2)
図3は、本発明のガ溶解装置の他の実施例を示す概略説明図である。
なお、以下の実施例において、上記の実施例1の場合と実質的に同一の部材・箇所については同一の符号を付し、その説明を省略する。
同図に示したガ溶解装置は、電磁弁3、圧力検出機構10及び弁開閉制御機構20の代わりに単に加圧ガス溜空間部2aの末端部に開閉弁として安全弁3’が設けられている以外は、図2に示したガ溶解装置と同様の構成を有する。
そして、この安全弁3’は、図2における加圧ガス溜空間部2aの内圧を検出する圧力検出機構10とこの検出された内圧があらかじめ設定された圧力値(作動圧)(10kPa)を超えると開閉弁の弁を開にする弁開閉機構20の両機能を有するものである。
なお、4’は、ガス溶解手段である。
(Example 2)
Figure 3 is a schematic explanatory view showing another embodiment of a gas dissolution apparatus of the present invention.
In the following embodiments, members and locations that are substantially the same as those in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
Gas dissolution apparatus shown in the figure, the electromagnetic valve 3, the safety valve 3 'is provided as an opening and closing valve simply end the pressurized gas reservoir space 2a in place of the pressure detection mechanism 10 and the valve opening and closing control mechanism 20 except that there have gas dissolution apparatus similar to the configuration shown in FIG.
Then, the safety valve 3 ′ detects the internal pressure of the pressurized gas reservoir space 2a in FIG. 2 and the detected internal pressure exceeds a preset pressure value (operating pressure) (10 kPa). It has both functions of the valve opening / closing mechanism 20 that opens the valve of the opening / closing valve.
Note that 4 ′ is a gas dissolving means.

本実施例のガ溶解装置を用いることにより、実施例1に記載したと実質的に同様にして、加圧ガス溜空間部2a内に溜まったドレインが、安全弁3’の作動(弁が開)により、加圧ガス溜空間部2a外に自動的に排出され、その後、短時間で安全弁3’が閉に復帰して、再びガスの効率的溶解が継続される。この時、ドレインのみが排出されることもあるし、ドレイン排出後、僅かな加圧ガスも排出されることもあるが、これらは安全弁3’の作動圧、ガス流速、ガス透過性膜のガス透過速度等の影響を受ける。
そして、本実施例のガ溶解装置によれば、極めて簡単な構造で、しかも、実施例1に記載したと同様に液相にガスを長期間連続して安定的に溶解させることができるという効果を奏する。
By using the gas dissolution apparatus of the present embodiment, in substantially the same manner as described in Example 1, the drain accumulated in the pressurized gas reservoir space portion 2a is, the operation of the safety valve 3 '(the valve is opened ) Is automatically discharged out of the pressurized gas reservoir space 2a, and then the safety valve 3 'is returned to the closed state in a short time, and the efficient dissolution of the gas is continued again. At this time, only the drain may be discharged or a slight amount of pressurized gas may be discharged after the drain is discharged. These are the operating pressure of the safety valve 3 ', the gas flow rate, the gas of the gas permeable membrane. It is affected by transmission speed.
Then, according to the gas dissolution apparatus of the present embodiment, an extremely simple structure, moreover, it is Rukoto is stably dissolved by long term continuous gas in the same manner the liquid phase to that described in Example 1 There is an effect.

(実施例3)
図4は、本発明のガ溶解装置の更に他の実施例を示す概略説明図である。
同図に示したガ溶解装置は、加圧ガス供給源16の1に対し、図3に示したガ溶解装置における加圧ガス溜空間部2aとその末端部に連結された安全弁3’からなるガス溶解手段4’の複数を、加圧ガス供給源16の下流に並列に連通状態で連結、配置したものである。
各加圧ガス溜空間部2aに溜まったドレインは、上記実施例2に記載したと同様にして各安全弁3’より各加圧ガス溜空間部2a外に自動的にその全部又は一部が排出され、その後、それぞれ、短時間で安全弁3’が閉に復帰して、再びガスの効率的溶解が継続される。
なお、複数のガス溶解手段4’の上流にそれぞれガス流量調節弁を設けることもできる。
そして、本実施例のガ溶解装置によれば、構造が簡単である上に、1の加圧ガス供給源16で大容量の液相にガスを効率的に、かつ、長期間連続して安定的に溶解させることができる。
(Example 3)
Figure 4 is a schematic explanatory view showing still another embodiment of the gas dissolution apparatus of the present invention.
Gas dissolution apparatus shown in the figure, with respect to 1 of the pressurized gas supply source 16, gas pressurized gas reservoir in the scan melter space 2a and the safety valve 3 connected to the distal end thereof as shown in FIG. 3 ' A plurality of gas dissolving means 4 ′ are connected and arranged in parallel in downstream from the pressurized gas supply source 16.
The drain accumulated in each pressurized gas reservoir space 2a is automatically discharged from the safety valve 3 'to the outside of each pressurized gas reservoir space 2a in the same manner as described in the second embodiment. Thereafter, the safety valve 3 ′ returns to the closed state in a short time, and the efficient dissolution of the gas is continued again.
A gas flow rate control valve can be provided upstream of each of the plurality of gas dissolving means 4 ′.
Then, according to the gas dissolution apparatus of the present embodiment, on the structure is simple, the gas efficiently in the first pressurized gas supply source 16 to the liquid phase of the high-capacity and long time continuous It was stably dissolved Te can Rukoto.

(実施例4)
図5は、本発明のガ溶解装置における中空糸膜をガス透過性膜とするガス溶解手段の態様を含む立設のガス溶解モジュール(外部灌流式通液法)を示す概略断面図である。
同図に示すガス溶解モジュールには、図1(c)に示した態様例のものがガス溶解手段4’’として組み込まれていて、その下方の共通開口空間部2c’の下端部に安全弁3’が取り付けられている。
そして、加圧ガスGは、上方の共通開口空間部2c’よりガス透過性膜(中空糸膜)1cの中空部である加圧ガス溜空間部2cに送給され、一方、液相(対象液)Lは、下方の入口からガス透過性膜1cの外側を通過して上方の出口より流出する。
Example 4
Figure 5 is a schematic sectional view showing a stand of the gas dissolving module include aspects of the gas dissolving means a hollow fiber membrane and the gas permeable membrane (external perfusion type flow-through method) in gas dissolution apparatus of the present invention .
In the gas melting module shown in the figure, the embodiment shown in FIG. 1C is incorporated as gas dissolving means 4 ″, and a safety valve 3 is provided at the lower end of the common opening space 2c ′ below the gas melting means 4 ″. 'Is installed.
The pressurized gas G is fed from the upper common opening space 2c ′ to the pressurized gas reservoir space 2c, which is the hollow portion of the gas permeable membrane (hollow fiber membrane) 1c, while the liquid phase (target) The liquid (L) flows out of the gas permeable membrane 1c from the lower inlet and flows out from the upper outlet.

加圧ガス溜空間部2c及び加圧ガス溜空間部として機能する共通開口空間部の下方のそれ2c’に溜まったドレインは、上記実施例2に記載したと同様にして安全弁3’より下方の共通開口空間部2c’外に自動的に排出され、その後、短時間で安全弁3’が閉に復帰して、再びガスの効率的溶解が継続される。
本発明のガ溶解装置におけるガス溶解手段4’’を組み込んだガス溶解モジュールを用いれば、ガス透過性膜1cと液相Lとの接触面積が著しく増大して液相Lへのガスのより効率的な溶解が可能となり、しかも、液相にガスを長期間連続して安定的に溶解させることができる。
The drain accumulated in the pressurized gas reservoir space 2c and that 2c ′ below the common opening space functioning as the pressurized gas reservoir space is lower than the safety valve 3 ′ in the same manner as described in the second embodiment. It is automatically discharged out of the common opening space 2c ′, and then the safety valve 3 ′ returns to the closed state in a short time, and the efficient dissolution of the gas is continued again.
The use of gas dissolving module incorporating a gas dissolving means 4 '' in the gas dissolution apparatus of the present invention, more of the gas into the liquid phase L to increase significantly the contact area between the gas permeable membrane 1c and a liquid phase L It enables efficient lysis, moreover, it is Rukoto is stably dissolved continuously for long periods of time the gas in the liquid phase.

は、本発明のガ溶解装置におけるガス溶解手段の態様例を示す概略説明図である。Is a schematic diagram illustrating an embodiment of a gas dissolving means in gas dissolution apparatus of the present invention. は、本発明のガ溶解装置の一実施例を示す概略説明図である。Is a schematic explanatory view showing an embodiment of a gas dissolution apparatus of the present invention. は、本発明のガ溶解装置の他の実施例を示す概略説明図である。Is a schematic explanatory view showing another embodiment of a gas dissolution apparatus of the present invention. は、本発明のガ溶解装置の更に他の実施例を示す概略説明図である。Is a schematic explanatory view showing still another embodiment of the gas dissolution apparatus of the present invention. は、本発明のガ溶解装置におけるガス溶解手段を含むガス溶解モジュールを示す概略断面図である。Is a schematic sectional view showing a gas dissolving module comprises a gas dissolving means in gas dissolution apparatus of the present invention.

符号の説明Explanation of symbols

1a、1b、1c ガス透過性膜
2a、2b、2c 加圧ガス溜空間部
2c’ 共通開口空間部
3 電磁弁
3’ 安全弁
4、4’、4” ガス溶解手段
10 圧力検出機構
11 加圧ガス源
12 調圧弁
14 ガス流量調節弁
16 加圧ガス供給源
20 弁開閉制御機構
1a, 1b, 1c Gas permeable membranes 2a, 2b, 2c Pressurized gas reservoir space 2c ′ Common opening space 3 Electromagnetic valve 3 ′ Safety valve 4, 4 ′, 4 ″ Gas dissolving means 10 Pressure detection mechanism 11 Pressurized gas Source 12 Pressure regulating valve 14 Gas flow control valve 16 Pressurized gas supply source 20 Valve open / close control mechanism

Claims (3)

加圧ガス供給源と、
ガス透過性膜を介して液相に上記ガスを溶解させる手段であって、上記ガス透過性膜はその一方の側に液相が接し、また、上記透過性膜の他方の側に接する加圧ガス側に加圧ガス溜空間部を有し、上記加圧ガス溜空間部の一部で上記加圧ガス供給源と連通し、かつ、上記加圧ガス溜空間部の別の一部には溜まったドレインを排出する開閉弁を有するガス溶解手段
を備えたガ溶解装置において、
上記加圧ガス溜空間部の内圧を検出する圧力検出機構及びこの圧力検出機構で検出された内圧があらかじめ設定された圧力値を超えると上記開閉弁を開にする弁開閉制御機構を設けたことを特徴とするガ溶解装置。
A pressurized gas supply source;
A means for dissolving the gas in a liquid phase through a gas permeable membrane, wherein the gas permeable membrane is in contact with the liquid phase on one side thereof, and in contact with the other side of the permeable membrane. There is a pressurized gas reservoir space on the gas side, communicated with the pressurized gas supply source at a part of the pressurized gas reservoir space, and another part of the pressurized gas reservoir space in gas dissolution apparatus equipped with a gas dissolving means having an opening and closing valve for discharging the drain accumulated is
A pressure detection mechanism for detecting the internal pressure of the pressurized gas reservoir space and a valve opening / closing control mechanism for opening the on / off valve when the internal pressure detected by the pressure detection mechanism exceeds a preset pressure value features and to Ruga scan dissolution apparatus.
上記開閉弁が上記圧力検出機構と上記弁開閉制御機構の両機能を有する安全弁であることを特徴とする請求項1記載のガ溶解装置。Said off valve gas dissolution apparatus according to claim 1, characterized in that the safety valve having the functions of both the pressure detection mechanism and the valve opening and closing control mechanism. 上記加圧ガス供給源の1に対して、上記ガス溶解手段の複数を上記加圧ガス供給源に並列に連通してなることを特徴とする請求項1又は2記載のガ溶解装置。For one of said pressurized gas supply source, a plurality of gas dissolving apparatus according to claim 1 or 2, characterized in that communicating in parallel with the pressurized gas supply source of the gas dissolving means.
JP2005380985A 2005-12-15 2005-12-15 Gas dissolving device Expired - Fee Related JP4957946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005380985A JP4957946B2 (en) 2005-12-15 2005-12-15 Gas dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005380985A JP4957946B2 (en) 2005-12-15 2005-12-15 Gas dissolving device

Publications (2)

Publication Number Publication Date
JP2007160293A JP2007160293A (en) 2007-06-28
JP4957946B2 true JP4957946B2 (en) 2012-06-20

Family

ID=38243791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005380985A Expired - Fee Related JP4957946B2 (en) 2005-12-15 2005-12-15 Gas dissolving device

Country Status (1)

Country Link
JP (1) JP4957946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102565370B1 (en) * 2021-07-14 2023-08-08 윤영숙 Nano bubble generation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156927A (en) * 1990-10-18 1992-05-29 Toray Ind Inc Production of gas-mixed water
JP3048499B2 (en) * 1994-05-27 2000-06-05 三菱レイヨン株式会社 Carbonated spring manufacturing method
JP3159095B2 (en) * 1996-12-10 2001-04-23 トヨタ車体株式会社 Ozone water production equipment
JP3657429B2 (en) * 1998-05-21 2005-06-08 東芝三菱電機産業システム株式会社 Ozone water production equipment
JP3728959B2 (en) * 1998-12-28 2005-12-21 栗田工業株式会社 Method for producing gas dissolved water
JP2001293343A (en) * 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd Device and process for preparing carbonated water

Also Published As

Publication number Publication date
JP2007160293A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5368767B2 (en) Artificial carbonated spring production equipment
JP4707769B1 (en) Agricultural liquid supply equipment
KR970068818A (en) Hydroponic Cultivation Device
WO2020085366A1 (en) Gas dissolving device and algae cultivation device
JP4900221B2 (en) Cell separation device, culture device and cell separation method
JP2016531578A (en) Bioreactor with addition tube
US8876089B2 (en) Method and apparatus to keep an aerator full of air
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
CN111439810B (en) High Shui Xiao TDS creep solution
JP4957946B2 (en) Gas dissolving device
JP2006075683A (en) Liquid applying apparatus and liquid deaerating method
CN107427786B (en) Resistivity value adjusting device and resistivity value adjusting method
JP6767431B2 (en) Hydrogen gas melting device
JP2022002846A (en) Hydrogen gas dissolution device
WO2003022983A1 (en) Method and apparatus for oxygenating wine
CN209411831U (en) Exhaust structure, faucet, water treatment system and water purification equipment
JP2021506345A (en) High efficiency air lift pump
CN216051691U (en) Structure for accurately controlling content of dissolved gas in water
JP2020089304A5 (en)
RU2006121054A (en) METHOD FOR CONCENTRATION OF AQUEOUS SOLUTIONS OF BIOLOGICALLY ACTIVE SUBSTANCES AND INSTALLATION FOR ITS IMPLEMENTATION
CN209835852U (en) Water treatment system and water purification equipment
JP2019213460A (en) Growing device for aquatic organisms
JP2004041928A (en) Diffusion method and diffusion system
JP5113552B2 (en) Water purification device
JP4125419B2 (en) Septic tank and flow control device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees