JP2019213460A - Growing device for aquatic organisms - Google Patents

Growing device for aquatic organisms Download PDF

Info

Publication number
JP2019213460A
JP2019213460A JP2018110878A JP2018110878A JP2019213460A JP 2019213460 A JP2019213460 A JP 2019213460A JP 2018110878 A JP2018110878 A JP 2018110878A JP 2018110878 A JP2018110878 A JP 2018110878A JP 2019213460 A JP2019213460 A JP 2019213460A
Authority
JP
Japan
Prior art keywords
tank
water
oxygen
circulation
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018110878A
Other languages
Japanese (ja)
Other versions
JP7051598B2 (en
Inventor
知一 藤田
Tomokazu Fujita
知一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSO ELEC Manufacturing
Sanso Electric Co Ltd
Original Assignee
SANSO ELEC Manufacturing
Sanso Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSO ELEC Manufacturing, Sanso Electric Co Ltd filed Critical SANSO ELEC Manufacturing
Priority to JP2018110878A priority Critical patent/JP7051598B2/en
Publication of JP2019213460A publication Critical patent/JP2019213460A/en
Application granted granted Critical
Publication of JP7051598B2 publication Critical patent/JP7051598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

To provide a growing device for aquatic organisms capable of creating an environment having high dissolved oxygen concentration and little stream current.SOLUTION: There is provided a growing device comprising: a growing tank 11 for growing aquatic organisms; and a circulation tank 12 in which a liquid having high oxygen concentration is circulated. A gas transmission film 3 that transmits oxygen and does not transmit water is provided between the growing tank 11 and the circulation tank 12.SELECTED DRAWING: Figure 1

Description

本発明は、水生生物の育成装置に関する。   The present invention relates to a device for growing aquatic organisms.

近年、水生生物の養殖において、成長促進や生残率の向上による養殖効率向上のために、空気や酸素を溶解させて溶存酸素濃度を引き上げる方法がとられている(例えば、特許文献1,2参照)。   2. Description of the Related Art In recent years, in aquaculture of aquatic organisms, a method of increasing the dissolved oxygen concentration by dissolving air or oxygen has been adopted in order to improve aquaculture efficiency by promoting growth and improving survival rate (for example, Patent Documents 1 and 2). reference).

従来の溶存酸素濃度を引き上げる方法として、散気管による曝気、エジェクタによる水槽への送水水流への酸素導入、気体溶解装置による高濃度酸素溶解水の送水などがある。これらの方法では、水槽内で発生させる水流により酸素の溶解拡散が行われる。   Conventional methods for raising the dissolved oxygen concentration include aeration using a diffuser tube, introduction of oxygen into a water supply water flow to a water tank using an ejector, and water supply of high-concentration oxygen-dissolved water using a gas dissolving device. In these methods, oxygen is dissolved and diffused by a water flow generated in a water tank.

特開平04−237447号公報JP 04237374 A 特開2013−255449号公報JP 2013-255449 A

ところで、水槽内の水流は、仔魚から稚魚、幼魚、成魚への成長過程では問題視されないが、卵から孵化、仔魚への成長過程では、生存率、成長等を悪化させ、問題となる。   By the way, the water flow in the aquarium is not considered a problem during the growth process from larvae to fry, juveniles, and adult fish.

特許文献1、2に開示された装置では、溶存酸素濃度を引き上げるために水流が発生するため、同装置を仔魚までの成長過程の水生生物の育成に使用することは好ましくない。   In the devices disclosed in Patent Literatures 1 and 2, since a water flow is generated to increase the dissolved oxygen concentration, it is not preferable to use the device for growing aquatic organisms in the process of growing up to larvae.

そこで、本発明は、水流が殆ど無く、溶存酸素濃度の高い環境をつくることができる、水生生物の育成装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an aquatic organism breeding apparatus capable of creating an environment with almost no water flow and a high dissolved oxygen concentration.

本発明の一態様に係る水生生物の育成装置は、水生生物を育成するための育成槽と、酸素濃度の高い水を循環させる循環槽とを備え、前記育成槽と前記循環槽との間に、酸素を透過し、水を透過しない気体透過膜が設けられたことを特徴としている。   An apparatus for growing aquatic organisms according to one embodiment of the present invention includes a growing tank for growing aquatic organisms, and a circulation tank that circulates water with a high oxygen concentration, between the growth tank and the circulation tank. And a gas permeable membrane that is permeable to oxygen and not permeable to water.

かかる構成を備える水生生物の育成装置によれば、前記育成槽と前記循環槽との間に前記気体透過膜が設けられているため、酸素濃度の高い循環槽から育成槽へ水が移動することなく酸素が移動する。このため、育成槽の水の酸素濃度を高めることができ、しかも、循環槽内の水流が育成槽に流れ込まないことから、育成槽において水流が生じることが殆どない。   According to the aquatic organism breeding apparatus having such a configuration, since the gas permeable membrane is provided between the breeding tank and the circulation tank, water moves from the circulating tank having a high oxygen concentration to the breeding tank. Oxygen moves without. For this reason, the oxygen concentration of the water in the growing tank can be increased, and since the water flow in the circulation tank does not flow into the growing tank, there is almost no water flow in the growing tank.

前記構成を備える水生生物の育成装置において、前記循環槽は、前記気体透過膜を介して前記育成槽の下方に設けられることが望ましい。   In the aquatic organism growing apparatus having the above configuration, it is preferable that the circulation tank is provided below the growth tank via the gas permeable membrane.

かかる構成を備える水生生物の育成装置によれば、簡単な構成で育成槽および循環槽を構築することができる。   According to the aquatic organism breeding apparatus having such a configuration, the breeding tank and the circulation tank can be constructed with a simple configuration.

前記構成を備える水生生物の育成装置において、前記循環槽に酸素濃度の高い水を循環させる酸素水循環装置を備え、前記酸素水循環装置は、例えば、一端部が前記循環槽の一部に連通され、他端部が前記循環槽の他部に連通された循環経路と、前記循環経路に酸素又は酸素を含む気体を導入する気体導入部と、前記循環経路に設けられた加圧ポンプと、前記循環経路において、前記気体導入部および前記加圧ポンプより下流側、かつ、前記循環槽より上流側に設けられた気体溶解装置と、を有する。   In the aquatic organism breeding apparatus having the above-described configuration, an oxygen water circulating apparatus that circulates water having a high oxygen concentration in the circulating tank is provided.The oxygen water circulating apparatus has, for example, one end communicating with a part of the circulating tank. A circulation path having the other end communicated with the other part of the circulation tank, a gas introduction unit for introducing oxygen or a gas containing oxygen into the circulation path, a pressurizing pump provided in the circulation path, A gas dissolving device provided downstream of the gas inlet and the pressurizing pump and upstream of the circulation tank in the path.

かかる構成を備える水生生物の育成装置によれば、効率良く酸素濃度の高い水を循環槽に供給することができる。   According to the aquatic organism breeding apparatus having such a configuration, water having a high oxygen concentration can be efficiently supplied to the circulation tank.

前記構成を備える水生生物の育成装置において、前記酸素水循環装置は、前記育成槽および前記循環槽の少なくとも一方の水の酸素濃度を検出する酸素濃度検出部と、前記育成槽および前記循環槽の少なくとも一方の水の酸素濃度に基づいて前記気体導入部が導入する酸素導入量と前記加圧ポンプによる加圧量とを制御するコントローラと、をさらに有してもよい。   In the aquatic organism breeding apparatus having the above configuration, the oxygen water circulation device includes an oxygen concentration detection unit that detects an oxygen concentration of water in at least one of the growth tank and the circulation tank, and at least one of the growth tank and the circulation tank. The apparatus may further include a controller that controls the amount of oxygen introduced by the gas introduction unit and the amount of pressurization by the pressurizing pump based on the oxygen concentration of one of the waters.

かかる構成を備える水生生物の育成装置によれば、育成槽における溶存酸素濃度を、育成する水生生物に適した酸素濃度に保つことができる。   According to the aquatic organism breeding device having such a configuration, the dissolved oxygen concentration in the breeding tank can be maintained at an oxygen concentration suitable for the aquatic organism to be grown.

前記構成を備える水生生物の育成装置において、前記コントローラは、前記加圧ポンプの回転数を繰り返し変動させるものでもよい。   In the aquatic organism breeding apparatus having the above-described configuration, the controller may repeatedly change the number of revolutions of the pressurizing pump.

かかる構成を備える水生生物の育成装置によれば、循環槽内における水流量を変動させて、気体透過膜を膜厚方向に繰り返し変形させることができる。その結果、育成槽において「ゆらぎ」を生じさせることができる。   According to the aquatic organism breeding apparatus having such a configuration, the gas permeable membrane can be repeatedly deformed in the film thickness direction by changing the water flow rate in the circulation tank. As a result, "fluctuation" can be caused in the growing tank.

前記構成を備える水生生物の育成装置において、前記酸素水循環装置は、前記循環経路上で循環水の滅菌を行うUV装置を更に有してもよい。   In the aquatic organism breeding apparatus having the above configuration, the oxygen water circulation device may further include a UV device that sterilizes circulating water on the circulation path.

かかる構成を備える水生生物の育成装置によれば、循環水の滅菌が行われるので、生命力が弱い仔魚までの成長過程の水生生物の生残率を向上させることができる。   According to the aquatic organism breeding apparatus having such a configuration, since the circulating water is sterilized, the survival rate of aquatic organisms in the process of growing up to the larvae having weak vitality can be improved.

本発明によれば、水流が殆ど無く、溶存酸素濃度の高い環境をつくることができる。   ADVANTAGE OF THE INVENTION According to this invention, there is almost no water flow, and an environment with a high dissolved oxygen concentration can be created.

本実施形態にかかる水生生物の育成装置の概略構成図である。It is a schematic structure figure of an aquatic organism upbringing device concerning this embodiment. 本実施形態にかかる水生生物の育成装置の制御フローである。It is a control flow of the aquatic organism breeding device according to the present embodiment.

以下、本発明の実施形態について、図面を参照して説明する。本実施形態にかかる水生生物の育成装置Aは、図1に示すように、水槽1と、酸素水循環装置2とを備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The aquatic organism breeding apparatus A according to the present embodiment includes a water tank 1 and an oxygen water circulation apparatus 2 as shown in FIG.

水槽1は、水生生物を育成するための育成槽11と、酸素濃度の高い水を循環させる循環槽12とを備えている。育成槽11と循環槽12との間には、気体透過膜3が設けられている。図1に示す例の場合、水槽1が気体透過膜3によって仕切られ、気体透過膜3の上側に育成槽11が設けられ、気体透過膜3の下側に循環槽12が設けられているということもできる。気体透過膜3は、酸素を透過し、水を透過しないものであればよい。気体透過膜3として例えば酸素透過性に優れたシリコン製の膜を使用することができる。なお、上記「酸素濃度が高い水」とは、自然の水と比べて酸素濃度が高い水のことであり、例えば、酸素濃度が10ppm以上の水、好ましくは酸素濃度が20ppm以上の水である。後述する「酸素濃度が高い水」も同様である。   The water tank 1 includes a growing tank 11 for growing aquatic organisms and a circulation tank 12 for circulating water having a high oxygen concentration. The gas permeable membrane 3 is provided between the growth tank 11 and the circulation tank 12. In the case of the example shown in FIG. 1, the water tank 1 is partitioned by the gas permeable membrane 3, the growth tank 11 is provided above the gas permeable membrane 3, and the circulation tank 12 is provided below the gas permeable membrane 3. You can also. The gas permeable film 3 may be any material as long as it is permeable to oxygen and not permeable to water. As the gas permeable film 3, for example, a silicon film having excellent oxygen permeability can be used. The “water having a high oxygen concentration” refers to water having a high oxygen concentration as compared with natural water, for example, water having an oxygen concentration of 10 ppm or more, preferably water having an oxygen concentration of 20 ppm or more. . The same applies to “water having a high oxygen concentration” described later.

気体透過膜3の水槽1に対する取付構造は、特に限定されるものではないが、例えば、下部に開口およびフランジ112を有する上部容器111と、上部に開口およびフランジ122を有する下部容器121とを用いることができる。この場合、下部容器121と上部容器111との間に気体透過膜3を挟んで両者の締結用フランジ112,122をボルト13等にて締結することにより、気体透過膜3は、水槽1に固定されるとともに、水槽1を上下2槽に区画する。好ましくは、上部容器111と下部容器121との境界の水密性を十分に確保するために、上部容器111のフランジ112と下部容器121のフランジ122との間に、気体透過膜3の外周部と重ねてフランジパッキン(不図示)を挟み込むとよい。   The attachment structure of the gas permeable membrane 3 to the water tank 1 is not particularly limited. For example, an upper container 111 having an opening and a flange 112 at a lower portion and a lower container 121 having an opening and a flange 122 at an upper portion are used. be able to. In this case, the gas permeable membrane 3 is fixed to the water tank 1 by fastening the fastening flanges 112 and 122 between the lower vessel 121 and the upper vessel 111 with bolts 13 or the like. At the same time, the water tank 1 is divided into upper and lower tanks. Preferably, in order to sufficiently secure the watertightness of the boundary between the upper container 111 and the lower container 121, the outer peripheral portion of the gas permeable membrane 3 is provided between the flange 112 of the upper container 111 and the flange 122 of the lower container 121. It is preferable to sandwich a flange packing (not shown) in an overlapping manner.

酸素水循環装置2は、循環槽12に酸素濃度の高い水(以下「高濃度酸素水」ともいう。)を循環させる。この酸素水循環装置2は、高濃度酸素水を循環させる循環経路21と、気体導入部24と、加圧ポンプ23と、気体溶解装置25と、酸素濃度検出部26と、UV装置27と、コントローラ28とを備えている。   The oxygen water circulation device 2 circulates water having a high oxygen concentration (hereinafter also referred to as “high-concentration oxygen water”) in the circulation tank 12. The oxygen water circulation device 2 includes a circulation path 21 for circulating high-concentration oxygen water, a gas introduction unit 24, a pressure pump 23, a gas dissolution device 25, an oxygen concentration detection unit 26, a UV device 27, and a controller. 28.

循環経路21は、主に配管類を用いて構成されている。循環経路21の一端部21aは循環槽12の下部一側部に連通され、循環経路21の他端部21bは、循環槽12の下部他側部に連通されている。   The circulation path 21 is mainly configured using piping. One end 21 a of the circulation path 21 communicates with one lower side of the circulation tank 12, and the other end 21 b of the circulation path 21 communicates with another lower side of the circulation tank 12.

気体導入部24は、循環経路21を流れる循環水に純酸素(以下単に「酸素」ともいう。)を導入する。気体導入部24によって循環水に酸素が導入されると、循環水が気液混合水になる。本実施形態では、純酸素を循環水に導入しているが、純酸素の代わりに酸素を含む気体を循環水に導入するようにしてもよい。   The gas introduction unit 24 introduces pure oxygen (hereinafter, also simply referred to as “oxygen”) into circulating water flowing through the circulation path 21. When oxygen is introduced into the circulating water by the gas introducing unit 24, the circulating water becomes gas-liquid mixed water. In the present embodiment, pure oxygen is introduced into the circulating water, but a gas containing oxygen may be introduced into the circulating water instead of pure oxygen.

本実施形態では、気体導入部24は、酸素の供給源と循環経路21とを接続する気体供給路241と、気体供給路241の途中に設けられた気体投入バルブ242と、気体投入バルブ242を開閉駆動するアクチュエータ243と、気体供給路241上の気体投入バルブ242より下流側に設けられた逆止弁244と、を備えている。   In the present embodiment, the gas introduction unit 24 includes a gas supply path 241 that connects the oxygen supply source and the circulation path 21, a gas supply valve 242 provided in the gas supply path 241, and a gas supply valve 242. An actuator 243 for opening and closing is provided, and a check valve 244 provided downstream of the gas supply valve 242 on the gas supply path 241.

加圧ポンプ23は、循環経路21において、気体導入部24によって酸素が導入される位置より下流側、かつ、循環槽12より上流側に設けられている。加圧ポンプ23が駆動すると、循環経路21に沿って水が循環する。なお、加圧ポンプ23は、気体導入部24によって酸素が導入される位置より上流側に設けられてもよい。   The pressurizing pump 23 is provided in the circulation path 21 on the downstream side of the position where oxygen is introduced by the gas introduction unit 24 and on the upstream side of the circulation tank 12. When the pressure pump 23 is driven, water circulates along the circulation path 21. Note that the pressure pump 23 may be provided on the upstream side of the position where oxygen is introduced by the gas introduction unit 24.

気体溶解装置25は、循環経路21において、加圧ポンプ23より下流側、かつ、循環槽12より上流側に設けられている。気体溶解装置25は、タンクを備えており、加圧ポンプ23によって当該タンク内で気液混合水が加圧され、酸素が水に加圧溶解される。損結果、タンク内で高濃度酸素水が生成される。タンク内で生成された高濃度酸素水は、循環経路21を通じて循環槽21に供給される。なお、気液溶解装置25としては、例えば、特開2011−235200号公報、特開2010−137176号公報などに開示された周知のもの(同公報では「気液溶解タンク」と称している。)を使用することができる。   The gas dissolving device 25 is provided in the circulation path 21 on the downstream side of the pressure pump 23 and on the upstream side of the circulation tank 12. The gas dissolving device 25 includes a tank, and the gas-liquid mixed water is pressurized in the tank by the pressurizing pump 23, so that oxygen is pressurized and dissolved in the water. As a result, high-concentration oxygen water is generated in the tank. The high-concentration oxygen water generated in the tank is supplied to the circulation tank 21 through the circulation path 21. As the gas-liquid dissolving device 25, for example, a well-known device disclosed in JP-A-2011-235200, JP-A-2010-137176, and the like (referred to as “gas-liquid dissolving tank” in the same publication). ) Can be used.

酸素濃度検出部26は、酸素濃度センサを用いて構成されており、育成槽11の水の酸素濃度を検出する。   The oxygen concentration detection unit 26 is configured using an oxygen concentration sensor, and detects the oxygen concentration of the water in the growing tank 11.

UV装置27は、紫外線を用いて循環経路21で循環する水の滅菌を行う。本実施形態では、UV装置27は、気液溶解装置25と循環槽12との間に設けられている。   The UV device 27 sterilizes water circulating in the circulation path 21 using ultraviolet rays. In the present embodiment, the UV device 27 is provided between the gas-liquid dissolving device 25 and the circulation tank 12.

コントローラ28は、育成槽11の水の酸素濃度を所望の濃度に保つため、酸素濃度検出部26によって検出される育成槽11の水の酸素濃度に基づいて、気体導入部24が導入する酸素導入量と加圧ポンプ23による加圧量とを制御する。また、コントローラ28は、加圧ポンプ23の回転速度を周期的に繰り返し変動させることにより、循環槽12内における水流量を変動させて、後述する「ゆらぎ」を発生させる。なお、コントローラ28は、例えばシーケンサを用いて構成することができる。   The controller 28 controls the oxygen introduction by the gas introduction unit 24 based on the oxygen concentration of the water in the growth tank 11 detected by the oxygen concentration detection unit 26 in order to maintain the oxygen concentration of the water in the growth tank 11 at a desired concentration. The amount and the amount of pressure applied by the pressure pump 23 are controlled. Further, the controller 28 periodically changes the rotation speed of the pressurizing pump 23 to change the flow rate of water in the circulating tank 12 to generate “fluctuation” described later. The controller 28 can be configured using, for example, a sequencer.

次に、本実施形態にかかる水生生物の育成装置Aにおける水の循環について説明する。なお、以下では、水槽1、循環経路21および循環経路21上の各機器類に水が満たされているものとして説明する。   Next, circulation of water in the aquatic organism breeding apparatus A according to the present embodiment will be described. In the following, description will be made on the assumption that the water tank 1, the circulation path 21, and each device on the circulation path 21 are filled with water.

コントローラ28によって、加圧ポンプ23が駆動され、気体導入部24の気体投入バルブ242が開放されると、循環経路21に沿って水が循環するとともに、気体導入部24において循環水に対して酸素が導入され、気液混合水が生成される。生成された気液混合水は、加圧ポンプ23によって気体溶解装置25に送り込まれる。更に、加圧ポンプ23の加圧作用により、気液混合水(酸素と水の混合水)は、気体溶解装置25のタンク内で当該気液混合水に含まれる酸素が水に加圧溶解されることにより、高濃度酸素水が生成される。生成された高濃度酸素水は、気液溶解装置25から送出され、UV装置27で滅菌処理が施された後、循環槽12内に送給される。他方、循環槽12の他側部からは、比較的酸素濃度が低下した水(酸素が消費された水)が循環経路21の他端部21bに送り出される。循環槽12から循環経路21に送り出された比較的酸素濃度の低い水は、気体導入部24および気体溶解装置25を通過することで再び高濃度酸素水になって循環槽12に送給される。   When the pressurizing pump 23 is driven by the controller 28 and the gas introduction valve 242 of the gas introduction unit 24 is opened, water circulates along the circulation path 21 and oxygen is supplied to the gas introduction unit 24 with respect to the circulating water. Is introduced to generate gas-liquid mixed water. The generated gas-liquid mixed water is sent to the gas dissolving device 25 by the pressure pump 23. Further, by the pressurizing action of the pressurizing pump 23, the gas-liquid mixed water (mixed water of oxygen and water) is pressurized and dissolved in the water in the tank of the gas dissolving device 25. As a result, high-concentration oxygen water is generated. The generated high-concentration oxygen water is sent out from the gas-liquid dissolving device 25, sterilized by the UV device 27, and then sent into the circulation tank 12. On the other hand, from the other side of the circulation tank 12, water having a relatively low oxygen concentration (water in which oxygen has been consumed) is sent to the other end 21 b of the circulation path 21. The water having a relatively low oxygen concentration sent from the circulation tank 12 to the circulation path 21 passes through the gas introduction unit 24 and the gas dissolving device 25 to become high-concentration oxygen water again and is sent to the circulation tank 12. .

循環槽12に高濃度酸素水が循環供給されると、循環槽12の水の酸素濃度が育成槽11の酸素濃度より格段に高くなるため、循環槽12の高濃度酸素水の中の酸素が気体透過膜3を透過して育成槽11に移動し、育成槽11の水の酸素濃度が上昇する。   When the high-concentration oxygen water is circulated and supplied to the circulation tank 12, the oxygen concentration in the water in the circulation tank 12 is significantly higher than the oxygen concentration in the growth tank 11, so that the oxygen in the high-concentration oxygen water in the circulation tank 12 is reduced. The gas passes through the gas permeable membrane 3 and moves to the growth tank 11, where the oxygen concentration of the water in the growth tank 11 increases.

また、コントローラ28は、育成槽11の酸素濃度を酸素濃度検出部26により常時モニタリングしながら、育成槽11の水の酸素濃度が所望の酸素濃度の範囲に保たれるように、循環経路21を流れる循環水に対して、加圧ポンプ23による加圧量と、気体導入部24による酸素導入量を制御する。この制御の一例を図2を用いて説明する。なお、以下の制御例では、育成槽11内の水の酸素濃度の下限閾値をXppmとし、上限閾値をYppmとする。また、後述するバルブ開度A1〜A3は、A3<A1<A2であり、ポンプ回転数N1〜N3は、N3<N1<N2である。   Further, the controller 28 constantly monitors the oxygen concentration of the growing tank 11 by the oxygen concentration detecting unit 26, and controls the circulation path 21 so that the oxygen concentration of the water in the growing tank 11 is maintained in a desired oxygen concentration range. The amount of pressurization by the pressurizing pump 23 and the amount of oxygen introduced by the gas introduction unit 24 are controlled for the flowing circulating water. An example of this control will be described with reference to FIG. In the following control example, the lower limit threshold of the oxygen concentration of the water in the growth tank 11 is set to Xppm, and the upper limit threshold is set to Yppm. Further, the valve openings A1 to A3 described later satisfy A3 <A1 <A2, and the pump rotation speeds N1 to N3 satisfy N3 <N1 <N2.

先ず、コントローラ28は、酸素濃度検出部26により検出される育成槽11内の水の酸素濃度がXppmを超えているか否かを判定し(S1)、酸素濃度がXppm以下であると判定した場合(S1:No)、育成槽11内の水の酸素濃度が所望範囲に満たないため、気体投入バルブ242の開度がA2になるようにアクチュエータ243を駆動制御するとともに、ポンプ回転数がN2になるように加圧ポンプ23を制御する(S2)。なお、既に、気体投入バルブ242の開度がA2であり、ポンプ回転数がN2である場合は、その状態が維持される。S2の後、再び手順がS1に戻される。   First, the controller 28 determines whether or not the oxygen concentration of the water in the growth tank 11 detected by the oxygen concentration detecting unit 26 exceeds X ppm (S1), and determines that the oxygen concentration is X ppm or less. (S1: No), since the oxygen concentration of the water in the growth tank 11 is less than the desired range, the actuator 243 is drive-controlled so that the opening degree of the gas injection valve 242 becomes A2, and the pump rotation speed becomes N2. The pressurizing pump 23 is controlled so as to be (S2). In addition, when the opening degree of the gas injection valve 242 is already A2 and the pump rotation speed is N2, that state is maintained. After S2, the procedure returns to S1 again.

前記S1において、コントローラ28が、育成槽11内の水の酸素濃度がXppmを超えていると判定した場合(S1:Yes)、次いで、育成槽11内の水の酸素濃度がYppm未満であるか否かを判定し(S3)、酸素濃度がYppm未満である場合(S3:Yes)、育成槽11内の水の酸素濃度が所望範囲内にあるため、コントローラ28は、気体投入バルブ242のバルブ開度がA1になるようにアクチュエータ243を制御し、ポンプ回転数がN1になるように加圧ポンプ23を制御する(S4)。なお、既に、気体投入バルブ242の開度がA1であり、ポンプ回転数がN1である場合は、その状態が維持される。S4の後、再び手順がS1に戻される。   In S1, when the controller 28 determines that the oxygen concentration of the water in the growing tank 11 exceeds X ppm (S1: Yes), then, the controller 28 determines whether the oxygen concentration of the water in the growing tank 11 is less than Y ppm. It is determined whether or not the oxygen concentration is less than Yppm (S3: Yes). If the oxygen concentration of the water in the growth tank 11 is within the desired range, the controller 28 determines whether the oxygen concentration of the gas input valve 242 is equal to or less than the desired value. The actuator 243 is controlled so that the opening degree becomes A1, and the pressurizing pump 23 is controlled so that the pump rotation speed becomes N1 (S4). In addition, when the opening degree of the gas injection valve 242 is already A1 and the pump rotation speed is N1, that state is maintained. After S4, the procedure returns to S1 again.

前記S3において、コントローラ28が、酸素濃度がYppm以上であると判定した場合(ステップS3:No)、育成槽11内の水の酸素濃度が所望範囲を超えているため、コントローラ28は、気体投入バルブ242の開度がA3になるようにアクチュエータ243を制御しポンプ回転数がN3になるように加圧ポンプ23を制御する(S5)。なお、既に、気体投入バルブ242の開度がA3であり、ポンプ回転数がN3である場合は、その状態が維持される。S5の後、再び手順がS1に戻される。   When the controller 28 determines in step S3 that the oxygen concentration is equal to or higher than Y ppm (step S3: No), the controller 28 determines whether the oxygen concentration of the water in the growing tank 11 exceeds the desired range. The actuator 243 is controlled so that the opening of the valve 242 becomes A3, and the pressurizing pump 23 is controlled so that the pump rotation speed becomes N3 (S5). If the opening degree of the gas injection valve 242 is already A3 and the pump rotation speed is N3, that state is maintained. After S5, the procedure returns to S1 again.

また、コントローラ28は、加圧ポンプ23のポンプ回転数を上記ポンプ回転数N1、N2又はN3を中心に繰り返し上下に変動させることにより、循環槽12内における水流量を変動させて、気体透過膜3を膜厚方向に(上下に)繰り返し変形させる。これにより、育成槽11において水の「ゆらぎ」が生じる。水の「ゆらぎ」によって、仔魚までの成長過程の水生生物に対して好ましい育成環境とすることができる。ここでいう「ゆらぎ」に関して、水生生物の実生態系での産卵場所である水底の窪みなどでは、水流ではない、水の「ゆらぎ」が有り、実生態系での産卵場所に似た環境を作ることができる。   Further, the controller 28 changes the water flow rate in the circulation tank 12 by repeatedly changing the pump rotation speed of the pressurizing pump 23 up and down around the pump rotation speed N1, N2, or N3, thereby changing the gas permeable membrane. 3 is repeatedly deformed (up and down) in the film thickness direction. Thereby, “fluctuation” of water occurs in the growth tank 11. The “fluctuation” of water can provide a favorable breeding environment for aquatic organisms in the process of growing up to larvae. Regarding the "fluctuation" here, there is not a water flow but a "fluctuation" in the water, such as a depression at the bottom of the water, which is where spawning occurs in the real ecosystem of aquatic organisms. Can be made.

以上の説明から明らかなように、本実施形態にかかる水生生物の育成装置Aによれば、育成槽11と循環槽12との間に気体透過膜3が設けられているため、酸素濃度の高い循環槽12の水から育成槽11へ酸素が移動し、育成槽11の水の酸素濃度を所望の値にまで高めて、その濃度を保つことができる。また、気体透過膜3が設けられていることから、循環槽12内の水流が育成槽11に浸入することはなく、育成槽において水流が生じることは殆どない。このため、育成槽11は、水流によって悪影響を受ける水生生物(例えば仔魚までの成長過程の水生生物)にとって、良好な育成環境となる。   As is apparent from the above description, according to the aquatic organism breeding apparatus A according to the present embodiment, the gas permeable membrane 3 is provided between the breeding tank 11 and the circulation tank 12, so that the oxygen concentration is high. Oxygen moves from the water in the circulation tank 12 to the growth tank 11, and the oxygen concentration in the water in the growth tank 11 can be increased to a desired value, and the oxygen concentration can be maintained. In addition, since the gas permeable membrane 3 is provided, the water flow in the circulation tank 12 does not enter the growth tank 11, and the water flow hardly occurs in the growth tank. Therefore, the breeding tank 11 provides a favorable breeding environment for aquatic organisms that are adversely affected by the water flow (for example, aquatic organisms that are growing up to larvae).

<実施形態の変形例>
既述した実施形態では、酸素濃度検出部26は、育成槽11の水の酸素濃度を検出するものであったが、循環層12の水の酸素濃度と育成槽11の水の酸素濃度とは互いに連動するため、循環層12の水の酸素濃度から育成槽11の水の酸素濃度をある程度推定することができる。このことから、酸素濃度検出部26によって循環層12の水の酸素濃度を検出し、コントローラ28が、循環層12の水の酸素濃度に基づいて、気体導入部24が導入する酸素導入量と加圧ポンプ23による加圧量とを制御するようにして、育成槽11の溶存酸素濃度を所望の範囲に保つことも可能である。
<Modification of Embodiment>
In the above-described embodiment, the oxygen concentration detection unit 26 detects the oxygen concentration of the water in the growing tank 11. Since they are linked to each other, the oxygen concentration of the water in the growing tank 11 can be estimated to some extent from the oxygen concentration of the water in the circulating layer 12. From this, the oxygen concentration of the water in the circulating layer 12 is detected by the oxygen concentration detecting unit 26, and the controller 28 determines the amount of oxygen introduced by the gas introducing unit 24 based on the oxygen concentration of the water in the circulating layer 12. By controlling the amount of pressurization by the pressure pump 23, the dissolved oxygen concentration in the growth tank 11 can be maintained in a desired range.

循環槽12に酸素濃度の高い水を循環させる酸素水循環装置は、既述した酸素水循環装置2に限定されず、循環槽12に酸素濃度の高い水を循環させることができるものであれば、実施形態に係る酸素水循環装置2と置き換えることも可能である。   The oxygen water circulating device for circulating the water having a high oxygen concentration in the circulation tank 12 is not limited to the oxygen water circulating device 2 described above. It is also possible to replace the oxygen water circulation device 2 according to the embodiment.

以上に説明した本実施形態は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。   The embodiment described above can be implemented in various other forms without departing from the spirit, gist, or main characteristics. Therefore, the above-described embodiment is merely an example in every aspect, and should not be interpreted in a limited manner.

本発明は、例えば、水生生物を育成するための装置に適用することができる。   The present invention can be applied to, for example, an apparatus for growing aquatic organisms.

A 水生生物の育成装置
2 酸素水循環装置
3 気体透過膜
11 育成槽
12 循環槽
21 循環経路
23 加圧ポンプ
24 気体導入部
25 気体溶解装置
26 酸素濃度検出部
27 UV装置
28 コントローラ

Reference Signs List A Aquatic organism growing device 2 Oxygen water circulating device 3 Gas permeable membrane 11 Growing tank 12 Circulating tank 21 Circulation path 23 Pressurizing pump 24 Gas introducing unit 25 Gas dissolving device 26 Oxygen concentration detecting unit 27 UV device 28 Controller

Claims (6)

水生生物を育成するための育成槽と、
酸素濃度の高い水を循環させる循環槽と、
を備え、
前記育成槽と前記循環槽との間に、酸素を透過し、水を透過しない気体透過膜が設けられた
ことを特徴とする水生生物の育成装置。
A growing tank for growing aquatic organisms,
A circulation tank for circulating water with a high oxygen concentration,
With
A growing apparatus for aquatic organisms, wherein a gas-permeable membrane that transmits oxygen and does not transmit water is provided between the growing tank and the circulation tank.
請求項1に記載の水生生物の育成装置において、
前記循環槽は、前記気体透過膜を介して前記育成槽の下方に設けられた
ことを特徴とする水生生物の育成装置。
An aquatic breeding apparatus according to claim 1,
The cultivation apparatus for aquatic organisms, wherein the circulation tank is provided below the growth tank via the gas permeable membrane.
請求項1又は2に記載の水生生物の育成装置において、
前記循環槽に酸素濃度の高い水を循環させる酸素水循環装置をさらに備え、
前記酸素水循環装置は、
一端部が前記循環槽の一部に連通され、他端部が前記循環槽の他部に連通された循環経路と、
前記循環経路に酸素又は酸素を含む気体を導入する気体導入部と、
前記循環経路に設けられた加圧ポンプと、
前記循環経路において、前記気体導入部および前記加圧ポンプより下流側、かつ、前記循環槽より上流側に設けられた気体溶解装置と、
を有することを特徴とする水生生物の育成装置。
An aquatic breeding apparatus according to claim 1 or 2,
Further provided with an oxygen water circulation device for circulating high oxygen concentration water in the circulation tank,
The oxygen water circulation device,
A circulation path having one end communicating with a part of the circulation tank and the other end communicating with another part of the circulation tank;
A gas introduction unit that introduces oxygen or a gas containing oxygen into the circulation path,
A pressure pump provided in the circulation path,
In the circulation path, a gas dissolving device provided downstream from the gas introduction unit and the pressure pump, and provided upstream from the circulation tank,
A growing apparatus for aquatic organisms, comprising:
請求項3に記載の水生生物の育成装置において、
前記酸素水循環装置は、
前記育成槽および前記循環槽の少なくとも一方の水の酸素濃度を検出する酸素濃度検出部と、
前記育成槽および前記循環槽の少なくとも一方の水の酸素濃度に基づいて前記気体導入部が導入する酸素導入量と前記加圧ポンプによる加圧量とを制御するコントローラと、
をさらに有することを特徴とする水生生物の育成装置。
An aquatic breeding apparatus according to claim 3,
The oxygen water circulation device,
An oxygen concentration detection unit that detects the oxygen concentration of water in at least one of the growth tank and the circulation tank,
A controller that controls the amount of oxygen introduced by the gas introduction unit and the amount of pressurization by the pressurizing pump based on the oxygen concentration of water in at least one of the growth tank and the circulation tank,
A growing apparatus for aquatic organisms, further comprising:
請求項3又は4に記載の水生生物の育成装置において、
前記コントローラは、前記加圧ポンプの回転数を繰り返し変動させる
ことを特徴とする水生生物の育成装置。
An aquatic breeding apparatus according to claim 3 or 4,
The aquatic organism breeding apparatus, wherein the controller repeatedly varies the number of revolutions of the pressurizing pump.
請求項3〜5の何れか1項に記載の水生生物の育成装置において、
前記酸素水循環装置は、
前記循環経路上で循環水の滅菌を行うUV装置を更に有する
ことを特徴とする育成装置。


An aquatic breeding apparatus according to any one of claims 3 to 5,
The oxygen water circulation device,
A breeding apparatus, further comprising a UV device that sterilizes circulating water on the circulation path.


JP2018110878A 2018-06-11 2018-06-11 Aquatic organism breeding equipment Active JP7051598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018110878A JP7051598B2 (en) 2018-06-11 2018-06-11 Aquatic organism breeding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110878A JP7051598B2 (en) 2018-06-11 2018-06-11 Aquatic organism breeding equipment

Publications (2)

Publication Number Publication Date
JP2019213460A true JP2019213460A (en) 2019-12-19
JP7051598B2 JP7051598B2 (en) 2022-04-11

Family

ID=68917865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110878A Active JP7051598B2 (en) 2018-06-11 2018-06-11 Aquatic organism breeding equipment

Country Status (1)

Country Link
JP (1) JP7051598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182547A1 (en) * 2020-03-12 2021-09-16 株式会社林養魚場 Oxygen control system for fish and shellfish culture tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237447A (en) * 1991-01-21 1992-08-25 Nippon Haigou Shiryo Kk Method for culture and device for the method
JP2005081801A (en) * 2003-09-11 2005-03-31 Konica Minolta Holdings Inc Inkjet recording paper sheet
JP2005124420A (en) * 2003-10-21 2005-05-19 Nakajima Kogyo:Kk Method for rearing larval fish/fry and apparatus therefor
US20130180460A1 (en) * 2011-12-08 2013-07-18 Robert W. Stiles, Jr. Aquaculture Pump System and Method
JP5629288B2 (en) * 2012-06-12 2014-11-19 株式会社林養魚場 Seafood culture apparatus and method
JP2017099331A (en) * 2015-12-02 2017-06-08 永光産業株式会社 Freshness maintaining device and freshness maintaining method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237447B2 (en) 2002-05-20 2009-03-11 株式会社松浦機械製作所 Processing head with laser torch and its operating method
JP5081801B2 (en) 2008-12-12 2012-11-28 三相電機株式会社 Gas-liquid dissolution tank in microbubble generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237447A (en) * 1991-01-21 1992-08-25 Nippon Haigou Shiryo Kk Method for culture and device for the method
JP2005081801A (en) * 2003-09-11 2005-03-31 Konica Minolta Holdings Inc Inkjet recording paper sheet
JP2005124420A (en) * 2003-10-21 2005-05-19 Nakajima Kogyo:Kk Method for rearing larval fish/fry and apparatus therefor
US20130180460A1 (en) * 2011-12-08 2013-07-18 Robert W. Stiles, Jr. Aquaculture Pump System and Method
JP5629288B2 (en) * 2012-06-12 2014-11-19 株式会社林養魚場 Seafood culture apparatus and method
JP2017099331A (en) * 2015-12-02 2017-06-08 永光産業株式会社 Freshness maintaining device and freshness maintaining method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182547A1 (en) * 2020-03-12 2021-09-16 株式会社林養魚場 Oxygen control system for fish and shellfish culture tank
KR20210118929A (en) * 2020-03-12 2021-10-01 하야시 트라우트 팜 인코퍼레이티드 Oxygen control system for fish farms
KR102667339B1 (en) 2020-03-12 2024-05-21 하야시 트라우트 팜 인코퍼레이티드 Oxygen control system for fish and shellfish farming tank

Also Published As

Publication number Publication date
JP7051598B2 (en) 2022-04-11

Similar Documents

Publication Publication Date Title
EP2327298A1 (en) Device for supplying gas into water
JP4877281B2 (en) Ballast water treatment apparatus and ballast water treatment method
JP2012115199A (en) Liquid feeder for agriculture
JP2006263563A (en) Apparatus for sterilizing microbe or the like in ballast water
JP2008206448A (en) Disinfectable hydroponic apparatus and hydroponic method
JP2009195163A (en) Culture apparatus for algae
JPWO2015111592A1 (en) Closed circulation filtration aquaculture system
JP2016531578A (en) Bioreactor with addition tube
WO2013051604A1 (en) Device for controlling dissolved oxygen amount
JP2011189254A (en) Water purifying method, and water purifier
JP4358779B2 (en) High concentration oxygen bubble water supply device and plant cultivation device using the same
JP4942070B2 (en) Breeding facilities using deep ocean water and water quality adjustment method
CN107839852B (en) Ballasting of System and method for controlling a system
JP4966905B2 (en) Breeding water purification method
JP7051598B2 (en) Aquatic organism breeding equipment
JP2017079628A (en) Method for controlling oxygen concentration dissolved in breeding water
JP2008178792A (en) Biological reaction method and biological reaction apparatus
JP2007222063A (en) Culture apparatus and method
JP2019514408A (en) Aquaculture system
JP2018153159A (en) Aquarium fish growth system
JP6063162B2 (en) Cell culture method and cell culture apparatus
WO2013051603A1 (en) Supply device for dissolved gas
CN105900913B (en) A kind of ecological balanced system for the aquatic animal density culture acting on oxygen consumption
KR20160058376A (en) Nutriculture system for leaf vegetables and fruit vegetables using micro and/or nano bubbles and apparatus used in the system for sterilizing nutrient solution using ozone
KR20100022879A (en) Method and system for improving water and/or ground quality in farm of marine products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220330

R150 Certificate of patent or registration of utility model

Ref document number: 7051598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150