JP4957716B2 - Method for measuring chlorine content of incinerated ash, method for converting incinerated ash into cement raw material, and method for producing cement - Google Patents
Method for measuring chlorine content of incinerated ash, method for converting incinerated ash into cement raw material, and method for producing cement Download PDFInfo
- Publication number
- JP4957716B2 JP4957716B2 JP2008330685A JP2008330685A JP4957716B2 JP 4957716 B2 JP4957716 B2 JP 4957716B2 JP 2008330685 A JP2008330685 A JP 2008330685A JP 2008330685 A JP2008330685 A JP 2008330685A JP 4957716 B2 JP4957716 B2 JP 4957716B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- raw material
- incineration ash
- incinerated ash
- ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004568 cement Substances 0.000 title claims description 49
- 238000000034 method Methods 0.000 title claims description 34
- 239000002994 raw material Substances 0.000 title claims description 30
- 229910052801 chlorine Inorganic materials 0.000 title claims description 29
- 239000000460 chlorine Substances 0.000 title claims description 29
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000004140 cleaning Methods 0.000 claims description 33
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 22
- 229910017604 nitric acid Inorganic materials 0.000 claims description 22
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 15
- 238000005443 coulometric titration Methods 0.000 claims description 15
- 238000005406 washing Methods 0.000 claims description 14
- 239000002699 waste material Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 24
- 238000005259 measurement Methods 0.000 description 15
- 238000003756 stirring Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- -1 silver ions Chemical class 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- QPILZZVXGUNELN-UHFFFAOYSA-M sodium;4-amino-5-hydroxynaphthalene-2,7-disulfonate;hydron Chemical compound [Na+].OS(=O)(=O)C1=CC(O)=C2C(N)=CC(S([O-])(=O)=O)=CC2=C1 QPILZZVXGUNELN-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Processing Of Solid Wastes (AREA)
Description
本発明は、都市ごみ等の焼却灰をセメント原料化の目的で洗浄する際、工程の時間短縮による効率化のため、洗浄液中の塩化物イオン量を迅速に分析する焼却灰の塩素含有量の測定方法、その測定方法を用いて焼却灰をセメント原料化する方法、及びその原料を使用したセメント製造方法に関するものである。 In the present invention, when incineration ash such as municipal waste is washed for the purpose of converting to cement raw material, the chlorine content of the incineration ash is quickly analyzed to improve the efficiency of shortening the process time. The present invention relates to a measuring method, a method for converting incinerated ash into a cement raw material using the measuring method, and a cement manufacturing method using the raw material.
都市ごみや産業廃棄物の焼却によって生じる焼却灰は、SiO2、Al2O3、Fe2O3、CaOなどのセメント原料と同様の成分を含んでいるため、セメント原料としての利用が図られている。しかし一方では、焼却灰には塩素も残留しており、この塩素がセメントキルンの安定操業に悪影響を及ぼし、またセメントの品質を劣化させるため、脱塩素処理してセメント原料化することが行われている。
このような焼却灰をセメント原料化する従来技術として特許文献1記載の技術がある。この特許文献1記載の技術は、焼却灰の脱塩素の手段として水洗処理を施すようにしており、その水洗時のpHを制御した上で複数回洗浄(第一次洗浄、第二次洗浄、さらに必要なら第三次以上の洗浄)を行うことにより、塩素を溶解して除去している。
As a conventional technique for converting such incinerated ash into a raw material for cement, there is a technique described in
ところで、焼却灰の塩素含有量は一律ではなく、洗浄1回でセメント原料として使用可能な程度までに塩素を除去できる場合もあれば、2回以上の洗浄を必要とする場合もある。この場合、洗浄回数が1回で済むのか、2回目以降の洗浄を必要とするかは、焼却灰中の残留塩素量を測定して、その測定結果で判断すればよいが、測定値が判明するまでに時間を要するため、通常は、洗浄を2回以上繰り返し行うようにしている。このため、2回洗浄不要なものまで2回以上の洗浄をすることになり、処理効率が悪くなっている。
本発明は、このような事情に鑑みてなされたもので、焼却灰の塩素含有量を迅速に測定して、洗浄工程の時間短縮を図り、焼却灰のセメント原料化の処理効率を高めることを目的とする。
By the way, the chlorine content of the incinerated ash is not uniform, and there are cases where chlorine can be removed to the extent that it can be used as a cement raw material by one cleaning, and there are cases where two or more cleanings are required. In this case, it is sufficient to measure the amount of residual chlorine in the incineration ash and determine whether the number of cleanings is only one or whether the second and subsequent cleanings are necessary. Since it takes time to do so, the washing is usually repeated twice or more. For this reason, it is necessary to perform cleaning twice or more to those that do not require cleaning twice, and the processing efficiency is deteriorated.
The present invention has been made in view of such circumstances, and measures the chlorine content of incineration ash quickly to shorten the cleaning process time and to improve the processing efficiency of incineration ash as a cement raw material. Objective.
本発明者らは、上記課題を解決するために種々研究を重ね、迅速分析が可能な電量滴定法による測定に最適な前処理条件を見出すことができれば、分析に要する時間の短縮が図れると考え、鋭意研究した結果、溶出条件をある一定の範囲に設定することで、迅速かつ精度良く焼却灰中の残留塩素量を測定する方法を見出し、上記の問題を解決するに至った。 The inventors of the present invention have made various studies to solve the above-mentioned problems, and will be able to shorten the time required for analysis if they can find the optimum pretreatment conditions for measurement by coulometric titration capable of rapid analysis. As a result of intensive research, the inventors have found a method for measuring the amount of residual chlorine in incineration ash quickly and accurately by setting the elution conditions within a certain range, and have solved the above problems.
すなわち、本発明の焼却灰の塩素含有量の測定方法は、都市ごみ等の焼却灰を硝酸溶液中に分散することにより含有塩分を溶解し、その溶解液の塩化物イオン量を電量滴定法によって測定することを特徴とする。
電量滴定法は、電解液中で銀線の電解酸化により生成する銀イオンによって試料中の塩化物イオンを滴定し、滴定に要した電気量からファラデーの法則に基づき塩化物イオン量を演算するものであり、簡便な方法で、極めて短時間で測定することができるものである。この電量滴定法で塩化物イオン量を測定する場合、焼却灰を電量滴定できる試料を作製する必要があるが、その試料作製に時間を要するようでは電量滴定法を採用する意義が損なわれる。本発明は、焼却灰を硝酸溶液中に分散することにより含有塩分を溶解して、その溶解液を電量滴定の試料とするものであり、硝酸溶液を用いたことにより短時間で試料作製することができる。
That is, the method for measuring the chlorine content of incineration ash according to the present invention is to dissolve incineration ash such as municipal waste in a nitric acid solution, dissolve the contained salt, and determine the chloride ion content of the solution by coulometric titration. It is characterized by measuring.
In the coulometric titration method, chloride ions in a sample are titrated with silver ions generated by electrolytic oxidation of silver wire in the electrolyte, and the amount of chloride ions is calculated from the amount of electricity required for titration based on Faraday's law. It can be measured in a very short time by a simple method. When measuring the amount of chloride ions by this coulometric titration method, it is necessary to prepare a sample capable of coulometric titration of the incinerated ash, but the significance of adopting the coulometric titration method is impaired if the sample preparation takes time. The present invention dissolves contained salt by dispersing incinerated ash in a nitric acid solution, and uses the dissolved solution as a sample for coulometric titration. By using a nitric acid solution, a sample can be prepared in a short time. Can do.
また、本発明の焼却灰のセメント原料化方法は、都市ごみ等の焼却灰を洗浄してセメント原料化する方法であって、焼却灰を一次洗浄した後、サンプリングして硝酸溶液中に分散することにより含有塩分を溶解し、その溶解液の塩化物イオン量を電量滴定法によって測定し、その測定結果に応じて焼却灰の再度の洗浄の要否を選択し、塩化物イオン量が多い焼却灰を再度洗浄して得る複数回洗浄焼却灰と、塩化物イオン量が少ない焼却灰について再度の洗浄をしない一回洗浄焼却灰とに分別してセメント原料化することを特徴とする。 Further, the method for converting the incineration ash into a cement raw material according to the present invention is a method for cleaning the incineration ash of municipal waste or the like into a cement raw material. The amount of chloride ion in the solution is measured by coulometric titration, and the incineration ash is selected according to the measurement result, and incineration with a large amount of chloride ion is selected. The incinerated ash obtained by washing the ash again is separated into the incinerated ash having a small amount of chloride ions and the once washed incinerated ash that is not washed again to be used as a cement raw material.
焼却灰の中には複数回洗浄することを必ずしも要しない場合があり、一回の洗浄の後に、塩化物イオン量を測定して、再度の洗浄の要否を判断することにより、洗浄を効率的に行って時間短縮を図ることができる。この場合、通常の焼却灰は少なくとも一回は洗浄が必要であり、一次洗浄の前に測定することとすると、すべての焼却灰について測定することになり、かえって作業が煩雑になるため、一次洗浄後に測定することとした。その測定方法としては、前述したように硝酸溶液に焼却灰を一部溶解して電量滴定の試料を作製するので、試料作製から塩化物イオン量測定までの時間も短くて済み、全体として処理時間を大幅に短縮することができる。 Some incineration ash may not always need to be washed more than once, and after one wash, measure the amount of chloride ions to determine if it needs to be washed again. To save time. In this case, normal incineration ash needs to be cleaned at least once, and if it is measured before the primary cleaning, all incineration ash will be measured, and the work becomes rather complicated. We decided to measure later. As described above, the incineration ash is partially dissolved in the nitric acid solution to prepare a sample for coulometric titration, as described above, so the time from sample preparation to chloride ion content measurement can be shortened, and the overall processing time Can be greatly shortened.
そして、本発明のセメント製造方法は、前記セメント原料化方法によって得られた焼却灰をセメントクリンカ製造用原料としてセメント製造設備に投入してセメントを製造することを特徴とする。
事前に適切に脱塩素処理されているので、セメントキルンを安定的に操業することができるとともに、焼却灰のセメント原料化からセメント製造までを計画的に処理することができ、多量の処理を可能にする。
The cement production method of the present invention is characterized in that cement is produced by introducing incinerated ash obtained by the above-mentioned cement raw material production method into a cement production facility as a raw material for producing cement clinker.
Since it has been properly dechlorinated in advance, the cement kiln can be operated stably, and from incinerated ash to cement production can be systematically processed, enabling a large amount of processing. To.
本発明によれば、焼却灰を硝酸溶液中に分散して含有塩分を溶解した溶解液を電量滴定の試料とすることにより、短時間で試料作製することができ、迅速分析可能な電量滴定法による測定と相俟って試料作製から測定までの時間を大幅に短縮することができる。そして、この測定方法を用いることにより、焼却灰のセメント原料化に際して、洗浄を効率的に行うことができ、ひいては、焼却灰を計画的かつ多量に処理することが可能になる。 According to the present invention, a coulometric titration method in which incinerated ash is dispersed in a nitric acid solution and a dissolved solution containing salt is used as a sample for coulometric titration, so that the sample can be prepared in a short time and can be quickly analyzed. Combined with the measurement by, the time from sample preparation to measurement can be greatly shortened. And by using this measuring method, when incineration ash is made into a cement raw material, it can wash efficiently, and it becomes possible to process incineration ash systematically and in large quantities by extension.
以下、本発明の一実施形態を図面を参照しながら説明する。
図1は、本実施形態における焼却灰のセメント原料化方法の処理フローを示している。
このセメント原料化方法では、焼却灰を受け入れ、異物選別機で異物を選別分離した後、一次洗浄し、必要に応じて複数回洗浄した後、洗浄後の焼却灰をセメント原料としてセメント製造工場に出荷するようになっており、一次洗浄した後の焼却灰の含有塩素量を測定して、複数回洗浄するものと、そのまま出荷するものとを分別している。以下、これを順に詳述する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a processing flow of the method for converting incinerated ash into a cement raw material in this embodiment.
In this method of cement raw material, incineration ash is accepted, foreign matter is sorted and separated by a foreign matter sorter, and then primary cleaning is performed, and multiple cleanings are performed as necessary. The amount of chlorine contained in the incinerated ash after the primary cleaning is measured, and what is washed a plurality of times and what is shipped as it is are separated. Hereinafter, this will be described in detail.
都市ごみ焼却炉等で生じる焼却灰には、空き缶等の金属類やガラス片や陶磁器片などを含んでおり、まず、これらの異物を選別分離する。この異物選別機としては、メッシュスクリーンを利用して大きい異物を選別分離するふるい選別機、比重差を利用して重量物を選別分離するジグ選別機、磁力を利用して金属異物を選別分離する磁選機等が用いられる。 Incineration ash generated in municipal waste incinerators includes metals such as empty cans, glass pieces, ceramic pieces, and the like. First, these foreign substances are sorted and separated. As this foreign matter sorter, a sieve sorter that sorts and separates large foreign matters using a mesh screen, a jig sorter that sorts and separates heavy items using a specific gravity difference, and sorts and separates metallic foreign matters using magnetic force. A magnetic separator or the like is used.
そして、これら異物が除去された焼却灰を一次洗浄する。この一次洗浄に使用される一次洗浄槽は、例えば内部にスクレーパ付きコンベアやプロペラが収容されており、投入される焼却灰が各スクレーパの移動やプロペラの撹拌により、洗浄槽の内底面に滞留することなく洗浄される構成である。洗浄液としては、水とpH調整剤として硫酸や硝酸が使用され、洗浄槽内のpHを例えば10程度に維持するように酸の添加量が調整される。焼却灰は、この一次洗浄槽内で例えば2〜4時間コンベアを駆動して撹拌しながら洗浄した後、取り出される。 And the incineration ash from which these foreign materials were removed is primarily cleaned. The primary cleaning tank used for this primary cleaning contains, for example, a conveyor with a scraper and a propeller inside, and the incinerated ash to be charged stays on the inner bottom surface of the cleaning tank due to the movement of each scraper and the stirring of the propeller. It is the structure which is washed without. As the cleaning liquid, water and sulfuric acid or nitric acid are used as the pH adjusting agent, and the amount of acid added is adjusted so that the pH in the cleaning tank is maintained at about 10, for example. The incinerated ash is taken out in the primary washing tank after being washed with stirring by driving the conveyor for 2 to 4 hours, for example.
次に、この一次洗浄槽から取り出した焼却灰について、その塩素含有量を測定する。その測定に際しては、電量滴定法が用いられ、その試料を次のようにして作製する。
温度を20±3℃に調整した5〜25%硝酸溶液を用意し、一次洗浄した後の焼却灰からサンプリングして、焼却灰1gに対して硝酸溶液が5〜20mlとなる比率で焼却灰を硝酸溶液中に入れ、15〜30℃を保持したまま、これを電磁撹拌式のスターラー等で攪拌することにより、硝酸溶液中に焼却灰を分散する。
Next, about the incinerated ash taken out from this primary washing tank, the chlorine content is measured. In the measurement, a coulometric titration method is used, and the sample is prepared as follows.
Prepare a 5-25% nitric acid solution with the temperature adjusted to 20 ± 3 ° C., sample from the incinerated ash after the primary cleaning, and incinerate the incinerated ash at a ratio of 5-20 ml of nitric acid solution to 1 g of incinerated ash. The incinerated ash is dispersed in the nitric acid solution by stirring in a nitric acid solution while stirring at 15 to 30 ° C. with a magnetic stirring stirrer or the like.
硝酸溶液の濃度が5%未満では焼却灰の塩素含有量と測定値の相関関係が悪くなり、15%を越えるとゲル状物質が生成して後のろ過作業に時間を要したり、後の緩衝溶液添加によるpH調整が困難になる傾向があるため、硝酸溶液の濃度は5〜15%内に調整することが望ましく、その中でも、できるだけ正確に10%前後に調整することがより望ましい。また、温度が15℃未満では塩素の溶出が不完全で焼却灰の塩素含有量と測定値の相関関係が悪くなり、30℃を越えるとゲル状物質が生成して後のろ過作業に時間を要する傾向があるため、温度は制御装置のコントロール範囲で20〜25℃に保持することが望ましい。さらに、撹拌時間は5分以上が望ましく、5〜60分とするが、実用的には後述の試験結果で明らかなように5分間で十分である。この際、試料が難溶解性の場合には20〜25%の硝酸溶液で溶解させた後、水を加えて最終的に5〜15%内に調整する。 If the concentration of the nitric acid solution is less than 5%, the correlation between the chlorine content of the incinerated ash and the measured value will deteriorate, and if it exceeds 15%, a gel-like substance will be produced, and it will take time for subsequent filtration work, Since it tends to be difficult to adjust the pH by adding a buffer solution, it is desirable to adjust the concentration of the nitric acid solution within 5 to 15%, and among these, it is more desirable to adjust the concentration to around 10% as accurately as possible. Also, if the temperature is lower than 15 ° C, the elution of chlorine is incomplete and the correlation between the chlorine content of the incinerated ash and the measured value becomes worse, and if it exceeds 30 ° C, a gel-like substance is generated and the subsequent filtration work takes time. Because of this tendency, it is desirable to keep the temperature at 20 to 25 ° C. within the control range of the control device. Further, the stirring time is desirably 5 minutes or more, and is 5 to 60 minutes, but 5 minutes is sufficient for practical use as will be apparent from the test results described later. At this time, if the sample is hardly soluble, the sample is dissolved with a 20 to 25% nitric acid solution, and then water is added to finally adjust the sample to 5 to 15%.
このようにして得られた混濁液をろ過して、そのろ過液に緩衝溶液を加えて希釈する。例えば、ろ過液を1ml量り取り、緩衝溶液10mlで希釈する。そして、電量滴定式塩分測定器を用いて希釈溶液の塩化物イオン量を測定し、焼却灰中の残留塩素量に換算する。 The turbid liquid thus obtained is filtered, and a buffer solution is added to the filtrate for dilution. For example, 1 ml of the filtrate is weighed and diluted with 10 ml of buffer solution. Then, the amount of chloride ions in the diluted solution is measured using a coulometric titration-type salinity meter and converted to the amount of residual chlorine in the incinerated ash.
この測定結果により、焼却灰の塩素含有量がしきい値以下の場合は、そのままセメント原料としてセメント製造工場に出荷され、塩素含有量がしきい値Sを超えている場合は、複数回洗浄することが行われる。そのしきい値Sとしては、0.2〜0.7%とされ、好ましくは0.2%とされる。 According to this measurement result, when the chlorine content of the incinerated ash is below the threshold value, it is shipped as it is to the cement manufacturing plant as a cement raw material, and when the chlorine content exceeds the threshold value S, it is washed multiple times. Is done. The threshold value S is 0.2 to 0.7%, preferably 0.2%.
セメント製造工場では、受け入れられた焼却灰は、通常のセメントクリンカ用原料(石灰石、粘土、珪石、鉄原料等)とともにセメント原料として原料ミル及びドライヤからプレヒータを経由してセメントキルンに投入される。この焼却灰は、セメント製造工場に受け入れられる前に塩素分の大部分が除去されているので、セメントキルンの操業に悪影響を及ぼすことがなく、したがって、通常の品質と変わらない良質のセメントクリンカを製造することができる。 In the cement manufacturing plant, the accepted incineration ash is fed into the cement kiln through a preheater from a raw material mill and dryer as a cement raw material together with ordinary cement clinker raw materials (limestone, clay, silica, iron raw materials, etc.). This incineration ash has a large amount of chlorine removed before it is accepted by the cement manufacturing plant, so it does not adversely affect the operation of the cement kiln, and therefore a high-quality cement clinker that does not differ from normal quality is used. Can be manufactured.
次に、本発明による塩素含有量の測定方法による効果を実証するために行った試験結果について説明する。
焼却灰と硝酸溶液について、その混合比(固液比)、硝酸溶液の濃度、処理温度、攪拌時間を変えながら、種々の試料を作製した。例えば、固液比=1/10の場合、焼却灰30gと硝酸溶液300gとをビーカーに入れてスターラーで所定時間攪拌した後、停止して固形分を沈澱させ、その上澄み液をシリンジで15ml採取し、これを0.45μmの目のフィルターでろ過し、そのろ過液1mlを緩衝溶液に添加して、電量滴定法により塩化物イオン量を測定した。
また、硝酸溶液に代えて、水を用いた試料も作製した。
この場合、焼却灰については、JIS R 5202「ポルトランドセメントの化学分析方法」に基づき、予め塩素含有量を精密に測定しておき、その測定結果とこの実証試験による測定結果とから、その相関係数(r2)を求めて、両者を比較した。その結果を表1に示す。相関係数が1に近いほど、従来の精密な測定と非常に類似した値が得られることを示す。
Next, the test results conducted to verify the effect of the chlorine content measuring method according to the present invention will be described.
Regarding the incinerated ash and nitric acid solution, various samples were prepared while changing the mixing ratio (solid-liquid ratio), the concentration of the nitric acid solution, the treatment temperature, and the stirring time. For example, when the solid-liquid ratio is 1/10, 30 g of incinerated ash and 300 g of nitric acid solution are put into a beaker and stirred for a predetermined time with a stirrer, then stopped to precipitate the solid content, and 15 ml of the supernatant is collected with a syringe. This was filtered through a 0.45 μm filter, 1 ml of the filtrate was added to the buffer solution, and the amount of chloride ions was measured by a coulometric titration method.
A sample using water instead of the nitric acid solution was also prepared.
In this case, incineration ash, based on JIS R 5202 "Chemical analysis method of Portland cement", the chlorine content is measured in advance and the correlation between the measurement result and the measurement result of this demonstration test. The number (r 2 ) was determined and compared. The results are shown in Table 1. It is shown that the closer the correlation coefficient is to 1, the more similar the value is obtained to the conventional precise measurement.
この表1から、5〜15%硝酸溶液に焼却灰を分散して5分以上攪拌することにより、従来の精密な測定との相関係数が1に近く、ほぼ同じ結果を得ることができることがわかる。攪拌時間としては5分あれば十分であり、30分を越えても相関係数の変化はほとんどない。硝酸溶液でなく水を用いた場合には、60分以上かけても相関係数が小さいため、迅速な測定は難しい。 From Table 1, by dispersing incineration ash in a 5-15% nitric acid solution and stirring for 5 minutes or more, the correlation coefficient with the conventional precise measurement is close to 1, and almost the same result can be obtained. Recognize. A stirring time of 5 minutes is sufficient, and even if it exceeds 30 minutes, there is almost no change in the correlation coefficient. When water is used instead of the nitric acid solution, rapid correlation is difficult because the correlation coefficient is small even over 60 minutes.
また、一次洗浄前の焼却灰、一次洗浄後の焼却灰、二次洗浄後の焼却灰のそれぞれについて、従来の精密な測定方法と本発明の方法とで塩素含有量をそれぞれ測定した。本発明の測定方法では、20℃の10%硝酸溶液で固液比を1/10とした。攪拌時間は5分とした。その結果を図2に示す。図2の横軸が従来の測定方法による塩素含有量であり、縦軸が本発明の方法による測定結果である。図中、Aが一次洗浄前の焼却灰、Bが一次洗浄後の焼却灰、Cが二次洗浄後の焼却灰をそれぞれ示している。
この図2に示すように、本発明の方法は、塩素含有量にかかわらず、従来の精密測定方法とほぼ同じ測定値を得ることができ、正確に測定できることがわかる。しかも、攪拌時間が5分という短時間で十分な測定精度を有しているものである。
Moreover, about each of the incineration ash before primary washing | cleaning, the incineration ash after primary washing | cleaning, and the incineration ash after secondary washing | cleaning, the chlorine content was measured with the conventional precision measuring method and the method of this invention, respectively. In the measurement method of the present invention, the solid-liquid ratio was set to 1/10 with a 10% nitric acid solution at 20 ° C. The stirring time was 5 minutes. The result is shown in FIG. The horizontal axis of FIG. 2 is the chlorine content by the conventional measurement method, and the vertical axis is the measurement result by the method of the present invention. In the figure, A indicates the incinerated ash before the primary cleaning, B indicates the incinerated ash after the primary cleaning, and C indicates the incinerated ash after the secondary cleaning.
As shown in FIG. 2, it can be seen that the method of the present invention can obtain almost the same measurement value as the conventional precision measurement method regardless of the chlorine content, and can be measured accurately. And it has sufficient measurement accuracy in a short stirring time of 5 minutes.
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、焼却灰のセメント原料化の設備をセメント製造工場とは別に設置して、受け入れた焼却灰をセメント原料化した後に、セメント製造工場に向けて出荷するようにしたが、セメント原料化の設備をセメント製造工場内に設置して、連続的に処理するようにしてもよい。また、二次洗浄に関しては、一次洗浄後の残留塩素含有量の測定結果に基づき洗浄液成分や洗浄時間を変えるようにしてもよく、塩素含有量が多い場合には、よりていねいな洗浄をするようにしてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, the facility for converting the incineration ash into a cement raw material is installed separately from the cement manufacturing plant, and after the received incineration ash is converted into a cement raw material, it is shipped to the cement manufacturing plant. A facility for converting to a cement raw material may be installed in a cement manufacturing plant and processed continuously. In addition, regarding secondary cleaning, the cleaning liquid components and cleaning time may be changed based on the measurement result of residual chlorine content after primary cleaning, and if the chlorine content is high, more careful cleaning is performed. It may be.
Claims (3)
焼却灰を一次洗浄した後、サンプリングして硝酸溶液中に分散することにより含有塩分を溶解し、その溶解液の塩化物イオン量を電量滴定法によって測定し、その測定結果に応じて焼却灰の再度の洗浄の要否を選択し、塩化物イオン量が多い焼却灰を再度洗浄して得る複数回洗浄焼却灰と、塩化物イオン量が少ない焼却灰について再度の洗浄をしない一回洗浄焼却灰とに分別してセメント原料化することを特徴とする焼却灰のセメント原料化方法。 It is a method of cleaning incineration ash such as municipal waste into cement raw material,
After the incineration ash is first washed, the salt content is dissolved by sampling and dispersing in the nitric acid solution, and the chloride ion content of the solution is measured by a coulometric titration method. Select whether or not cleaning is necessary again, and wash incineration ash obtained by washing again the incineration ash with a large amount of chloride ions, and incineration ash with no washing once for incineration ash with a small amount of chloride ions A method for making incinerated ash into cement raw material, which is classified into
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330685A JP4957716B2 (en) | 2008-12-25 | 2008-12-25 | Method for measuring chlorine content of incinerated ash, method for converting incinerated ash into cement raw material, and method for producing cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330685A JP4957716B2 (en) | 2008-12-25 | 2008-12-25 | Method for measuring chlorine content of incinerated ash, method for converting incinerated ash into cement raw material, and method for producing cement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010149057A JP2010149057A (en) | 2010-07-08 |
JP4957716B2 true JP4957716B2 (en) | 2012-06-20 |
Family
ID=42568759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008330685A Active JP4957716B2 (en) | 2008-12-25 | 2008-12-25 | Method for measuring chlorine content of incinerated ash, method for converting incinerated ash into cement raw material, and method for producing cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4957716B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108827989B (en) * | 2018-06-29 | 2020-01-17 | 山东大学 | Method for determining proportion of C-S-H gel adsorption-bound chloride ions in total bound chloride ions in cement paste |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313754A (en) * | 1988-06-13 | 1989-12-19 | Asahi Raifu Sci Kk | Method of measuring concentration of chlorine |
JP3368372B2 (en) * | 1998-05-21 | 2003-01-20 | 住友大阪セメント株式会社 | Method for converting incinerated ash into cement raw material |
JP2006281079A (en) * | 2005-03-31 | 2006-10-19 | Mitsui Eng & Shipbuild Co Ltd | Apparatus for reducing chlorine content of fly ash and method |
JP2007130608A (en) * | 2005-11-14 | 2007-05-31 | Hitachi Zosen Corp | Method and apparatus for removing chlorine from fly ash |
JP2008290005A (en) * | 2007-05-24 | 2008-12-04 | Mhi Environment Engineering Co Ltd | Incinerated ash treatment method and system |
-
2008
- 2008-12-25 JP JP2008330685A patent/JP4957716B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010149057A (en) | 2010-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zakrzewska-Koltuniewicz et al. | Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore | |
JP5962722B2 (en) | Chelating agent addition amount determination device and chelating agent addition amount determination method | |
Voglar et al. | Chelant soil-washing technology for metal-contaminated soil | |
CN113720804B (en) | Method for rapidly detecting residual quantity of flocculant in sand for concrete | |
CN107607434A (en) | A kind of sludge sand content detection method | |
Basri et al. | Aluminium recovery from water treatment sludge under different dosage of sulphuric acid | |
JP4957716B2 (en) | Method for measuring chlorine content of incinerated ash, method for converting incinerated ash into cement raw material, and method for producing cement | |
JP2012255689A (en) | Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material | |
Nugteren et al. | Removal of heavy metals from fly ash and the impact on its quality | |
JP2010260010A (en) | Method for determining necessary amount of chelating agent, and method for treating fly ash | |
Mărcuș et al. | Influence of Different Galvanic Sludge Types on the Extraction Efficiency of Chromium Ions | |
JP2008241455A (en) | Method for determining amphibole-asbestos in vermiculite | |
WO2019126519A1 (en) | Continuous monitoring of selenium in water | |
CN104155267A (en) | Method for chemically analyzing content of boron nitride in nickel-based powder material | |
Thapak et al. | Adsorption of copper ions in aqueous media using tea waste and sawdust as an adsorbent | |
CN108507899B (en) | Electrolytic metal magnesium bath slag analysis method | |
JP6150074B2 (en) | Method for quantitative analysis of copper concentration in copper-containing nickel chloride solution | |
WO2008139485A1 (en) | A process for the determination of hexavalent chromium in organic reductant treated chromite materials | |
JP2009039664A (en) | Acid treatment method for heavy metal contaminated soil | |
KR102126606B1 (en) | Method for analyzing contents of k in la compounds | |
JP2020186929A (en) | Elution method and elution amount measuring method | |
Kim et al. | Bismuth recovery from hydrochloric acid solution | |
JP2019203764A (en) | Method for reducing heavy metal and method for measuring elution amount of heavy metal using the same | |
JP2009240952A (en) | Waste treatment method | |
Saleman et al. | CHEMICAL AND MICROSCOPIC ANALYSIS OF WATER TREATMENT SLUDGE (WTS) FROM BUKIT SEBUKOR WATER TREATMENT PLANT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4957716 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |