JP4956729B2 - Electric discharge machining method and electric discharge machining apparatus - Google Patents

Electric discharge machining method and electric discharge machining apparatus Download PDF

Info

Publication number
JP4956729B2
JP4956729B2 JP2006132625A JP2006132625A JP4956729B2 JP 4956729 B2 JP4956729 B2 JP 4956729B2 JP 2006132625 A JP2006132625 A JP 2006132625A JP 2006132625 A JP2006132625 A JP 2006132625A JP 4956729 B2 JP4956729 B2 JP 4956729B2
Authority
JP
Japan
Prior art keywords
electric discharge
machining
workpiece
discharge machining
tool electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006132625A
Other languages
Japanese (ja)
Other versions
JP2007301675A (en
Inventor
一朗 新家
定男 佐野
正典 国枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Sodick Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Sodick Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2006132625A priority Critical patent/JP4956729B2/en
Publication of JP2007301675A publication Critical patent/JP2007301675A/en
Application granted granted Critical
Publication of JP4956729B2 publication Critical patent/JP4956729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、加工開始時に放電を発生しやすくし安定した加工を行なえるようにした放電加工方法および放電加工装置に関する。特に、微細加工において加工開始時の放電の安定性を高める放電加工方法および放電加工装置に関する。   The present invention relates to an electric discharge machining method and an electric discharge machining apparatus that can easily generate electric discharge at the start of machining and perform stable machining. In particular, the present invention relates to an electric discharge machining method and an electric discharge machining apparatus that increase the stability of electric discharge at the start of machining in micromachining.

新しい工具電極と被加工物とを対向配置させ放電加工を行なう加工開始時は、加工開始後しばらくの間、サーボが不安定で加工速度が上がらず、ある程度時間が経過すると順調に安定な加工を開始する現象が生じる(特許文献1参照)。特に、微細加工においては、この現象が顕著である。   When starting electric discharge machining with a new tool electrode and workpiece facing each other, the servo is unstable for a while after the start of machining, and the machining speed does not increase. A starting phenomenon occurs (see Patent Document 1). This phenomenon is particularly remarkable in microfabrication.

微細加工において加工が不安定な原因として、放電を発生させやすくする加工屑、電子、プラズマが不足していること、工具電極と被加工物の表面が平坦で滑らかであるために表面電界の集中が起こりにくいことなどから、放電が発生しにくくなっていることが考えられる。   The cause of instability in micromachining is the lack of processing dust, electrons, and plasma that make it easy to generate electric discharge, and the concentration of surface electric field due to the flat and smooth surface of the tool electrode and workpiece. It is conceivable that the discharge is less likely to occur due to the fact that it is difficult to occur.

ここで、貫通穴側面仕上げ加工の実験を行なった。工具電極は、銅φ10mmの円筒状で研削仕上げをしたもの、被加工物として、SKD11板厚6mmでφ9mmの下穴を設けたものを用い、工具電極を陰極、被加工物を陽極とする。放電制御としては、電圧を印加してから不特定の放電遅れ時間の後に放電の発生を検出してから一定のオン時間の電流を供給するようにして加工を行なう。   Here, a through hole side surface finishing experiment was conducted. The tool electrode is a cylinder with a copper φ10 mm and is ground, and the workpiece is an SKD11 plate with a thickness of 6 mm and a pilot hole of φ9 mm. The tool electrode is a cathode and the workpiece is an anode. As discharge control, processing is performed by supplying a current having a constant on-time after detecting the occurrence of discharge after an unspecified discharge delay time after applying a voltage.

この結果、加工開始後およそ5分間加工が不安定になり、その後、加工が安定した。加工が不安定なときと、加工が安定したときときとの電圧波形および電流波形を比較すると、加工が不安定なときは、放電遅れ時間に大きなばらつきがあり、オン時間とオフ時間は一定に制御された値であるので、放電遅れ時間の大きなばらつき、とりわけ放電遅れ時間が極端に長いパルスがあることが加工を不安定にする要因になっていることがわかった。なお、一般の放電現象における研究において、ある条件下における気中放電で遅れ時間のばらつきは、紫外線を照射することで抑えられることが知られている(非特許文献1)。   As a result, the processing became unstable for about 5 minutes after the start of processing, and then the processing became stable. Comparing the voltage waveform and current waveform when machining is unstable and when machining is stable, when machining is unstable, there is a large variation in the discharge delay time, and the on time and off time are controlled to be constant. Therefore, it was found that large variations in the discharge delay time, in particular, the presence of a pulse having an extremely long discharge delay time, caused the machining to become unstable. In research on general discharge phenomena, it is known that variation in delay time in air discharge under certain conditions can be suppressed by irradiating with ultraviolet rays (Non-Patent Document 1).

特公昭53−21557号公報Japanese Patent Publication No.53-21557 仁田久美、東京大学博士学位論文「マイクロギャップの放電現象」2004年12月16日、p19−20Kumi Nita, Doctoral Dissertation, The University of Tokyo, “Discharge Phenomenon of Microgap”, December 16, 2004, p19-20

加工開始時は、加工間隙に所定の電圧を印加してから放電が発生するまでの不特定の放電遅れ時間が数秒かかることがある。一般的な放電加工機では、サーボの応答周波数は数十Hzであり、速度は毎秒数十〜数千μmであって、加工間隙の平均電圧によりサーボ制御している。このため放電ギャップが数μm程度の微細加工において、このように放電遅れ時間が数秒と極端に長い場合には、加工が不安定となり、加工時間がかかるばかりでなく、工具電極と被加工物が接触し工具電極が破損したり、加工が進行しなくなったりする。 At the start of machining, an unspecified discharge delay time from application of a predetermined voltage to the machining gap to occurrence of discharge may take several seconds. In a general electric discharge machine, the servo response frequency is several tens of Hz, the speed is several tens to several thousand μm per second, and servo control is performed by the average voltage of the machining gap. For this reason, in micromachining with a discharge gap of about several μm , if the discharge delay time is extremely long, such as a few seconds, machining becomes unstable and not only takes machining time, but also the tool electrode and workpiece are The tool electrode may be damaged due to contact, or machining may not proceed.

本発明は、加工開始時に放電を発生しやすくし安定した加工を行なえるようにした放電加工方法および放電加工装置を提供することを目的とする。   An object of the present invention is to provide an electric discharge machining method and an electric discharge machining apparatus capable of easily generating electric discharge at the start of machining and performing stable machining.

本発明の放電加工方法は、工具電極と被加工物との間に放電加工液を介在させ電圧を印加して前記被加工物に加工穴を形成する放電ギャップが数μmの微細加工の放電加工方法において、単発放電毎に繰返し前記電圧が印加されたときに前記工具電極と前記被加工物とで形成される前記加工間隙における陰極である前記工具電極または前記被加工物に光電効果により前記陰極より電子が放出される最長波長よりも短い所定の波長の紫外線を照射するようにする。 In the electric discharge machining method of the present invention, an electric discharge machining liquid is interposed between a tool electrode and a workpiece, and a voltage is applied to form a machining hole in the workpiece. in the method, the cathode by a photoelectric effect to the tool electrode or the workpiece is the cathode in the machining gap formed between the tool electrode and the workpiece when repeatedly the voltage for each single discharge is applied Irradiation with ultraviolet rays having a predetermined wavelength shorter than the longest wavelength from which electrons are emitted is performed.

特に、上記紫外線の波長は次式で表される。

Figure 0004956729
ただし、はプランク定数、は電子の電荷、cは光の速度、Vは仕事関数である。 In particular, the wavelength of the ultraviolet rays is represented by the following formula.
Figure 0004956729
Where h is the Planck constant, e is the charge of the electrons, c is the speed of light, and V is the work function.

本発明の放電加工装置は、被加工物に加工穴を形成する放電ギャップが数μmの微細加工の放電加工装置において、工具電極と、前記工具電極に所定の加工間隙をもって放電加工液を介して対向配置される被加工物と、前記工具電極と前記被加工物とに接続される電源と、単発放電毎に繰返し前記電源により前記加工間隙に電圧が印加されたとき前記加工間隙における陰極である前記工具電極または前記被加工物に光電効果により前記陰極より電子が放出される最長波長より短い所定の波長の紫外線を照射する紫外線照射装置と、を備える。 An electric discharge machining apparatus according to the present invention is a micromachining electric discharge machining apparatus having a discharge gap of several μm for forming a machining hole in a workpiece, and has a predetermined machining gap between the tool electrode and the tool electrode via an electric discharge machining liquid. A workpiece disposed oppositely, a power source connected to the tool electrode and the workpiece, and a cathode in the machining gap when a voltage is applied to the machining gap repeatedly by the power source for each single discharge. and a UV irradiation device for irradiating the ultraviolet rays of the shorter predetermined wavelength than the longest wavelength electrons are emitted from the cathode by a photoelectric effect to the tool electrode or the workpiece.

特に、油系放電加工液を加工媒体とする場合は、紫外線が陰極の金属に到達する距離に紫外線照射装置を配置したことを特徴とする。 In particular, when an oil-based electric discharge machining fluid is used as a machining medium, an ultraviolet irradiation device is disposed at a distance where ultraviolet rays reach the cathode metal.

紫外線照射により初期電子を供給することによって、加工開始時に放電が発生しやすくなり、放電遅れ時間を短くすることができるので、より安定した加工を行なうようにすることができる。その結果、特に微細加工において、工具電極が破損したり、加工が進行しなくなることがなくなる。   By supplying initial electrons by irradiation with ultraviolet rays, electric discharge is easily generated at the start of processing, and the discharge delay time can be shortened, so that more stable processing can be performed. As a result, the tool electrode is not damaged or the processing does not progress particularly in the fine processing.

一般に、紫外線を照射させることにより電子放出が発生する、いわゆる光電効果があることが知られている。加工間隙に電圧を印加してから放電が発生して加工間隙に電流が流れるまでの不特定の放電遅れ時間は、初期電子が生成されるまでの“統計遅れ”と、電子なだれが生じ全路破壊に至るまでの“形成遅れ”に分けて考えることができる。   In general, it is known that there is a so-called photoelectric effect in which electron emission is generated by irradiating ultraviolet rays. The unspecified discharge delay time from the time the voltage is applied to the machining gap until the discharge occurs and the current flows through the machining gap is the “statistical delay” until the initial electrons are generated, and the electron avalanche occurs in all paths. This can be divided into “delay formation” until destruction.

本発明は、光電効果を利用して、陰極の金属に紫外線を強制的に照射することにより電子放出を発生させ、放電のための初期電子を生成して供給し、放電を発生しやすくする。そのため、初期電子が生成されるまでの統計遅れが短くなって放電の遅れ時間を短くするものである。放電遅れ時間が短くなることによって、加工開始時において加工が安定する。   In the present invention, the photoelectric effect is used to forcibly irradiate the metal of the cathode with ultraviolet rays to generate electron emission, to generate and supply initial electrons for discharge, and to easily generate discharge. Therefore, the statistical delay until the initial electrons are generated is shortened, and the discharge delay time is shortened. By shortening the discharge delay time, machining is stabilized at the start of machining.

図1に、放電遅れ時間が陰極への紫外線照射により短くなる具体的な測定例を示す。工具電極1と被加工物2との間に放電加工液3を介在させ電圧を印加するとともに工具電極と被加工物とで形成される加工間隙において工具電極1または被加工物2に光電効果により陰極より電子が放出されるレベルより短い所定の波長の紫外線を強制的に照射して、放電のための初期電子を生成して供給する。   FIG. 1 shows a specific measurement example in which the discharge delay time is shortened by ultraviolet irradiation of the cathode. A voltage is applied by interposing an electric discharge machining liquid 3 between the tool electrode 1 and the workpiece 2 and a photoelectric effect is applied to the tool electrode 1 or the workpiece 2 in a machining gap formed by the tool electrode and the workpiece. An initial electron for discharge is generated and supplied by forcibly irradiating ultraviolet rays having a predetermined wavelength shorter than the level at which electrons are emitted from the cathode.

図1は、日よけ枠体4内に工具電極(陽極)1と被加工物(陰極)2とを配置し、工具電極1と被加工物2の間に油系放電加工液3を介在させる。紫外線光源として波長約253nmの紫外線ランプ5を配置し被加工物2に紫外線を照射する。紫外線照射光源として、紫外線ランプ5に代えて光ファイバを用いることができ、紫外線照射光源を加工間隙に近接した放電加工液中に配置することができる。   In FIG. 1, a tool electrode (anode) 1 and a workpiece (cathode) 2 are arranged in a sunshade frame 4, and an oil-based electric discharge machining fluid 3 is interposed between the tool electrode 1 and the workpiece 2. Let An ultraviolet lamp 5 having a wavelength of about 253 nm is arranged as an ultraviolet light source to irradiate the workpiece 2 with ultraviolet rays. As the ultraviolet irradiation light source, an optical fiber can be used in place of the ultraviolet lamp 5, and the ultraviolet irradiation light source can be disposed in the electric discharge machining liquid close to the machining gap.

図2はそのときの放電加工回路である。一定時間の電流が流れたら出力を自動的に停止する電源装置10と工具電極1との間にスイッチングトランジスタ50を配置した。このスイッチングトランジスタ50がオフの状態で電源装置10の作動開始を行ない、その後スイッチングトランジスタ50をオンすることにより工具電極1と被加工物2との間で単発放電を発生させる。なお、符号70はオシロスコープである。   FIG. 2 shows an electric discharge machining circuit at that time. A switching transistor 50 is arranged between the power supply device 10 and the tool electrode 1 that automatically stops output when a current flows for a certain time. When the switching transistor 50 is off, the operation of the power supply device 10 is started, and then the switching transistor 50 is turned on to generate a single discharge between the tool electrode 1 and the workpiece 2. Reference numeral 70 denotes an oscilloscope.

図1において、先端R0.1mm角度50°に研削仕上げした円錐状の銅タングステン製工具電極(陽極)1と面粗さ3nmRzにラップ仕上げした平板状のSKD11製被加工物(陰極)2とをギャップを一定に保った状態で電圧を印加して、被加工物2に紫外線を照射したときの放電遅れ時間に及ぼす影響を調べた。   In FIG. 1, a conical copper tungsten tool electrode (anode) 1 ground at a tip R0.1 mm angle of 50 ° and a flat SKD11 workpiece (cathode) 2 lapped to a surface roughness of 3 nmRz are shown. A voltage was applied with the gap kept constant, and the influence on the discharge delay time when the workpiece 2 was irradiated with ultraviolet rays was examined.

このとき、紫外線の照射と非照射の比較の信頼性を高めるため、紫外線照射、非照射による単発放電を交互に50回繰り返し、ラウエプロット法によって比較した。   At this time, in order to increase the reliability of the comparison between ultraviolet irradiation and non-irradiation, single discharge by ultraviolet irradiation and non-irradiation was alternately repeated 50 times and compared by the Laue plot method.

ここで、ラウエプロット法とは、電極間に時間t=0で電圧Vを加えたとき、N回の試行で時間tまでに破壊しないものの回数nとNとの関係から、放電遅れ時間を初期電子が生成されるまでの統計遅れ時間Tsと電子なだれが生じ全路破壊に至るまでの形成遅れ時間Tfに分離する方法であり、数1で表される関係式を用いる。   Here, in the Laue plot method, when a voltage V is applied between electrodes at time t = 0, the discharge delay time is initially determined from the relationship between the number of times N and N that are not destroyed by time t in N trials. This is a method of separating the statistical delay time Ts until electrons are generated and the formation delay time Tf until electron avalanche occurs and the entire path is destroyed, and the relational expression expressed by Equation 1 is used.

Figure 0004956729
ここで、Tsavは、統計遅れ時間Tsの平均値である。数1からわかるように、log(n/N)とtとの関係は直線であり、その傾きがTsav、n/N=1におけるtの値が形成遅れ時間Tfである。
Figure 0004956729
Here, Tsav is an average value of the statistical delay time Ts. As can be seen from Equation 1, the relationship between log (n / N) and t is a straight line, the slope is Tsav, and the value of t at n / N = 1 is the formation delay time Tf.

照射開始のタイミングは、接触感知動作終了後の電圧印加直前とした。このため紫外線の照射時間は10秒以下である。紫外線による熱変位がギャップに及ぼす影響を調べたが、紫外線の照射後にも接触感知動作による位置決め精度はほとんど変化していない。   The irradiation start timing was immediately before the voltage application after the contact sensing operation was completed. For this reason, the irradiation time of ultraviolet rays is 10 seconds or less. Although the influence of thermal displacement due to ultraviolet rays on the gap was investigated, the positioning accuracy by the contact sensing operation has hardly changed even after irradiation with ultraviolet rays.

図3に紫外線照射によるラウエプロットを示す。放電遅れ時間が100msecと極端に長いデータは、紫外線を照射しない場合には、約20%であるのに対し紫外線を照射した場合は数%である。したがって、紫外線を照射することにより光電子が発生し極間に初期電子が現れる確立が高くなることによって統計遅れ時間が短くなっている。   FIG. 3 shows a Laue plot by ultraviolet irradiation. Data with an extremely long discharge delay time of 100 msec is about 20% when ultraviolet rays are not irradiated, and several percent when ultraviolet rays are irradiated. Therefore, the statistical delay time is shortened by increasing the probability that photoelectrons are generated by irradiation of ultraviolet rays and initial electrons appear between the electrodes.

光電効果で初期電子を生成するためには、紫外線の波長が光電効果により陰極より電子が放出されるレベルより短いことが必要である。この波長より長い紫外線をどれだけ強く照射しても電子の放出はない。この波長は、数2で表される。   In order to generate initial electrons by the photoelectric effect, it is necessary that the wavelength of ultraviolet light is shorter than the level at which electrons are emitted from the cathode by the photoelectric effect. No matter how intensely an ultraviolet ray longer than this wavelength is irradiated, no electrons are emitted. This wavelength is expressed by Equation 2.

Figure 0004956729
ただし、はプランク定数(6.626×10−34J・S)、は電子の電荷(1.602×10−19C)、cは光の速度(2.9979×108m/s)、Vは仕事関数である。
Figure 0004956729
Where h is Planck's constant (6.626 × 10−34J · S), e is the charge of electrons (1.602 × 10-19C), c is the speed of light (2.9799 × 108 m / s), and V is Work function.

一般的に放電加工に用いられる工具電極と被加工物の仕事関数と電子放出のための最長波長の計算結果を図4に示す。なお、仕事関数が小さいと電子を放出しやすく、2次電子放出による放電の形成が速いことや放電が発生するための初期電子が放出しやすくなることで、放電遅れ時間が短くなる。   FIG. 4 shows a calculation result of a work function of a tool electrode and a workpiece generally used for electric discharge machining and a longest wavelength for electron emission. Note that when the work function is small, electrons are likely to be emitted, and discharge formation due to secondary electron emission is quick, and initial electrons for generating discharge are likely to be emitted, thereby shortening the discharge delay time.

また、放電加工液が光を透過する必要がある。図5に、ある油系放電加工液の紫外線波長による透過率測定結果が示される。透過率の測定は、加工液層(深さ)5mmと1mmで行なっている。   Moreover, the electric discharge machining liquid needs to transmit light. FIG. 5 shows the result of measuring the transmittance of an oil-based electrical discharge machining fluid according to the ultraviolet wavelength. The transmittance is measured with a working fluid layer (depth) of 5 mm and 1 mm.

ブーゲ・ベールの法則によると入射光の強さIと透過光の強さI、溶液層の厚さ(深さ)bとの関係式は数3で示される。 According to Bouge-Beer's law, the relational expression between the intensity of incident light I 0 , the intensity of transmitted light I, and the thickness (depth) b of the solution layer is expressed by Equation 3.

Figure 0004956729
Figure 0004956729

数3と図5結果によって図6示す深さに対する透過率の関係が得られる。その結果、上記油系放電加工液の場合、例えば、波長250nmで放電加工液の深さ3mm以下、好ましくは1mm以下の条件で紫外線が陰極の金属に到達し、光電子が放出される。このように、一般の放電加工で用いられる油系放電加工液を加工媒体とする場合は、紫外線が陰極の金属に到達する距離に紫外線照射光源を配置する。 The number 3 and results depending on the relationship of the transmittance versus depth shown in Figure 6 in FIG. 5 is obtained. As a result, in the case of the oil-based electric discharge machining fluid, for example, ultraviolet rays reach the cathode metal under the condition of a wavelength of 250 nm and a depth of the electric discharge machining fluid of 3 mm or less, preferably 1 mm or less, and photoelectrons are emitted. As described above, when the oil-based electric discharge machining fluid used in general electric discharge machining is used as the machining medium, the ultraviolet irradiation light source is disposed at a distance where the ultraviolet rays reach the cathode metal.

本発明は、放電加工に利用される。特に、微細加工において加工開始時の放電の安定性を高めることができる。本発明は、微細加工における加工の可能性を広げる。   The present invention is used for electric discharge machining. In particular, it is possible to improve the stability of electric discharge at the start of processing in fine processing. The present invention extends the possibilities of processing in microfabrication.

本発明の実施の形態を示す構成図である。It is a block diagram which shows embodiment of this invention. 本発明の実施の形態を示す回路図である。It is a circuit diagram which shows embodiment of this invention. 本発明と従来の放電遅れ時間の割合を示すラウエプロット図である。It is a Laue plot figure which shows the ratio of this invention and the conventional discharge delay time. 材料に対する仕事関数と電子放出のための最長波長の計算結果を示す図である。It is a figure which shows the calculation result of the longest wavelength for the work function with respect to material, and electron emission. ある油系放電加工液の紫外線波長による透過率測定結果を示すグラフである。It is a graph which shows the transmittance | permeability measurement result by the ultraviolet wavelength of a certain oil-based electric discharge machining fluid. 図5に示す放電加工液における深さに対する透過率の関係を示すグラフである。It is a graph which shows the relationship of the transmittance | permeability with respect to the depth in the electric discharge machining fluid shown in FIG.

符号の説明Explanation of symbols

1 工具電極
2 被加工物
3 放電加工液
4 日よけ枠体
5 紫外線ランプ
DESCRIPTION OF SYMBOLS 1 Tool electrode 2 Work piece 3 Electric discharge machining fluid 4 Sunshade frame 5 Ultraviolet lamp

Claims (4)

工具電極と被加工物との間に放電加工液を介在させ電圧を印加して前記被加工物に加工穴を形成する放電ギャップが数μmの微細加工の放電加工方法において、単発放電毎に繰返し前記電圧が印加されたときに前記工具電極と前記被加工物とで形成される前記加工間隙における陰極である前記工具電極または前記被加工物に光電効果により前記陰極より電子が放出される最長波長より短い所定の波長の紫外線を照射するようにした放電加工方法。 In a micromachining electric discharge machining method in which an electric discharge machining liquid is interposed between a tool electrode and a workpiece and a voltage is applied to form a machining hole in the workpiece, and the electric discharge gap is several μm. longest wavelength electrons from the cathode are emitted by the photoelectric effect in said tool electrode or the workpiece is the cathode in the machining gap formed by a tool electrode and said workpiece when said voltage is applied An electric discharge machining method in which ultraviolet rays having a shorter predetermined wavelength are irradiated. 前記紫外線の波長は次式で表される請求項1に記載の放電加工方法。
Figure 0004956729
ただし、はプランク定数、は電子の電荷、cは光の速度、Vは仕事関数である。
The electric discharge machining method according to claim 1, wherein the wavelength of the ultraviolet light is represented by the following formula.
Figure 0004956729
Where h is the Planck constant, e is the charge of the electrons, c is the speed of light, and V is the work function.
被加工物に加工穴を形成する放電ギャップが数μmの微細加工の放電加工装置において、工具電極と、前記工具電極に所定の加工間隙をもって放電加工液を介して対向配置される被加工物と、前記工具電極と前記被加工物とに接続される電源と、単発放電毎に繰返し前記電源により前記加工間隙に電圧が印加されたとき前記加工間隙における陰極である前記工具電極または前記被加工物に光電効果により前記陰極より電子が放出される最長波長より短い所定の波長の紫外線を照射する紫外線照射装置と、を備えた放電加工装置。 In a micromachining electric discharge machining apparatus having a discharge gap of several μm for forming a machining hole in a workpiece, a tool electrode, and a workpiece arranged opposite to the tool electrode with a predetermined machining gap via an electric discharge machining liquid A power source connected to the tool electrode and the workpiece; and the tool electrode or the workpiece that is a cathode in the machining gap when a voltage is applied to the machining gap repeatedly by the power source for each single discharge . discharge machining apparatus and an ultraviolet light irradiation unit for emitting ultraviolet light of the short predetermined wavelength than the longest wavelength electrons are emitted from the cathode by the photoelectric effect. 油系放電加工液を加工媒体とする場合は、紫外線が陰極の金属に到達する距離に前記紫外線照射装置を配置したことを特徴とする請求項4に記載の放電加工装置。 5. The electric discharge machining apparatus according to claim 4, wherein when the oil-based electric discharge machining liquid is used as a machining medium, the ultraviolet irradiation device is disposed at a distance at which ultraviolet rays reach the metal of the cathode.
JP2006132625A 2006-05-11 2006-05-11 Electric discharge machining method and electric discharge machining apparatus Expired - Fee Related JP4956729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132625A JP4956729B2 (en) 2006-05-11 2006-05-11 Electric discharge machining method and electric discharge machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132625A JP4956729B2 (en) 2006-05-11 2006-05-11 Electric discharge machining method and electric discharge machining apparatus

Publications (2)

Publication Number Publication Date
JP2007301675A JP2007301675A (en) 2007-11-22
JP4956729B2 true JP4956729B2 (en) 2012-06-20

Family

ID=38836059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132625A Expired - Fee Related JP4956729B2 (en) 2006-05-11 2006-05-11 Electric discharge machining method and electric discharge machining apparatus

Country Status (1)

Country Link
JP (1) JP4956729B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3706124A1 (en) * 1987-02-25 1988-09-08 Agie Ag Ind Elektronik METHOD FOR ELECTROEROSIVELY MACHINING ELECTRICALLY LOW OR NON-CONDUCTIVE WORKPIECES, AND ELECTROEROSION MACHINE FOR IMPLEMENTING THE METHOD
JP2000133408A (en) * 1998-10-30 2000-05-12 Toshiba Corp Laser induced discharge generator and generation method thereof
JP4757470B2 (en) * 2004-09-17 2011-08-24 株式会社ワイ・ワイ・エル Electric discharge machining apparatus and method

Also Published As

Publication number Publication date
JP2007301675A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
CN102149510B (en) Method and apparatus for laser machining
KR101210653B1 (en) Laser processing method and apparatus using electric field
JP5967857B2 (en) Electric discharge machining apparatus and method
CN103323435B (en) The Laser-induced Breakdown Spectroscopy detection system of pre-ablation is defocused based on dipulse
GB2557746A (en) Device and method for machining materials by combining electrochemical discharging and laser
KR20170119704A (en) Method for localizing nano pore fabrication on a membrane by laser irradiation during controlled breakdown
Roth et al. Influence of oxidizing gas on the stability of dry electrical discharge machining process
WO2002094498A1 (en) Laser machining apparatus
Vadillo et al. Depth‐resolved analysis by laser‐induced breakdown spectrometry at reduced pressure
CN203385665U (en) Laser-induced breakdown spectroscopy (LIBS) detection system based on double pulse defocusing pre-ablating
JP4956729B2 (en) Electric discharge machining method and electric discharge machining apparatus
DE102015203847B4 (en) Neutral particles sputtering mass spectrometer device
JP4286164B2 (en) Laser processing monitoring system
JPH08155670A (en) Laser beam machine and its machining method
Zhang et al. Observation of ECM gap phenomena through transparent electrode
JP6205603B2 (en) Carbon dioxide laser device
JPH11211898A (en) Method and device for generating pulsed excitation atomic beam and pulsed ultraviolet light
JP3844868B2 (en) Laser / discharge combined machining method and apparatus
JP5115463B2 (en) Plasma processing equipment
Maradia et al. EDM process analysis using high-speed imaging
JP2010205446A (en) Ion source
Ho et al. Electric field assisted field monitoring laser drilling in transparent and hard brittle materials
WO2005026784A3 (en) Micro-discharge optical source apparatus and method and system for analyzing a sample
KR101212460B1 (en) Apparatus and method for monitoring laser processing status using plasma
JP2009059627A (en) Ion source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees