JP4953502B2 - Two-dimensional scanning optical radar sensor - Google Patents

Two-dimensional scanning optical radar sensor Download PDF

Info

Publication number
JP4953502B2
JP4953502B2 JP2000302760A JP2000302760A JP4953502B2 JP 4953502 B2 JP4953502 B2 JP 4953502B2 JP 2000302760 A JP2000302760 A JP 2000302760A JP 2000302760 A JP2000302760 A JP 2000302760A JP 4953502 B2 JP4953502 B2 JP 4953502B2
Authority
JP
Japan
Prior art keywords
scanning
light
inspection
reflector
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000302760A
Other languages
Japanese (ja)
Other versions
JP2002107452A (en
Inventor
白井  稔人
弘一 蓬原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2000302760A priority Critical patent/JP4953502B2/en
Publication of JP2002107452A publication Critical patent/JP2002107452A/en
Application granted granted Critical
Publication of JP4953502B2 publication Critical patent/JP4953502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、物体監視を立体的な領域で行える2次元走査型光レーダセンサに関し、特に、センサ正常を確認しつつ物体監視が行える2次元走査型光レーダセンサに関する。
【0002】
【従来の技術】
例えば、無人搬送車に関する国際安全規格では、進路上の物体を監視するための光レーダセンサは、進路上に横たわる人の発見等を配慮して、床面から所定高以下の位置で無人搬送車に取り付けるべきと規定されている。しかし、光ビームを2次元で走査して立体空間を監視する2次元走査型光レーダセンサを利用すれば、設置高が規定値以上であっても走査ビームを床面方向へも向けることができるので、実質的に上記規格の要件を満たすことができ、光レーダセンサの取付け自由度を高められる。
【0003】
2次元走査型光レーダセンサとしては、例えば信学技法Vol.99,No.516「2次元スキャニングレーダの開発」や、特開平11−306485号公報等で開示されたもの等がある。
前者の2次元走査型光レーダセンサは、レーザダイオードから発せられた光ビームをポリゴンミラーで反射して空間へ放射し、走査ビームの光軸上に物体が存在すれば、物体からの反射光の受光で物体有りが通報される。そして、ポリゴンミラーは角錐台形状で各反射面の傾斜角を異ならせているので、ポリゴンミラーで反射して空間に放射される光ビームの走査が2次元になる。これにより、走査ビームの放射領域が光ビーム反射点を頂点とした立体となり、物体を立体的な領域で監視できる。
【0004】
後者の2次元走査型光レーダセンサは、発光部からの光ビームを、ガルバノミラーで反射して所定領域内へ投光し、所定領域内に物体があれば、その反射光が受光手段で受光されて物体有りと判定される。ガルバノミラーは、特開平7−175005号公報、特開平7−218857号公報等で公知のもので、互いに直交する回動軸でそれぞれ軸支された2つの可動部を駆動手段でそれぞれ独立に揺動駆動してミラーを傾動する。これにより、光ビームの走査が2次元となり走査ビームの放射領域が立体になる。
【0005】
【発明が解決しようとする課題】
ところで、前記国際安全規格では、無人搬送車と人との衝突事故の重大性に鑑み、搭載する光レーダセンサは故障時に危険側に誤らないことが要求され、この場合、センサが正常であることの確認機能が必要である。しかし、上述したいずれの2次元走査型光レーダセンサも、センサの正常動作確認機能については示されていない。
【0006】
尚、1次元走査型光レーダセンサについては、正常動作確認機能を備えたものが、例えば特開平11−144161号公報等で公知である。
この1次元走査型光レーダセンサは、レーザダイオードから発せられた光ビームを回動軸が1つであるガルバノミラーで1次元に走査し、走査ビームの光軸上に物体が存在すれば、その反射光の受光により物体有りが通報される。そして、この1次元走査型光レーダセンサでは、物体監視領域の端部近傍に正常動作確認用の検査用反射体を備え、この検査用反射体からの反射光に基づいて正常動作確認手段によりセンサの正常動作を確認する構成である。
【0007】
前記正常動作確認手段は、ガルバノミラーによる光ビームの放射方位が検査用反射体の存在する方位である時に、反射光の受光があれば正常、受光がなければ異常と判定する。そして、正常動作確認手段からセンサ正常の確認出力(論理値1)が発生している時に、不存在判定手段から物体無しの判定出力(論理値1)が発生すれば、物体無しの通報出力(論理値1)が生成される。これにより、センサ正常を確認しつつ物体の有無を監視している。
【0008】
しかし、上述の1次元走査型光レーダセンサの正常動作確認手法を、上述の2次元走査型光レーダセンサに適用する場合、光ビームの鉛直方向と水平方向の各走査が構造的に不可分であるポリゴンミラーを走査ミラーとして用いる光レーダセンサには適用可能であるが、ガルバノミラーのように2つの方向の走査が独立に行われる走査ミラーを用いる光レーダセンサに、そのまま適用したのではセンサの正常確認ができない虞れがある。
【0009】
即ち、図24(A)、(B)のように、上述の1次元走査型光レーダセンサの正常動作確認手法に基づいて、光ビームの走査領域A(点線で囲まれた領域)内の監視領域B(実線で囲まれた領域)端部近傍に、反射体1,2を設け、これら反射体1,2からの反射光が周期的に受光されることで正常確認するとする。この場合、例えば一方の走査駆動機構の故障で光ビームの走査が、図の走査領域A′で示すように1次元になっても、走査ビームは監視領域B端部近傍の反射体1,2に周期的に照射されるので、このような故障モードでは、反射体1,2からの反射光が正常時と同様に周期的に受光されて異常を通報できない。
【0010】
本発明は上記問題点に着目してなされたもので、正常動作を確認しつつ物体監視ができる2次元走査型光レーダセンサを提供することを目的とする。また、2方向の光ビーム走査が独立に行われる走査方式であっても、正常動作を確認しつつ物体監視ができる2次元走査型光レーダセンサを提供することを目的とする。
【0011】
【課題を解決するための手段】
このため、請求項1の発明の2次元走査型光レーダセンサは、光ビーム発生手段と、前記光ビーム発生手段からの光ビームを物体の監視領域を含んで2次元に走査可能な光ビーム走査手段と、該光ビーム走査手段から放射される走査ビームの走査空間からの反射光を受光する受光手段と、少なくとも前記受光手段の出力に基づき前記監視領域内の物体不在を判定する不存在判定手段と、少なくとも前記光ビーム発生手段、光ビーム走査手段及び受光手段の正常動作を確認する正常動作確認手段と、前記不存在判定手段の出力と前記正常動作確認手段の出力との論理積結果に基づいて安全情報を出力するゲート手段とを備ええ、前記正常動作確認手段が、前記光ビーム走査手段の走査ビーム放射方位が走査ビームの走査領域内に配置した検査用反射体の存在する方位であることを示す受光有無指示信号を発生する角度検出回路と、前記受光有無指示信号の発生期間における前記受光手段の出力の有無を確認し、受光出力があれば受光有りを示す出力を発生する反射有無確認回路と、前記受光有無指示信号の発生周期を確認し前記発生周期が所定周期のときに走査速度正常を示す出力を継続する期間確認回路と、前記反射有無確認回路の出力と前記期間確認回路の出力とを論理積演算するANDゲートとを備える構成とした。
【0012】
かかる構成では、光ビーム発生手段から発生した光ビームを光ビーム走査手段により、物体の監視領域を含んで2次元に走査する。これにより、走査ビームは立体的な空間に放射され物体監視空間が立体的となる。不存在判定手段は、予め定めた監視領域内からの反射光に基づく受光手段の受光出力の有無により物体の不存在を判定する。正常動作確認手段は、光ビーム走査手段の走査ビーム放射方位が検査用反射体の存在する方位であることを示す受光有無指示信号を発生する角度検出回路と、受光有無指示信号の発生期間に受光出力があれば受光有りを示す出力を発生する反射有無確認回路と、受光有無指示信号の発生周期が所定周期のときに走査速度正常を示す出力を継続する期間確認回路と、反射有無確認回路の出力と期間確認回路の出力とを論理積演算するANDゲートとを備えて、少なくとも光ビーム発生手段、光ビーム走査手段及び受光手段の正常動作を確認する。不存在判定手段から物体不存在を示す判定出力が発生し、正常動作確認手段から動作正常を示す判定出力が発生した時にゲート手段から安全情報が出力される。
【0014】
前記検査用反射体は、請求項のように、センサ動作状態から得られる走査ビーム放射情報と前記受光手段の受光出力結果との対応関係が、想定される異常動作時と正常動作時とで異なるように配置するとよい。
かかる構成によれば、走査ビームの各方向の走査が独立に行われるような光ビーム走査手段を利用する場合にも、想定される異常動作時の走査ビーム放射情報と前記受光手段の受光出力結果との対応関係が正常動作時と異なるようになるので、正常動作の確認ができる。
【0015】
請求項3のように、前記角度検出回路は、前記受光有無指示信号として前記光ビーム走査手段の走査ビーム放射方位が前記検査用反射体が存在する方位であること及び検査用反射体が存在しない方位であることを示す信号を発生し、前記反射有無確認回路は、前記受光有無指示信号の示す全ての方位について前記受光手段の出力の有無を確認する構成とするとよい。
【0016】
前記正常動作確認手段は、請求項のように、前記角度検出回路の受光有無指示信号に、センサから検査用反射体までの距離情報を付加する構成とするとよい。
【0017】
求項のように、前記検査用反射体を、前記走査領域の隅部近傍に配置する構成とすれば、検査用反射体からの反射光が受光されることで、監視領域全体を走査ビームが走査されていることを確認できる。また、走査領域内に複数の監視領域がある場合に、監視領域毎に検査用反射体を配置する必要がない。
【0018】
請求項のように、前記検査用反射体を、前記監視領域外で当該監視領域の隅部近傍に配置する構成としてもよい。
請求項のように、前記検査用反射体を、前記監視領域外縁に対する走査ビームの上下最大角及び左右最大角で示される方位近傍に配置する構成とすれば、監視領域が例えば球形状の場合でも好適である。
【0019】
請求項の発明では、移動体に2次元走査型光レーダセンサを搭載した場合において、前記移動体が予め定められた範囲内で移動する時に、前記検査用反射体を、前記監視領域内に少なくとも1つ以上存在するよう配置する構成とした。
かかる構成では、走査ビームが監視すべき領域に放射されていることを確認しつつ移動体が移動できるようになる。
【0020】
請求項のように、前記検査用反射体を、前記移動体の移動方向に沿って連続して存在するよう配置する構成とすれば、移動体の移動中でも正常動作の確認が常時同一の走査ビーム放射範囲で実行できるようになる。
前記不存在判定手段は、請求項10のように、前記受光手段の受光出力から前記監視領域内の前記検査用反射体からの反射光による受光出力を除外して物体の有無を判定する構成とした。
【0021】
前記検査用反射体を、請求項11のように入射する走査ビームの光強度周波数を変調する構成としてもよく、また、請求項12のように入射する走査ビームの波長を変調する構成としてもよい。
かかる構成によれば、検査用反射体からの反射光と物体からの反射光の識別が容易になる。
【0022】
請求項13のように、前記検査用反射体を情報表示手段に用いる構成とすれば、検査用反射体により表示情報を伝達できるようになる。
【0023】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1に、本発明に係る2次元走査型光レーダセンサの第1実施形態のブロック構成図を示す。
図1において、発光素子11は、発光素子駆動回路12により駆動されて光ビームを発生する。走査ミラー13は、発光素子11からの光ビームを反射し走査ビームとして物体監視空間に放射する。走査ミラー13は、例えば後述する半導体ガルバノミラーであり、第1駆動回路14により回動軸13aを中心に周期的に揺動駆動され、第2駆動回路15により前記回動軸13aと直交する回動軸13bを中心に周期的に揺動される。走査ビームは、走査ミラー13の揺動に伴って図中の左右及び上下方向に、監視領域B(図の実線で囲まれた領域)を含む走査領域A(図の点線で囲まれた領域)を2次元に走査する。これにより、走査ビームは、走査ミラー13の光ビーム反射点を頂点とした図中2点鎖線で示す角錐状の立体空間に放射され、立体的な空間で物体監視ができる。前記監視領域B外で走査領域A内の監視領域四隅近傍に、正常動作確認用の検査用反射体m1〜m4を設ける。前記角錐状の走査ビーム放射空間内からの反射光は、受光素子16で受光され、電気信号に変換されて受光回路17で増幅・検波等の処理後、受光出力R1として不存在判定手段18及び正常動作確認手段19へ入力される。ゲート手段としてのANDゲート20は、不存在判定手段18及び正常動作確認手段19の各出力S、Nを論理積演算して演算結果を出力Zとして出力する。ここで、前記発光素子11と発光素子駆動回路12で光ビーム発生手段を構成し、前記走査ミラー13、第1及び第2駆動回路14,15で光ビーム走査手段を構成し、受光素子16及び受光回路17で受光手段を構成する。
【0024】
前記走査ミラー13として用いる半導体ガルバノミラーを図2に示す。半導体ガルバノミラーは、特開平7−175005号公報、特開平7−218857号公報等で公知であり、その構成及び動作原理についてここでは簡単に説明する。
図2は、特開平7−175005号公報に記載の構成例である。中央部の可動板31表面に蒸着金属膜等で形成したミラー32を有する。前記可動板31を第1のトーションバー33Aで可動枠34内に支持し、可動枠34を更に第2のトーションバー33Bで固定枠35内に支持する。可動板31及び可動枠34にはそれぞれ駆動コイル36A及び36Bが設けられ、これら駆動コイル36A,36B両端の1対の電極端子37A,37Bに駆動電流を供給する。駆動コイル36A,36Bに、図示しない永久磁石等の静磁界発生手段により静磁界を作用させている。
【0025】
動作は、可動板31及び可動枠34の両端部の平面に沿って各駆動コイル36A,36Bを横切る方向に静磁界を作用させた状態で、駆動コイル36A,36Bに電流を流すと、可動板31及び可動枠34の両端部に、フレミングの左手の法則に従った方向に電磁力が作用し、可動板31及び可動枠34が回動する。可動板31及び可動枠34が回動すると各トーションバー33A,33B(図1の回動軸13a,13bに相当する)が捩じられ、発生するトーションバー33A,33Bの各ばね反力と可動板31及び可動枠34に作用する各電磁力とが釣り合う位置まで可動板31及び可動枠34が回動する。前記電磁力は各駆動コイル36A,36Bに流れる電流に比例するので、可動板31及び可動枠34のそれぞれの変位角は各駆動コイル36A,36Bに流れる電流に比例する。従って、各駆動コイル36A,36Bに流す電流を制御することで、可動板31及び可動枠34、即ちミラー32の変位角を2次元で制御できる。予め駆動コイル36A,36Bの電流量と可動板31及び可動枠34の変位角との関係を求めておけば、前記電流量からミラー32の変位角の情報を得ることができる。
【0026】
従って、本実施形態では、前記駆動コイル36A、36Bにそれぞれ駆動電流を供給する各駆動回路14,15から、駆動電流に基づいたミラーの変位角、即ち、走査ビームの放射方位を示す情報信号p1,p2を、不存在判定手段18及び正常動作確認手段19に入力している。
尚、特開平7−218857号公報で示されるように、可動板の変位検出用の検出コイルを設ければ、この検出コイルでミラー変位角を検出できるので、変位検出用コイルの出力を図1の情報信号p1,p2の代わりに用いれば、変位検出コイルの出力からミラーの走査状態が正常か否かを直接監視できるようになる。
【0027】
前記不存在判定手段18は、監視領域Bに対応する走査ビーム方位を記憶しており、両駆動回路14,15の信号p1,p2の示す走査ビーム方位が記憶情報に一致する時に、受光回路17の受光出力R1の有無を判定することで監視領域Bに対応する監視空間内における物体の存在/不在を判定し、物体不在の時にS=1、物体存在の時にS=0を出力する。
【0028】
前記正常動作確認手段19は、前記検査用反射体m1〜m4が存在する方位を記憶しており、後述するように両駆動回路14,15の信号p1,p2の示す走査ビーム放射方位が記憶情報に一致する時に、受光出力の有無を判定し、センサの正常動作を確認して正常と判定した時にN=1、異常と判定した時N=0を出力する。
【0029】
図3に、本実施形態の正常動作確認手段19の回路構成を示す。
図3において、本実施形態の正常動作確認手段19は、角度検出回路19A、反射有無確認回路19B、期間確認回路19C、及びANDゲート19Dを備える。
前記角度検出回路19Aは、予め配置された検査用反射体m1〜m4のそれぞれの方位(θ1,ψ1)〜(θ4,ψ4)を記憶しており、入力する信号p1,p2が示す走査ビーム方位(θ,ψ)情報が記憶方位情報と一致した時に、受光の有無を判定すべき時であることを指示する指示情報として受光有無指示信号Sr=1を出力する。前記方位(θ1,ψ1)〜(θ4,ψ4)以外では受光有無指示信号Sr=0とする。
【0030】
反射有無確認回路19Bは、受光有無指示信号Sr=1の期間で受光出力R1の有無を確認し、受光出力R1が入力すれば出力NS=1を継続し、受光出力R1が入力しなければNS=0とする。
期間確認回路19Cは、信号Sr=1の発生周期、即ち、走査ビームの走査速度を確認し、信号Sr=1の発生周期が所定周期であれば走査速度正常として出力NT=1を継続し、所定周期でなければ走査速度異常としてNT=0とする。
【0031】
ANDゲート19Dは、出力NS=1とNT=1が共に入力する時にセンサが正常であることを示す出力N=1を発生する。
尚、前記走査ビーム方位(θ,ψ)は、図4で示すように、監視領域Bの中心O(走査領域Aの中心でもある)を原点とした、それぞれ左右方向(x方向)、上下方向(y方向)の光ビーム方位とする。
【0032】
ここで、ポリゴンミラーは勿論、ガルバノミラーのように各方向の走査が独立に行われる走査ミラーを用いた場合でも、2次元走査型光レーダセンサの正常動作確認ができる検査用反射体の配置原理について説明する。
正常動作確認手段19は、走査ビームの走査領域A内に予め配置される検査用反射体の方位情報(反射体存在範囲)を記憶し、更に、走査ビームの走査領域A内の検査用反射体の存在しない領域の方位情報(空隙範囲)を記憶し、それらの方位情報と入力する受光出力の有無をつきあわせて正常か否かを判定する。即ち、正常動作確認手段19に、走査領域Aにおける方位(走査ビーム方位)と受光回路17の出力論理値(受光ありで論理値1、受光なしで論理値0)の関係を予め記憶させ、ビーム走査時に実際に得られた方位−論理値の結果が、記憶情報と一致している時を正常動作と判定し、不一致の時を異常と判定する。
【0033】
前記空隙範囲は、検査用反射体の存在しない範囲であって、物体不在時に受光なしとなる範囲であればよく、監視領域Bを含んでも構わない。ただし、監視領域Bを含めた場合、監視領域B内に物体が存在すると、物体からの反射光が受光されるので、物体不存在判定手段18が物体を検出するだけでなく、正常動作確認手段19が方位−論理値の結果が記憶情報と不一致になり異常判定してしまう。従って、空隙範囲は、走査領域A内であって且つ監視領域B外の範囲とすることが望ましい。
【0034】
尚、想定の異常状態において、論理値1(受光あり)となるべき時に論理値0(受光なし)に誤るように検査用反射体を構成できるならば、正常動作確認手段19は、走査ビームの走査領域A内の検査用反射体の方位情報(反射体存在範囲)のみを記憶し、その方位情報の時の受光出力の論理値のみ確認する構成でよい。
【0035】
半導体ガルバノミラーの場合、ミラー可動部の故障等で走査ビームの走査が前述の図24の走査領域A′のような1次元になる異常状態が想定される。この場合、駆動回路の出力状態とミラー可動部の実際の動きが異なる。このため、図24のように監視領域B端部近傍に単に棒状の検査用反射体1,2を配置する構成では、走査が1次元(走査領域A′)となる走査異常時でも監視領域B端部近傍で常に反射光が得られるため、この異常時に得られる方位−論理値の結果と正常時に得られる方位−論理値の結果とが同じとなり、異常を検出できない。従って、2次元走査型光レーダセンサの正常動作を確実に確認するには、想定される走査異常時に得られる方位−論理値の結果が、正常時に実際に得られる方位−論理値の結果と必ず異なるように検査用反射体を構成する必要がある。
【0036】
図5にそのような検査用反射体の構成例を示し、2次元走査型光レーダセンサの正常動作確認原理を説明する。
図5において、検査用反射体1を、反射体1aと反射体1bとに分割し、両反射体1aと1bとの間に空隙3を設け、正常時には、受光出力が論理値1となる区間(反射体存在範囲)と論理値0となる区間(空隙範囲)が存在するように構成する。
【0037】
かかる構成によれば、前述のような走査が1次元となる走査異常時は、監視領域B端部近傍で常に反射光が得られ走査ビームの方位情報p1,p2が空隙範囲(正常時に論理値0になる区間)を示す時でも受光出力が論理値1となるので、走査異常時に得られる方位−論理値の結果が正常時と異なり、異常が検出できるので、2次元走査型光レーダセンサの場合でも正常動作確認が可能となる。また、発光素子11等の故障で走査ビームが投光されない異常では、方位情報p1,p2が反射体存在範囲(正常時に論理値1になる区間)を示す時でも受光出力が論理値0となるので、走査異常時に得られる方位−論理値の結果が正常時と異なり、異常が検出できる。
【0038】
図1の第1実施形態における検査用反射体1m〜4mの配置構成は、図5の構成原理に基づいたものである。
図1のように、監視領域Bの四隅近傍に検査用反射体1m〜4mを配置する構成では、想定される図24のような異常時には、走査ビームの方位情報p1,p2が検査用反射体1m〜4mの存在方位を示す時(受光出力R1が論理値1となるべき時)に受光出力R1は論理値0となるので、走査ビームの方位情報p1,p2が検査用反射体1m〜4mの存在方位を示す時の受光出力R1の有無を検出すれば正常確認を行える。
【0039】
尚、監視領域Bの外側で検査用反射体からの反射光が得られれば、少なくとも監視領域B全面を走査していることを確認できるので、検査用反射体1m〜4mは図1の監視領域Bの上端及び下端から突出するよう配置することが望ましい。
次に、第1実施形態の正常確認動作について、図6のタイムチャートを参照しながら説明する。
【0040】
走査ミラー13を揺動駆動する各駆動回路14,15から、走査ビームの方位(θ,ψ)を示す情報信号p1,p2が正常動作確認手段19内の角度検出回路19Aに入力する。角度検出回路19Aは、検査用反射体m1〜m4のそれぞれの方位(θ1,ψ1)〜(θ4,ψ4)を記憶している。角度検出回路19Aは、入力する情報信号p1,p2の示す方位が記憶情報と一致しているか否かを判定し、一致する方位情報(検査用反射体存在方位情報)が入力する毎に、図6に示すように受光の有無確認期間であることを示す情報をSr=1として反射有無確認回路19B及び期間確認回路19Cへ出力する。反射有無確認回路19Bは、Sr=1が入力している期間で受光出力R1が入力したか否かを判定し、受光出力R1=1が入力するとNS=1を発生する。図6のようにSr=1の時にR1=1が入力する関係が維持されていれば、反射有無確認回路19BからNS=1が継続する。また、期間確認回路19Cは、走査ミラー13の走査速度が正常で、信号Sr=1が所定間隔で発生していればNT=1を継続する。従って、検査用反射体m1〜m4の存在方位(θ1,ψ1)〜(θ4,ψ4)に走査ビームが放射された時に反射光が受光され(NS=1)、且つ、走査ミラー13の走査速度が正常(NT=1)であれば、正常動作確認手段19からセンサ正常を示すN=1が継続して出力される。一方、例えば、図6中、点線f1で示すように、Sr=1の時に受光出力R1=0であれば、NS=0となり正常動作確認手段19の出力はN=0となる。
【0041】
また、不存在判定手段18は、Sr=0の期間中で自身が記憶している監視領域の方位情報が入力する時に受光出力R1=0であれば、物体なしとして出力S=1を継続して発生する。一方、例えば、図6中、点線f2で示すように、監視領域に相当するビーム方位で受光出力R1=1になった場合は、物体からの反射と判断し不存在判定手段18の出力は物体ありを示すS=0となる。
【0042】
図1のANDゲート20は、不存在判定手段18からS=1が発生し、正常動作確認手段19からN=1が発生した時のみZ=1の出力を発生し、安全を通報する。
以上のように、第1実施形態によれば、走査が1次元となるような想定される異常状態では、走査ミラー13の駆動系から得られる走査ビーム方位情報が検査用反射体存在方位である時に反射光が受光されず、正常時に得られるべき論理値と実際に得られた論理値が異なって異常を検出できる。また、光レーダセンサの取り付け不良等により本来放射すべき領域に光ビームが放射されていない場合も、検査用反射体m1〜m4の反射光が存在すべき放射方位において少なくとも一部の反射光は受光されなくなるので、異常が通報される。
【0043】
また、角度検出回路19Aに、監視領域Bを除いた全ての走査領域について、方位−論理値の関係を記憶させ、方位情報p1,p2に基づいて、走査ビーム方位が論理値1(受光あり)となるべき方位(反射体存在範囲)であること及び走査ビーム方位が論理値0(受光なし)となるべき方位(空隙範囲)であることを、信号Srにより反射有無確認回路19Bへ指示し、反射有無確認回路19Bで監視領域Bを除いた走査領域全てについて受光の有無を確認する構成とすれば、例えば、故障等で光ビームが検査用反射体m1とm2の間を往復する状況になった場合でも、受光出力がR1=0となるべき時にR1=1となったことを検出してNS=0を出力することができ、異常を検出できるので、正常動作確認機能の信頼性をより一層向上できる。
【0044】
また、図7に点線で示すように走査領域Aの検査用反射体m1〜m4以外の全ての領域を領域B′として監視領域Bに含めれば、領域B′から反射光があった場合には不存在判定手段18側が物体からの反射光と見なして出力S=0となるので、角度検出回路19A及び反射有無確認回路19Bが、検査用反射体m1〜m4の存在方位についてだけ方位−論理値の関係を監視する構成でも危険を通報できるので、上述と同様にセンサの信頼性をより一層向上できる。
【0045】
尚、例えば、反射光の受光強度に対して閾値を設け、受光強度が閾値以上の時に受光有りと判定する構成とすると共に、検査用反射体m1〜m4の反射率をその反射光受光強度が前記閾値を少し超える程度に調整しておけば、発光素子11の劣化等による光ビーム強度の低下や、受光素子16の劣化による光−電気変換効率低下等による反射光受光強度の低下等の不具合を早期に検出できる利点がある。検査用反射体m1〜m4の反射率は、反射面の材質や色等によって調節可能である。
【0046】
また、図1において、不存在判定手段18及び正常動作確認手段19へ入力されている信号p1,p2を、不存在判定手段18及び正常動作確認手段19のいずれか一方へ入力し、他方へは信号p1,p2が入力される手段を介して同等の情報信号を伝える構成としてもよい。例えば、受光出力R1を不存在判定手段18へ入力し、不存在判定手段18を介して受光出力R1と同等の情報信号を正常動作確認手段19へ伝達する構成とすれば、少なくとも不存在判定手段18が出力R1を受信していることが確認でき、更に、不存在判定手段18の出力R1の処理動作が正常か否かの確認も可能である。
【0047】
次に、本発明の第2実施形態として光レーダセンサが測距機能を有する場合について説明する。
本実施形態では、図1の点線で示すように、発光素子駆動回路12から発光パルスと同期して出力される発光状態を示す信号Kを、それぞれ不存在判定手段18及び正常動作確認手段19に入力する。正常動作確認手段19は、図3の構成に加えて図8のディレー回路19Eを備え、該ディレー回路19Eに、前記信号Kを入力する構成である。物体までの距離は、光ビームの発光と反射光の受光の時間差や発光ビームと受光ビームの位相差等により算出できることは公知であり、ここでは距離算出方法の詳細は省略する。光レーダセンサから検査用反射体m1〜m4までの距離はそれぞれ既知であるので、信号Kが入力してから各検査用反射体m1〜m4からの反射光が受光されるまでの各時間ΔTは予め算出できる。前記ΔTは、各検査用反射体m1〜m4までの距離に応じて異なる。各検査用反射体m1〜m4毎の時間ΔTの情報はディレー回路19Eに記憶されている。また、本実施形態では、角度検出回路19Aからの信号Srは、各検査用反射体m1〜m4に対応する走査ビーム方位の識別情報を含んでいるものとする。
【0048】
従って、ディレー回路19Eは、図8に示すように、角度検出回路19Aから出力された信号Srが受光有無の確認期間であることを示す時(Sr=1の時)、信号Srに含まれた方位情報に基づいて対応する検査用反射体についてのディレー時間ΔTを選択し、信号Kの入力から選択ディレー時間ΔT遅延させて信号Sr′=1を出力する。
【0049】
これにより、図9に示すように、Sr′=1の時にR1=1が入力すれば、反射有無確認回路19Bは、検査用反射体m1〜m4による受光出力R1と判断してNS=1を継続する。一方、例えば、図9中、点線f1で示すように、Sr′=1の時に受光出力R1=0であれば、NS=0となる。また、Sr′=0の期間における監視領域Bの走査範囲において受光出力R1=0であれば、不存在判定手段18は物体なしとして出力S=1を継続して発生するが、図9中、点線f2で示すように、受光出力R1=1になった場合は、不存在判定手段18の出力は物体ありを示すS=0となる。
【0050】
かかる構成では、第1実施形態と同様の効果に加えて、受光素子16や受光回路17の動作遅れが増大した場合、信号Sr′と受光出力R1の発生時期に時間軸上のずれが生じるので、センサ異常として通報できる利点がある。また、光レーダセンサからの監視距離を規定して監視領域Bを設定できるので、所望の空間領域を設定して物体監視が可能となる。
【0051】
次に、図10〜図13に上述の第1及び第2実施形態に適用可能な検査用反射体の別の配置例について説明する。
図1と同様に監視領域Bの四隅近傍に配置する場合、図10のように配置してもよい。
また、図11のように、監視領域B外縁において、第1駆動回路14による回動軸13a回りの方位角θ(走査ビームの方位角)について、最大角θmax、最小角θminを同定し、第2駆動回路15による回動軸13b回りの方位角ψについて、最大角ψmax、最小角ψminを同定し、方位角(θmax、ψmax)、(θmin、ψmax)、(θmax、ψmin)、(θmin、ψmin)方向近傍にそれぞれ検査用反射体m1〜m4を配置してもよい。かかる配置方法は、特に監視領域Bが例えば球形等の場合に好適である。
【0052】
また、図12に示すように、一部の検査用反射体mを床面に配置してもよい。この場合、検査用反射体mとしては、例えば床面に貼り付けた点字マット等が考えられる。尚、検査用反射体の床面等への配置については、本出願人による特開2000−162306号公報等で詳述されている。
図2のガルバノミラーのように、回動軸13aと13bの回動動作が独立している場合、一部の検査用反射体を省略することが可能である。
【0053】
例えば、図13に示すように、回動軸13a回りの方位角θについて、最大角θmaxの反射体m3と最小角θminの反射体m4を選択し、回動軸13b回りの方位角ψについて、最大角ψmaxの反射体m2(m1でもよい)と最小角ψminの反射体m3を選ぶ。この時に選ばれなかった反射体を省くことができる。図13では、検査用反射体m1(又はm2)を省くことができる。
【0054】
かかる配置方法を適用すると、図1や図10の場合、どちらか一方の対角線の検査用反射体、即ち、検査用反射体m1とm4或いはm2とm3を省くことができる。
また、図2のようなガルバノミラーは、構造上、揺動角が上下及び左右のどちらも対称と考えられるので、方位角±θについて絶対値│θ│が最大の検査用反射体と、方位角±ψについて絶対値│ψ│が最大の検査用反射体を選び、他を省略することができる。図1や図10の配置構成に適用すると、検査用反射体m1〜m4のいずれか1つ設ければよい。
【0055】
尚、走査ミラー13にポリゴンミラーを用いた場合、光ビームの走査正常確認は回転動作の正常確認に置き換えられるので、検査用反射体はいずれか1つあればよい。また、走査領域A四隅近傍に配置すれば、走査領域Aを走査していることが確認されるので、走査領域A内の監視領域Bを走査していることも同時に確認できる。しかも、走査領域A内に複数の監視領域Bがあっても各監視領域B毎に検査用反射体を配置する必要がなくなる利点がある。
【0056】
次に、2次元走査型光レーダセンサを移動体に搭載した場合について説明する。
光レーダセンサを移動体に搭載した場合、センサの正常動作確認と共に、監視すべき領域に走査ビームが放射されていることの確認を行う必要がある。正常動作の確認は、前述した正常動作確認用の検査用反射体をセンサに固定すれば、走査ミラーと反射体との相対位置は一定であり、前述と同様にして移動体の移動に関係なく正常動作の確認を行える(移動体の走行範囲にセンサに起因する制限はない)。更に、走査ビームが監視すべき領域に放射されていることの確認を行う場合、監視領域内に放射領域確認用の検査用反射体を配置し、この検査用反射体からの反射光の有無を確認すればよい。尚、放射領域確認用検査用反射体は、移動体の走行により危険状態の発生が想定される領域外縁部(センサが監視すべき監視領域に相当する領域)の付近に配置することが好ましい。
【0057】
図14に、光レーダセンサを移動体に搭載した場合の検査用反射体の配置例を示す。(A)は上面図、(B)は側面図である。
図14において、移動体100に取付けた2次元走査型光レーダセンサ101には、走査ミラー(図示せず)の前方に例えば図1と同様の配置で正常動作確認用の検査用反射体EaU,EbU,EaL,EbLが取付けられている。光レーダセンサ101は、これら反射体EaU,EbU,EaL,EbLの反射光に基づいて、前述と同様にして正常動作確認手段19でセンサ101の正常動作の確認を行う。
【0058】
また、移動体100の移動空間の外縁近傍四隅に、図示のように走行路102に沿って一定の間隔を設けて放射領域確認用の検査用反射体a1U〜a4U,a1L〜a4U,b1U〜b4U,b1L〜b4Lが配置してある。尚、上記の各検査用反射体は、再帰反射性を有するものとする。
放射領域確認用の検査用反射体a1U〜a4U,a1L〜a4U,b1U〜b4U,b1L〜b4Lの同定は、信号p1,p2と受光出力R1から得られる画像内での反射体位置パターンや反射体の方位(及び距離)情報を、移動体の現在位置と予め記憶されている反射体位置から導出される反射体の予想位置パターンや予想方位(及び距離)データと比較して行えばよい。
【0059】
図15(A)〜(C)は、移動体100が図14中の矢印方向に移動した場合の光レーダセンサ101の放射方位情報及び受光出力R1に基づく画像の変化を示している。点線で囲まれた領域が走査ビームの走査領域Aを示す。
図15(A)は、図14の位置での画像を示し、検査用反射体a2U、a2L、b2U、b2Lとa3U、a3L、b3U、b3Lが検出されている。検査用反射体a4U、a4L、b4U、b4Lは遠方であるので検出されていない。移動体100の移動に従って、図15(B)のように、検査用反射体a2U、a2L、b2U、b2Lが走査領域外となって画像から消え、検査用反射体a3U、a3L、b3U、b3Lのみが検出されるようになる。更に移動すると、図15(C)のように検査用反射体a4U、a4L、b4U、b4Lが検出され始める。このように、移動体100が走行路102を移動する際に、検査用反射体a1U〜a4U,a1L〜a4U,b1U〜b4U,b1L〜b4Lを検出したことで、走査ビームが本来の監視すべき領域に放射されていることを確認できる。
【0060】
図14の構成で正常動作確認用検査用反射体EaU,EbU,EaL,EbLを省くことが可能である。この場合、走査ビームの走査の確認は、最外縁に検出される放射領域確認用の検査用反射体で囲まれる範囲に限られる。即ち、図15(A)や(C)では、検査用反射体a2U、a2L、b2U、b2Lや検査用反射体a3U、a3L、b3U、b3Lで囲まれる範囲で走査ビームの走査確認が行われ、図15(B)では検査用反射体a3U、a3L、b3U、b3Lで囲まれる範囲で行われる。
【0061】
従って、正常動作確認用検査用反射体EaU,EbU,EaL,EbLを省いた場合、これら検査用反射体EaU,EbU,EaL,EbLを用いた場合と略同等の走査範囲で正常動作確認ができるのは、放射領域確認用の各検査用反射体a1U〜a4U,a1L〜a4L,b1U〜b4U,b1L〜b4Lがフレームアウトする直前、即ち、図15の画像の四隅に各検査用反射体a1U〜a4U,a1L〜a4U,b1U〜b4U,b1L〜b4Lが位置した時点であり、連続的ではなく移動体の移動に伴って周期的となる。
【0062】
正常動作確認用検査用反射体EaU,EbU,EaL,EbLを省いて、検査用反射体EaU,EbU,EaL,EbLを用いた場合と略同等の走査範囲で連続的に正常動作確認を行うには、放射領域確認用の各検査用反射体a1U〜a4U,a1L〜a4L,b1U〜b4U,b1L〜b4Lを、例えば図16のように構成すればよい。
【0063】
図16(A)、(B)のように、検査用反射体aU,aL,bU,bLを、移動体100の移動空間の外縁近傍四隅に走行路102に沿って連続的に配置する。
かかる構成とすれば、図17(A)〜(C)で示すように、移動体100が移動しても検査用反射体aU,aL,bU,bLで囲まれる範囲が変化せず、検査用反射体EaU,EbU,EaL,EbLを設けた場合と同等の走査範囲で、連続的に正常動作確認が行える。図17中のh2,h3,h4は、図16の位置h2,h3,h4と対応している。
【0064】
尚、2次元走査型光レーダセンサを搭載する移動体としては、図示した走行車両に限らずロボットアーム等でもよい。また、走査ミラーにガルバノミラーのように互いの走査方向のミラー回動動作が独立したものを採用した場合は、図13で説明したようにして検査用反射体の一部を省くことが可能である。
図14、図16の場合、監視領域B内に放射領域確認用検査用反射体が含まれるので、不存在判定手段18は、前記検査用反射体からの受光出力R1を除いて物体の有無を判定する必要がある。このため、不存在判定手段18に、前述した正常動作確認手段19内の角度検出回路19Aと同様の回路を備え、信号Srと同様の指示信号を用い、この信号Sr=1が入力した時の受光出力を除いて物体の有無を判定するようにする。
【0065】
図18及び図19に、検査用反射体存在領域を監視領域から除く場合において、光レーダセンサが測距機能を有さない場合と有する場合の違いを示す。図18は測距機能を有さない場合、図19は測距機能を有する場合である。両図の(A)は上面図、(B)は側面図を示す。図中の点線は走査ビームの走査領域Aである。
【0066】
測距機能を有さない場合、監視領域Bと非監視領域C(検査用反射体からの反射光が受光される領域)は図示のようになり、図のように物体105が検査用反射体方位に存在すると、物体105の反射光と検査用反射体の反射光を識別できない虞れがあるが、測距機能を有する場合は、図19ように非監視領域Cが検査用反射体周囲に限定されるので、物体105からの反射光とその後方の検査用反射体からの反射光を識別することが可能である。尚、上述の領域区分けの方法は、これまで述べてきた各実施形態においても同様に適用できることは言うまでもない。
【0067】
図18のような場合でも、図20及び図21に示す構成の検査用反射体とすれば、検査用反射体からの反射光と物体からの反射光を識別可能である。
図20(A)、(B)は、反射光の光強度周波数を変調する構成の可動型検査用反射体の構成例である。
図20(A)の検査用反射体200は、図示しない駆動手段により回動する軸201にミラー202を取付ける構成である。ミラー202が再帰反射性は低いものとすれば、入射光ビームは、検査用反射体200の回動角に応じた方位に反射される。従って、検査用反射体200からの反射光は、検査用反射体200の回動周波数で変調されて光レーダセンサの受光素子で受光される。その変調情報は受光出力R1に含まれて正常動作確認手段19の反射有無確認回路19Bへ入力される。反射有無確認回路19Bは、前記変調された受光出力R1が入力する時に、検査用反射体200からの反射光と見なすことができ、物体からの反射光と識別できる。例えば、受光信号が特定の周波数で変調されていることを、その周波数を通過させる帯域通過フィルタを設けることで検出できる。
【0068】
また、図20(B)の検査用反射体210は、軸211回りに揺動可能にミラー212を軸支すると共に、ミラー212にバネ213を連結し、ミラー212に外部から振動エネルギーを供給して揺動させる構成である。特に、揺動周波数を検査用反射体210の質量とバネ定数で定まる共振周波数とすると、大きく揺動させることができる。かかる構成では、例えば光レーダセンサに音波発生手段を設け、センサからの音波により検査用反射体210に振動エネルギーを供給すれば、検査用反射体210は、自身に駆動手段を持つ必要がなく無電源化できる利点がある。
【0069】
図21は、反射光の波長を変調する構成の波長変換型検査用反射体の例である。
図21の波長変換型検査用反射体220は、ミラー221の前面に波長変換層222を設ける構成で、入射光ビームを異なる波長の反射光に変換する。本実施形態では、例えば青色の入射光ビームを赤色の光ビームに変換して反射する。このような波長変換技術は、間宮他:自動制御学会ヒューマン・インターフェース部会第13回ヒューマン・インターフェース・シンポジウム論文集、1996、p.493−500等で公知である。
【0070】
波長変換型検査用反射体220を用いる場合、例えば赤色光ビームのみを透過し青色光ビームを遮光する特性の光学フィルタを備えた受光素子と、該受光素子からの出力により受光出力を発生する受光回路とを、図1の構成の光レーダセンサに、別途設けるようにする。
これにより、検査用反射体220で波長変換された赤色光ビームの反射光は光学フィルタ付き受光素子のみで受光され、受光回路からは検査用反射体220の反射光が存在する時のみ受光出力が発生する。従って、この受光出力は検査用反射体の反射光の存在を示す情報となり、この受光出力が発生した時に正常動作確認手段19の受光有無確認回路19Bで、受光出力R1の有無を判定することで正常動作の確認が可能である。
【0071】
図20及び図21に示すような検査用反射体を用いれば、検査用反射体の反射光と物体の反射光の識別を容易にでき、図18のような状態でも測距機能を設けることなく両者の識別が可能となる。また、検査用反射体の方位を示す信号p1,p2を省くことが可能となる。
放射領域確認用検査用反射体を、情報表示手段として用いることも可能である。図22にその例を示す。図22は、例えば移動体100の走行情報を表示させる例を示し、(A)は上面図、(B)は側面図である。尚、図14と同一の構成要素には同一符号を付す。
【0072】
図22において、検査用反射体a〜cを、例えば、走行路102上に設置し、移動体100に搭載した光レーダセンサ101の光ビームの放射領域確認用と同時に情報表示用に用いる。情報は、無情報である基本形の反射体形状(反射特性)を情報に対応して予め定めた形状(反射特性)に変更することで表示する。例えば、本実施形態では、検査用反射体cを基本形として無情報とし、基本形をバーコード状に変形して情報を表示するようにしている。検査用反射体a〜cの形状(反射特性)は、信号R1に基づいて抽出され、予め記憶されている反射持性−情報の対応関係に基づき、前記信号R1の出力状態から情報を解読する。
【0073】
図23(A)〜(C)は、移動体100が図22中の矢印方向に移動した場合の光レーダセンサ101の受光出力に基づく画像の変化を示している。
(A)の画像は、既に検査用反射体aの表示情報の解読・実行が完了し、検査用反射体bに近づいている状態を示す。この画像において、検査用反射体bは点線で囲まれており、これは光ビームの放射領域確認用の検査用反射体として認識されていることを表し、検査用反射体bにより監視領域に光ビームが放射されていることが確認される。検査用反射体bが例えば「走行速度」情報を表示しているとし、検査用反射体bの表示情報は、(B)のように画像上の横線Iに検査用反射体bが重なった時に解読され実行され、検査用反射体bの示す「走行速度」情報に基づき移動体100は走行する。(C)では、無情報の検査用反射体cが確認され、監視領域に光ビームが放射されていることだけの確認が行われる。
【0074】
かかる構成とすれば、例えば鉄道車両に適用した場合に、検査用反射体を例えば枕木上に配置し、検査用反射体により情報を車両に提供することが可能となる。提供する情報としては、例えば、「制限速度」、「線路勾配」、「踏切までの距離」等の固定情報の他に、上述のバーコード形状を可変にできる構成とすれば、「前方の信号現示」、「ポイント開通方向」等の可変情報も表示可能となる。また、停止位置情報を表示すれば、定点停止制御に用いることも可能になる。
【0075】
尚、検査用反射体の同定及び情報の読み取りは、本実施形態のような画像による方法に限定されるものではなく、上述のように方位・距離情報等によっても可能である。また、検査用反射体の配置位置は走行路上に限られないことは言うまでもない。更に、複数の検査用反射体の組み合わせで情報を表示しても構わない。
【0076】
【発明の効果】
以上説明したように請求項の発明によれば、走査ビームを2次元的に走査して物体監視を立体的空間で行える2次元走査型光レーダセンサで、正常動作の確認を行いつつ物体監視が行えるので、無人搬送車等への光レーダセンサ取付けの自由度を高められる。
【0077】
請求項の発明によれば、上記効果に加えてガルバノミラーのような走査ビームの各方向の走査が独立に行われる光ビーム走査手段を利用する場合にも、正常動作の確認を確実にできる。
請求項の発明によれば、正常動作の確認機能の信頼性を高められる。
請求項の発明によれば、検査用反射体の存在位置が方位だけでなくセンサからの距離でも定められるので、検査用反射体と物体とが重なるような場合でも両者の識別が可能になり、物体監視機能の信頼性を高められる。
【0078】
請求項の発明によれば、走査領域内に複数の監視領域がある場合に、監視領域毎に検査用反射体を配置する必要がなくなる。
請求項の発明によれば、監視領域が例えば球形状の場合でも好適である。
請求項8、9の発明によれば、走査ビームが監視すべき領域に放射されていることを確認しつつ移動体が移動できる。
【0079】
請求項10の発明によれば、移動体搭載時の物体監視機能の信頼性を高められる。
請求項11、12の発明によれば、検査用反射体からの反射光と物体からの反射光の識別が容易となるので、正常動作確認機能及び物体監視機能の信頼性をより一層高められる。
【0080】
請求項13の発明によれば、検査用反射体を正常動作確認用としてだけでなく、情報の伝達にも利用できる。
【図面の簡単な説明】
【図1】本発明に係る2次元走査型光レーダセンサの第1実施形態の概略構成図
【図2】同上実施形態に適用する半導体ガルバノミラーの要部構成図
【図3】正常動作確認手段の構成図
【図4】走査ビーム方位の説明図
【図5】2次元走査型光レーダセンサの検査用反射体の配置原理の説明図
【図6】第1実施形態の正常動作確認手段の動作を説明するタイムチャート
【図7】監視領域の設定例を示す図
【図8】測距機能を備える本発明の第2実施形態の正常動作確認手段の要部構成図
【図9】第2実施形態の正常動作確認手段の動作を説明するタイムチャート
【図10】検査用反射体の別の配置例を示す図
【図11】検査用反射体の別の配置例を示す図
【図12】検査用反射体の別の配置例を示す図
【図13】検査用反射体の別の配置例を示す図
【図14】移動体搭載時の検査用反射体の構成例を示し、(A)は上面図、(B)は側面図
【図15】図14のセンサで検出した移動体進行方向画面の変化状態を示す図
【図16】移動体搭載時の検査用反射体の別の構成例を示し、(A)は上面図、(B)は側面図
【図17】図16のセンサで検出した移動体進行方向画面の変化状態を示す図
【図18】測距機能がない場合における監視領域内の検査用反射体位置を除く説明図で、(A)は上面図、(B)は側面図
【図19】測距機能がある場合における監視領域内の検査用反射体位置を除く説明図で、(A)は上面図、(B)は側面図
【図20】走査ビームの光強度周波数を変調する構成の検査用反射体の構成例を示す図
【図21】走査ビームの波長を変調する構成の検査用反射体の構成例を示す図
【図22】情報表示機能を設けた検査用反射体の構成例を示す図で、(A)は上面図、(B)は側面図
【図23】図22のセンサで検出した移動体進行方向画面の変化状態を示す図
【図24】1次元走査型光レーダセンサの正常動作確認手法を2次元走査型光レーダセンサに適用した場合の問題点を説明する図
【符号の説明】
11 発光素子
12 発光素子駆動回路
13 走査ミラー
14 第1駆動回路
15 第2駆動回路
16 受光素子
17 受光回路
18 不存在判定手段
19 正常動作確認手段
20 ANDゲート
m1〜m4 検査用反射体
EaU,EbU,EaL,EbL 検査用反射体
a1U〜a4U,a1L〜a4U,b1U〜b4U,b1L〜b4L 検査用反射体
a,b,c 検査用反射体
200,210,220 検査用反射体、
A 走査領域
B 監視領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a two-dimensional scanning optical radar sensor capable of monitoring an object in a three-dimensional region, and more particularly to a two-dimensional scanning optical radar sensor capable of monitoring an object while confirming normality of the sensor.
[0002]
[Prior art]
For example, in the international safety standards for automated guided vehicles, the optical radar sensor for monitoring objects on the route is designed to be used at a position below a predetermined height from the floor in consideration of finding people lying on the route. It is prescribed that it should be attached to. However, if a two-dimensional scanning optical radar sensor that scans a light beam in two dimensions and monitors a three-dimensional space is used, the scanning beam can be directed toward the floor even if the installation height is equal to or higher than a specified value. Therefore, the requirements of the above standard can be substantially satisfied, and the degree of freedom in mounting the optical radar sensor can be increased.
[0003]
As the two-dimensional scanning optical radar sensor, for example, the scientific technique Vol. 99, no. 516 “Development of two-dimensional scanning radar”, Japanese Patent Application Laid-Open No. 11-306485, and the like.
The former two-dimensional scanning optical radar sensor reflects a light beam emitted from a laser diode by a polygon mirror and radiates it to the space. If an object exists on the optical axis of the scanning beam, the reflected light from the object is reflected. The presence of an object is notified by light reception. Since the polygon mirror has a truncated pyramid shape and the inclination angle of each reflecting surface is different, the scanning of the light beam reflected by the polygon mirror and emitted to the space becomes two-dimensional. Thereby, the radiation area of the scanning beam becomes a solid with the light beam reflection point as a vertex, and the object can be monitored in the three-dimensional area.
[0004]
In the latter two-dimensional scanning optical radar sensor, the light beam from the light emitting unit is reflected by a galvanometer mirror and projected into a predetermined area. If there is an object in the predetermined area, the reflected light is received by the light receiving means. It is determined that there is an object. Galvano mirrors are well known in Japanese Patent Application Laid-Open Nos. 7-175005 and 7-218857, and each of the two movable parts supported by rotating shafts orthogonal to each other is independently rocked by driving means. The mirror is tilted by driving. Thereby, the scanning of the light beam becomes two-dimensional, and the radiation area of the scanning beam becomes three-dimensional.
[0005]
[Problems to be solved by the invention]
By the way, in the international safety standard, in view of the seriousness of the collision accident between the automatic guided vehicle and the person, it is required that the mounted optical radar sensor should not be mistaken for the dangerous side at the time of failure. In this case, the sensor is normal. A confirmation function is required. However, none of the two-dimensional scanning optical radar sensors described above show a function for confirming the normal operation of the sensor.
[0006]
A one-dimensional scanning optical radar sensor having a normal operation confirmation function is known, for example, in Japanese Patent Application Laid-Open No. 11-144161.
This one-dimensional scanning optical radar sensor scans a light beam emitted from a laser diode in a one-dimensional manner with a galvanometer mirror having one rotation axis, and if an object exists on the optical axis of the scanning beam, The presence of an object is reported when the reflected light is received. In this one-dimensional scanning optical radar sensor, an inspection reflector for confirming normal operation is provided in the vicinity of the end of the object monitoring area, and the sensor is detected by the normal operation confirmation means based on the reflected light from the reflector for inspection. It is the structure which confirms the normal operation of.
[0007]
The normal operation confirmation means determines that the reflected light is normal if the radiation direction of the light beam from the galvano mirror is the direction in which the inspection reflector exists, and abnormal if the reflected light is not received. Then, if a sensor output (logical value 1) is output from the non-existence determining means when a normal sensor confirmation output (logical value 1) is generated from the normal operation checking means, an object non-notification output ( A logical value 1) is generated. Thereby, the presence / absence of an object is monitored while the normality of the sensor is confirmed.
[0008]
However, when the above-described normal operation confirmation method for the one-dimensional scanning optical radar sensor is applied to the above-described two-dimensional scanning optical radar sensor, the vertical scanning and the horizontal scanning of the light beam are structurally inseparable. Although it can be applied to an optical radar sensor that uses a polygon mirror as a scanning mirror, if it is applied as it is to an optical radar sensor that uses a scanning mirror in which scanning in two directions is performed independently, such as a galvano mirror, the sensor is normal. There is a possibility that it cannot be confirmed.
[0009]
That is, as shown in FIGS. 24A and 24B, based on the above-described normal operation confirmation method of the one-dimensional scanning optical radar sensor, the light beam scanning area A (area surrounded by a dotted line) is monitored. It is assumed that reflectors 1 and 2 are provided in the vicinity of the end of region B (region surrounded by a solid line), and that reflected light from these reflectors 1 and 2 is periodically received to confirm normality. In this case, for example, even if the scanning of the light beam becomes one-dimensional as indicated by the scanning region A ′ in the figure due to a failure of one scanning drive mechanism, the scanning beam is reflected by the reflectors 1 and 2 near the end of the monitoring region B. Therefore, in such a failure mode, the reflected light from the reflectors 1 and 2 is periodically received as in the normal state, and an abnormality cannot be reported.
[0010]
The present invention has been made paying attention to the above problems, and an object thereof is to provide a two-dimensional scanning optical radar sensor capable of monitoring an object while confirming normal operation. It is another object of the present invention to provide a two-dimensional scanning optical radar sensor that can monitor an object while confirming normal operation even in a scanning method in which light beam scanning in two directions is performed independently.
[0011]
[Means for Solving the Problems]
  For this reason, the two-dimensional scanning optical radar sensor according to the first aspect of the present invention is a light beam scanning device capable of two-dimensionally scanning the light beam from the light beam generating means and the object monitoring region. Means, light receiving means for receiving reflected light from the scanning space of the scanning beam emitted from the light beam scanning means, and non-existence determining means for determining the absence of an object in the monitoring region based on at least the output of the light receiving means And at least normal operation confirmation means for confirming normal operation of the light beam generation means, light beam scanning means, and light receiving means, and a logical product result of the output of the absence determination means and the output of the normal operation confirmation means And gate means for outputting safety information.The angle detection is performed so that the normal operation confirmation unit generates a light reception presence / absence instruction signal indicating that the scanning beam radiation direction of the light beam scanning unit is the direction in which the inspection reflector disposed in the scanning region of the scanning beam exists. A circuit, a reflection presence / absence confirmation circuit for confirming the presence / absence of an output of the light receiving means during the generation period of the light reception presence / absence instruction signal, and generating an output indicating the presence of light reception if there is a light reception output, and a generation period of the light reception presence / absence indication signal And a period confirmation circuit that continues output indicating normal scanning speed when the generation period is a predetermined period, and an AND gate that performs an AND operation on the output of the reflection confirmation circuit and the output of the period confirmation circuit It was set as the structure provided.
[0012]
  In such a configuration, the light beam generated from the light beam generating unit is scanned two-dimensionally by the light beam scanning unit including the monitoring region of the object. As a result, the scanning beam is emitted into a three-dimensional space, and the object monitoring space becomes three-dimensional. The absence determination means determines the absence of an object based on the presence or absence of a light reception output of the light reception means based on reflected light from a predetermined monitoring area. Normal operation confirmation meansAn angle detection circuit for generating a light reception presence / absence instruction signal indicating that the scanning beam radiation direction of the light beam scanning means is the direction in which the reflector for inspection exists, and light reception is present if there is a light reception output during the generation period of the light reception presence / absence instruction signal A reflection presence / absence confirmation circuit that generates an output indicating a light reception presence / absence indication signal, a period confirmation circuit that continues output indicating a normal scanning speed when the generation period of the light reception presence / absence indication signal is a predetermined period, An AND gate that performs an AND operation on the output, andAt least normal operation of the light beam generating means, the light beam scanning means, and the light receiving means is confirmed. When the determination output indicating the absence of the object is generated from the absence determination means and the determination output indicating the normal operation is generated from the normal operation confirmation means, the safety information is output from the gate means.
[0014]
  The inspection reflector is a claim.2As described above, the correspondence relationship between the scanning beam radiation information obtained from the sensor operation state and the light reception output result of the light receiving means may be arranged to be different between an assumed abnormal operation and a normal operation.
  According to such a configuration, even when using a light beam scanning unit in which scanning in each direction of the scanning beam is performed independently, the scanning beam radiation information at the time of an abnormal operation and the light reception output result of the light receiving unit are assumed. Is different from that during normal operation, so normal operation can be confirmed.
[0015]
  According to a third aspect of the present invention, in the angle detection circuit, as the light reception presence / absence instruction signal, the scanning beam radiation direction of the light beam scanning means is an orientation in which the inspection reflector exists and there is no inspection reflector. It is preferable that a signal indicating the direction is generated, and the reflection presence / absence confirmation circuit is configured to confirm the presence / absence of the output of the light receiving means for all the directions indicated by the light reception presence / absence instruction signal.
[0016]
  The normal operation confirmation means4like,It may be configured to add distance information from the sensor to the inspection reflector to the light reception presence / absence instruction signal of the angle detection circuit.
[0017]
  ContractClaim5As described above, if the inspection reflector is arranged in the vicinity of the corner of the scanning area, the scanning beam is scanned over the entire monitoring area by receiving the reflected light from the inspection reflector. Can be confirmed. Further, when there are a plurality of monitoring areas in the scanning area, it is not necessary to arrange an inspection reflector for each monitoring area.
[0018]
  Claim6As described above, the inspection reflector may be arranged outside the monitoring area and in the vicinity of the corner of the monitoring area.
  Claim7As described above, if the inspection reflector is arranged in the vicinity of the azimuth indicated by the maximum vertical and horizontal angles of the scanning beam with respect to the outer edge of the monitoring area, it is preferable even when the monitoring area is, for example, spherical. is there.
[0019]
  Claim8According to the invention, when the two-dimensional scanning optical radar sensor is mounted on the moving body, when the moving body moves within a predetermined range, at least one inspection reflector is provided in the monitoring area. It was set as the structure arrange | positioned so that it might exist above.
  With such a configuration, the moving body can move while confirming that the scanning beam is emitted to the region to be monitored.
[0020]
  Claim9Thus, if the inspection reflector is arranged so as to be continuously present along the moving direction of the moving body, the normal scanning operation can always be confirmed even when the moving body is moving. Can be executed with
  The non-existence determining means is a claim.10As described above, the presence / absence of an object is determined by excluding the light reception output by the reflected light from the inspection reflector in the monitoring region from the light reception output of the light receiving means.
[0021]
  The inspection reflector,11The light intensity frequency of the incident scanning beam may be modulated as in12In this way, the wavelength of the incident scanning beam may be modulated.
  According to this configuration, it becomes easy to distinguish the reflected light from the inspection reflector and the reflected light from the object.
[0022]
  Claim13As described above, if the inspection reflector is used for the information display means, the display information can be transmitted by the inspection reflector.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a first embodiment of a two-dimensional scanning optical radar sensor according to the present invention.
In FIG. 1, a light emitting element 11 is driven by a light emitting element driving circuit 12 to generate a light beam. The scanning mirror 13 reflects the light beam from the light emitting element 11 and radiates it to the object monitoring space as a scanning beam. The scanning mirror 13 is, for example, a semiconductor galvanometer mirror, which will be described later. The scanning mirror 13 is periodically oscillated by the first drive circuit 14 around the rotation shaft 13a, and is rotated by the second drive circuit 15 perpendicular to the rotation shaft 13a. It is periodically oscillated around the moving shaft 13b. The scanning beam is scanned in a scanning area A (area surrounded by a dotted line in the figure) including a monitoring area B (area surrounded by a solid line in the figure) in the horizontal and vertical directions in the figure as the scanning mirror 13 swings. Are scanned two-dimensionally. As a result, the scanning beam is radiated to a pyramid-shaped three-dimensional space indicated by a two-dot chain line in the drawing with the light beam reflection point of the scanning mirror 13 as a vertex, and the object can be monitored in the three-dimensional space. In the vicinity of the four corners of the monitoring area in the scanning area A outside the monitoring area B, inspection reflectors m1 to m4 for confirming normal operation are provided. The reflected light from the pyramid-shaped scanning beam radiation space is received by the light receiving element 16, converted into an electric signal, processed by the light receiving circuit 17 such as amplification and detection, and then as non-existence determining means 18 as a light receiving output R1. Input to the normal operation confirmation means 19. The AND gate 20 as the gate means performs an AND operation on the outputs S and N of the absence determination means 18 and the normal operation confirmation means 19 and outputs the calculation result as an output Z. Here, the light emitting element 11 and the light emitting element driving circuit 12 constitute a light beam generating means, and the scanning mirror 13 and the first and second driving circuits 14 and 15 constitute a light beam scanning means, and the light receiving element 16 and The light receiving circuit 17 constitutes a light receiving means.
[0024]
A semiconductor galvanometer mirror used as the scanning mirror 13 is shown in FIG. Semiconductor galvanometer mirrors are known in Japanese Patent Application Laid-Open Nos. 7-175005 and 7-218857, and their configuration and operation principle will be briefly described here.
FIG. 2 shows a configuration example described in JP-A-7-175005. A mirror 32 formed of a deposited metal film or the like is provided on the surface of the movable plate 31 at the center. The movable plate 31 is supported in the movable frame 34 by the first torsion bar 33A, and the movable frame 34 is further supported in the fixed frame 35 by the second torsion bar 33B. The movable plate 31 and the movable frame 34 are provided with drive coils 36A and 36B, respectively, and a drive current is supplied to a pair of electrode terminals 37A and 37B at both ends of the drive coils 36A and 36B. A static magnetic field is applied to the drive coils 36A and 36B by static magnetic field generating means such as a permanent magnet (not shown).
[0025]
In operation, when a static magnetic field is applied in a direction across the drive coils 36A and 36B along the planes of both ends of the movable plate 31 and the movable frame 34, a current is passed through the drive coils 36A and 36B. Electromagnetic force acts on both ends of 31 and the movable frame 34 in a direction in accordance with Fleming's left-hand rule, and the movable plate 31 and the movable frame 34 rotate. When the movable plate 31 and the movable frame 34 are rotated, the torsion bars 33A and 33B (corresponding to the rotation shafts 13a and 13b in FIG. 1) are twisted, and the generated spring reaction force of the torsion bars 33A and 33B is movable. The movable plate 31 and the movable frame 34 rotate to a position where the electromagnetic forces acting on the plate 31 and the movable frame 34 are balanced. Since the electromagnetic force is proportional to the current flowing through the drive coils 36A and 36B, the displacement angles of the movable plate 31 and the movable frame 34 are proportional to the current flowing through the drive coils 36A and 36B. Therefore, the displacement angle of the movable plate 31 and the movable frame 34, that is, the mirror 32 can be controlled two-dimensionally by controlling the current flowing through the drive coils 36A and 36B. If the relationship between the current amounts of the drive coils 36A and 36B and the displacement angles of the movable plate 31 and the movable frame 34 is obtained in advance, information on the displacement angle of the mirror 32 can be obtained from the current amounts.
[0026]
Therefore, in the present embodiment, the information signals p1 indicating the mirror displacement angle based on the drive current, that is, the radiation direction of the scanning beam, from the drive circuits 14 and 15 that supply the drive current to the drive coils 36A and 36B, respectively. , P2 are input to the absence determination means 18 and the normal operation confirmation means 19.
As shown in Japanese Patent Laid-Open No. 7-218857, if a detection coil for detecting the displacement of the movable plate is provided, the mirror displacement angle can be detected by this detection coil, so the output of the displacement detection coil is shown in FIG. If the information signals p1 and p2 are used, it is possible to directly monitor whether or not the scanning state of the mirror is normal from the output of the displacement detection coil.
[0027]
The absence determination means 18 stores the scanning beam azimuth corresponding to the monitoring region B, and when the scanning beam azimuth indicated by the signals p1 and p2 of both the drive circuits 14 and 15 matches the stored information, the light receiving circuit 17 The presence / absence of the object in the monitoring space corresponding to the monitoring area B is determined by determining the presence or absence of the received light output R1, and S = 1 is output when no object is present, and S = 0 is output when the object is present.
[0028]
The normal operation confirming means 19 stores the direction in which the inspection reflectors m1 to m4 exist, and the scanning beam radiation direction indicated by the signals p1 and p2 of the drive circuits 14 and 15 is stored information as will be described later. Is determined, the presence / absence of a light reception output is determined, N = 1 is output when the normal operation of the sensor is confirmed and it is determined that the sensor is normal, and N = 0 is output when it is determined that the sensor is abnormal.
[0029]
FIG. 3 shows a circuit configuration of the normal operation check means 19 of the present embodiment.
In FIG. 3, the normal operation confirmation means 19 of this embodiment includes an angle detection circuit 19A, a reflection presence / absence confirmation circuit 19B, a period confirmation circuit 19C, and an AND gate 19D.
The angle detection circuit 19 </ b> A is configured so that each of the azimuths (θ1, Ψ1) To (θFour, ΨFour), And when the scanning beam azimuth (θ, ψ) information indicated by the input signals p1 and p2 coincides with the stored azimuth information, the instruction information indicates that it is time to determine whether or not to receive light. A light reception presence / absence instruction signal Sr = 1 is output. The orientation (θ1, Ψ1) To (θFour, ΨFourIn other cases, the light reception presence / absence instruction signal Sr = 0.
[0030]
The reflection presence / absence confirmation circuit 19B confirms the presence / absence of the light reception output R1 in the period of the light reception presence / absence instruction signal Sr = 1. If the light reception output R1 is input, the output NS = 1 is continued, and if the light reception output R1 is not input, NS = 0.
The period confirmation circuit 19C confirms the generation period of the signal Sr = 1, that is, the scanning speed of the scanning beam. If the generation period of the signal Sr = 1 is a predetermined period, the scanning speed is normal and the output NT = 1 is continued. If it is not a predetermined period, NT = 0 is set as an abnormal scanning speed.
[0031]
The AND gate 19D generates an output N = 1 indicating that the sensor is normal when both outputs NS = 1 and NT = 1 are input.
As shown in FIG. 4, the scanning beam azimuth (θ, ψ) has the center O of the monitoring area B (also the center of the scanning area A) as the origin, and the horizontal direction (x direction) and the vertical direction, respectively. The light beam azimuth is (y direction).
[0032]
Here, even when a scanning mirror that scans in each direction independently is used, such as a galvanometer mirror as well as a polygon mirror, the principle of arrangement of the inspection reflector that can confirm the normal operation of the two-dimensional scanning optical radar sensor is used. Will be described.
The normal operation confirmation means 19 stores azimuth information (reflector existence range) of the inspection reflector arranged in advance in the scanning beam scanning region A, and further, the inspection reflector in the scanning beam scanning region A. The azimuth information (gap range) of the area where no light is present is stored, and the directional information and the presence / absence of the received light reception output are combined to determine whether it is normal. That is, the normal operation confirmation means 19 stores in advance the relationship between the azimuth (scanning beam azimuth) in the scanning region A and the output logical value of the light receiving circuit 17 (logical value 1 with light reception, logical value 0 without light reception). When the result of the azimuth-logical value actually obtained at the time of scanning matches the stored information, it is determined as normal operation, and when it does not match, it is determined as abnormal.
[0033]
The gap range may be a range in which there is no inspection reflector and no light is received when no object is present, and may include the monitoring region B. However, when the monitoring area B is included, if an object is present in the monitoring area B, the reflected light from the object is received. Therefore, the object absence determination means 18 not only detects the object but also normal operation confirmation means. 19 is an azimuth-logical value result which is inconsistent with the stored information and is judged abnormal. Therefore, it is desirable that the gap range be within the scanning area A and outside the monitoring area B.
[0034]
If the inspection reflector can be configured so as to be mistaken for a logical value of 0 (no light reception) when it should be a logical value of 1 (light reception) in an assumed abnormal state, the normal operation confirmation means 19 can detect the scanning beam. Only the azimuth information (reflector existence range) of the inspection reflector in the scanning area A may be stored, and only the logical value of the light reception output at the time of the azimuth information may be confirmed.
[0035]
In the case of a semiconductor galvanometer mirror, an abnormal state is assumed in which the scanning beam scan is one-dimensional like the scanning region A ′ of FIG. In this case, the output state of the drive circuit and the actual movement of the mirror movable part are different. For this reason, in the configuration in which the bar-shaped inspection reflectors 1 and 2 are arranged in the vicinity of the end of the monitoring area B as shown in FIG. 24, the monitoring area B even when scanning is abnormal in one dimension (scanning area A ′). Since reflected light is always obtained in the vicinity of the end, the result of the azimuth-logical value obtained at the time of abnormality is the same as the result of the azimuth-logical value obtained at the time of normality, and the abnormality cannot be detected. Therefore, in order to confirm the normal operation of the two-dimensional scanning optical radar sensor with certainty, the result of the azimuth-logical value obtained at the time of the assumed scanning abnormality must be the same as the result of the azimuth-logical value actually obtained at the normal time. It is necessary to configure the reflector for inspection differently.
[0036]
FIG. 5 shows an example of the configuration of such an inspection reflector, and the normal operation confirmation principle of the two-dimensional scanning optical radar sensor will be described.
In FIG. 5, the inspection reflector 1 is divided into a reflector 1a and a reflector 1b, and a gap 3 is provided between the reflectors 1a and 1b. (Reflector existence range) and a section (gap range) having a logical value of 0 exist.
[0037]
According to such a configuration, in the case of abnormal scanning in which the scanning is one-dimensional as described above, reflected light is always obtained near the end of the monitoring region B, and the azimuth information p1 and p2 of the scanning beam is the gap range (logical value in the normal state). Since the received light output is a logical value 1 even when indicating a period of 0), the azimuth-logical value result obtained at the time of scanning abnormality is different from that at normal time, and an abnormality can be detected. Therefore, the two-dimensional scanning optical radar sensor Even in this case, normal operation can be confirmed. In the case where the scanning beam is not projected due to a failure of the light emitting element 11 or the like, the light reception output becomes a logical value 0 even when the azimuth information p1 and p2 indicate the reflector existing range (a section where the logical value is 1 at normal time). Therefore, the azimuth-logical value obtained when the scanning is abnormal is different from the normal result, and the abnormality can be detected.
[0038]
The arrangement configuration of the inspection reflectors 1m to 4m in the first embodiment of FIG. 1 is based on the configuration principle of FIG.
In the configuration in which the inspection reflectors 1m to 4m are arranged near the four corners of the monitoring region B as shown in FIG. Since the received light output R1 becomes a logical value 0 when the existing azimuth of 1m to 4m is indicated (when the received light output R1 should be a logical value 1), the azimuth information p1 and p2 of the scanning beam are the inspection reflectors 1m to 4m. The normality can be confirmed by detecting the presence or absence of the light receiving output R1 when indicating the presence direction of the light.
[0039]
If the reflected light from the inspection reflector is obtained outside the monitoring region B, it can be confirmed that at least the entire monitoring region B is scanned, so that the inspection reflectors 1m to 4m are shown in FIG. It is desirable to arrange so as to protrude from the upper and lower ends of B.
Next, the normal confirmation operation of the first embodiment will be described with reference to the time chart of FIG.
[0040]
Information signals p1 and p2 indicating the azimuth (θ, ψ) of the scanning beam are input to the angle detection circuit 19A in the normal operation confirmation means 19 from the respective drive circuits 14 and 15 that drive the scanning mirror 13 to swing. The angle detection circuit 19A is configured so that each of the azimuths (θ1, Ψ1) To (θFour, ΨFour) Is remembered. The angle detection circuit 19A determines whether or not the orientations indicated by the input information signals p1 and p2 match the stored information. Each time the matching orientation information (inspection reflector presence orientation information) is input, the angle detection circuit 19A As shown in FIG. 6, information indicating that there is a light reception presence / absence confirmation period is output as Sr = 1 to the reflection presence / absence confirmation circuit 19 </ b> B and the period confirmation circuit 19 </ b> C. The reflection presence / absence confirmation circuit 19B determines whether or not the light reception output R1 is input during the period in which Sr = 1 is input. When the light reception output R1 = 1 is input, NS = 1 is generated. If the relationship of inputting R1 = 1 when Sr = 1 is maintained as shown in FIG. 6, NS = 1 continues from the reflection presence / absence confirmation circuit 19B. The period confirmation circuit 19C continues NT = 1 if the scanning speed of the scanning mirror 13 is normal and the signal Sr = 1 is generated at a predetermined interval. Accordingly, the existing orientation (θ of the reflectors m1 to m4 for inspection)1, Ψ1) To (θFour, ΨFour), The reflected light is received when the scanning beam is emitted (NS = 1) and the scanning speed of the scanning mirror 13 is normal (NT = 1). = 1 is continuously output. On the other hand, for example, as shown by a dotted line f1 in FIG. 6, if the light reception output R1 = 0 when Sr = 1, NS = 0 and the output of the normal operation confirmation means 19 becomes N = 0.
[0041]
Further, if the light reception output R1 = 0 when the azimuth information of the monitoring area stored therein is input during the period of Sr = 0, the absence determination unit 18 continues the output S = 1 as no object. Occur. On the other hand, for example, as indicated by a dotted line f2 in FIG. 6, when the light reception output R1 = 1 in the beam direction corresponding to the monitoring region, it is determined that the light is reflected from the object and the output of the non-existence determining means 18 is the object. S = 0 indicating presence.
[0042]
The AND gate 20 of FIG. 1 generates an output of Z = 1 only when S = 1 occurs from the non-existence determining means 18 and N = 1 occurs from the normal operation confirmation means 19, and reports safety.
As described above, according to the first embodiment, the scanning beam direction information obtained from the drive system of the scanning mirror 13 is the inspection reflector existence direction in the abnormal state that is assumed to be one-dimensional scanning. Sometimes the reflected light is not received, and the abnormality can be detected because the logical value that should be obtained in the normal state differs from the logical value that is actually obtained. Further, even when the light beam is not radiated to the area that should originally be emitted due to poor mounting of the optical radar sensor or the like, at least a part of the reflected light in the radiation azimuth in which the reflected light of the inspection reflectors m1 to m4 should exist. Abnormality is reported because no light is received.
[0043]
Further, the angle detection circuit 19A stores the azimuth-logical value relationship for all the scanning regions except the monitoring region B, and the scanning beam azimuth has a logical value 1 (with light reception) based on the azimuth information p1 and p2. Instructing the reflection presence / absence confirmation circuit 19B by the signal Sr that the direction should be (reflector existence range) and that the scanning beam direction should be the logical value 0 (no light reception) is the direction (gap range). If the reflection presence / absence confirmation circuit 19B is configured to confirm the presence / absence of light reception in all the scanning regions except the monitoring region B, for example, the light beam reciprocates between the inspection reflectors m1 and m2 due to a failure or the like. Even when the received light output should be R1 = 0, it can be detected that R1 = 1 and NS = 0 can be output, and an abnormality can be detected. Further improvement Kill.
[0044]
Further, as shown by a dotted line in FIG. 7, if all the areas other than the inspection reflectors m1 to m4 in the scanning area A are included in the monitoring area B as the area B ', when there is reflected light from the area B' Since the non-existence determining means 18 side regards the reflected light from the object and the output S = 0, the angle detection circuit 19A and the reflection presence / absence confirmation circuit 19B only apply the azimuth-logical value for the existence azimuth of the inspection reflectors m1 to m4. Since the danger can be reported even in the configuration for monitoring the relationship, the reliability of the sensor can be further improved as described above.
[0045]
For example, a threshold is provided for the received light intensity of the reflected light, and when the received light intensity is equal to or greater than the threshold, it is determined that there is received light. If adjusted to a level slightly exceeding the threshold value, there are problems such as a decrease in light beam intensity due to deterioration of the light emitting element 11 and a decrease in reflected light reception intensity due to decrease in light-electric conversion efficiency due to deterioration of the light receiving element 16. There is an advantage that can be detected early. The reflectance of the inspection reflectors m1 to m4 can be adjusted by the material, color, etc. of the reflecting surface.
[0046]
In FIG. 1, the signals p1 and p2 input to the absence determination unit 18 and the normal operation confirmation unit 19 are input to one of the absence determination unit 18 and the normal operation confirmation unit 19, and the other is input to the other. A configuration may be adopted in which equivalent information signals are transmitted through means to which the signals p1 and p2 are input. For example, if the light reception output R1 is input to the absence determination means 18 and an information signal equivalent to the light reception output R1 is transmitted to the normal operation confirmation means 19 via the absence determination means 18, at least the absence determination means. 18 can confirm that the output R1 has been received, and it is also possible to confirm whether or not the processing operation of the output R1 of the absence determination means 18 is normal.
[0047]
Next, a case where the optical radar sensor has a distance measuring function will be described as a second embodiment of the present invention.
In the present embodiment, as indicated by the dotted line in FIG. 1, the signal K indicating the light emission state output from the light emitting element driving circuit 12 in synchronization with the light emission pulse is sent to the absence determination means 18 and the normal operation confirmation means 19 respectively. input. The normal operation checking means 19 includes a delay circuit 19E shown in FIG. 8 in addition to the configuration shown in FIG. 3, and the signal K is input to the delay circuit 19E. It is publicly known that the distance to the object can be calculated by the time difference between the emission of the light beam and the reception of the reflected light, the phase difference between the emission beam and the reception beam, and the details of the distance calculation method are omitted here. Since the distance from the optical radar sensor to the inspection reflectors m1 to m4 is known, each time ΔT from when the signal K is input until the reflected light from each of the inspection reflectors m1 to m4 is received is It can be calculated in advance. The ΔT varies depending on the distance from each of the inspection reflectors m1 to m4. Information on the time ΔT for each of the inspection reflectors m1 to m4 is stored in the delay circuit 19E. In the present embodiment, it is assumed that the signal Sr from the angle detection circuit 19A includes identification information of the scanning beam direction corresponding to each of the inspection reflectors m1 to m4.
[0048]
Therefore, as shown in FIG. 8, the delay circuit 19E is included in the signal Sr when the signal Sr output from the angle detection circuit 19A indicates that it is in the confirmation period of the presence or absence of light reception (when Sr = 1). Based on the azimuth information, the delay time ΔT for the corresponding inspection reflector is selected, and the signal Sr ′ = 1 is output by delaying the selection delay time ΔT from the input of the signal K.
[0049]
As a result, as shown in FIG. 9, if R1 = 1 is input when Sr ′ = 1, the reflection presence / absence confirmation circuit 19B determines that the light reception output R1 is from the reflectors m1 to m4 for inspection and sets NS = 1. continue. On the other hand, for example, as shown by a dotted line f1 in FIG. 9, if the light reception output R1 = 0 when Sr ′ = 1, NS = 0. Further, if the light reception output R1 = 0 in the scanning range of the monitoring region B in the period of Sr ′ = 0, the absence determination means 18 continuously generates the output S = 1 as no object, As indicated by the dotted line f2, when the light receiving output R1 = 1, the output of the non-existence determining means 18 is S = 0 indicating the presence of an object.
[0050]
In such a configuration, in addition to the effects similar to those of the first embodiment, when the operation delay of the light receiving element 16 or the light receiving circuit 17 increases, a time axis shift occurs between the generation timing of the signal Sr ′ and the light receiving output R1. There is an advantage that can be reported as a sensor abnormality. Further, since the monitoring area B can be set by defining the monitoring distance from the optical radar sensor, it is possible to set the desired spatial area and monitor the object.
[0051]
Next, another example of the arrangement of the inspection reflector applicable to the first and second embodiments described above will be described with reference to FIGS.
As in FIG. 1, when arranged in the vicinity of the four corners of the monitoring area B, they may be arranged as shown in FIG. 10.
Further, as shown in FIG. 11, the maximum angle θmax and the minimum angle θmin are identified for the azimuth angle θ (azimuth angle of the scanning beam) around the rotation axis 13a by the first drive circuit 14 at the outer edge of the monitoring region B. The maximum angle ψmax and the minimum angle ψmin are identified and the azimuth angles (θmax, ψmax), (θmin, ψmax), (θmax, ψmin), (θmin, Inspection reflectors m1 to m4 may be arranged in the vicinity of the (φmin) direction. This arrangement method is particularly suitable when the monitoring area B is, for example, a sphere.
[0052]
In addition, as shown in FIG. 12, some inspection reflectors m may be arranged on the floor surface. In this case, as the inspection reflector m, for example, a braille mat attached to the floor surface is conceivable. The arrangement of the inspection reflector on the floor or the like is described in detail in Japanese Patent Application Laid-Open No. 2000-162306 by the present applicant.
As in the case of the galvanometer mirror in FIG. 2, when the rotational motions of the rotational shafts 13 a and 13 b are independent, some inspection reflectors can be omitted.
[0053]
For example, as shown in FIG. 13, for the azimuth angle θ around the rotation axis 13a, the reflector m3 having the maximum angle θmax and the reflector m4 having the minimum angle θmin are selected, and the azimuth angle ψ about the rotation axis 13b is selected. A reflector m2 having a maximum angle ψmax (may be m1) and a reflector m3 having a minimum angle ψmin are selected. A reflector not selected at this time can be omitted. In FIG. 13, the inspection reflector m1 (or m2) can be omitted.
[0054]
When this arrangement method is applied, in the case of FIGS. 1 and 10, either one of the diagonal inspection reflectors, that is, the inspection reflectors m1 and m4 or m2 and m3 can be omitted.
Further, since the galvanometer mirror as shown in FIG. 2 is considered to be symmetrical in both the vertical and horizontal directions, the inspection reflector having the maximum absolute value | θ | The inspection reflector having the maximum absolute value | ψ | for the angle ± ψ can be selected, and the others can be omitted. When applied to the arrangement configuration of FIG. 1 or FIG. 10, any one of the inspection reflectors m1 to m4 may be provided.
[0055]
When a polygon mirror is used as the scanning mirror 13, the normal scanning confirmation of the light beam is replaced with the normal checking of the rotation operation, so that only one inspection reflector is required. If the scanning area A is arranged in the vicinity of the four corners, it is confirmed that the scanning area A is being scanned, so that it is possible to simultaneously confirm that the monitoring area B in the scanning area A is being scanned. Moreover, even if there are a plurality of monitoring areas B in the scanning area A, there is an advantage that it is not necessary to arrange an inspection reflector for each monitoring area B.
[0056]
Next, a case where a two-dimensional scanning optical radar sensor is mounted on a moving body will be described.
When the optical radar sensor is mounted on a moving body, it is necessary to confirm that the scanning beam is radiated to the area to be monitored, along with the normal operation of the sensor. For normal operation confirmation, if the inspection reflector for normal operation confirmation described above is fixed to the sensor, the relative position between the scanning mirror and the reflector is constant. Normal operation can be confirmed (there is no limitation due to the sensor in the travel range of the moving body). Further, when confirming that the scanning beam is radiated to the area to be monitored, an inspection reflector for confirming the radiation area is arranged in the monitoring area, and the presence or absence of reflected light from the inspection reflector is determined. Check it. In addition, it is preferable to arrange | position the test | inspection reflector for radiation | emission area | region confirmation in the vicinity of the area | region outer edge part (area | region equivalent to the monitoring area | region which a sensor should monitor) where generation | occurrence | production of a dangerous state is assumed by driving | running | working of a moving body.
[0057]
FIG. 14 shows an arrangement example of the inspection reflector when the optical radar sensor is mounted on a moving body. (A) is a top view and (B) is a side view.
In FIG. 14, a two-dimensional scanning optical radar sensor 101 attached to a moving body 100 includes an inspection reflector EaU for confirming normal operation in the same arrangement as in FIG. 1, for example, in front of a scanning mirror (not shown). EbU, EaL, and EbL are attached. The optical radar sensor 101 confirms the normal operation of the sensor 101 by the normal operation confirmation means 19 based on the reflected light of these reflectors EaU, EbU, EaL, EbL as described above.
[0058]
Further, inspection reflectors a1U to a4U, a1L to a4U, b1U to b4U for confirming the radiation area are provided at four corners in the vicinity of the outer edge of the moving space of the moving body 100 along the traveling path 102 as shown in the figure. , B1L to b4L are arranged. Each of the inspection reflectors has retroreflectivity.
The inspection reflectors a1U to a4U, a1L to a4U, b1U to b4U, b1L to b4L for confirming the radiation area are identified by the reflector position patterns and reflectors in the image obtained from the signals p1 and p2 and the received light output R1. The azimuth (and distance) information may be compared with the current position of the moving body and the predicted position pattern and expected azimuth (and distance) data of the reflector derived from the reflector position stored in advance.
[0059]
FIGS. 15A to 15C show changes in the image based on the radiation direction information of the optical radar sensor 101 and the light reception output R1 when the moving body 100 moves in the arrow direction in FIG. A region surrounded by a dotted line indicates a scanning region A of the scanning beam.
FIG. 15A shows an image at the position of FIG. 14, and inspection reflectors a2U, a2L, b2U, b2L and a3U, a3L, b3U, b3L are detected. The inspection reflectors a4U, a4L, b4U, and b4L are not detected because they are far away. As the moving body 100 moves, as shown in FIG. 15B, the inspection reflectors a2U, a2L, b2U, and b2L disappear from the image outside the scanning region, and only the inspection reflectors a3U, a3L, b3U, and b3L Will be detected. When it further moves, the inspection reflectors a4U, a4L, b4U, b4L begin to be detected as shown in FIG. As described above, when the moving body 100 moves on the traveling path 102, the inspection reflectors a1U to a4U, a1L to a4U, b1U to b4U, and b1L to b4L are detected, so that the scanning beam should be originally monitored. It can be confirmed that it is emitted to the area.
[0060]
In the configuration of FIG. 14, it is possible to omit the inspection reflectors EaU, EbU, EaL, and EbL for checking normal operation. In this case, the confirmation of the scanning beam scanning is limited to the range surrounded by the inspection reflector for confirming the radiation area detected at the outermost edge. That is, in FIGS. 15A and 15C, scanning scanning is confirmed in a range surrounded by the inspection reflectors a2U, a2L, b2U, b2L and the inspection reflectors a3U, a3L, b3U, b3L. In FIG. 15B, the measurement is performed within a range surrounded by the inspection reflectors a3U, a3L, b3U, and b3L.
[0061]
Accordingly, when the inspection reflectors EaU, EbU, EaL, and EbL for normal operation confirmation are omitted, normal operation can be confirmed in a scanning range that is substantially the same as the case of using these inspection reflectors EaU, EbU, EaL, and EbL. This is just before each of the inspection reflectors a1U to a4U, a1L to a4L, b1U to b4U, b1L to b4L for confirming the radiation area, that is, at the four corners of the image of FIG. It is the time when a4U, a1L to a4U, b1U to b4U, b1L to b4L are located, and is not continuous but becomes periodic as the moving body moves.
[0062]
The normal operation confirmation inspection reflectors EaU, EbU, EaL, and EbL are omitted, and normal operation confirmation is performed continuously in a scanning range substantially the same as that when the inspection reflectors EaU, EbU, EaL, and EbL are used. Each of the inspection reflectors a1U to a4U, a1L to a4L, b1U to b4U, and b1L to b4L for confirming the radiation region may be configured as shown in FIG.
[0063]
As shown in FIGS. 16A and 16B, the inspection reflectors aU, aL, bU, bL are continuously arranged along the traveling path 102 at the four corners in the vicinity of the outer edge of the moving space of the moving body 100.
With this configuration, as shown in FIGS. 17A to 17C, the range surrounded by the inspection reflectors aU, aL, bU, bL does not change even when the moving body 100 moves, and the inspection is not performed. Normal operation can be confirmed continuously in the same scanning range as when the reflectors EaU, EbU, EaL, and EbL are provided. H2, h3, and h4 in FIG. 17 correspond to positions h2, h3, and h4 in FIG.
[0064]
Note that the moving body on which the two-dimensional scanning optical radar sensor is mounted is not limited to the illustrated traveling vehicle but may be a robot arm or the like. In addition, when a scanning mirror such as a galvano mirror that has independent mirror rotation operations in the scanning direction is employed, a part of the inspection reflector can be omitted as described in FIG. is there.
In the case of FIGS. 14 and 16, since the radiation region confirmation inspection reflector is included in the monitoring region B, the absence determination means 18 determines the presence or absence of an object except for the light reception output R1 from the inspection reflector. It is necessary to judge. For this reason, the non-existence determination means 18 is provided with a circuit similar to the angle detection circuit 19A in the normal operation confirmation means 19 described above, and an instruction signal similar to the signal Sr is used, and when this signal Sr = 1 is input. Except for the light reception output, the presence or absence of an object is determined.
[0065]
FIGS. 18 and 19 show the difference between the case where the optical reflector sensor does not have the distance measuring function and the case where the optical reflector sensor does not have the distance measuring function when the inspection reflector existence region is excluded from the monitoring region. FIG. 18 shows a case without a distance measuring function, and FIG. 19 shows a case with a distance measuring function. In both figures, (A) is a top view and (B) is a side view. The dotted line in the figure is the scanning beam scanning area A.
[0066]
When the distance measuring function is not provided, the monitoring area B and the non-monitoring area C (area where the reflected light from the inspection reflector is received) are as illustrated, and the object 105 is the inspection reflector as illustrated. If it exists in the azimuth, there is a possibility that the reflected light of the object 105 and the reflected light of the inspection reflector cannot be discriminated. Since it is limited, it is possible to distinguish the reflected light from the object 105 and the reflected light from the inspection reflector behind the object 105. Note that it goes without saying that the above-described region segmentation method can be similarly applied to the embodiments described so far.
[0067]
Even in the case of FIG. 18, if the inspection reflector having the configuration shown in FIGS. 20 and 21 is used, the reflected light from the inspection reflector and the reflected light from the object can be distinguished.
20A and 20B are configuration examples of a movable inspection reflector configured to modulate the light intensity frequency of reflected light.
The inspection reflector 200 in FIG. 20A has a configuration in which a mirror 202 is attached to a shaft 201 that is rotated by a driving unit (not shown). If the mirror 202 has low retroreflectivity, the incident light beam is reflected in the direction corresponding to the rotation angle of the inspection reflector 200. Therefore, the reflected light from the inspection reflector 200 is modulated by the rotation frequency of the inspection reflector 200 and received by the light receiving element of the optical radar sensor. The modulation information is included in the received light output R1 and input to the reflection presence / absence confirmation circuit 19B of the normal operation confirmation means 19. When the modulated light receiving output R1 is input, the reflection presence / absence confirmation circuit 19B can be regarded as the reflected light from the inspection reflector 200 and can be distinguished from the reflected light from the object. For example, it is possible to detect that the received light signal is modulated at a specific frequency by providing a band-pass filter that passes the frequency.
[0068]
In addition, the inspection reflector 210 in FIG. 20B pivotally supports a mirror 212 so that it can swing around an axis 211, and a spring 213 is connected to the mirror 212 to supply vibration energy to the mirror 212 from the outside. And swinging. In particular, if the oscillation frequency is a resonance frequency determined by the mass of the inspection reflector 210 and the spring constant, the oscillation can be greatly oscillated. In such a configuration, for example, if the optical radar sensor is provided with sound wave generation means and vibration energy is supplied to the inspection reflector 210 by the sound wave from the sensor, the inspection reflector 210 does not need to have a drive means. There is an advantage that can be turned into a power source.
[0069]
FIG. 21 is an example of a wavelength conversion type inspection reflector configured to modulate the wavelength of reflected light.
The wavelength conversion type inspection reflector 220 in FIG. 21 has a configuration in which a wavelength conversion layer 222 is provided on the front surface of a mirror 221, and converts an incident light beam into reflected light having a different wavelength. In the present embodiment, for example, a blue incident light beam is converted into a red light beam and reflected. Such a wavelength conversion technique is disclosed in Mamiya et al .: Proceedings of the 13th Human Interface Symposium, Human Interface Subcommittee of the Society of Automatic Control, 1996, p. 493-500 and the like.
[0070]
When the wavelength conversion type inspection reflector 220 is used, for example, a light receiving element including an optical filter having a characteristic of transmitting only a red light beam and blocking a blue light beam, and a light receiving that generates a light receiving output by the output from the light receiving element. A circuit is separately provided in the optical radar sensor having the configuration shown in FIG.
As a result, the reflected light of the red light beam whose wavelength has been converted by the inspection reflector 220 is received only by the light receiving element with the optical filter, and the light reception circuit outputs the light reception output only when the reflection light of the inspection reflector 220 exists. appear. Therefore, this light reception output becomes information indicating the presence of reflected light from the inspection reflector. When this light reception output is generated, the presence / absence of the light reception output R1 is determined by the light reception presence / absence confirmation circuit 19B of the normal operation confirmation means 19. Normal operation can be confirmed.
[0071]
If the inspection reflector as shown in FIGS. 20 and 21 is used, the reflected light of the inspection reflector and the reflected light of the object can be easily distinguished, and a distance measuring function is not provided even in the state shown in FIG. Both can be identified. Further, it is possible to omit the signals p1 and p2 indicating the orientation of the inspection reflector.
It is also possible to use a radiation region checking inspection reflector as information display means. An example is shown in FIG. FIGS. 22A and 22B show an example in which travel information of the moving body 100 is displayed, for example. FIG. 22A is a top view and FIG. The same components as those in FIG. 14 are denoted by the same reference numerals.
[0072]
In FIG. 22, inspection reflectors a to c are installed on, for example, a traveling path 102 and used for information display simultaneously with the light beam radiation area confirmation of the optical radar sensor 101 mounted on the moving body 100. Information is displayed by changing a basic reflector shape (reflection characteristics), which is no information, to a predetermined shape (reflection characteristics) corresponding to the information. For example, in the present embodiment, the inspection reflector c is used as a basic shape and no information is displayed, and the basic shape is transformed into a barcode to display information. The shapes (reflection characteristics) of the inspection reflectors a to c are extracted on the basis of the signal R1, and the information is decoded from the output state of the signal R1 based on the correspondence relationship between reflectivity and information stored in advance. .
[0073]
23A to 23C show changes in the image based on the light reception output of the optical radar sensor 101 when the moving body 100 moves in the direction of the arrow in FIG.
The image (A) shows a state in which the display information of the inspection reflector a has already been decoded and executed and is approaching the inspection reflector b. In this image, the inspection reflector b is surrounded by a dotted line, and this indicates that the inspection reflector is recognized as an inspection reflector for confirming the radiation region of the light beam. It is confirmed that the beam is emitted. Assume that the inspection reflector b displays “traveling speed” information, for example, and the display information of the inspection reflector b is when the inspection reflector b overlaps the horizontal line I on the image as shown in FIG. The mobile body 100 travels based on the “traveling speed” information indicated by the inspection reflector b. In (C), the non-information inspection reflector c is confirmed, and it is confirmed only that the light beam is emitted to the monitoring area.
[0074]
With this configuration, for example, when applied to a railway vehicle, the inspection reflector can be disposed on, for example, a sleeper, and information can be provided to the vehicle by the inspection reflector. As information to be provided, for example, in addition to fixed information such as “speed limit”, “track gradient”, “distance to railroad crossing”, etc. Variable information such as “current display” and “point opening direction” can also be displayed. If stop position information is displayed, it can be used for fixed point stop control.
[0075]
The identification of the inspection reflector and the reading of the information are not limited to the method using an image as in the present embodiment, but can be performed using the direction / distance information as described above. Needless to say, the arrangement position of the inspection reflector is not limited to the traveling path. Further, information may be displayed by a combination of a plurality of inspection reflectors.
[0076]
【The invention's effect】
  Claims as described above1According to the invention, the two-dimensional scanning optical radar sensor capable of two-dimensionally scanning the scanning beam and monitoring the object in a three-dimensional space can monitor the object while confirming the normal operation. The degree of freedom of mounting the optical radar sensor on the can be increased.
[0077]
  Claim2According to the invention, in addition to the above-described effect, even when using a light beam scanning means such as a galvanometer mirror, in which scanning in each direction of the scanning beam is independently performed, confirmation of normal operation can be ensured.
  Claim3According to this invention, the reliability of the normal operation confirmation function can be improved.
  Claim4According to the invention, since the position where the inspection reflector exists is determined not only by the direction but also by the distance from the sensor, even when the inspection reflector and the object overlap each other, it is possible to identify both of them and monitor the object. Increased function reliability.
[0078]
  Claim5According to this invention, when there are a plurality of monitoring areas in the scanning area, it is not necessary to arrange an inspection reflector for each monitoring area.
  Claim7According to this invention, it is suitable even when the monitoring area is, for example, spherical.
  Claim8, 9According to the invention, the moving body can move while confirming that the scanning beam is emitted to the region to be monitored.
[0079]
  Claim10According to this invention, the reliability of the object monitoring function when the moving body is mounted can be improved.
  Claim11, 12According to this invention, since the reflected light from the inspection reflector and the reflected light from the object can be easily identified, the reliability of the normal operation confirmation function and the object monitoring function can be further enhanced.
[0080]
  Claim13According to the invention, the inspection reflector can be used not only for confirming normal operation but also for transmitting information.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of a two-dimensional scanning optical radar sensor according to the present invention.
FIG. 2 is a main part configuration diagram of a semiconductor galvanometer mirror applied to the embodiment.
FIG. 3 is a block diagram of normal operation confirmation means.
FIG. 4 is an explanatory diagram of a scanning beam direction.
FIG. 5 is an explanatory diagram of an arrangement principle of a reflector for inspection of a two-dimensional scanning optical radar sensor.
FIG. 6 is a time chart for explaining the operation of the normal operation confirmation unit of the first embodiment.
FIG. 7 is a diagram showing an example of setting a monitoring area
FIG. 8 is a main part configuration diagram of normal operation confirmation means of a second embodiment of the present invention having a distance measuring function;
FIG. 9 is a time chart for explaining the operation of the normal operation confirmation unit of the second embodiment.
FIG. 10 is a view showing another arrangement example of the reflector for inspection.
FIG. 11 is a diagram showing another arrangement example of the inspection reflectors;
FIG. 12 is a view showing another arrangement example of the reflector for inspection.
FIG. 13 is a view showing another arrangement example of the reflector for inspection.
FIGS. 14A and 14B show a configuration example of an inspection reflector when a moving body is mounted, where FIG. 14A is a top view and FIG. 14B is a side view;
15 is a diagram showing a change state of the moving body traveling direction screen detected by the sensor of FIG. 14;
16A and 16B show another configuration example of an inspection reflector when mounted on a moving body, where FIG. 16A is a top view and FIG. 16B is a side view.
FIG. 17 is a diagram showing a change state of the moving body traveling direction screen detected by the sensor of FIG. 16;
18A and 18B are explanatory diagrams excluding the position of the inspection reflector in the monitoring area when there is no distance measuring function, where FIG. 18A is a top view, and FIG. 18B is a side view.
FIGS. 19A and 19B are explanatory diagrams excluding the position of the inspection reflector in the monitoring area when there is a distance measuring function, where FIG. 19A is a top view and FIG. 19B is a side view;
FIG. 20 is a diagram illustrating a configuration example of an inspection reflector configured to modulate the light intensity frequency of a scanning beam;
FIG. 21 is a diagram showing a configuration example of an inspection reflector configured to modulate the wavelength of a scanning beam;
22A and 22B are diagrams showing a configuration example of an inspection reflector provided with an information display function, where FIG. 22A is a top view and FIG. 22B is a side view.
FIG. 23 is a diagram showing a change state of the moving body traveling direction screen detected by the sensor of FIG. 22;
FIG. 24 is a diagram for explaining problems when a normal operation confirmation method for a one-dimensional scanning optical radar sensor is applied to a two-dimensional scanning optical radar sensor;
[Explanation of symbols]
11 Light emitting element
12 Light emitting element drive circuit
13 Scanning mirror
14 First drive circuit
15 Second drive circuit
16 Light receiving element
17 Light receiving circuit
18 Absence determination means
19 Normal operation confirmation means
20 AND gate
m1-m4 Reflector for inspection
EaU, EbU, EaL, EbL Inspection reflector
a1U to a4U, a1L to a4U, b1U to b4U, b1L to b4L Inspection reflector
a, b, c Inspection reflector
200, 210, 220 Inspection reflector,
A Scanning area
B Monitoring area

Claims (13)

光ビーム発生手段と、
前記光ビーム発生手段からの光ビームを物体の監視領域を含んで2次元に走査可能な光ビーム走査手段と、
該光ビーム走査手段から放射される走査ビームの走査空間からの反射光を受光する受光手段と、
少なくとも前記受光手段の出力に基づき前記監視領域内の物体不在を判定する不存在判定手段と、
少なくとも前記光ビーム発生手段、光ビーム走査手段及び受光手段の正常動作を確認する正常動作確認手段と、
前記不存在判定手段の出力と前記正常動作確認手段の出力との論理積結果に基づいて安全情報を出力するゲート手段と、を備え
前記正常動作確認手段が、前記光ビーム走査手段の走査ビーム放射方位が走査ビームの走査領域内に配置した検査用反射体の存在する方位であることを示す受光有無指示信号を発生する角度検出回路と、前記受光有無指示信号の発生期間における前記受光手段の出力の有無を確認し、受光出力があれば受光有りを示す出力を発生する反射有無確認回路と、前記受光有無指示信号の発生周期を確認し前記発生周期が所定周期のときに走査速度正常を示す出力を継続する期間確認回路と、前記反射有無確認回路の出力と前記期間確認回路の出力とを論理積演算するANDゲートとを備えることを特徴とする2次元走査型光レーダセンサ。
A light beam generating means;
A light beam scanning means capable of two-dimensionally scanning a light beam from the light beam generating means including an object monitoring area;
A light receiving means for receiving reflected light from the scanning space of the scanning beam emitted from the light beam scanning means;
Non-existence determining means for determining the absence of an object in the monitoring area based on at least the output of the light receiving means;
Normal operation confirmation means for confirming at least normal operation of the light beam generating means, light beam scanning means and light receiving means;
Gate means for outputting safety information based on a logical product result of the output of the absence determination means and the output of the normal operation confirmation means ,
An angle detection circuit in which the normal operation confirmation means generates a light reception presence / absence instruction signal indicating that the scanning beam radiation direction of the light beam scanning means is an orientation in which an inspection reflector arranged in the scanning region of the scanning beam exists And a reflection presence / absence confirmation circuit that generates an output indicating that there is light reception if there is a light reception output, and a generation cycle of the light reception presence / absence indication signal. A period confirmation circuit that confirms and outputs an output indicating normal scanning speed when the generation period is a predetermined period, and an AND gate that performs an AND operation on the output of the reflection confirmation circuit and the output of the period confirmation circuit A two-dimensional scanning optical radar sensor.
前記検査用反射体は、センサ動作状態から得られる走査ビーム放射情報と前記受光手段の受光出力結果との対応関係が、想定される異常動作時と正常動作時とで異なるように配置する請求項に記載の2次元走査型光レーダセンサ。The inspection reflector is disposed so that a correspondence relationship between scanning beam radiation information obtained from a sensor operation state and a light reception output result of the light receiving unit is different between an assumed abnormal operation and a normal operation. two-dimensional scanning optical radar sensor according to 1. 前記角度検出回路は、前記受光有無指示信号として前記光ビーム走査手段の走査ビーム放射方位が前記検査用反射体が存在する方位であること及び検査用反射体が存在しない方位であることを示す信号を発生し、前記反射有無確認回路は、前記受光有無指示信号の示す全ての方位について前記受光手段の出力の有無を確認する構成である請求項1又は2に記載の2次元走査型光レーダセンサ。 The angle detection circuit is a signal indicating that the scanning beam radiation azimuth of the light beam scanning means is an azimuth in which the inspection reflector exists and an azimuth in which the inspection reflector does not exist as the light reception presence / absence instruction signal. 3. The two-dimensional scanning optical radar sensor according to claim 1, wherein the reflection presence / absence confirmation circuit is configured to confirm the presence / absence of the output of the light receiving means in all directions indicated by the light reception presence / absence instruction signal. . 前記正常動作確認手段は、前記角度検出回路の受光有無指示信号に、センサから検査用反射体までの距離情報を付加する構成である請求項1〜3のいずれか1つに記載の2次元走査型光レーダセンサ。The two-dimensional scanning according to any one of claims 1 to 3, wherein the normal operation confirmation unit is configured to add distance information from a sensor to an inspection reflector to a light reception presence / absence instruction signal of the angle detection circuit. Type optical radar sensor. 前記検査用反射体は、前記走査領域の隅部近傍に配置する構成とした請求項1〜4のいずれか1つに記載の2次元走査型光レーダセンサ。The two-dimensional scanning optical radar sensor according to claim 1 , wherein the inspection reflector is arranged in the vicinity of a corner of the scanning region. 前記検査用反射体は、前記監視領域外で当該監視領域の隅部近傍に配置する構成とした請求項1〜4のいずれか1つに記載の2次元走査型光レーダセンサ。The two-dimensional scanning optical radar sensor according to any one of claims 1 to 4 , wherein the inspection reflector is arranged outside the monitoring area and in the vicinity of a corner of the monitoring area. 前記検査用反射体は、前記監視領域外縁に対する走査ビームの上下最大角及び左右最大角で示される方位近傍に配置する構成とした請求項1〜4のいずれか1つに記載の2次元走査型光レーダセンサ。The two-dimensional scanning type according to any one of claims 1 to 4 , wherein the inspection reflector is arranged in the vicinity of an azimuth indicated by a maximum vertical angle and a horizontal maximum angle of a scanning beam with respect to an outer edge of the monitoring region. Optical radar sensor. 移動体に2次元走査型光レーダセンサを搭載した場合において、前記移動体が予め定められた範囲内で移動する時に、前記検査用反射体を、前記監視領域内に少なくとも1つ以上存在するよう配置する請求項1〜4のいずれか1つに記載の2次元走査型光レーダセンサ。When a two-dimensional scanning optical radar sensor is mounted on a moving body, when the moving body moves within a predetermined range, at least one inspection reflector is present in the monitoring area. The two-dimensional scanning optical radar sensor according to any one of claims 1 to 4 , which is arranged. 前記検査用反射体は、前記移動体の移動方向に沿って連続して存在するよう配置する構成である請求項に記載の2次元走査型光レーダセンサ。The two-dimensional scanning optical radar sensor according to claim 8 , wherein the inspection reflector is arranged so as to continuously exist along a moving direction of the moving body. 前記不存在判定手段は、前記受光手段の受光出力から前記監視領域内の前記検査用反射体からの反射光による受光出力を除外して物体の有無を判定する構成である請求項8又は9に記載の2次元走査型光レーダセンサ。10. The configuration according to claim 8 , wherein the absence determination unit is configured to determine the presence / absence of an object by excluding a light reception output by reflected light from the inspection reflector in the monitoring region from a light reception output of the light reception unit. The two-dimensional scanning optical radar sensor described. 前記検査用反射体は、入射する走査ビームの光強度周波数を変調する構成である請求項1〜10のいずれか1つに記載の2次元走査型光レーダセンサ。The two-dimensional scanning optical radar sensor according to any one of claims 1 to 10 , wherein the inspection reflector is configured to modulate a light intensity frequency of an incident scanning beam. 前記検査用反射体は、入射する走査ビームの波長を変調する構成である請求項1〜10のいずれか1つに記載の2次元走査型光レーダセンサ。The two-dimensional scanning optical radar sensor according to any one of claims 1 to 10 , wherein the inspection reflector is configured to modulate a wavelength of an incident scanning beam. 前記検査用反射体を情報表示手段に用いる請求項1〜12のいずれか1つに記載の2次元走査型光レーダセンサThe two-dimensional scanning optical radar sensor according to claim 1 , wherein the inspection reflector is used as an information display unit.
JP2000302760A 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor Expired - Lifetime JP4953502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302760A JP4953502B2 (en) 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302760A JP4953502B2 (en) 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor

Publications (2)

Publication Number Publication Date
JP2002107452A JP2002107452A (en) 2002-04-10
JP4953502B2 true JP4953502B2 (en) 2012-06-13

Family

ID=18784063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302760A Expired - Lifetime JP4953502B2 (en) 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor

Country Status (1)

Country Link
JP (1) JP4953502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725330A (en) * 2019-02-20 2019-05-07 苏州风图智能科技有限公司 A kind of Location vehicle method and device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004276A (en) * 2002-05-31 2004-01-08 Nippon Signal Co Ltd:The Two-dimensional optical scanner
JP3887279B2 (en) * 2002-07-17 2007-02-28 住友大阪セメント株式会社 Monitoring device
JP5702923B2 (en) * 2009-07-27 2015-04-15 日本信号株式会社 Distance image processing system
JP5638345B2 (en) * 2010-10-27 2014-12-10 三菱電機株式会社 Laser image measuring device
JP5594217B2 (en) * 2011-04-01 2014-09-24 株式会社デンソー Inspection method and inspection system
JP5932371B2 (en) * 2012-02-02 2016-06-08 三菱電機株式会社 Shape measuring device
DE102018124835B3 (en) 2018-10-09 2019-11-07 Sick Ag Optoelectronic sensor and method for detecting objects
JPWO2022191174A1 (en) * 2021-03-10 2022-09-15
JP7097648B1 (en) 2021-12-16 2022-07-08 Dolphin株式会社 Adjustment method and program of optical scanning device, object detection device, optical scanning device
JP7097647B1 (en) 2021-12-16 2022-07-08 Dolphin株式会社 Adjustment method and program of optical scanning device, object detection device, optical scanning device
WO2023119414A1 (en) * 2021-12-21 2023-06-29 パイオニア株式会社 Sensor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3636343B2 (en) * 1998-08-27 2005-04-06 オムロン株式会社 Two-dimensional axis adjustment method of distance measuring device
JP2000162306A (en) * 1998-11-25 2000-06-16 Nippon Signal Co Ltd:The Reflector for inspecting radar sensor and system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725330A (en) * 2019-02-20 2019-05-07 苏州风图智能科技有限公司 A kind of Location vehicle method and device
WO2020168742A1 (en) * 2019-02-20 2020-08-27 苏州风图智能科技有限公司 Method and device for vehicle body positioning

Also Published As

Publication number Publication date
JP2002107452A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP4953502B2 (en) Two-dimensional scanning optical radar sensor
JP5267786B2 (en) Laser radar and boundary monitoring method using laser radar
US20040222366A1 (en) Device for distance measurement
US20070216878A1 (en) Distance measuring device and laser beam projector therefor
JP2003011824A (en) Crossing obstructing detector
JP2000162533A (en) Optical scanner
JP5598100B2 (en) Object detection device
JP2012117996A (en) Distance measuring apparatus and distance measuring method
JP3802339B2 (en) Axis adjustment method for rangefinder
JP2024026611A (en) distance measuring device
JP2022165971A (en) Scanning device and ranging device
JPWO2020129720A5 (en)
JP2003028960A (en) Obstacle detection apparatus
JP2014071028A (en) Laser radar device
JP7224884B2 (en) rangefinder
JP7152147B2 (en) rangefinder
EP3364229B1 (en) Optical-scanning-type object detection device
JP2000028715A (en) Composite-type radar sensor
JP4419255B2 (en) Resonant type optical scanner
JP4169677B2 (en) Obstacle detection device
JPS59171878A (en) Obstacle detecting apparatus for vehicle
JP2004157065A (en) Radar device
JP6899985B2 (en) Distance measuring device
JP2001325690A (en) Obstacle detector
JP2010107575A (en) Optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4953502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3