JP2002107452A - Two-dimensional scanning type optical radar sensor - Google Patents

Two-dimensional scanning type optical radar sensor

Info

Publication number
JP2002107452A
JP2002107452A JP2000302760A JP2000302760A JP2002107452A JP 2002107452 A JP2002107452 A JP 2002107452A JP 2000302760 A JP2000302760 A JP 2000302760A JP 2000302760 A JP2000302760 A JP 2000302760A JP 2002107452 A JP2002107452 A JP 2002107452A
Authority
JP
Japan
Prior art keywords
inspection
reflector
scanning
radar sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000302760A
Other languages
Japanese (ja)
Other versions
JP4953502B2 (en
Inventor
Toshihito Shirai
白井  稔人
Koichi Yomogihara
弘一 蓬原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2000302760A priority Critical patent/JP4953502B2/en
Publication of JP2002107452A publication Critical patent/JP2002107452A/en
Application granted granted Critical
Publication of JP4953502B2 publication Critical patent/JP4953502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-dimensional scanning type optical radar sensor capable of monitoring an object while confirming normal operation. SOLUTION: A scanning mirror 13 is rockingly driven around axes 13a and 13b by driving circuits 14 and 15, and a light beam from a light emitting element 11 is two-dimensionally scanned on the range of a scanning area A including a monitoring area B. A normal operation confirming means 19 confirms whether or not the reflected light from reflectors m1 to m4 for inspection are being received on the basis of scanning information from the driving circuits 14 and 15 and received light output R1 obtained via a light receiving element 16 and a light receiving circuit 17. A nonexistence judging means 18 judges the existence of the object in the monitoring area B on the basis of the received light output R1. When S=1 for indicating the nonexistence of the object is generated from the nonexistence judging means 18 and N=1 for indicating the normal operation is generated from the normal operation confirming means 19, Z=1 for indicating safety is generated from an AND gate 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体監視を立体的
な領域で行える2次元走査型光レーダセンサに関し、特
に、センサ正常を確認しつつ物体監視が行える2次元走
査型光レーダセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-dimensional scanning optical radar sensor capable of monitoring an object in a three-dimensional area, and more particularly to a two-dimensional scanning optical radar sensor capable of monitoring an object while confirming that the sensor is normal.

【0002】[0002]

【従来の技術】例えば、無人搬送車に関する国際安全規
格では、進路上の物体を監視するための光レーダセンサ
は、進路上に横たわる人の発見等を配慮して、床面から
所定高以下の位置で無人搬送車に取り付けるべきと規定
されている。しかし、光ビームを2次元で走査して立体
空間を監視する2次元走査型光レーダセンサを利用すれ
ば、設置高が規定値以上であっても走査ビームを床面方
向へも向けることができるので、実質的に上記規格の要
件を満たすことができ、光レーダセンサの取付け自由度
を高められる。
2. Description of the Related Art For example, according to the international safety standard for automatic guided vehicles, an optical radar sensor for monitoring an object on a route is provided at a predetermined height or less from the floor in consideration of the discovery of a person lying on the route. It is stipulated that it should be attached to the automatic guided vehicle at the location. However, if a two-dimensional scanning optical radar sensor that monitors a three-dimensional space by scanning a light beam two-dimensionally is used, the scanning beam can be directed also toward the floor surface even when the installation height is equal to or more than a specified value. Therefore, the requirements of the above standard can be substantially satisfied, and the degree of freedom in mounting the optical radar sensor can be increased.

【0003】2次元走査型光レーダセンサとしては、例
えば信学技法Vol.99,No.516「2次元スキ
ャニングレーダの開発」や、特開平11−306485
号公報等で開示されたもの等がある。前者の2次元走査
型光レーダセンサは、レーザダイオードから発せられた
光ビームをポリゴンミラーで反射して空間へ放射し、走
査ビームの光軸上に物体が存在すれば、物体からの反射
光の受光で物体有りが通報される。そして、ポリゴンミ
ラーは角錐台形状で各反射面の傾斜角を異ならせている
ので、ポリゴンミラーで反射して空間に放射される光ビ
ームの走査が2次元になる。これにより、走査ビームの
放射領域が光ビーム反射点を頂点とした立体となり、物
体を立体的な領域で監視できる。
A two-dimensional scanning optical radar sensor is described in, for example, IEICE, Vol. 99, No. 516, "Development of two-dimensional scanning radar", and JP-A-11-306485.
And others disclosed in Japanese Patent Publication No. The former two-dimensional scanning optical radar sensor reflects a light beam emitted from a laser diode by a polygon mirror and radiates the light beam into space. If an object exists on the optical axis of the scanning beam, the reflected light from the object is reflected. The presence of an object is reported by light reception. Since the polygon mirror has a truncated pyramid shape and different angles of inclination of the respective reflection surfaces, the scanning of the light beam reflected by the polygon mirror and emitted to space becomes two-dimensional. As a result, the radiation area of the scanning beam becomes a three-dimensional shape with the light beam reflection point at the top, and the object can be monitored in a three-dimensional area.

【0004】後者の2次元走査型光レーダセンサは、発
光部からの光ビームを、ガルバノミラーで反射して所定
領域内へ投光し、所定領域内に物体があれば、その反射
光が受光手段で受光されて物体有りと判定される。ガル
バノミラーは、特開平7−175005号公報、特開平
7−218857号公報等で公知のもので、互いに直交
する回動軸でそれぞれ軸支された2つの可動部を駆動手
段でそれぞれ独立に揺動駆動してミラーを傾動する。こ
れにより、光ビームの走査が2次元となり走査ビームの
放射領域が立体になる。
In the latter two-dimensional scanning optical radar sensor, a light beam from a light emitting section is reflected by a galvanomirror and projected into a predetermined area. If there is an object in the predetermined area, the reflected light is received. The light is received by the means and it is determined that there is an object. The galvanometer mirror is known in Japanese Patent Application Laid-Open Nos. 7-175005, 7-218857, and the like. The two movable parts that are respectively supported by rotating shafts orthogonal to each other are independently swung by driving means. The mirror is tilted by dynamic driving. Thereby, the scanning of the light beam becomes two-dimensional, and the radiation area of the scanning beam becomes three-dimensional.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記国際安
全規格では、無人搬送車と人との衝突事故の重大性に鑑
み、搭載する光レーダセンサは故障時に危険側に誤らな
いことが要求され、この場合、センサが正常であること
の確認機能が必要である。しかし、上述したいずれの2
次元走査型光レーダセンサも、センサの正常動作確認機
能については示されていない。
According to the international safety standard, in consideration of the seriousness of a collision accident between an automatic guided vehicle and a person, it is required that an optical radar sensor to be mounted is not mistaken for danger when a failure occurs. In this case, a function for confirming that the sensor is normal is required. However, any of the above 2
The two-dimensional scanning optical radar sensor does not show a function for confirming the normal operation of the sensor.

【0006】尚、1次元走査型光レーダセンサについて
は、正常動作確認機能を備えたものが、例えば特開平1
1−144161号公報等で公知である。この1次元走
査型光レーダセンサは、レーザダイオードから発せられ
た光ビームを回動軸が1つであるガルバノミラーで1次
元に走査し、走査ビームの光軸上に物体が存在すれば、
その反射光の受光により物体有りが通報される。そし
て、この1次元走査型光レーダセンサでは、物体監視領
域の端部近傍に正常動作確認用の検査用反射体を備え、
この検査用反射体からの反射光に基づいて正常動作確認
手段によりセンサの正常動作を確認する構成である。
A one-dimensional scanning optical radar sensor having a function of confirming normal operation is disclosed in, for example,
It is publicly known in, for example, JP-A-1-144161. This one-dimensional scanning optical radar sensor scans a light beam emitted from a laser diode one-dimensionally by a galvanometer mirror having one rotation axis, and if an object exists on the optical axis of the scanning beam,
The presence of the object is notified by receiving the reflected light. In this one-dimensional scanning optical radar sensor, an inspection reflector for confirming normal operation is provided near an end of the object monitoring area,
The normal operation of the sensor is confirmed by the normal operation confirmation means based on the reflected light from the inspection reflector.

【0007】前記正常動作確認手段は、ガルバノミラー
による光ビームの放射方位が検査用反射体の存在する方
位である時に、反射光の受光があれば正常、受光がなけ
れば異常と判定する。そして、正常動作確認手段からセ
ンサ正常の確認出力(論理値1)が発生している時に、
不存在判定手段から物体無しの判定出力(論理値1)が
発生すれば、物体無しの通報出力(論理値1)が生成さ
れる。これにより、センサ正常を確認しつつ物体の有無
を監視している。
When the radiation direction of the light beam from the galvanomirror is the direction in which the inspection reflector is present, the normal operation checking means determines that the light is normal if the reflected light is received and abnormal if the light is not received. Then, when a sensor normality confirmation output (logical value 1) is generated from the normal operation confirmation means,
When the absence determination means outputs a determination output indicating no object (logical value 1), a notification output indicating no object is generated (logical value 1). Thus, the presence or absence of an object is monitored while confirming that the sensor is normal.

【0008】しかし、上述の1次元走査型光レーダセン
サの正常動作確認手法を、上述の2次元走査型光レーダ
センサに適用する場合、光ビームの鉛直方向と水平方向
の各走査が構造的に不可分であるポリゴンミラーを走査
ミラーとして用いる光レーダセンサには適用可能である
が、ガルバノミラーのように2つの方向の走査が独立に
行われる走査ミラーを用いる光レーダセンサに、そのま
ま適用したのではセンサの正常確認ができない虞れがあ
る。
However, when the above-described one-dimensional scanning optical radar sensor normal operation confirmation method is applied to the two-dimensional scanning optical radar sensor, the vertical and horizontal scanning of the light beam is structurally difficult. Although it is applicable to an optical radar sensor using an inseparable polygon mirror as a scanning mirror, it may be applied to an optical radar sensor using a scanning mirror such as a galvanometer mirror that performs scanning in two directions independently. There is a possibility that the sensor cannot be checked normally.

【0009】即ち、図24(A)、(B)のように、上
述の1次元走査型光レーダセンサの正常動作確認手法に
基づいて、光ビームの走査領域A(点線で囲まれた領
域)内の監視領域B(実線で囲まれた領域)端部近傍
に、反射体1,2を設け、これら反射体1,2からの反
射光が周期的に受光されることで正常確認するとする。
この場合、例えば一方の走査駆動機構の故障で光ビーム
の走査が、図の走査領域A′で示すように1次元になっ
ても、走査ビームは監視領域B端部近傍の反射体1,2
に周期的に照射されるので、このような故障モードで
は、反射体1,2からの反射光が正常時と同様に周期的
に受光されて異常を通報できない。
That is, as shown in FIGS. 24A and 24B, based on the above-mentioned method for confirming the normal operation of the one-dimensional scanning optical radar sensor, the scanning area A of the light beam (the area surrounded by the dotted line). Suppose that reflectors 1 and 2 are provided near the end of the monitoring area B (the area surrounded by the solid line), and that the light reflected from the reflectors 1 and 2 is received periodically to confirm normality.
In this case, for example, even if the scanning of the light beam becomes one-dimensional as shown by the scanning region A 'in the drawing due to the failure of one of the scanning driving mechanisms, the scanning beam is reflected by the reflectors 1, 2 near the end of the monitoring region B
In such a failure mode, the reflected light from the reflectors 1 and 2 is periodically received in the same manner as in the normal state, and the abnormality cannot be reported.

【0010】本発明は上記問題点に着目してなされたも
ので、正常動作を確認しつつ物体監視ができる2次元走
査型光レーダセンサを提供することを目的とする。ま
た、2方向の光ビーム走査が独立に行われる走査方式で
あっても、正常動作を確認しつつ物体監視ができる2次
元走査型光レーダセンサを提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a two-dimensional scanning optical radar sensor capable of monitoring an object while confirming normal operation. It is another object of the present invention to provide a two-dimensional scanning optical radar sensor capable of monitoring an object while confirming normal operation even in a scanning method in which light beam scanning in two directions is independently performed.

【0011】[0011]

【課題を解決するための手段】このため、請求項1の発
明の2次元走査型光レーダセンサは、光ビーム発生手段
と、前記光ビーム発生手段からの光ビームを物体の監視
領域を含んで2次元に走査可能な光ビーム走査手段と、
該光ビーム走査手段から放射される走査ビームの走査空
間からの反射光を受光する受光手段と、少なくとも前記
受光手段の出力に基づき前記監視領域内の物体不在を判
定する不存在判定手段と、少なくとも前記光ビーム発生
手段、光ビーム走査手段及び受光手段の正常動作を確認
する正常動作確認手段と、前記不存在判定手段の出力と
前記正常動作確認手段の出力との論理積結果に基づいて
安全情報を出力するゲート手段とを備えて構成した。
According to a first aspect of the present invention, there is provided a two-dimensional scanning optical radar sensor including a light beam generating means and a light beam from the light beam generating means including an object monitoring area. Light beam scanning means capable of two-dimensional scanning;
A light receiving unit that receives reflected light from a scanning space of a scanning beam emitted from the light beam scanning unit; an absence determining unit that determines absence of an object in the monitoring area based on at least an output of the light receiving unit; Normal operation checking means for checking the normal operation of the light beam generating means, light beam scanning means and light receiving means; and safety information based on the logical product of the output of the absence determining means and the output of the normal operation checking means. And a gate means for outputting the same.

【0012】かかる構成では、光ビーム発生手段から発
生した光ビームを光ビーム走査手段により、物体の監視
領域を含んで2次元に走査する。これにより、走査ビー
ムは立体的な空間に放射され物体監視空間が立体的とな
る。不存在判定手段は、予め定めた監視領域内からの反
射光に基づく受光手段の受光出力の有無により物体の不
存在を判定する。正常動作確認手段は、少なくとも前記
光ビーム発生手段、光ビーム走査手段及び受光手段の正
常動作を確認する。不存在判定手段から物体不存在を示
す判定出力が発生し、正常動作確認手段から動作正常を
示す判定出力が発生した時にゲート手段から安全情報が
出力される。
In this configuration, the light beam generated by the light beam generating means is two-dimensionally scanned by the light beam scanning means, including the monitoring area of the object. As a result, the scanning beam is emitted into a three-dimensional space, and the object monitoring space becomes three-dimensional. The absence determining means determines the absence of the object based on the presence or absence of a light receiving output of the light receiving means based on the reflected light from the predetermined monitoring area. The normal operation checking means checks the normal operation of at least the light beam generating means, light beam scanning means and light receiving means. The safety information is output from the gate means when a determination output indicating the absence of an object is generated from the absence determination means and a determination output indicating normal operation is generated from the normal operation confirmation means.

【0013】前記正常動作確認手段は、請求項2のよう
に、前記走査ビームの走査領域内に配置した検査用反射
体からの反射光による前記受光手段の受光出力に基づい
て正常動作の確認を行う構成とした。かかる構成では、
正常動作確認手段は、走査領域内の所定位置に予め検査
用反射体を配置し、検査用反射体からの反射光が受光手
段で受光されていることを確認して正常動作の確認を行
う。
The normal operation confirmation means confirms the normal operation based on the light reception output of the light reception means by the reflected light from the inspection reflector arranged in the scanning area of the scanning beam. Configuration. In such a configuration,
The normal operation checking means arranges a reflector for inspection at a predetermined position in the scanning area in advance, and confirms that the reflected light from the reflector for inspection is received by the light receiving means to confirm the normal operation.

【0014】前記検査用反射体は、請求項3のように、
センサ動作状態から得られる走査ビーム放射情報と前記
受光手段の受光出力結果との対応関係が、想定される異
常動作時と正常動作時とで異なるように配置するとよ
い。かかる構成によれば、走査ビームの各方向の走査が
独立に行われるような光ビーム走査手段を利用する場合
にも、想定される異常動作時の走査ビーム放射情報と前
記受光手段の受光出力結果との対応関係が正常動作時と
異なるようになるので、正常動作の確認ができる。
According to a third aspect of the present invention, the reflector for inspection is
It is preferable that the correspondence between the scanning beam radiation information obtained from the sensor operating state and the light receiving output result of the light receiving means is different between an assumed abnormal operation and a normal operation. According to this configuration, even when using the light beam scanning means in which scanning in each direction of the scanning beam is performed independently, the scanning beam radiation information and the light receiving output result of the light receiving means at the time of an assumed abnormal operation are used. Since the correspondence relationship with is different from that during normal operation, normal operation can be confirmed.

【0015】前記正常動作確認手段は、請求項4のよう
に、前記走査ビーム情報が前記検査用反射体位置を示す
情報である時の前記受光手段の受光出力結果に基づいて
正常動作の確認を行う構成とした。かかる構成では、検
査用反射体からの反射光が受光されるべき時に受光出力
があれば、走査ビームが正常に走査されており動作正常
を確認する。
The normal operation confirmation means confirms normal operation based on a light receiving output result of the light receiving means when the scanning beam information is information indicating the position of the inspection reflector. Configuration. In such a configuration, if there is a light reception output when the reflected light from the inspection reflector should be received, the scanning beam is scanned normally and the normal operation is confirmed.

【0016】前記正常動作確認手段は、請求項5のよう
に、前記走査ビーム情報が前記検査用反射体位置を示す
情報である時の前記受光手段の受光出力結果と、前記走
査ビーム情報が前記検査用反射体位置以外を示す情報で
ある時の前記受光手段の受光出力結果とに基づいて正常
動作の確認を行う構成とするとよい。かかる構成によれ
ば、検査用反射体からの反射光が受光されるべき時に受
光されこと及び検査用反射体からの反射光が受光される
べきでない時に受光されないことの両方の判断結果から
正常動作の確認を行うので、より一層正常動作確認の信
頼性が向上する。
The normal operation checking means may include a light receiving output result of the light receiving means when the scanning beam information is information indicating the position of the inspection reflector and the scanning beam information. It is preferable that the normal operation is confirmed based on the light receiving output result of the light receiving means when the information indicates a position other than the inspection reflector position. According to this configuration, the normal operation is performed based on the determination result that the reflected light from the inspection reflector is received when it should be received and that the reflection light from the inspection reflector should not be received when it should not be received. , The reliability of normal operation confirmation is further improved.

【0017】前記検査用反射体位置を示す情報は、請求
項6のように、センサから見た検査用反射体の存在方位
とセンサから検査用反射体までの距離を含むとよい。か
かる構成では、監視領域の範囲を規定して物体監視を実
行できるようになる。請求項7のように、前記検査用反
射体を、前記走査領域の隅部近傍に配置する構成とすれ
ば、検査用反射体からの反射光が受光されることで、監
視領域全体を走査ビームが走査されていることを確認で
きる。また、走査領域内に複数の監視領域がある場合
に、監視領域毎に検査用反射体を配置する必要がない。
The information indicating the position of the inspection reflector may include the direction of the inspection reflector as viewed from the sensor and the distance from the sensor to the inspection reflector. With this configuration, the object monitoring can be performed by defining the range of the monitoring area. If the inspection reflector is arranged in the vicinity of a corner of the scanning area as in claim 7, the reflected light from the inspection reflector is received, and the scanning beam scans the entire monitoring area. Is being scanned. Further, when there are a plurality of monitoring areas in the scanning area, there is no need to arrange an inspection reflector for each monitoring area.

【0018】請求項8のように、前記検査用反射体を、
前記監視領域外で当該監視領域の隅部近傍に配置する構
成としてもよい。請求項9のように、前記検査用反射体
を、前記監視領域外縁に対する走査ビームの上下最大角
及び左右最大角で示される方位近傍に配置する構成とす
れば、監視領域が例えば球形状の場合でも好適である。
According to the present invention, the reflector for inspection is
A configuration may be adopted in which the monitor area is arranged near the corner of the monitor area outside the monitor area. If the inspection reflector is arranged in the vicinity of the azimuth indicated by the maximum vertical angle and the maximum left and right angle of the scanning beam with respect to the outer edge of the monitoring area, the monitoring area may be, for example, spherical. However, it is suitable.

【0019】請求項10の発明では、移動体に2次元走
査型光レーダセンサを搭載した場合において、前記移動
体が予め定められた範囲内で移動する時に、前記検査用
反射体を、前記監視領域内に少なくとも1つ以上存在す
るよう配置する構成とした。かかる構成では、走査ビー
ムが監視すべき領域に放射されていることを確認しつつ
移動体が移動できるようになる。
According to a tenth aspect of the present invention, in the case where a two-dimensional scanning optical radar sensor is mounted on the movable body, the inspection reflector is monitored by the monitor when the movable body moves within a predetermined range. The arrangement is such that there is at least one or more in the region. In such a configuration, the moving body can move while confirming that the scanning beam is emitted to the area to be monitored.

【0020】請求項11のように、前記検査用反射体
を、前記移動体の移動方向に沿って連続して存在するよ
う配置する構成とすれば、移動体の移動中でも正常動作
の確認が常時同一の走査ビーム放射範囲で実行できるよ
うになる。前記不存在判定手段は、請求項12のよう
に、前記受光手段の受光出力から前記監視領域内の前記
検査用反射体からの反射光による受光出力を除外して物
体の有無を判定する構成とした。
According to the eleventh aspect, if the reflector for inspection is arranged so as to be continuously present along the moving direction of the moving body, it is always possible to confirm the normal operation even while the moving body is moving. It can be performed in the same scanning beam emission range. The non-existence determining unit determines the presence or absence of an object by excluding, from the light receiving output of the light receiving unit, the light receiving output by the reflected light from the inspection reflector in the monitoring area, as in claim 12. did.

【0021】前記検査用反射体を、請求項13のように
入射する走査ビームの光強度周波数を変調する構成とし
てもよく、また、請求項14のように入射する走査ビー
ムの波長を変調する構成としてもよい。かかる構成によ
れば、検査用反射体からの反射光と物体からの反射光の
識別が容易になる。
The inspection reflector may be configured to modulate the light intensity frequency of the incident scanning beam as in claim 13, or to modulate the wavelength of the incident scanning beam as in claim 14. It may be. According to this configuration, it is easy to distinguish the reflected light from the inspection reflector from the reflected light from the object.

【0022】請求項15のように、前記検査用反射体を
情報表示手段に用いる構成とすれば、検査用反射体によ
り表示情報を伝達できるようになる。
According to a fifteenth aspect, if the inspection reflector is used for information display means, display information can be transmitted by the inspection reflector.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1に、本発明に係る2次元走査型
光レーダセンサの第1実施形態のブロック構成図を示
す。図1において、発光素子11は、発光素子駆動回路
12により駆動されて光ビームを発生する。走査ミラー
13は、発光素子11からの光ビームを反射し走査ビー
ムとして物体監視空間に放射する。走査ミラー13は、
例えば後述する半導体ガルバノミラーであり、第1駆動
回路14により回動軸13aを中心に周期的に揺動駆動
され、第2駆動回路15により前記回動軸13aと直交
する回動軸13bを中心に周期的に揺動される。走査ビ
ームは、走査ミラー13の揺動に伴って図中の左右及び
上下方向に、監視領域B(図の実線で囲まれた領域)を
含む走査領域A(図の点線で囲まれた領域)を2次元に
走査する。これにより、走査ビームは、走査ミラー13
の光ビーム反射点を頂点とした図中2点鎖線で示す角錐
状の立体空間に放射され、立体的な空間で物体監視がで
きる。前記監視領域B外で走査領域A内の監視領域四隅
近傍に、正常動作確認用の検査用反射体m1〜m4を設
ける。前記角錐状の走査ビーム放射空間内からの反射光
は、受光素子16で受光され、電気信号に変換されて受
光回路17で増幅・検波等の処理後、受光出力R1とし
て不存在判定手段18及び正常動作確認手段19へ入力
される。ゲート手段としてのANDゲート20は、不存
在判定手段18及び正常動作確認手段19の各出力S、
Nを論理積演算して演算結果を出力Zとして出力する。
ここで、前記発光素子11と発光素子駆動回路12で光
ビーム発生手段を構成し、前記走査ミラー13、第1及
び第2駆動回路14,15で光ビーム走査手段を構成
し、受光素子16及び受光回路17で受光手段を構成す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of a first embodiment of a two-dimensional scanning optical radar sensor according to the present invention. In FIG. 1, a light emitting element 11 is driven by a light emitting element driving circuit 12 to generate a light beam. The scanning mirror 13 reflects the light beam from the light emitting element 11 and emits it as a scanning beam to the object monitoring space. The scanning mirror 13 is
For example, a semiconductor galvanomirror, which will be described later, is periodically driven to swing around a rotation axis 13a by a first drive circuit 14, and is rotated about a rotation axis 13b orthogonal to the rotation axis 13a by a second drive circuit 15. Swings periodically. A scanning beam A (a region surrounded by a dotted line in the figure) includes a monitoring region B (a region surrounded by a solid line in the figure) in a horizontal direction and a vertical direction in the figure with the swing of the scanning mirror 13. Is scanned two-dimensionally. Thereby, the scanning beam is transmitted to the scanning mirror 13.
The light beam is reflected into a pyramid-shaped three-dimensional space indicated by a two-dot chain line in FIG. Inspection reflectors m1 to m4 for confirming normal operation are provided outside the monitoring area B and near the four corners of the monitoring area in the scanning area A. The reflected light from inside the pyramid-shaped scanning beam radiation space is received by the light receiving element 16, converted into an electric signal, and subjected to processing such as amplification and detection by the light receiving circuit 17, and then, as the light receiving output R1, the absence determining means 18 and It is input to the normal operation check means 19. The AND gate 20 as a gate means is provided with each output S of the absence determination means 18 and the normal operation confirmation means 19,
An AND operation is performed on N and the operation result is output as an output Z.
Here, the light emitting element 11 and the light emitting element driving circuit 12 constitute light beam generating means, and the scanning mirror 13, the first and second driving circuits 14 and 15 constitute light beam scanning means. The light receiving circuit 17 forms light receiving means.

【0024】前記走査ミラー13として用いる半導体ガ
ルバノミラーを図2に示す。半導体ガルバノミラーは、
特開平7−175005号公報、特開平7−21885
7号公報等で公知であり、その構成及び動作原理につい
てここでは簡単に説明する。図2は、特開平7−175
005号公報に記載の構成例である。中央部の可動板3
1表面に蒸着金属膜等で形成したミラー32を有する。
前記可動板31を第1のトーションバー33Aで可動枠
34内に支持し、可動枠34を更に第2のトーションバ
ー33Bで固定枠35内に支持する。可動板31及び可
動枠34にはそれぞれ駆動コイル36A及び36Bが設
けられ、これら駆動コイル36A,36B両端の1対の
電極端子37A,37Bに駆動電流を供給する。駆動コ
イル36A,36Bに、図示しない永久磁石等の静磁界
発生手段により静磁界を作用させている。
FIG. 2 shows a semiconductor galvanometer mirror used as the scanning mirror 13. Semiconductor galvanometer mirrors
JP-A-7-175005, JP-A-7-21885
It is known in, for example, Japanese Patent Publication No. 7 and the like, and its configuration and operation principle will be briefly described here. FIG.
This is a configuration example described in Japanese Patent Publication No. 005. Center movable plate 3
One surface has a mirror 32 formed of a deposited metal film or the like.
The movable plate 31 is supported in a movable frame 34 by a first torsion bar 33A, and the movable frame 34 is further supported in a fixed frame 35 by a second torsion bar 33B. The movable plate 31 and the movable frame 34 are provided with drive coils 36A and 36B, respectively, and supply a drive current to a pair of electrode terminals 37A and 37B at both ends of the drive coils 36A and 36B. A static magnetic field is applied to the drive coils 36A and 36B by a static magnetic field generating means such as a permanent magnet (not shown).

【0025】動作は、可動板31及び可動枠34の両端
部の平面に沿って各駆動コイル36A,36Bを横切る
方向に静磁界を作用させた状態で、駆動コイル36A,
36Bに電流を流すと、可動板31及び可動枠34の両
端部に、フレミングの左手の法則に従った方向に電磁力
が作用し、可動板31及び可動枠34が回動する。可動
板31及び可動枠34が回動すると各トーションバー3
3A,33B(図1の回動軸13a,13bに相当す
る)が捩じられ、発生するトーションバー33A,33
Bの各ばね反力と可動板31及び可動枠34に作用する
各電磁力とが釣り合う位置まで可動板31及び可動枠3
4が回動する。前記電磁力は各駆動コイル36A,36
Bに流れる電流に比例するので、可動板31及び可動枠
34のそれぞれの変位角は各駆動コイル36A,36B
に流れる電流に比例する。従って、各駆動コイル36
A,36Bに流す電流を制御することで、可動板31及
び可動枠34、即ちミラー32の変位角を2次元で制御
できる。予め駆動コイル36A,36Bの電流量と可動
板31及び可動枠34の変位角との関係を求めておけ
ば、前記電流量からミラー32の変位角の情報を得るこ
とができる。
The operation is performed by applying a static magnetic field in a direction traversing each of the drive coils 36A and 36B along the plane of both ends of the movable plate 31 and the movable frame 34, and
When a current is supplied to the movable plate 36B, an electromagnetic force acts on both ends of the movable plate 31 and the movable frame 34 in a direction according to Fleming's left-hand rule, and the movable plate 31 and the movable frame 34 rotate. When the movable plate 31 and the movable frame 34 rotate, each torsion bar 3
3A and 33B (corresponding to the rotating shafts 13a and 13b in FIG. 1) are twisted and generated torsion bars 33A and 33B.
The movable plate 31 and the movable frame 3 reach a position where the respective spring reaction forces of B and the respective electromagnetic forces acting on the movable plate 31 and the movable frame 34 are balanced.
4 rotates. The electromagnetic force is applied to each drive coil 36A, 36A.
B, the displacement angles of the movable plate 31 and the movable frame 34 are respectively proportional to the drive coils 36A and 36B.
Is proportional to the current flowing through Therefore, each drive coil 36
By controlling the current flowing through A and 36B, the displacement angle of the movable plate 31 and the movable frame 34, that is, the mirror 32, can be controlled two-dimensionally. If the relationship between the current amount of the drive coils 36A and 36B and the displacement angles of the movable plate 31 and the movable frame 34 is determined in advance, information on the displacement angle of the mirror 32 can be obtained from the current amount.

【0026】従って、本実施形態では、前記駆動コイル
36A、36Bにそれぞれ駆動電流を供給する各駆動回
路14,15から、駆動電流に基づいたミラーの変位
角、即ち、走査ビームの放射方位を示す情報信号p1,
p2を、不存在判定手段18及び正常動作確認手段19
に入力している。尚、特開平7−218857号公報で
示されるように、可動板の変位検出用の検出コイルを設
ければ、この検出コイルでミラー変位角を検出できるの
で、変位検出用コイルの出力を図1の情報信号p1,p
2の代わりに用いれば、変位検出コイルの出力からミラ
ーの走査状態が正常か否かを直接監視できるようにな
る。
Accordingly, in the present embodiment, the displacement angle of the mirror based on the driving current, that is, the radiation azimuth of the scanning beam is indicated from each of the driving circuits 14 and 15 for supplying a driving current to the driving coils 36A and 36B, respectively. Information signals p1,
p2 is determined by the absence determination means 18 and the normal operation confirmation means 19
Is being entered. As disclosed in Japanese Patent Application Laid-Open No. 7-218857, if a detection coil for detecting the displacement of the movable plate is provided, the mirror displacement angle can be detected by the detection coil. Information signals p1, p
If it is used instead of 2, it becomes possible to directly monitor whether or not the scanning state of the mirror is normal from the output of the displacement detection coil.

【0027】前記不存在判定手段18は、監視領域Bに
対応する走査ビーム方位を記憶しており、両駆動回路1
4,15の信号p1,p2の示す走査ビーム方位が記憶
情報に一致する時に、受光回路17の受光出力R1の有
無を判定することで監視領域Bに対応する監視空間内に
おける物体の存在/不在を判定し、物体不在の時にS=
1、物体存在の時にS=0を出力する。
The absence judging means 18 stores the scanning beam direction corresponding to the monitoring area B.
The presence / absence of an object in the monitoring space corresponding to the monitoring area B is determined by determining the presence or absence of the light receiving output R1 of the light receiving circuit 17 when the scanning beam directions indicated by the signals p1 and p2 of the signals 4 and 15 match the stored information. Is determined, and when no object is present, S =
1. Output S = 0 when an object is present.

【0028】前記正常動作確認手段19は、前記検査用
反射体m1〜m4が存在する方位を記憶しており、後述
するように両駆動回路14,15の信号p1,p2の示
す走査ビーム放射方位が記憶情報に一致する時に、受光
出力の有無を判定し、センサの正常動作を確認して正常
と判定した時にN=1、異常と判定した時N=0を出力
する。
The normal operation check means 19 stores the direction in which the inspection reflectors m1 to m4 are present, and as will be described later, the scanning beam radiation direction indicated by the signals p1 and p2 of the driving circuits 14 and 15 as described later. When the information matches the stored information, the presence or absence of the light-receiving output is determined, and the normal operation of the sensor is confirmed. When the sensor is determined to be normal, N = 1 is output. When the sensor is determined to be abnormal, N = 0 is output.

【0029】図3に、本実施形態の正常動作確認手段1
9の回路構成を示す。図3において、本実施形態の正常
動作確認手段19は、角度検出回路19A、反射有無確
認回路19B、期間確認回路19C、及びANDゲート
19Dを備える。前記角度検出回路19Aは、予め配置
された検査用反射体m1〜m4のそれぞれの方位
(θ1,ψ1)〜(θ4,ψ4)を記憶しており、入力する
信号p1,p2が示す走査ビーム方位(θ,ψ)情報が
記憶方位情報と一致した時に、受光の有無を判定すべき
時であることを指示する指示情報として受光有無指示信
号Sr=1を出力する。前記方位(θ1,ψ1)〜
(θ4,ψ4)以外では受光有無指示信号Sr=0とす
る。
FIG. 3 shows the normal operation checking means 1 of the present embodiment.
9 shows a circuit configuration. In FIG. 3, the normal operation check unit 19 of the present embodiment includes an angle detection circuit 19A, a reflection check circuit 19B, a period check circuit 19C, and an AND gate 19D. The angle detecting circuit 19A are respectively the azimuth (θ 1, ψ 1) of the inspection reflector m1~m4 which are prearranged ~ (θ 4, ψ 4) stores a signal p1, p2 to enter When the indicated scanning beam azimuth (θ, ψ) information matches the stored azimuth information, a light reception presence / absence instruction signal Sr = 1 is output as instruction information indicating that it is time to determine the presence or absence of light reception. The orientation (θ 1 , ψ 1 ) ~
Except for (θ 4 , ψ 4 ), the light reception presence / absence instruction signal Sr = 0.

【0030】反射有無確認回路19Bは、受光有無指示
信号Sr=1の期間で受光出力R1の有無を確認し、受
光出力R1が入力すれば出力NS=1を継続し、受光出
力R1が入力しなければNS=0とする。期間確認回路
19Cは、信号Sr=1の発生周期、即ち、走査ビーム
の走査速度を確認し、信号Sr=1の発生周期が所定周
期であれば走査速度正常として出力NT=1を継続し、
所定周期でなければ走査速度異常としてNT=0とす
る。
The reflection presence / absence confirmation circuit 19B confirms the presence / absence of the light reception output R1 during the period of the light reception presence / absence instruction signal Sr = 1. If the light reception output R1 is input, the output NS = 1 is continued, and the light reception output R1 is input. If not, set NS = 0. The period checking circuit 19C checks the generation period of the signal Sr = 1, that is, the scanning speed of the scanning beam, and if the generation period of the signal Sr = 1 is a predetermined period, determines that the scanning speed is normal and continues the output NT = 1,
If the period is not the predetermined period, the scanning speed is determined to be abnormal and NT = 0 is set.

【0031】ANDゲート19Dは、出力NS=1とN
T=1が共に入力する時にセンサが正常であることを示
す出力N=1を発生する。尚、前記走査ビーム方位
(θ,ψ)は、図4で示すように、監視領域Bの中心O
(走査領域Aの中心でもある)を原点とした、それぞれ
左右方向(x方向)、上下方向(y方向)の光ビーム方
位とする。
The AND gate 19D outputs the signals NS = 1 and N
When T = 1 is input together, it generates an output N = 1 indicating that the sensor is normal. Incidentally, the scanning beam direction (θ, ψ) is, as shown in FIG.
The light beam azimuths in the left-right direction (x direction) and the up-down direction (y direction) are defined with the origin (which is also the center of the scanning region A).

【0032】ここで、ポリゴンミラーは勿論、ガルバノ
ミラーのように各方向の走査が独立に行われる走査ミラ
ーを用いた場合でも、2次元走査型光レーダセンサの正
常動作確認ができる検査用反射体の配置原理について説
明する。正常動作確認手段19は、走査ビームの走査領
域A内に予め配置される検査用反射体の方位情報(反射
体存在範囲)を記憶し、更に、走査ビームの走査領域A
内の検査用反射体の存在しない領域の方位情報(空隙範
囲)を記憶し、それらの方位情報と入力する受光出力の
有無をつきあわせて正常か否かを判定する。即ち、正常
動作確認手段19に、走査領域Aにおける方位(走査ビ
ーム方位)と受光回路17の出力論理値(受光ありで論
理値1、受光なしで論理値0)の関係を予め記憶させ、
ビーム走査時に実際に得られた方位−論理値の結果が、
記憶情報と一致している時を正常動作と判定し、不一致
の時を異常と判定する。
In this case, even when a scanning mirror that performs scanning in each direction independently, such as a galvanometer mirror, is used as well as a polygon mirror, an inspection reflector that can confirm the normal operation of the two-dimensional scanning optical radar sensor. Will be described. The normal operation checking means 19 stores the azimuth information (reflector existence range) of the inspection reflector arranged in advance in the scanning region A of the scanning beam, and further stores the scanning region A of the scanning beam.
Orientation information (gap range) of the area where the inspection reflector does not exist is stored, and whether or not there is a light-receiving output to be input is determined by judging whether the orientation information is normal. That is, the relationship between the azimuth (scanning beam azimuth) in the scanning area A and the output logical value of the light receiving circuit 17 (logical value 1 with light receiving, logical value 0 without light receiving) is stored in advance in the normal operation checking means 19,
The result of the azimuth-logical value actually obtained at the time of beam scanning is
When the information matches the stored information, the operation is determined to be normal, and when the information does not match, the operation is determined to be abnormal.

【0033】前記空隙範囲は、検査用反射体の存在しな
い範囲であって、物体不在時に受光なしとなる範囲であ
ればよく、監視領域Bを含んでも構わない。ただし、監
視領域Bを含めた場合、監視領域B内に物体が存在する
と、物体からの反射光が受光されるので、物体不存在判
定手段18が物体を検出するだけでなく、正常動作確認
手段19が方位−論理値の結果が記憶情報と不一致にな
り異常判定してしまう。従って、空隙範囲は、走査領域
A内であって且つ監視領域B外の範囲とすることが望ま
しい。
The gap range is a range where there is no reflector for inspection and is a range where there is no light reception when an object is absent, and may include the monitoring area B. However, when the monitoring area B is included, if an object is present in the monitoring area B, the reflected light from the object is received. Therefore, the object absence determining means 18 not only detects the object but also checks the normal operation. In No. 19, the result of the azimuth-logic value does not match the stored information, and an abnormality is determined. Therefore, it is desirable that the gap range be within the scanning area A and outside the monitoring area B.

【0034】尚、想定の異常状態において、論理値1
(受光あり)となるべき時に論理値0(受光なし)に誤
るように検査用反射体を構成できるならば、正常動作確
認手段19は、走査ビームの走査領域A内の検査用反射
体の方位情報(反射体存在範囲)のみを記憶し、その方
位情報の時の受光出力の論理値のみ確認する構成でよ
い。
In the assumed abnormal state, the logical value 1
If the inspection reflector can be configured so as to be erroneously set to the logical value 0 (no light reception) when it should be (with light reception), the normal operation checking means 19 determines the orientation of the inspection reflector in the scanning area A of the scanning beam. Only the information (reflector existence range) may be stored, and only the logical value of the light reception output at the time of the azimuth information may be confirmed.

【0035】半導体ガルバノミラーの場合、ミラー可動
部の故障等で走査ビームの走査が前述の図24の走査領
域A′のような1次元になる異常状態が想定される。こ
の場合、駆動回路の出力状態とミラー可動部の実際の動
きが異なる。このため、図24のように監視領域B端部
近傍に単に棒状の検査用反射体1,2を配置する構成で
は、走査が1次元(走査領域A′)となる走査異常時で
も監視領域B端部近傍で常に反射光が得られるため、こ
の異常時に得られる方位−論理値の結果と正常時に得ら
れる方位−論理値の結果とが同じとなり、異常を検出で
きない。従って、2次元走査型光レーダセンサの正常動
作を確実に確認するには、想定される走査異常時に得ら
れる方位−論理値の結果が、正常時に実際に得られる方
位−論理値の結果と必ず異なるように検査用反射体を構
成する必要がある。
In the case of a semiconductor galvanometer mirror, an abnormal state in which the scanning of the scanning beam becomes one-dimensional as in the above-described scanning area A 'in FIG. In this case, the output state of the drive circuit differs from the actual movement of the mirror movable unit. For this reason, in the configuration in which the bar-shaped inspection reflectors 1 and 2 are simply arranged near the end of the monitoring area B as shown in FIG. 24, even when the scanning becomes abnormal one-dimensionally (scanning area A '), the monitoring area B Since reflected light is always obtained near the end, the result of the azimuth-logical value obtained at the time of this abnormality is the same as the result of the azimuth-logical value obtained at the time of normal, and the abnormality cannot be detected. Therefore, in order to surely confirm the normal operation of the two-dimensional scanning optical radar sensor, the result of the azimuth-logic value obtained at the time of the assumed scanning abnormality must always be the same as the result of the azimuth-logic value actually obtained at the normal time. It is necessary to configure the inspection reflector differently.

【0036】図5にそのような検査用反射体の構成例を
示し、2次元走査型光レーダセンサの正常動作確認原理
を説明する。図5において、検査用反射体1を、反射体
1aと反射体1bとに分割し、両反射体1aと1bとの
間に空隙3を設け、正常時には、受光出力が論理値1と
なる区間(反射体存在範囲)と論理値0となる区間(空
隙範囲)が存在するように構成する。
FIG. 5 shows an example of the configuration of such a reflector for inspection, and the principle of confirming the normal operation of the two-dimensional scanning optical radar sensor will be described. In FIG. 5, the inspection reflector 1 is divided into a reflector 1a and a reflector 1b, and a gap 3 is provided between the reflectors 1a and 1b. (Reflector existence range) and a section (gap range) where the logical value is 0 exist.

【0037】かかる構成によれば、前述のような走査が
1次元となる走査異常時は、監視領域B端部近傍で常に
反射光が得られ走査ビームの方位情報p1,p2が空隙
範囲(正常時に論理値0になる区間)を示す時でも受光
出力が論理値1となるので、走査異常時に得られる方位
−論理値の結果が正常時と異なり、異常が検出できるの
で、2次元走査型光レーダセンサの場合でも正常動作確
認が可能となる。また、発光素子11等の故障で走査ビ
ームが投光されない異常では、方位情報p1,p2が反
射体存在範囲(正常時に論理値1になる区間)を示す時
でも受光出力が論理値0となるので、走査異常時に得ら
れる方位−論理値の結果が正常時と異なり、異常が検出
できる。
According to such a configuration, when the above-mentioned scanning is abnormal in one-dimensional scanning, reflected light is always obtained near the end of the monitoring area B, and the azimuth information p1 and p2 of the scanning beam are in the gap range (normal). (The section where the logical value becomes 0 at the time), the received light output becomes the logical value 1, so that the result of the azimuth-logical value obtained at the time of the scanning abnormality is different from the normal state, and the abnormality can be detected. Even in the case of a radar sensor, normal operation can be confirmed. In the case where the scanning beam is not projected due to a failure of the light emitting element 11 or the like, the received light output becomes the logical value 0 even when the azimuth information p1 and p2 indicate the reflector existence range (the section where the logical value is 1 in a normal state). Therefore, the result of the azimuth-logic value obtained at the time of abnormal scanning is different from that at the time of normal scanning, and abnormalities can be detected.

【0038】図1の第1実施形態における検査用反射体
1m〜4mの配置構成は、図5の構成原理に基づいたも
のである。図1のように、監視領域Bの四隅近傍に検査
用反射体1m〜4mを配置する構成では、想定される図
24のような異常時には、走査ビームの方位情報p1,
p2が検査用反射体1m〜4mの存在方位を示す時(受
光出力R1が論理値1となるべき時)に受光出力R1は
論理値0となるので、走査ビームの方位情報p1,p2
が検査用反射体1m〜4mの存在方位を示す時の受光出
力R1の有無を検出すれば正常確認を行える。
The arrangement of the inspection reflectors 1m to 4m in the first embodiment shown in FIG. 1 is based on the configuration principle shown in FIG. In the configuration in which the inspection reflectors 1m to 4m are arranged in the vicinity of the four corners of the monitoring area B as shown in FIG.
When p2 indicates the direction in which the inspection reflectors 1m to 4m are present (when the received light output R1 should have a logical value of 1), the received light output R1 has a logical value of 0. Therefore, the azimuth information p1 and p2 of the scanning beam.
The normality can be confirmed by detecting the presence or absence of the light receiving output R1 when indicates the direction of existence of the inspection reflectors 1m to 4m.

【0039】尚、監視領域Bの外側で検査用反射体から
の反射光が得られれば、少なくとも監視領域B全面を走
査していることを確認できるので、検査用反射体1m〜
4mは図1の監視領域Bの上端及び下端から突出するよ
う配置することが望ましい。次に、第1実施形態の正常
確認動作について、図6のタイムチャートを参照しなが
ら説明する。
If the reflected light from the inspection reflector is obtained outside the monitoring area B, it is possible to confirm that at least the entire monitoring area B is scanned.
4m is preferably arranged to protrude from the upper end and the lower end of the monitoring area B in FIG. Next, the normality checking operation of the first embodiment will be described with reference to the time chart of FIG.

【0040】走査ミラー13を揺動駆動する各駆動回路
14,15から、走査ビームの方位(θ,ψ)を示す情
報信号p1,p2が正常動作確認手段19内の角度検出
回路19Aに入力する。角度検出回路19Aは、検査用
反射体m1〜m4のそれぞれの方位(θ1,ψ1)〜(θ
4,ψ4)を記憶している。角度検出回路19Aは、入力
する情報信号p1,p2の示す方位が記憶情報と一致し
ているか否かを判定し、一致する方位情報(検査用反射
体存在方位情報)が入力する毎に、図6に示すように受
光の有無確認期間であることを示す情報をSr=1とし
て反射有無確認回路19B及び期間確認回路19Cへ出
力する。反射有無確認回路19Bは、Sr=1が入力し
ている期間で受光出力R1が入力したか否かを判定し、
受光出力R1=1が入力するとNS=1を発生する。図
6のようにSr=1の時にR1=1が入力する関係が維
持されていれば、反射有無確認回路19BからNS=1
が継続する。また、期間確認回路19Cは、走査ミラー
13の走査速度が正常で、信号Sr=1が所定間隔で発
生していればNT=1を継続する。従って、検査用反射
体m1〜m4の存在方位(θ1,ψ1)〜(θ4,ψ4)に
走査ビームが放射された時に反射光が受光され(NS=
1)、且つ、走査ミラー13の走査速度が正常(NT=
1)であれば、正常動作確認手段19からセンサ正常を
示すN=1が継続して出力される。一方、例えば、図6
中、点線f1で示すように、Sr=1の時に受光出力R
1=0であれば、NS=0となり正常動作確認手段19
の出力はN=0となる。
Information signals p1 and p2 indicating the azimuths (θ, ψ) of the scanning beam are input to the angle detection circuit 19A in the normal operation confirmation means 19 from the driving circuits 14 and 15 for driving the scanning mirror 13 to swing. . Angle detection circuit 19A are respectively the azimuth (θ 1, ψ 1) of the inspection reflectors m1 to m4 ~ (theta
4, stores [psi 4). The angle detection circuit 19A determines whether or not the azimuths indicated by the input information signals p1 and p2 match the stored information. Each time the matching azimuth information (inspection reflector existence azimuth information) is input, the figure is changed. As shown in FIG. 6, information indicating the light reception presence / absence confirmation period is output as Sr = 1 to the reflection presence / absence confirmation circuit 19B and the period confirmation circuit 19C. The reflection presence / absence confirmation circuit 19B determines whether or not the light receiving output R1 is input during the period when Sr = 1 is input,
When the light receiving output R1 = 1 is input, NS = 1 is generated. As shown in FIG. 6, if the relationship of inputting R1 = 1 when Sr = 1 is maintained, NS = 1 from the reflection presence / absence confirmation circuit 19B.
Continue. Further, the period checking circuit 19C continues NT = 1 when the scanning speed of the scanning mirror 13 is normal and the signal Sr = 1 is generated at a predetermined interval. Thus, the presence azimuth (θ 1, ψ 1) of the inspection reflectors m1~m4 ~ (θ 4, ψ 4 ) reflected light is received when the scanning beam is emitted (NS =
1) The scanning speed of the scanning mirror 13 is normal (NT =
If 1), the normal operation check means 19 continuously outputs N = 1 indicating that the sensor is normal. On the other hand, for example, FIG.
As shown by the dotted line f1, the light receiving output R when Sr = 1
If 1 = 0, NS = 0 and normal operation check means 19
Is N = 0.

【0041】また、不存在判定手段18は、Sr=0の
期間中で自身が記憶している監視領域の方位情報が入力
する時に受光出力R1=0であれば、物体なしとして出
力S=1を継続して発生する。一方、例えば、図6中、
点線f2で示すように、監視領域に相当するビーム方位
で受光出力R1=1になった場合は、物体からの反射と
判断し不存在判定手段18の出力は物体ありを示すS=
0となる。
The absence determining means 18 determines that there is no object and outputs S = 1 if there is no light reception output R1 = 0 when the azimuth information of the monitoring area stored therein is input during the period of Sr = 0. Occurs continuously. On the other hand, for example, in FIG.
As shown by the dotted line f2, when the received light output R1 = 1 in the beam direction corresponding to the monitoring area, it is determined that the light is reflected from the object, and the output of the absence determination means 18 is S =
It becomes 0.

【0042】図1のANDゲート20は、不存在判定手
段18からS=1が発生し、正常動作確認手段19から
N=1が発生した時のみZ=1の出力を発生し、安全を
通報する。以上のように、第1実施形態によれば、走査
が1次元となるような想定される異常状態では、走査ミ
ラー13の駆動系から得られる走査ビーム方位情報が検
査用反射体存在方位である時に反射光が受光されず、正
常時に得られるべき論理値と実際に得られた論理値が異
なって異常を検出できる。また、光レーダセンサの取り
付け不良等により本来放射すべき領域に光ビームが放射
されていない場合も、検査用反射体m1〜m4の反射光
が存在すべき放射方位において少なくとも一部の反射光
は受光されなくなるので、異常が通報される。
The AND gate 20 in FIG. 1 generates an output of Z = 1 only when S = 1 is generated from the non-existence judging means 18 and N = 1 is generated from the normal operation checking means 19 to notify the safety. I do. As described above, according to the first embodiment, in an assumed abnormal state in which scanning is one-dimensional, the scanning beam direction information obtained from the drive system of the scanning mirror 13 is the inspection reflector existing direction. Sometimes, reflected light is not received, and the logical value to be obtained during normal operation differs from the actually obtained logical value, and an abnormality can be detected. Further, even when the light beam is not radiated to the area that should be radiated due to the improper mounting of the optical radar sensor, at least a part of the reflected light in the radiation azimuth where the reflected light of the inspection reflectors m1 to m4 should exist. Since no light is received, an abnormality is reported.

【0043】また、角度検出回路19Aに、監視領域B
を除いた全ての走査領域について、方位−論理値の関係
を記憶させ、方位情報p1,p2に基づいて、走査ビー
ム方位が論理値1(受光あり)となるべき方位(反射体
存在範囲)であること及び走査ビーム方位が論理値0
(受光なし)となるべき方位(空隙範囲)であること
を、信号Srにより反射有無確認回路19Bへ指示し、
反射有無確認回路19Bで監視領域Bを除いた走査領域
全てについて受光の有無を確認する構成とすれば、例え
ば、故障等で光ビームが検査用反射体m1とm2の間を
往復する状況になった場合でも、受光出力がR1=0と
なるべき時にR1=1となったことを検出してNS=0
を出力することができ、異常を検出できるので、正常動
作確認機能の信頼性をより一層向上できる。
The angle detection circuit 19A has a monitoring area B
Is stored for all scanning regions except for the scanning direction, and based on the azimuth information p1 and p2, the scanning beam azimuth is defined as the azimuth (reflector existence range) at which the logical value should be 1 (with light reception). Is present and scan beam orientation is logical 0
The signal Sr indicates to the reflection presence / absence confirmation circuit 19B that the orientation (gap range) should be (no light reception),
If the reflection presence / absence confirmation circuit 19B is configured to confirm the presence / absence of light reception in all scanning regions except the monitoring region B, for example, the light beam reciprocates between the inspection reflectors m1 and m2 due to a failure or the like. Even when the light receiving output should be R1 = 0, it is detected that R1 = 1 and NS = 0
Can be output, and abnormality can be detected, so that the reliability of the normal operation check function can be further improved.

【0044】また、図7に点線で示すように走査領域A
の検査用反射体m1〜m4以外の全ての領域を領域B′
として監視領域Bに含めれば、領域B′から反射光があ
った場合には不存在判定手段18側が物体からの反射光
と見なして出力S=0となるので、角度検出回路19A
及び反射有無確認回路19Bが、検査用反射体m1〜m
4の存在方位についてだけ方位−論理値の関係を監視す
る構成でも危険を通報できるので、上述と同様にセンサ
の信頼性をより一層向上できる。
Further, as shown by a dotted line in FIG.
Area B 'except for the inspection reflectors m1 to m4
If there is reflected light from the area B ', the absence determining means 18 considers the reflected light from the object to be the output S = 0, so that the angle detection circuit 19A
And the reflection presence / absence confirmation circuit 19B is provided with inspection reflectors m1 to m
Since the danger can be reported even in the configuration in which the relationship between the azimuth and the logical value is monitored only for the existence azimuth of No. 4, the reliability of the sensor can be further improved as described above.

【0045】尚、例えば、反射光の受光強度に対して閾
値を設け、受光強度が閾値以上の時に受光有りと判定す
る構成とすると共に、検査用反射体m1〜m4の反射率
をその反射光受光強度が前記閾値を少し超える程度に調
整しておけば、発光素子11の劣化等による光ビーム強
度の低下や、受光素子16の劣化による光−電気変換効
率低下等による反射光受光強度の低下等の不具合を早期
に検出できる利点がある。検査用反射体m1〜m4の反
射率は、反射面の材質や色等によって調節可能である。
For example, a threshold value is set for the received light intensity of the reflected light, and when the received light intensity is equal to or higher than the threshold value, it is determined that there is light reception, and the reflectance of the inspection reflectors m1 to m4 is determined by the reflected light. If the light receiving intensity is adjusted to slightly exceed the threshold value, the light beam intensity decreases due to the deterioration of the light emitting element 11 or the reflected light receiving intensity decreases due to the light-electric conversion efficiency deterioration due to the deterioration of the light receiving element 16. There is an advantage that defects such as can be detected early. The reflectance of the inspection reflectors m1 to m4 can be adjusted by the material and color of the reflection surface.

【0046】また、図1において、不存在判定手段18
及び正常動作確認手段19へ入力されている信号p1,
p2を、不存在判定手段18及び正常動作確認手段19
のいずれか一方へ入力し、他方へは信号p1,p2が入
力される手段を介して同等の情報信号を伝える構成とし
てもよい。例えば、受光出力R1を不存在判定手段18
へ入力し、不存在判定手段18を介して受光出力R1と
同等の情報信号を正常動作確認手段19へ伝達する構成
とすれば、少なくとも不存在判定手段18が出力R1を
受信していることが確認でき、更に、不存在判定手段1
8の出力R1の処理動作が正常か否かの確認も可能であ
る。
Also, in FIG.
And the signals p1,
p2 is determined by the absence determination means 18 and the normal operation confirmation means 19
, And the same information signal may be transmitted to the other via the means to which the signals p1 and p2 are input. For example, the light receiving output R1 is determined by
And transmitting an information signal equivalent to the received light output R1 to the normal operation checking means 19 via the non-existence judging means 18, it is necessary that at least the non-existence judging means 18 receives the output R1. Can be confirmed, and the absence determination means 1
It is also possible to confirm whether or not the processing operation of the output R1 of No. 8 is normal.

【0047】次に、本発明の第2実施形態として光レー
ダセンサが測距機能を有する場合について説明する。本
実施形態では、図1の点線で示すように、発光素子駆動
回路12から発光パルスと同期して出力される発光状態
を示す信号Kを、それぞれ不存在判定手段18及び正常
動作確認手段19に入力する。正常動作確認手段19
は、図3の構成に加えて図8のディレー回路19Eを備
え、該ディレー回路19Eに、前記信号Kを入力する構
成である。物体までの距離は、光ビームの発光と反射光
の受光の時間差や発光ビームと受光ビームの位相差等に
より算出できることは公知であり、ここでは距離算出方
法の詳細は省略する。光レーダセンサから検査用反射体
m1〜m4までの距離はそれぞれ既知であるので、信号
Kが入力してから各検査用反射体m1〜m4からの反射
光が受光されるまでの各時間ΔTは予め算出できる。前
記ΔTは、各検査用反射体m1〜m4までの距離に応じ
て異なる。各検査用反射体m1〜m4毎の時間ΔTの情
報はディレー回路19Eに記憶されている。また、本実
施形態では、角度検出回路19Aからの信号Srは、各
検査用反射体m1〜m4に対応する走査ビーム方位の識
別情報を含んでいるものとする。
Next, a case where the optical radar sensor has a distance measuring function will be described as a second embodiment of the present invention. In the present embodiment, as shown by the dotted line in FIG. 1, a signal K indicating the light emitting state output from the light emitting element driving circuit 12 in synchronization with the light emitting pulse is sent to the absence determining means 18 and the normal operation checking means 19, respectively. input. Normal operation check means 19
Has a configuration in which a delay circuit 19E of FIG. 8 is provided in addition to the configuration of FIG. 3, and the signal K is input to the delay circuit 19E. It is known that the distance to the object can be calculated by the time difference between the emission of the light beam and the reception of the reflected light, the phase difference between the emission beam and the reception beam, and the details of the distance calculation method are omitted here. Since the distances from the optical radar sensor to the inspection reflectors m1 to m4 are respectively known, each time ΔT from when the signal K is input to when the reflected light from each of the inspection reflectors m1 to m4 is received is: It can be calculated in advance. The ΔT differs depending on the distance from each of the inspection reflectors m1 to m4. Information on the time ΔT for each of the inspection reflectors m1 to m4 is stored in the delay circuit 19E. In the present embodiment, it is assumed that the signal Sr from the angle detection circuit 19A includes identification information of the scanning beam direction corresponding to each of the inspection reflectors m1 to m4.

【0048】従って、ディレー回路19Eは、図8に示
すように、角度検出回路19Aから出力された信号Sr
が受光有無の確認期間であることを示す時(Sr=1の
時)、信号Srに含まれた方位情報に基づいて対応する
検査用反射体についてのディレー時間ΔTを選択し、信
号Kの入力から選択ディレー時間ΔT遅延させて信号S
r′=1を出力する。
Therefore, the delay circuit 19E outputs the signal Sr output from the angle detection circuit 19A as shown in FIG.
Indicates that it is the confirmation period of the presence or absence of light reception (when Sr = 1), the delay time ΔT for the corresponding inspection reflector is selected based on the azimuth information included in the signal Sr, and the signal K is input. Delays the selected delay time ΔT from the signal S
r ′ = 1 is output.

【0049】これにより、図9に示すように、Sr′=
1の時にR1=1が入力すれば、反射有無確認回路19
Bは、検査用反射体m1〜m4による受光出力R1と判
断してNS=1を継続する。一方、例えば、図9中、点
線f1で示すように、Sr′=1の時に受光出力R1=
0であれば、NS=0となる。また、Sr′=0の期間
における監視領域Bの走査範囲において受光出力R1=
0であれば、不存在判定手段18は物体なしとして出力
S=1を継続して発生するが、図9中、点線f2で示す
ように、受光出力R1=1になった場合は、不存在判定
手段18の出力は物体ありを示すS=0となる。
As a result, as shown in FIG.
If R1 = 1 is input at the time of 1, the reflection check circuit 19
B determines NS = 1 as the received light output R1 from the inspection reflectors m1 to m4 and continues NS = 1. On the other hand, for example, as shown by a dotted line f1 in FIG. 9, when Sr ′ = 1, the light receiving output R1 =
If 0, NS = 0. Further, in the scanning range of the monitoring area B during the period of Sr ′ = 0, the light receiving output R1 =
If 0, the absence determining means 18 continuously generates the output S = 1 as there is no object, but if the light receiving output R1 = 1 as shown by a dotted line f2 in FIG. The output of the judging means 18 is S = 0 indicating that there is an object.

【0050】かかる構成では、第1実施形態と同様の効
果に加えて、受光素子16や受光回路17の動作遅れが
増大した場合、信号Sr′と受光出力R1の発生時期に
時間軸上のずれが生じるので、センサ異常として通報で
きる利点がある。また、光レーダセンサからの監視距離
を規定して監視領域Bを設定できるので、所望の空間領
域を設定して物体監視が可能となる。
In this configuration, in addition to the same effects as in the first embodiment, when the operation delay of the light receiving element 16 or the light receiving circuit 17 increases, the time difference between the signal Sr 'and the generation time of the light receiving output R1 on the time axis. Is generated, so that there is an advantage that notification can be made as a sensor abnormality. Further, since the monitoring area B can be set by defining the monitoring distance from the optical radar sensor, the object can be monitored by setting a desired space area.

【0051】次に、図10〜図13に上述の第1及び第
2実施形態に適用可能な検査用反射体の別の配置例につ
いて説明する。図1と同様に監視領域Bの四隅近傍に配
置する場合、図10のように配置してもよい。また、図
11のように、監視領域B外縁において、第1駆動回路
14による回動軸13a回りの方位角θ(走査ビームの
方位角)について、最大角θmax、最小角θminを
同定し、第2駆動回路15による回動軸13b回りの方
位角ψについて、最大角ψmax、最小角ψminを同
定し、方位角(θmax、ψmax)、(θmin、ψ
max)、(θmax、ψmin)、(θmin、ψm
in)方向近傍にそれぞれ検査用反射体m1〜m4を配
置してもよい。かかる配置方法は、特に監視領域Bが例
えば球形等の場合に好適である。
Next, another example of arrangement of the inspection reflector applicable to the first and second embodiments will be described with reference to FIGS. When it is arranged near the four corners of the monitoring area B as in FIG. 1, it may be arranged as shown in FIG. Further, as shown in FIG. 11, at the outer edge of the monitoring area B, the maximum angle θmax and the minimum angle θmin are identified for the azimuth θ (azimuth angle of the scanning beam) about the rotation axis 13 a by the first drive circuit 14. The maximum angle 方位 max and the minimum angle ψmin are identified for the azimuth ψ around the rotation axis 13b by the two-drive circuit 15, and the azimuths (θmax, ψmax), (θmin, ψ
max), (θmax, ψmin), (θmin, m
Inspection reflectors m1 to m4 may be arranged near the (in) direction. Such an arrangement method is particularly suitable when the monitoring area B is, for example, spherical.

【0052】また、図12に示すように、一部の検査用
反射体mを床面に配置してもよい。この場合、検査用反
射体mとしては、例えば床面に貼り付けた点字マット等
が考えられる。尚、検査用反射体の床面等への配置につ
いては、本出願人による特開2000−162306号
公報等で詳述されている。図2のガルバノミラーのよう
に、回動軸13aと13bの回動動作が独立している場
合、一部の検査用反射体を省略することが可能である。
Further, as shown in FIG. 12, a part of the reflector for inspection m may be arranged on the floor. In this case, as the inspection reflector m, for example, a Braille mat attached to the floor surface or the like can be considered. The arrangement of the inspection reflector on the floor or the like is described in detail in Japanese Patent Application Laid-Open No. 2000-162306 by the present applicant. As in the case of the galvanomirror shown in FIG. 2, when the rotations of the rotation shafts 13a and 13b are independent, it is possible to omit some of the inspection reflectors.

【0053】例えば、図13に示すように、回動軸13
a回りの方位角θについて、最大角θmaxの反射体m
3と最小角θminの反射体m4を選択し、回動軸13
b回りの方位角ψについて、最大角ψmaxの反射体m
2(m1でもよい)と最小角ψminの反射体m3を選
ぶ。この時に選ばれなかった反射体を省くことができ
る。図13では、検査用反射体m1(又はm2)を省く
ことができる。
For example, as shown in FIG.
With respect to the azimuth θ around a, the reflector m having the maximum angle θmax
3 and the reflector m4 having the minimum angle θmin,
Reflector m with maximum angle ψmax for azimuth ψ around b
2 (may be m1) and the reflector m3 having the minimum angle ψmin is selected. The reflector not selected at this time can be omitted. In FIG. 13, the inspection reflector m1 (or m2) can be omitted.

【0054】かかる配置方法を適用すると、図1や図1
0の場合、どちらか一方の対角線の検査用反射体、即
ち、検査用反射体m1とm4或いはm2とm3を省くこ
とができる。また、図2のようなガルバノミラーは、構
造上、揺動角が上下及び左右のどちらも対称と考えられ
るので、方位角±θについて絶対値│θ│が最大の検査
用反射体と、方位角±ψについて絶対値│ψ│が最大の
検査用反射体を選び、他を省略することができる。図1
や図10の配置構成に適用すると、検査用反射体m1〜
m4のいずれか1つ設ければよい。
When such an arrangement method is applied, FIG.
In the case of 0, one of the diagonal inspection reflectors, that is, the inspection reflectors m1 and m4 or m2 and m3 can be omitted. In addition, the galvanomirror as shown in FIG. 2 has a structure in which the swing angle is considered to be symmetric both up and down and left and right, so that the inspection reflector having the maximum absolute value | θ | The inspection reflector having the maximum absolute value | ψ | with respect to the angles ± ψ is selected, and the others can be omitted. FIG.
When applied to the arrangement configuration of FIG.
Any one of m4 may be provided.

【0055】尚、走査ミラー13にポリゴンミラーを用
いた場合、光ビームの走査正常確認は回転動作の正常確
認に置き換えられるので、検査用反射体はいずれか1つ
あればよい。また、走査領域A四隅近傍に配置すれば、
走査領域Aを走査していることが確認されるので、走査
領域A内の監視領域Bを走査していることも同時に確認
できる。しかも、走査領域A内に複数の監視領域Bがあ
っても各監視領域B毎に検査用反射体を配置する必要が
なくなる利点がある。
When a polygon mirror is used as the scanning mirror 13, the normality of scanning of the light beam is replaced with the normality of the rotation operation, so that only one inspection reflector is required. Also, if it is arranged near the four corners of the scanning area A,
Since it is confirmed that the scanning area A is being scanned, it is also possible to simultaneously confirm that the monitoring area B in the scanning area A is being scanned. In addition, even if there are a plurality of monitoring areas B in the scanning area A, there is an advantage that it is not necessary to arrange an inspection reflector for each monitoring area B.

【0056】次に、2次元走査型光レーダセンサを移動
体に搭載した場合について説明する。光レーダセンサを
移動体に搭載した場合、センサの正常動作確認と共に、
監視すべき領域に走査ビームが放射されていることの確
認を行う必要がある。正常動作の確認は、前述した正常
動作確認用の検査用反射体をセンサに固定すれば、走査
ミラーと反射体との相対位置は一定であり、前述と同様
にして移動体の移動に関係なく正常動作の確認を行える
(移動体の走行範囲にセンサに起因する制限はない)。
更に、走査ビームが監視すべき領域に放射されているこ
との確認を行う場合、監視領域内に放射領域確認用の検
査用反射体を配置し、この検査用反射体からの反射光の
有無を確認すればよい。尚、放射領域確認用検査用反射
体は、移動体の走行により危険状態の発生が想定される
領域外縁部(センサが監視すべき監視領域に相当する領
域)の付近に配置することが好ましい。
Next, a case where the two-dimensional scanning optical radar sensor is mounted on a moving body will be described. When an optical radar sensor is mounted on a moving object, the normal operation of the sensor is checked,
It is necessary to confirm that the scanning beam is emitted to the area to be monitored. Confirmation of normal operation is as follows.If the inspection reflector for normal operation confirmation described above is fixed to the sensor, the relative position between the scanning mirror and the reflector is constant, and regardless of the movement of the moving body as described above. The normal operation can be confirmed (the traveling range of the moving object is not limited by the sensor).
Further, when confirming that the scanning beam is radiated to the area to be monitored, an inspection reflector for radiation area confirmation is arranged in the monitoring area, and the presence or absence of reflected light from the inspection reflector is checked. You just need to check. In addition, it is preferable that the radiation region checking inspection reflector is arranged near an outer edge portion (a region corresponding to a monitoring region to be monitored by the sensor) where a dangerous state is expected to occur due to traveling of the moving body.

【0057】図14に、光レーダセンサを移動体に搭載
した場合の検査用反射体の配置例を示す。(A)は上面
図、(B)は側面図である。図14において、移動体1
00に取付けた2次元走査型光レーダセンサ101に
は、走査ミラー(図示せず)の前方に例えば図1と同様
の配置で正常動作確認用の検査用反射体EaU,Eb
U,EaL,EbLが取付けられている。光レーダセン
サ101は、これら反射体EaU,EbU,EaL,E
bLの反射光に基づいて、前述と同様にして正常動作確
認手段19でセンサ101の正常動作の確認を行う。
FIG. 14 shows an example of the arrangement of the reflectors for inspection when the optical radar sensor is mounted on a moving body. (A) is a top view and (B) is a side view. In FIG. 14, the moving body 1
The two-dimensional scanning optical radar sensor 101 attached at 00 has inspection reflectors EaU and Eb for normal operation confirmation in the same arrangement as in FIG. 1, for example, in front of a scanning mirror (not shown).
U, EaL and EbL are attached. The optical radar sensor 101 uses these reflectors EaU, EbU, EaL, E
Based on the bL reflected light, the normal operation check means 19 checks the normal operation of the sensor 101 in the same manner as described above.

【0058】また、移動体100の移動空間の外縁近傍
四隅に、図示のように走行路102に沿って一定の間隔
を設けて放射領域確認用の検査用反射体a1U〜a4
U,a1L〜a4U,b1U〜b4U,b1L〜b4L
が配置してある。尚、上記の各検査用反射体は、再帰反
射性を有するものとする。放射領域確認用の検査用反射
体a1U〜a4U,a1L〜a4U,b1U〜b4U,
b1L〜b4Lの同定は、信号p1,p2と受光出力R
1から得られる画像内での反射体位置パターンや反射体
の方位(及び距離)情報を、移動体の現在位置と予め記
憶されている反射体位置から導出される反射体の予想位
置パターンや予想方位(及び距離)データと比較して行
えばよい。
In addition, at the four corners near the outer edge of the moving space of the moving body 100, a certain interval is provided along the traveling path 102 as shown in the figure to provide inspection reflectors a1U to a4 for checking the radiation area.
U, a1L to a4U, b1U to b4U, b1L to b4L
Is arranged. Each of the above-mentioned inspection reflectors has a retroreflective property. Inspection reflectors a1U to a4U, a1L to a4U, b1U to b4U,
The signals b1L to b4L are identified by the signals p1 and p2 and the light reception output R
The reflector position pattern and the reflector azimuth (and distance) information in the image obtained from step 1 are estimated from the current position of the moving body and the reflector position stored in advance and the reflector's predicted position pattern and prediction. What is necessary is just to compare with azimuth (and distance) data.

【0059】図15(A)〜(C)は、移動体100が
図14中の矢印方向に移動した場合の光レーダセンサ1
01の放射方位情報及び受光出力R1に基づく画像の変
化を示している。点線で囲まれた領域が走査ビームの走
査領域Aを示す。図15(A)は、図14の位置での画
像を示し、検査用反射体a2U、a2L、b2U、b2
Lとa3U、a3L、b3U、b3Lが検出されてい
る。検査用反射体a4U、a4L、b4U、b4Lは遠
方であるので検出されていない。移動体100の移動に
従って、図15(B)のように、検査用反射体a2U、
a2L、b2U、b2Lが走査領域外となって画像から
消え、検査用反射体a3U、a3L、b3U、b3Lの
みが検出されるようになる。更に移動すると、図15
(C)のように検査用反射体a4U、a4L、b4U、
b4Lが検出され始める。このように、移動体100が
走行路102を移動する際に、検査用反射体a1U〜a
4U,a1L〜a4U,b1U〜b4U,b1L〜b4
Lを検出したことで、走査ビームが本来の監視すべき領
域に放射されていることを確認できる。
FIGS. 15A to 15C show the optical radar sensor 1 when the moving body 100 moves in the direction of the arrow in FIG.
The change of the image based on the radiation azimuth information 01 and the light receiving output R1 is shown. The area surrounded by the dotted line indicates the scanning area A of the scanning beam. FIG. 15A shows an image at the position shown in FIG. 14, and the reflectors a2U, a2L, b2U, and b2 for inspection are used.
L and a3U, a3L, b3U, b3L are detected. The inspection reflectors a4U, a4L, b4U, and b4L are not detected because they are far away. According to the movement of the moving body 100, as shown in FIG.
The a2L, b2U, and b2L are outside the scanning area and disappear from the image, and only the inspection reflectors a3U, a3L, b3U, and b3L are detected. Moving further, FIG.
Inspection reflectors a4U, a4L, b4U, as shown in FIG.
b4L starts to be detected. As described above, when the moving body 100 moves along the traveling path 102, the inspection reflectors a1U to a1a
4U, a1L to a4U, b1U to b4U, b1L to b4
By detecting L, it can be confirmed that the scanning beam is radiated to the original area to be monitored.

【0060】図14の構成で正常動作確認用検査用反射
体EaU,EbU,EaL,EbLを省くことが可能で
ある。この場合、走査ビームの走査の確認は、最外縁に
検出される放射領域確認用の検査用反射体で囲まれる範
囲に限られる。即ち、図15(A)や(C)では、検査
用反射体a2U、a2L、b2U、b2Lや検査用反射
体a3U、a3L、b3U、b3Lで囲まれる範囲で走
査ビームの走査確認が行われ、図15(B)では検査用
反射体a3U、a3L、b3U、b3Lで囲まれる範囲
で行われる。
With the configuration shown in FIG. 14, it is possible to omit the inspection reflectors EaU, EbU, EaL and EbL for checking the normal operation. In this case, confirmation of scanning by the scanning beam is limited to a range surrounded by an inspection reflector for confirming a radiation area detected at the outermost edge. That is, in FIGS. 15A and 15C, scanning confirmation of the scanning beam is performed in a range surrounded by the inspection reflectors a2U, a2L, b2U, b2L and the inspection reflectors a3U, a3L, b3U, b3L. In FIG. 15B, the measurement is performed in a range surrounded by the inspection reflectors a3U, a3L, b3U, and b3L.

【0061】従って、正常動作確認用検査用反射体Ea
U,EbU,EaL,EbLを省いた場合、これら検査
用反射体EaU,EbU,EaL,EbLを用いた場合
と略同等の走査範囲で正常動作確認ができるのは、放射
領域確認用の各検査用反射体a1U〜a4U,a1L〜
a4L,b1U〜b4U,b1L〜b4Lがフレームア
ウトする直前、即ち、図15の画像の四隅に各検査用反
射体a1U〜a4U,a1L〜a4U,b1U〜b4
U,b1L〜b4Lが位置した時点であり、連続的では
なく移動体の移動に伴って周期的となる。
Therefore, the inspection reflector Ea for checking the normal operation is used.
When U, EbU, EaL, and EbL are omitted, the normal operation can be confirmed in the same scanning range as when these inspection reflectors EaU, EbU, EaL, and EbL are used. Reflectors a1U-a4U, a1L-
Immediately before the frames a4L, b1U to b4U, and b1L to b4L are out of the frame, that is, at the four corners of the image in FIG. 15, each of the inspection reflectors a1U to a4U, a1L to a4U, and b1U to b4.
It is a time point when U, b1L to b4L are located, and is not continuous but periodic with the movement of the moving body.

【0062】正常動作確認用検査用反射体EaU,Eb
U,EaL,EbLを省いて、検査用反射体EaU,E
bU,EaL,EbLを用いた場合と略同等の走査範囲
で連続的に正常動作確認を行うには、放射領域確認用の
各検査用反射体a1U〜a4U,a1L〜a4L,b1
U〜b4U,b1L〜b4Lを、例えば図16のように
構成すればよい。
Inspection reflectors EaU, Eb for checking normal operation
U, EaL, EbL are omitted, and the reflectors for inspection EaU, E
In order to continuously confirm normal operation in a scanning range substantially the same as that in the case of using bU, EaL, and EbL, each of the inspection reflectors a1U to a4U, a1L to a4L, and b1 for confirming the radiation area are used.
U to b4U and b1L to b4L may be configured, for example, as shown in FIG.

【0063】図16(A)、(B)のように、検査用反
射体aU,aL,bU,bLを、移動体100の移動空
間の外縁近傍四隅に走行路102に沿って連続的に配置
する。かかる構成とすれば、図17(A)〜(C)で示
すように、移動体100が移動しても検査用反射体a
U,aL,bU,bLで囲まれる範囲が変化せず、検査
用反射体EaU,EbU,EaL,EbLを設けた場合
と同等の走査範囲で、連続的に正常動作確認が行える。
図17中のh2,h3,h4は、図16の位置h2,h
3,h4と対応している。
As shown in FIGS. 16A and 16B, the inspection reflectors aU, aL, bU, and bL are continuously arranged along the traveling path 102 at the four corners near the outer edge of the moving space of the moving body 100. I do. With this configuration, as shown in FIGS. 17A to 17C, even if the moving body 100 moves, the inspection reflector a
The range surrounded by U, aL, bU, and bL does not change, and normal operation can be continuously confirmed in the same scanning range as when the inspection reflectors EaU, EbU, EaL, and EbL are provided.
H2, h3 and h4 in FIG. 17 are positions h2 and h in FIG.
3, h4.

【0064】尚、2次元走査型光レーダセンサを搭載す
る移動体としては、図示した走行車両に限らずロボット
アーム等でもよい。また、走査ミラーにガルバノミラー
のように互いの走査方向のミラー回動動作が独立したも
のを採用した場合は、図13で説明したようにして検査
用反射体の一部を省くことが可能である。図14、図1
6の場合、監視領域B内に放射領域確認用検査用反射体
が含まれるので、不存在判定手段18は、前記検査用反
射体からの受光出力R1を除いて物体の有無を判定する
必要がある。このため、不存在判定手段18に、前述し
た正常動作確認手段19内の角度検出回路19Aと同様
の回路を備え、信号Srと同様の指示信号を用い、この
信号Sr=1が入力した時の受光出力を除いて物体の有
無を判定するようにする。
The moving body on which the two-dimensional scanning optical radar sensor is mounted is not limited to the traveling vehicle shown, but may be a robot arm or the like. Further, when the scanning mirrors, such as galvanometer mirrors, having independent mirror rotation operations in the scanning direction are employed, a part of the inspection reflector can be omitted as described with reference to FIG. is there. FIG. 14, FIG.
In the case of No. 6, since the inspection reflector for radiation area confirmation is included in the monitoring area B, the absence determining means 18 needs to determine the presence or absence of an object except for the light reception output R1 from the reflector for inspection. is there. For this reason, the absence determining means 18 is provided with a circuit similar to the angle detecting circuit 19A in the normal operation checking means 19 described above, uses the same instruction signal as the signal Sr, and operates when the signal Sr = 1 is input. The presence or absence of an object is determined except for the light reception output.

【0065】図18及び図19に、検査用反射体存在領
域を監視領域から除く場合において、光レーダセンサが
測距機能を有さない場合と有する場合の違いを示す。図
18は測距機能を有さない場合、図19は測距機能を有
する場合である。両図の(A)は上面図、(B)は側面
図を示す。図中の点線は走査ビームの走査領域Aであ
る。
FIGS. 18 and 19 show the difference between the case where the optical radar sensor does not have the distance measuring function and the case where the optical radar sensor has the distance measuring function when the inspection reflector existing area is excluded from the monitoring area. FIG. 18 shows a case without a distance measuring function, and FIG. 19 shows a case with a distance measuring function. (A) of both figures shows a top view, and (B) shows a side view. The dotted line in the figure is the scanning area A of the scanning beam.

【0066】測距機能を有さない場合、監視領域Bと非
監視領域C(検査用反射体からの反射光が受光される領
域)は図示のようになり、図のように物体105が検査
用反射体方位に存在すると、物体105の反射光と検査
用反射体の反射光を識別できない虞れがあるが、測距機
能を有する場合は、図19ように非監視領域Cが検査用
反射体周囲に限定されるので、物体105からの反射光
とその後方の検査用反射体からの反射光を識別すること
が可能である。尚、上述の領域区分けの方法は、これま
で述べてきた各実施形態においても同様に適用できるこ
とは言うまでもない。
When the distance measuring function is not provided, the monitoring area B and the non-monitoring area C (the area where the reflected light from the inspection reflector is received) are as shown in the figure, and the object 105 is inspected as shown in the figure. If the object exists in the direction of the reflector for inspection, the reflected light of the object 105 and the reflected light of the reflector for inspection may not be distinguished from each other. Since the light is limited to the surroundings of the body, it is possible to distinguish the reflected light from the object 105 and the reflected light from the inspection reflector behind it. It is needless to say that the above-described area dividing method can be similarly applied to each of the embodiments described above.

【0067】図18のような場合でも、図20及び図2
1に示す構成の検査用反射体とすれば、検査用反射体か
らの反射光と物体からの反射光を識別可能である。図2
0(A)、(B)は、反射光の光強度周波数を変調する
構成の可動型検査用反射体の構成例である。図20
(A)の検査用反射体200は、図示しない駆動手段に
より回動する軸201にミラー202を取付ける構成で
ある。ミラー202が再帰反射性は低いものとすれば、
入射光ビームは、検査用反射体200の回動角に応じた
方位に反射される。従って、検査用反射体200からの
反射光は、検査用反射体200の回動周波数で変調され
て光レーダセンサの受光素子で受光される。その変調情
報は受光出力R1に含まれて正常動作確認手段19の反
射有無確認回路19Bへ入力される。反射有無確認回路
19Bは、前記変調された受光出力R1が入力する時
に、検査用反射体200からの反射光と見なすことがで
き、物体からの反射光と識別できる。例えば、受光信号
が特定の周波数で変調されていることを、その周波数を
通過させる帯域通過フィルタを設けることで検出でき
る。
Even in the case as shown in FIG. 18, FIGS.
With the inspection reflector having the configuration shown in FIG. 1, the reflected light from the inspection reflector and the reflected light from the object can be distinguished. FIG.
0 (A) and (B) are configuration examples of the movable inspection reflector configured to modulate the light intensity frequency of the reflected light. FIG.
The inspection reflector 200 in (A) has a configuration in which a mirror 202 is mounted on a shaft 201 that is rotated by a driving unit (not shown). Assuming that the mirror 202 has low retroreflectivity,
The incident light beam is reflected in an azimuth corresponding to the rotation angle of the inspection reflector 200. Therefore, the reflected light from the inspection reflector 200 is modulated by the rotation frequency of the inspection reflector 200 and received by the light receiving element of the optical radar sensor. The modulation information is included in the light reception output R1 and input to the reflection presence / absence confirmation circuit 19B of the normal operation confirmation means 19. When the modulated light reception output R1 is input, the reflection presence / absence check circuit 19B can regard the reflection light from the inspection reflector 200 as the reflection light from the object. For example, the fact that the light receiving signal is modulated at a specific frequency can be detected by providing a band-pass filter that passes that frequency.

【0068】また、図20(B)の検査用反射体210
は、軸211回りに揺動可能にミラー212を軸支する
と共に、ミラー212にバネ213を連結し、ミラー2
12に外部から振動エネルギーを供給して揺動させる構
成である。特に、揺動周波数を検査用反射体210の質
量とバネ定数で定まる共振周波数とすると、大きく揺動
させることができる。かかる構成では、例えば光レーダ
センサに音波発生手段を設け、センサからの音波により
検査用反射体210に振動エネルギーを供給すれば、検
査用反射体210は、自身に駆動手段を持つ必要がなく
無電源化できる利点がある。
The inspection reflector 210 shown in FIG.
The mirror 212 pivotally supports the mirror 212 so as to be able to swing around the axis 211, and a spring 213 is connected to the mirror 212.
This is a configuration in which vibration energy is supplied from outside to the wafer 12 to swing it. In particular, when the oscillation frequency is a resonance frequency determined by the mass of the inspection reflector 210 and the spring constant, the oscillation can be largely performed. In such a configuration, for example, if the optical radar sensor is provided with a sound wave generating unit and the vibration energy is supplied to the inspection reflector 210 by the sound wave from the sensor, the inspection reflector 210 does not need to have a driving unit in itself, and becomes unnecessary. There is an advantage that can be converted to a power supply.

【0069】図21は、反射光の波長を変調する構成の
波長変換型検査用反射体の例である。図21の波長変換
型検査用反射体220は、ミラー221の前面に波長変
換層222を設ける構成で、入射光ビームを異なる波長
の反射光に変換する。本実施形態では、例えば青色の入
射光ビームを赤色の光ビームに変換して反射する。この
ような波長変換技術は、間宮他:自動制御学会ヒューマ
ン・インターフェース部会第13回ヒューマン・インタ
ーフェース・シンポジウム論文集、1996、p.49
3−500等で公知である。
FIG. 21 shows an example of a wavelength conversion type inspection reflector configured to modulate the wavelength of reflected light. The wavelength conversion type inspection reflector 220 of FIG. 21 has a configuration in which a wavelength conversion layer 222 is provided on the front surface of a mirror 221 and converts an incident light beam into reflected light of a different wavelength. In the present embodiment, for example, a blue incident light beam is converted into a red light beam and reflected. Such a wavelength conversion technology is described in Mamiya et al., 13th Human Interface Symposium, Human Interface Subcommittee, Japan Society of Automatic Control, 1996, p. 49
It is known as 3-500.

【0070】波長変換型検査用反射体220を用いる場
合、例えば赤色光ビームのみを透過し青色光ビームを遮
光する特性の光学フィルタを備えた受光素子と、該受光
素子からの出力により受光出力を発生する受光回路と
を、図1の構成の光レーダセンサに、別途設けるように
する。これにより、検査用反射体220で波長変換され
た赤色光ビームの反射光は光学フィルタ付き受光素子の
みで受光され、受光回路からは検査用反射体220の反
射光が存在する時のみ受光出力が発生する。従って、こ
の受光出力は検査用反射体の反射光の存在を示す情報と
なり、この受光出力が発生した時に正常動作確認手段1
9の受光有無確認回路19Bで、受光出力R1の有無を
判定することで正常動作の確認が可能である。
When the wavelength conversion type inspection reflector 220 is used, for example, a light receiving element provided with an optical filter having a characteristic of transmitting only a red light beam and blocking a blue light beam, and a light receiving output based on an output from the light receiving element The generated light receiving circuit is separately provided in the optical radar sensor having the configuration shown in FIG. As a result, the reflected light of the red light beam wavelength-converted by the inspection reflector 220 is received only by the light receiving element with the optical filter, and the light receiving circuit outputs a light reception output only when the reflection light of the inspection reflector 220 exists. appear. Therefore, the received light output becomes information indicating the presence of the reflected light of the inspection reflector.
The normal operation can be confirmed by judging the presence or absence of the light reception output R1 in the light reception presence / absence confirmation circuit 19B of No. 9.

【0071】図20及び図21に示すような検査用反射
体を用いれば、検査用反射体の反射光と物体の反射光の
識別を容易にでき、図18のような状態でも測距機能を
設けることなく両者の識別が可能となる。また、検査用
反射体の方位を示す信号p1,p2を省くことが可能と
なる。放射領域確認用検査用反射体を、情報表示手段と
して用いることも可能である。図22にその例を示す。
図22は、例えば移動体100の走行情報を表示させる
例を示し、(A)は上面図、(B)は側面図である。
尚、図14と同一の構成要素には同一符号を付す。
By using the inspection reflector as shown in FIGS. 20 and 21, it is easy to distinguish the reflected light of the inspection reflector from the reflected light of the object, and the distance measuring function can be performed even in the state shown in FIG. The two can be identified without providing them. Further, it is possible to omit the signals p1 and p2 indicating the orientation of the inspection reflector. It is also possible to use a reflector for inspection for confirming a radiation area as information display means. FIG. 22 shows an example.
FIGS. 22A and 22B show an example in which traveling information of the moving body 100 is displayed, for example, where FIG. 22A is a top view and FIG. 22B is a side view.
The same components as those in FIG. 14 are denoted by the same reference numerals.

【0072】図22において、検査用反射体a〜cを、
例えば、走行路102上に設置し、移動体100に搭載
した光レーダセンサ101の光ビームの放射領域確認用
と同時に情報表示用に用いる。情報は、無情報である基
本形の反射体形状(反射特性)を情報に対応して予め定
めた形状(反射特性)に変更することで表示する。例え
ば、本実施形態では、検査用反射体cを基本形として無
情報とし、基本形をバーコード状に変形して情報を表示
するようにしている。検査用反射体a〜cの形状(反射
特性)は、信号R1に基づいて抽出され、予め記憶され
ている反射持性−情報の対応関係に基づき、前記信号R
1の出力状態から情報を解読する。
In FIG. 22, the inspection reflectors a to c are
For example, it is installed on the traveling path 102 and used for confirming the radiation area of the light beam of the optical radar sensor 101 mounted on the moving body 100 and for displaying information at the same time. The information is displayed by changing the basic shape of the non-informational reflector (reflection characteristic) to a predetermined shape (reflection characteristic) corresponding to the information. For example, in the present embodiment, no information is used as the inspection reflector c, and the information is displayed by transforming the basic shape into a barcode shape. The shapes (reflection characteristics) of the inspection reflectors a to c are extracted based on the signal R1, and based on the correspondence relationship between the reflectance and the information stored in advance, the signal R is used.
The information is decoded from the output state of No. 1.

【0073】図23(A)〜(C)は、移動体100が
図22中の矢印方向に移動した場合の光レーダセンサ1
01の受光出力に基づく画像の変化を示している。
(A)の画像は、既に検査用反射体aの表示情報の解読
・実行が完了し、検査用反射体bに近づいている状態を
示す。この画像において、検査用反射体bは点線で囲ま
れており、これは光ビームの放射領域確認用の検査用反
射体として認識されていることを表し、検査用反射体b
により監視領域に光ビームが放射されていることが確認
される。検査用反射体bが例えば「走行速度」情報を表
示しているとし、検査用反射体bの表示情報は、(B)
のように画像上の横線Iに検査用反射体bが重なった時
に解読され実行され、検査用反射体bの示す「走行速
度」情報に基づき移動体100は走行する。(C)で
は、無情報の検査用反射体cが確認され、監視領域に光
ビームが放射されていることだけの確認が行われる。
FIGS. 23A to 23C show the optical radar sensor 1 when the moving body 100 moves in the direction of the arrow in FIG.
The change of the image based on the light reception output of No. 01 is shown.
The image of (A) shows a state in which the decoding and execution of the display information of the inspection reflector a have already been completed and the image is approaching the inspection reflector b. In this image, the inspection reflector b is surrounded by a dotted line, which indicates that the inspection reflector b is recognized as an inspection reflector for confirming the emission area of the light beam.
This confirms that the light beam is emitted to the monitoring area. Assuming that the reflector b for inspection is displaying, for example, “running speed” information, the display information of the reflector b for inspection is (B)
When the inspection reflector b overlaps the horizontal line I on the image as described above, the decoding is executed, and the moving body 100 travels based on the “running speed” information indicated by the inspection reflector b. In (C), the inspection reflector c with no information is confirmed, and it is confirmed only that the light beam is emitted to the monitoring area.

【0074】かかる構成とすれば、例えば鉄道車両に適
用した場合に、検査用反射体を例えば枕木上に配置し、
検査用反射体により情報を車両に提供することが可能と
なる。提供する情報としては、例えば、「制限速度」、
「線路勾配」、「踏切までの距離」等の固定情報の他
に、上述のバーコード形状を可変にできる構成とすれ
ば、「前方の信号現示」、「ポイント開通方向」等の可
変情報も表示可能となる。また、停止位置情報を表示す
れば、定点停止制御に用いることも可能になる。
With this configuration, for example, when applied to a railway vehicle, the inspection reflector is arranged on, for example, a sleeper,
The inspection reflector enables information to be provided to the vehicle. The information to be provided includes, for example, "speed limit",
In addition to fixed information such as "track slope" and "distance to railroad crossing", if the above-mentioned barcode shape can be made variable, variable information such as "forward signal indication" and "point opening direction" can be used. Can also be displayed. If the stop position information is displayed, it can be used for fixed point stop control.

【0075】尚、検査用反射体の同定及び情報の読み取
りは、本実施形態のような画像による方法に限定される
ものではなく、上述のように方位・距離情報等によって
も可能である。また、検査用反射体の配置位置は走行路
上に限られないことは言うまでもない。更に、複数の検
査用反射体の組み合わせで情報を表示しても構わない。
Incidentally, the identification of the inspection reflector and the reading of the information are not limited to the method based on the image as in the present embodiment, but can also be performed by the azimuth / distance information as described above. Needless to say, the arrangement position of the inspection reflector is not limited to the traveling path. Further, information may be displayed by a combination of a plurality of inspection reflectors.

【0076】[0076]

【発明の効果】以上説明したように請求項1、2の発明
によれば、走査ビームを2次元的に走査して物体監視を
立体的空間で行える2次元走査型光レーダセンサで、正
常動作の確認を行いつつ物体監視が行えるので、無人搬
送車等への光レーダセンサ取付けの自由度を高められ
る。
As described above, according to the first and second aspects of the present invention, a two-dimensional scanning optical radar sensor capable of two-dimensionally scanning a scanning beam and monitoring an object in a three-dimensional space is provided. Since the object monitoring can be performed while confirming the condition, the degree of freedom in mounting the optical radar sensor on an automatic guided vehicle or the like can be increased.

【0077】請求項3、4の発明によれば、上記効果に
加えてガルバノミラーのような走査ビームの各方向の走
査が独立に行われる光ビーム走査手段を利用する場合に
も、正常動作の確認を確実にできる。請求項5の発明に
よれば、正常動作の確認機能の信頼性を高められる。請
求項6の発明によれば、検査用反射体の存在位置が方位
だけでなくセンサからの距離でも定められるので、検査
用反射体と物体とが重なるような場合でも両者の識別が
可能になり、物体監視機能の信頼性を高められる。
According to the third and fourth aspects of the present invention, in addition to the above-described effects, the normal operation of the light beam scanning means, such as a galvanometer mirror, which performs scanning in each direction of the scanning beam independently, is used. Confirmation can be assured. According to the invention of claim 5, the reliability of the function for confirming the normal operation can be enhanced. According to the invention of claim 6, since the position of the inspection reflector is determined not only by the azimuth but also by the distance from the sensor, it is possible to identify the inspection reflector and the object even when the object overlaps. In addition, the reliability of the object monitoring function can be improved.

【0078】請求項7の発明によれば、走査領域内に複
数の監視領域がある場合に、監視領域毎に検査用反射体
を配置する必要がなくなる。請求項9の発明によれば、
監視領域が例えば球形状の場合でも好適である。請求項
10、11の発明によれば、走査ビームが監視すべき領
域に放射されていることを確認しつつ移動体が移動でき
る。
According to the invention of claim 7, when there are a plurality of monitoring areas in the scanning area, it is not necessary to arrange the inspection reflector for each monitoring area. According to the ninth aspect of the present invention,
It is preferable that the monitoring area has a spherical shape, for example. According to the tenth and eleventh aspects, the moving body can move while confirming that the scanning beam is radiated to the area to be monitored.

【0079】請求項12の発明によれば、移動体搭載時
の物体監視機能の信頼性を高められる。請求項13、1
4の発明によれば、検査用反射体からの反射光と物体か
らの反射光の識別が容易となるので、正常動作確認機能
及び物体監視機能の信頼性をより一層高められる。
According to the twelfth aspect of the present invention, the reliability of the object monitoring function when the moving object is mounted can be improved. Claims 13 and 1
According to the fourth aspect, since it is easy to distinguish the reflected light from the inspection reflector and the reflected light from the object, the reliability of the normal operation checking function and the object monitoring function can be further improved.

【0080】請求項15の発明によれば、検査用反射体
を正常動作確認用としてだけでなく、情報の伝達にも利
用できる。
According to the fifteenth aspect, the reflector for inspection can be used not only for confirming normal operation but also for transmitting information.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る2次元走査型光レーダセンサの第
1実施形態の概略構成図
FIG. 1 is a schematic configuration diagram of a first embodiment of a two-dimensional scanning optical radar sensor according to the present invention.

【図2】同上実施形態に適用する半導体ガルバノミラー
の要部構成図
FIG. 2 is a main part configuration diagram of a semiconductor galvanometer mirror applied to the embodiment;

【図3】正常動作確認手段の構成図FIG. 3 is a configuration diagram of a normal operation check unit.

【図4】走査ビーム方位の説明図FIG. 4 is an explanatory diagram of a scanning beam direction.

【図5】2次元走査型光レーダセンサの検査用反射体の
配置原理の説明図
FIG. 5 is an explanatory diagram of an arrangement principle of a reflector for inspection of a two-dimensional scanning optical radar sensor.

【図6】第1実施形態の正常動作確認手段の動作を説明
するタイムチャート
FIG. 6 is a time chart for explaining the operation of the normal operation check means of the first embodiment;

【図7】監視領域の設定例を示す図FIG. 7 is a diagram showing a setting example of a monitoring area;

【図8】測距機能を備える本発明の第2実施形態の正常
動作確認手段の要部構成図
FIG. 8 is a configuration diagram of a main part of a normal operation checking unit having a distance measuring function according to a second embodiment of the present invention;

【図9】第2実施形態の正常動作確認手段の動作を説明
するタイムチャート
FIG. 9 is a time chart for explaining the operation of the normal operation check means of the second embodiment.

【図10】検査用反射体の別の配置例を示す図FIG. 10 is a diagram showing another arrangement example of the inspection reflector;

【図11】検査用反射体の別の配置例を示す図FIG. 11 is a diagram showing another example of the arrangement of the reflector for inspection.

【図12】検査用反射体の別の配置例を示す図FIG. 12 is a view showing another arrangement example of the inspection reflector;

【図13】検査用反射体の別の配置例を示す図FIG. 13 is a diagram showing another example of the arrangement of the reflector for inspection.

【図14】移動体搭載時の検査用反射体の構成例を示
し、(A)は上面図、(B)は側面図
14A and 14B show a configuration example of an inspection reflector when a moving body is mounted, where FIG. 14A is a top view and FIG.

【図15】図14のセンサで検出した移動体進行方向画
面の変化状態を示す図
15 is a diagram showing a change state of a moving body traveling direction screen detected by the sensor of FIG. 14;

【図16】移動体搭載時の検査用反射体の別の構成例を
示し、(A)は上面図、(B)は側面図
16A and 16B show another configuration example of the inspection reflector when the moving body is mounted, where FIG. 16A is a top view and FIG. 16B is a side view.

【図17】図16のセンサで検出した移動体進行方向画
面の変化状態を示す図
17 is a diagram showing a change state of a moving body traveling direction screen detected by the sensor of FIG. 16;

【図18】測距機能がない場合における監視領域内の検
査用反射体位置を除く説明図で、(A)は上面図、
(B)は側面図
FIG. 18 is an explanatory diagram excluding the position of an inspection reflector in a monitoring area when a distance measuring function is not provided, (A) is a top view,
(B) is a side view

【図19】測距機能がある場合における監視領域内の検
査用反射体位置を除く説明図で、(A)は上面図、
(B)は側面図
FIGS. 19A and 19B are explanatory diagrams excluding a position of a reflector for inspection in a monitoring area when a distance measuring function is provided, and FIG.
(B) is a side view

【図20】走査ビームの光強度周波数を変調する構成の
検査用反射体の構成例を示す図
FIG. 20 is a diagram illustrating a configuration example of an inspection reflector configured to modulate the light intensity frequency of a scanning beam.

【図21】走査ビームの波長を変調する構成の検査用反
射体の構成例を示す図
FIG. 21 is a diagram illustrating a configuration example of an inspection reflector configured to modulate the wavelength of a scanning beam;

【図22】情報表示機能を設けた検査用反射体の構成例
を示す図で、(A)は上面図、(B)は側面図
22A and 22B are diagrams illustrating a configuration example of an inspection reflector provided with an information display function, where FIG. 22A is a top view and FIG.

【図23】図22のセンサで検出した移動体進行方向画
面の変化状態を示す図
FIG. 23 is a diagram showing a change state of a moving body traveling direction screen detected by the sensor of FIG. 22;

【図24】1次元走査型光レーダセンサの正常動作確認
手法を2次元走査型光レーダセンサに適用した場合の問
題点を説明する図
FIG. 24 is a diagram for explaining a problem when a method for confirming normal operation of a one-dimensional scanning optical radar sensor is applied to a two-dimensional scanning optical radar sensor.

【符号の説明】[Explanation of symbols]

11 発光素子 12 発光素子駆動回路 13 走査ミラー 14 第1駆動回路 15 第2駆動回路 16 受光素子 17 受光回路 18 不存在判定手段 19 正常動作確認手段 20 ANDゲート m1〜m4 検査用反射体 EaU,EbU,EaL,EbL 検査用反射体 a1U〜a4U,a1L〜a4U,b1U〜b4U,b
1L〜b4L 検査用反射体 a,b,c 検査用反射体 200,210,220 検査用反射体、 A 走査領域 B 監視領域
Reference Signs List 11 light emitting element 12 light emitting element driving circuit 13 scanning mirror 14 first driving circuit 15 second driving circuit 16 light receiving element 17 light receiving circuit 18 non-existence determining means 19 normal operation checking means 20 AND gates m1 to m4 inspection reflectors EaU, EbU , EaL, EbL Inspection reflector a1U-a4U, a1L-a4U, b1U-b4U, b
1L to b4L Reflectors for inspection a, b, c Reflectors for inspection 200, 210, 220 Reflectors for inspection, A scanning area B monitoring area

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】光ビーム発生手段と、 前記光ビーム発生手段からの光ビームを物体の監視領域
を含んで2次元に走査可能な光ビーム走査手段と、 該光ビーム走査手段から放射される走査ビームの走査空
間からの反射光を受光する受光手段と、 少なくとも前記受光手段の出力に基づき前記監視領域内
の物体不在を判定する不存在判定手段と、 少なくとも前記光ビーム発生手段、光ビーム走査手段及
び受光手段の正常動作を確認する正常動作確認手段と、 前記不存在判定手段の出力と前記正常動作確認手段の出
力との論理積結果に基づいて安全情報を出力するゲート
手段と、 を備えたことを特徴とする2次元走査型光レーダセン
サ。
1. A light beam generating means, a light beam scanning means capable of two-dimensionally scanning a light beam from the light beam generating means including a monitoring area of an object, and a scanning radiated from the light beam scanning means Light receiving means for receiving light reflected from a beam scanning space; at least absence determining means for determining absence of an object in the monitoring area based on at least an output of the light receiving means; at least the light beam generating means and light beam scanning means And normal operation checking means for checking the normal operation of the light receiving means, and gate means for outputting safety information based on the logical product of the output of the absence determining means and the output of the normal operation checking means. A two-dimensional scanning optical radar sensor, characterized in that:
【請求項2】前記正常動作確認手段は、前記走査ビーム
の走査領域内に配置した検査用反射体からの反射光によ
る前記受光手段の受光出力に基づいて正常動作の確認を
行う構成である請求項1に記載の2次元走査型光レーダ
センサ。
2. The apparatus according to claim 1, wherein said normal operation checking means checks a normal operation based on a light receiving output of said light receiving means by a reflected light from an inspection reflector arranged in a scanning area of said scanning beam. Item 2. A two-dimensional scanning optical radar sensor according to item 1.
【請求項3】前記検査用反射体は、センサ動作状態から
得られる走査ビーム放射情報と前記受光手段の受光出力
結果との対応関係が、想定される異常動作時と正常動作
時とで異なるように配置する請求項2に記載の2次元走
査型光レーダセンサ。
3. The inspection reflector according to claim 1, wherein a correspondence between scanning beam radiation information obtained from a sensor operating state and a light receiving output result of said light receiving means is different between an assumed abnormal operation and a normal operation. The two-dimensional scanning optical radar sensor according to claim 2, wherein the two-dimensional scanning optical radar sensor is disposed at a position other than the above.
【請求項4】前記正常動作確認手段は、前記走査ビーム
情報が前記検査用反射体位置を示す情報である時の前記
受光手段の受光出力結果に基づいて正常動作の確認を行
う構成である請求項3に記載の2次元走査型光レーダセ
ンサ。
4. A normal operation confirming means for confirming a normal operation based on a light receiving output result of said light receiving means when said scanning beam information is information indicating said inspection reflector position. Item 4. A two-dimensional scanning optical radar sensor according to item 3.
【請求項5】前記正常動作確認手段は、前記走査ビーム
情報が前記検査用反射体位置を示す情報である時の前記
受光手段の受光出力結果と、前記走査ビーム情報が前記
検査用反射体位置以外を示す情報である時の前記受光手
段の受光出力結果とに基づいて正常動作の確認を行う構
成である請求項3に記載の2次元走査型光レーダセン
サ。
5. The normal operation confirming means includes: a light receiving output result of the light receiving means when the scanning beam information is information indicating the inspection reflector position; and the scanning beam information indicating the inspection reflector position. 4. The two-dimensional scanning optical radar sensor according to claim 3, wherein a normal operation is confirmed based on a light receiving output result of the light receiving unit when the information indicates information other than the above.
【請求項6】前記検査用反射体位置を示す情報は、セン
サから見た検査用反射体の存在方位とセンサから検査用
反射体までの距離を含む請求項4又は5に記載の2次元
走査型光レーダセンサ。
6. The two-dimensional scanning according to claim 4, wherein the information indicating the position of the reflector for inspection includes the direction of existence of the reflector for inspection as viewed from the sensor and the distance from the sensor to the reflector for inspection. Type optical radar sensor.
【請求項7】前記検査用反射体は、前記走査領域の隅部
近傍に配置する構成とした請求項2〜6のいずれか1つ
に記載の2次元走査型光レーダセンサ。
7. The two-dimensional scanning optical radar sensor according to claim 2, wherein the reflector for inspection is arranged near a corner of the scanning area.
【請求項8】前記検査用反射体は、前記監視領域外で当
該監視領域の隅部近傍に配置する構成とした請求項2〜
6のいずれか1つに記載の2次元走査型光レーダセン
サ。
8. The monitoring reflector according to claim 2, wherein the inspection reflector is arranged outside the monitoring area and near a corner of the monitoring area.
7. The two-dimensional scanning optical radar sensor according to any one of 6.
【請求項9】前記検査用反射体は、前記監視領域外縁に
対する走査ビームの上下最大角及び左右最大角で示され
る方位近傍に配置する構成とした請求項2〜6のいずれ
か1つに記載の2次元走査型光レーダセンサ。
9. The inspection reflector according to claim 2, wherein the inspection reflector is arranged near an azimuth indicated by a maximum vertical angle and a maximum left and right angle of the scanning beam with respect to the outer edge of the monitoring area. 2D scanning optical radar sensor.
【請求項10】移動体に2次元走査型光レーダセンサを
搭載した場合において、前記移動体が予め定められた範
囲内で移動する時に、前記検査用反射体を、前記監視領
域内に少なくとも1つ以上存在するよう配置する請求項
2〜6のいずれか1つに記載の2次元走査型光レーダセ
ンサ。
10. In a case where a two-dimensional scanning optical radar sensor is mounted on a moving body, when the moving body moves within a predetermined range, at least one inspection reflector is placed in the monitoring area. The two-dimensional scanning optical radar sensor according to any one of claims 2 to 6, wherein the two-dimensional scanning optical radar sensor is arranged so as to exist.
【請求項11】前記検査用反射体は、前記移動体の移動
方向に沿って連続して存在するよう配置する構成である
請求項10に記載の2次元走査型光レーダセンサ。
11. The two-dimensional scanning optical radar sensor according to claim 10, wherein the inspection reflector is arranged so as to be continuously present along the moving direction of the moving body.
【請求項12】前記不存在判定手段は、前記受光手段の
受光出力から前記監視領域内の前記検査用反射体からの
反射光による受光出力を除外して物体の有無を判定する
構成である請求項10又は11に記載の2次元走査型光
レーダセンサ。
12. The apparatus according to claim 1, wherein said absence determining means determines the presence or absence of an object by excluding a light receiving output of said inspection reflector within said monitoring area from a light receiving output of said light receiving means. Item 12. A two-dimensional scanning optical radar sensor according to item 10 or 11.
【請求項13】前記検査用反射体は、入射する走査ビー
ムの光強度周波数を変調する構成である請求項2〜12
のいずれか1つに記載の2次元走査型光レーダセンサ。
13. The inspection reflector for modulating the light intensity frequency of an incident scanning beam.
A two-dimensional scanning optical radar sensor according to any one of the above.
【請求項14】前記検査用反射体は、入射する走査ビー
ムの波長を変調する構成である請求項2〜12のいずれ
か1つに記載の2次元走査型光レーダセンサ。
14. The two-dimensional scanning optical radar sensor according to claim 2, wherein the inspection reflector is configured to modulate a wavelength of an incident scanning beam.
【請求項15】前記検査用反射体を情報表示手段に用い
る請求項2〜14のいずれか1つに記載の2次元走査型
光レーダセンーサ。
15. A two-dimensional scanning optical radar sensor according to claim 2, wherein said reflector for inspection is used for information display means.
JP2000302760A 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor Expired - Lifetime JP4953502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302760A JP4953502B2 (en) 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302760A JP4953502B2 (en) 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor

Publications (2)

Publication Number Publication Date
JP2002107452A true JP2002107452A (en) 2002-04-10
JP4953502B2 JP4953502B2 (en) 2012-06-13

Family

ID=18784063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302760A Expired - Lifetime JP4953502B2 (en) 2000-10-02 2000-10-02 Two-dimensional scanning optical radar sensor

Country Status (1)

Country Link
JP (1) JP4953502B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004276A (en) * 2002-05-31 2004-01-08 Nippon Signal Co Ltd:The Two-dimensional optical scanner
JP2004056318A (en) * 2002-07-17 2004-02-19 Sumitomo Osaka Cement Co Ltd Monitor device
JP2011027574A (en) * 2009-07-27 2011-02-10 Nippon Signal Co Ltd:The Range image processing system
JP2012093256A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Laser image measurement device
JP2012215523A (en) * 2011-04-01 2012-11-08 Denso Corp Inspection method and inspection system
JP2013160545A (en) * 2012-02-02 2013-08-19 Mitsubishi Electric Corp Shape measuring device
JP2020064059A (en) * 2018-10-09 2020-04-23 ジック アーゲー Photoelectric sensor and object detection method
JP7097647B1 (en) 2021-12-16 2022-07-08 Dolphin株式会社 Adjustment method and program of optical scanning device, object detection device, optical scanning device
JP7097648B1 (en) 2021-12-16 2022-07-08 Dolphin株式会社 Adjustment method and program of optical scanning device, object detection device, optical scanning device
WO2022191174A1 (en) * 2021-03-10 2022-09-15 パイオニア株式会社 Sensor device
WO2023119414A1 (en) * 2021-12-21 2023-06-29 パイオニア株式会社 Sensor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725330A (en) * 2019-02-20 2019-05-07 苏州风图智能科技有限公司 A kind of Location vehicle method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075031A (en) * 1998-08-27 2000-03-14 Omron Corp Two-dimensional axis adjustment method of range-finder
JP2000162306A (en) * 1998-11-25 2000-06-16 Nippon Signal Co Ltd:The Reflector for inspecting radar sensor and system thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075031A (en) * 1998-08-27 2000-03-14 Omron Corp Two-dimensional axis adjustment method of range-finder
JP2000162306A (en) * 1998-11-25 2000-06-16 Nippon Signal Co Ltd:The Reflector for inspecting radar sensor and system thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004276A (en) * 2002-05-31 2004-01-08 Nippon Signal Co Ltd:The Two-dimensional optical scanner
JP2004056318A (en) * 2002-07-17 2004-02-19 Sumitomo Osaka Cement Co Ltd Monitor device
JP2011027574A (en) * 2009-07-27 2011-02-10 Nippon Signal Co Ltd:The Range image processing system
JP2012093256A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Laser image measurement device
JP2012215523A (en) * 2011-04-01 2012-11-08 Denso Corp Inspection method and inspection system
JP2013160545A (en) * 2012-02-02 2013-08-19 Mitsubishi Electric Corp Shape measuring device
JP2020064059A (en) * 2018-10-09 2020-04-23 ジック アーゲー Photoelectric sensor and object detection method
US11609422B2 (en) 2018-10-09 2023-03-21 Sick Ag Optoelectronic sensor and method of detecting objects
WO2022191174A1 (en) * 2021-03-10 2022-09-15 パイオニア株式会社 Sensor device
JP7097647B1 (en) 2021-12-16 2022-07-08 Dolphin株式会社 Adjustment method and program of optical scanning device, object detection device, optical scanning device
JP7097648B1 (en) 2021-12-16 2022-07-08 Dolphin株式会社 Adjustment method and program of optical scanning device, object detection device, optical scanning device
JP2023089700A (en) * 2021-12-16 2023-06-28 Dolphin株式会社 Optical scanner, object detector, adjustment method of optical scanner and program
JP2023089863A (en) * 2021-12-16 2023-06-28 Dolphin株式会社 Optical scanner, object detection device, method for adjusting optical scanner, and program
WO2023119414A1 (en) * 2021-12-21 2023-06-29 パイオニア株式会社 Sensor device

Also Published As

Publication number Publication date
JP4953502B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP2002107452A (en) Two-dimensional scanning type optical radar sensor
JP2007204003A (en) Safety device for platform door
JP5644437B2 (en) Distance measuring device and distance measuring method
JP5267786B2 (en) Laser radar and boundary monitoring method using laser radar
JP2000162533A (en) Optical scanner
JP2003011824A (en) Crossing obstructing detector
JP4213155B2 (en) Front obstacle sensor of automated guided vehicle
JP2011257193A (en) Object detector
JP2004361315A (en) Radar system
JP2004226548A (en) Optical scanner, object detection device using the same, and plotting device
JPWO2017135224A1 (en) Optical scanning type object detection device
JP2005121638A (en) Optoelectronic detection apparatus
JP2013029375A (en) Obstacle detection method and obstacle detection device
JP6975675B2 (en) Mobile scanner
JP2003090759A (en) Light detection apparatus and distance-measuring apparatus
JPH08261753A (en) Optical radar device
EP3364229B1 (en) Optical-scanning-type object detection device
JP4169677B2 (en) Obstacle detection device
JPWO2020194648A1 (en) Distance measuring device
JP2001325690A (en) Obstacle detector
JP2004157065A (en) Radar device
JP4098253B2 (en) Detection apparatus and detection method
JP2019113457A (en) Scanner and distance measuring device
JPS59171878A (en) Obstacle detecting apparatus for vehicle
JP2010107575A (en) Optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4953502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3