JP4951971B2 - Photoelectric composite module - Google Patents

Photoelectric composite module Download PDF

Info

Publication number
JP4951971B2
JP4951971B2 JP2005517249A JP2005517249A JP4951971B2 JP 4951971 B2 JP4951971 B2 JP 4951971B2 JP 2005517249 A JP2005517249 A JP 2005517249A JP 2005517249 A JP2005517249 A JP 2005517249A JP 4951971 B2 JP4951971 B2 JP 4951971B2
Authority
JP
Japan
Prior art keywords
optical
light emitting
insulating layer
emitting element
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005517249A
Other languages
Japanese (ja)
Other versions
JPWO2005071807A1 (en
Inventor
隆徳 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2005517249A priority Critical patent/JP4951971B2/en
Publication of JPWO2005071807A1 publication Critical patent/JPWO2005071807A1/en
Application granted granted Critical
Publication of JP4951971B2 publication Critical patent/JP4951971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は光電気複合モジュールに関し、特に発光素子やドライバICなどが実装された高速の光電気複合モジュールに関する。   The present invention relates to a photoelectric composite module, and more particularly to a high-speed photoelectric composite module on which a light emitting element, a driver IC, and the like are mounted.

近年、地域内ネットワーク、都市間ネットワーク等に代表される光通信、ならびにサーバ・ルータの装置内・装置間での光リンクなどで、高速、低コスト、および小型の光トランシーバの実現が期待されている。また、10Gbit/sイーサネット(登録商標)の標準化が進み、光トランシーバの小型化、特に装置のインターフェイスの高密度化が可能となるように、光入出力部の間口が狭くなるような構成が求められている。光トランシーバは光送信部と光受信部から構成されているが、そのうち光送信部のモジュールは、駆動LSIならびに半導体レーザなどの発光素子、フォトダイオードなどの光モニタ素子を有している。   In recent years, high-speed, low-cost, and small-sized optical transceivers are expected to be realized in optical communications such as regional networks and intercity networks, and optical links within and between servers and routers. Yes. In addition, the standardization of 10 Gbit / s Ethernet (registered trademark) has progressed, and a configuration is required in which the front end of the optical input / output unit is narrow so that the optical transceiver can be miniaturized, in particular, the interface density of the device can be increased. It has been. The optical transceiver is composed of an optical transmitter and an optical receiver. Among them, the module of the optical transmitter has a drive LSI, a light emitting element such as a semiconductor laser, and an optical monitor element such as a photodiode.

これまでこの種の表面実装型光電気複合モジュールは、光結合の損失を増加させないという観点から、光モニタ素子、発光素子、レンズ、光ファイバといった光結合系を形成し、その外側に駆動LSIが配置されていた。図7に従来の光電気複合モジュールの模式図を示す。図7(a)は概略断面図、図7(b)は概略上面図である。放熱基板141上に発光素子101が搭載され、発光素子101の出力側にレンズ152を、反対側に光モニタ素子102を近接配置し、セラミックパッケージ上に形成された配線基板143上に搭載された駆動LSI103が光モニタ素子102のさらに後方に配置されていた。   Until now, this type of surface-mount type opto-electric composite module has formed an optical coupling system such as an optical monitor element, light emitting element, lens, and optical fiber from the viewpoint of not increasing optical coupling loss, and a drive LSI is provided outside the optical coupling system Had been placed. FIG. 7 shows a schematic diagram of a conventional photoelectric composite module. FIG. 7A is a schematic cross-sectional view, and FIG. 7B is a schematic top view. The light emitting element 101 is mounted on the heat radiating substrate 141, the lens 152 is disposed close to the output side of the light emitting element 101, and the light monitoring element 102 is disposed close to the opposite side, and is mounted on the wiring substrate 143 formed on the ceramic package. The drive LSI 103 is disposed further behind the optical monitor element 102.

一方、高速化の観点から、駆動LSIと発光素子とを近接配置した構造を有する光電気複合モジュールも開示されている。一つの開示例では、発光素子と駆動LSIとを近接させ、駆動LSIは配線基板上の高速線路を介して外部と接続し、電気接続のためのワイヤを短くした構造としている。そして光モニタ素子は配線基板上の搭載部材に配置してあり、発光素子の出力側の反対側から出射したモニタ光は、駆動LSIの上を通過して光モニタ素子に結合されている(例えば特許文献1参照。)。   On the other hand, from the viewpoint of speeding up, a photoelectric composite module having a structure in which a driving LSI and a light emitting element are arranged close to each other is also disclosed. In one disclosed example, a light emitting element and a driving LSI are brought close to each other, the driving LSI is connected to the outside via a high-speed line on a wiring board, and a wire for electrical connection is shortened. The optical monitor element is arranged on a mounting member on the wiring board, and the monitor light emitted from the side opposite to the output side of the light emitting element passes through the drive LSI and is coupled to the optical monitor element (for example, (See Patent Document 1).

また、光モニタ素子と発光ダイオード(LD)駆動用ICのいずれかを発光素子に近接配置する技術も開示されている(例えば特許文献2参照。)。   Also disclosed is a technique in which one of an optical monitoring element and a light emitting diode (LD) driving IC is disposed close to the light emitting element (see, for example, Patent Document 2).

特開2002−252407号公報(4−6頁、図2、図3)Japanese Patent Laid-Open No. 2002-252407 (page 4-6, FIGS. 2 and 3) 特開2003−232967号公報JP 2003-232967 A

しかし、図7に示すように光結合系の最適配置を優先した場合、駆動LSIから発光素子までのワイヤの距離が長くなるため、10Gbit/sレベルの高速信号を損失や反射の影響なく伝送することは難しかった。   However, if priority is given to the optimal arrangement of the optical coupling system as shown in FIG. 7, the distance of the wire from the driving LSI to the light emitting element becomes long, so that a high-speed signal of 10 Gbit / s level is transmitted without being affected by loss or reflection. That was difficult.

また、特許文献1に示すように高速動作を優先した場合、発光素子と駆動LSIとを近接させる必要があるため、逆に発光素子と光モニタ素子との距離が広がってしまう。発光素子からのモニタ光にはビーム広がりがあるため、距離を離すと、発光素子と光モニタ素子との間の結合損失が増加し、モニタ光のパワーレベルが光モニタ素子の受信許容範囲を下回るという問題があった。   Further, as shown in Patent Document 1, when priority is given to high-speed operation, it is necessary to bring the light emitting element and the driving LSI close to each other, and conversely, the distance between the light emitting element and the light monitoring element increases. Since the monitor light from the light emitting element has a beam spread, if the distance is increased, the coupling loss between the light emitting element and the optical monitor element increases, and the power level of the monitor light falls below the allowable reception range of the optical monitor element. There was a problem.

このように従来技術においては、光結合系の損失増加抑制のための発光素子、光モニタ素子、レンズ等の最適配置と、高速動作のための駆動LSIと発光素子との近接配置が両立できないという課題があった。   As described above, in the prior art, the optimal arrangement of the light emitting element, the optical monitor element, the lens, etc. for suppressing the increase in loss of the optical coupling system cannot be compatible with the close arrangement of the driving LSI and the light emitting element for high-speed operation. There was a problem.

さらに、特許文献2においては、光モニタ素子とLD駆動用ICのいずれかを発光素子に近接配置させる構造が示されているが、両者を同時に近接配置することは難しく、結局上述の問題を根本的に解決することは困難である。また、絶縁層の上に導波層が形成されているが、導波路上の電気配線はリードとの接続のみであり、10Gbit/sレベルの高速伝送を安定して実現するために必要なグランド電極の配置が困難である。さらに、導波路上のプリアンプは1Gbit/sレベルが伝送可能な比較的長めのワイヤを想定してつながれており、1mm以下が必要とされる高速伝送の実現には難点がある。   Further, Patent Document 2 shows a structure in which either the light monitoring element or the LD driving IC is disposed close to the light emitting element. However, it is difficult to place both of them close to each other at the same time. Is difficult to solve. In addition, the waveguide layer is formed on the insulating layer, but the electrical wiring on the waveguide is only connected to the lead, and the ground necessary for stably realizing high-speed transmission of 10 Gbit / s level. It is difficult to arrange the electrodes. Furthermore, the preamplifier on the waveguide is connected on the assumption of a relatively long wire capable of transmitting 1 Gbit / s level, and there is a difficulty in realizing high-speed transmission that requires 1 mm or less.

本発明の目的は、上記の事情に鑑み、光結合系の損失増加抑制を可能とする最適配置と、高速動作を可能とする駆動LSIと発光素子との近接配置を両立する光電気複合モジュールを提供することにある。   In view of the above circumstances, an object of the present invention is to provide an opto-electric composite module that achieves both an optimal arrangement capable of suppressing an increase in loss of an optical coupling system and a close arrangement of a driving LSI and a light emitting element capable of high-speed operation. It is to provide.

前記目的を達成するため、本発明に係る光電気複合モジュールは、放熱基板上に設置され、光信号を発生する発光素子と、前記発光素子の光信号出力面及び前記出力面の反対側の面の少なくとも一方と対向し、前記発光素子で発生した前記光信号を伝達する光導波路と、前記放熱基板に設けられ、前記光導波路を内蔵する絶縁層と、前記絶縁層の上面にフリップチップ実装され、前記発光素子に電流増幅信号を供給する駆動LSIと、前記放熱基板上に設置され、前記発光素子の発光をモニタする光モニタ素子と、前記光モニタ素子のモニタ信号を前記駆動LSIに供給するDC線路と、前記駆動LSIと前記発光素子とを前記絶縁層の厚み方向に結ぶ駆動用信号線路と、前記駆動LSIと接触して前記絶縁層の上面を延び、前記駆動LSIに電気入力信号を供給する電気入力用伝送線路と、を含み、
前記電気入力用伝送線路は、
前記駆動LSIと接触して前記絶縁層の上面を延びる上部グランド線路と、前記放熱基板の上面を延びる下部グランド線路と、前記上部グランド線路と前記下部グランド線路とを接続するグランド電極接続部とを有することを特徴とするものである。
In order to achieve the above object, a photoelectric composite module according to the present invention is installed on a heat dissipation substrate, generates a light signal, an optical signal output surface of the light emitting device, and a surface opposite to the output surface. An optical waveguide for transmitting the optical signal generated by the light emitting element, facing the at least one of the light emitting element, an insulating layer provided in the heat dissipation substrate and incorporating the optical waveguide, and flip-chip mounted on an upper surface of the insulating layer A driving LSI for supplying a current amplification signal to the light emitting element; an optical monitoring element installed on the heat dissipation substrate for monitoring light emission of the light emitting element; and a monitor signal for the optical monitoring element is supplied to the driving LSI. A driving line connecting the DC line, the driving LSI and the light emitting element in the thickness direction of the insulating layer; and an upper surface of the insulating layer in contact with the driving LSI; Anda electrical input transmission line supplies the electrical input signal,
The transmission line for electrical input is
An upper ground line extending in contact with the driving LSI and extending from the upper surface of the insulating layer; a lower ground line extending from the upper surface of the heat dissipation substrate; and a ground electrode connecting portion connecting the upper ground line and the lower ground line. It is characterized by having .

これによって、電気配線と光配線とを立体的に構成することが可能となり、光導波路、発光素子、光モニタ素子を結合するとともに、発光素子と駆動LSIとの近接配置が可能となり、光結合系の結合損失を低く抑えるとともに、10Gbit/sレベルの高速信号を、損失や反射の影響による劣化を抑えて伝送することが可能になる。   As a result, the electrical wiring and the optical wiring can be three-dimensionally configured, and the optical waveguide, the light emitting element, and the optical monitoring element can be combined, and the light emitting element and the driving LSI can be arranged close to each other. It is possible to transmit a high-speed signal of 10 Gbit / s level while suppressing deterioration due to loss and reflection.

放熱基板上に発光素子と光モニタ素子とを配置し、かつ前記発光素子に光結合する光導波路を絶縁層に内蔵して前記放熱基板上に配置することにより、前記発光素子と前記光モニタ素子と前記光導波路とを光結合の損失増加抑制の位置関係に配置することができる。そして、光結合系の各種素子を接近して配置することができるため、光結合系の結合損失を低く抑えることができる。したがって、10Gbit/sレベルの高速信号を、損失や反射の影響による劣化を抑えて伝送することが可能になる。A light emitting element and an optical monitoring element are disposed on a heat dissipation substrate, and an optical waveguide that is optically coupled to the light emitting element is provided in an insulating layer and disposed on the heat dissipation substrate, whereby the light emitting element and the light monitoring element are disposed. And the optical waveguide can be arranged in a positional relationship for suppressing increase in loss of optical coupling. Since various elements of the optical coupling system can be arranged close to each other, the coupling loss of the optical coupling system can be kept low. Therefore, it is possible to transmit a 10 Gbit / s level high-speed signal while suppressing deterioration due to the effects of loss and reflection.

さらに、駆動LSIを前記放熱基板の絶縁層の上面にフリップチップ実装することにより、前記駆動LSIと前記発光素子とを接近させて配置することができるとともに、前記光導波路を内蔵した前記絶縁層を利用して、DC線路,駆動用信号線路及び電気入力用伝送線路を配線したので、線路が立体構造として構築され、信号の授受を行うための距離が極めて短くすることができる。Further, by flip-chip mounting the driving LSI on the upper surface of the insulating layer of the heat dissipation substrate, the driving LSI and the light emitting element can be arranged close to each other, and the insulating layer containing the optical waveguide is provided. Since the DC line, the driving signal line, and the electric input transmission line are wired by use, the line is constructed as a three-dimensional structure, and the distance for transmitting and receiving signals can be extremely shortened.

また前記グランド電極接続部は該絶縁層内を前記光導波路と干渉しない位置で上下方向に延びるビアとしても良いものである。   Further, the ground electrode connection portion may be a via extending in the vertical direction in the insulating layer at a position where it does not interfere with the optical waveguide.

また前記絶縁層は上面に前記上部グランド電極を含むコプレーナ線路を有する構成としてもよい。また前記絶縁層はポリマ樹脂材料から形成するようにしてもよい。   The insulating layer may have a coplanar line including the upper ground electrode on the upper surface. The insulating layer may be formed from a polymer resin material.

また前記導波路型光素子が設置された放熱基板上のガイド機構に設置され、前記光導波路と接続して光入出力を行う光ファイバをさらに有する構成としてもよい。   Moreover, it is good also as a structure further provided in the guide mechanism on the thermal radiation board | substrate with which the said waveguide type optical element was installed, and connecting with the said optical waveguide and performing light input / output.

また複数の前記光導波路がアレイ状に形成され、該光導波路の各々に前記導波路型光素子が接続している構成としてもよいものである。   A plurality of the optical waveguides may be formed in an array, and the waveguide type optical element may be connected to each of the optical waveguides.

以上説明したように本発明によれば、放熱基板上に発光素子と光モニタ素子とを配置し、かつ前記発光素子に光結合する光導波路を絶縁層に内蔵して前記放熱基板上に配置することにより、前記発光素子と前記光モニタ素子と前記光導波路とを光結合の損失増加抑制の位置関係に配置することができる。そして、光結合系の各種素子を接近して配置することができるため、光結合系の結合損失を低く抑えることができる。したがって、10Gbit/sレベルの高速信号を、損失や反射の影響による劣化を抑えて伝送することが可能になる。
さらに、駆動LSIを前記放熱基板の絶縁層の上面にフリップチップ実装することにより、前記駆動LSIと前記発光素子とを接近させて配置することができる。
さらに、前記光導波路を内蔵した前記絶縁層を利用して、DC線路,駆動用信号線路及び電気入力用伝送線路を配線したので、線路が立体構造として構築され、信号の授受を行うための距離が極めて短くすることができる
As described above, according to the present invention, the light emitting element and the light monitoring element are disposed on the heat dissipation substrate, and the optical waveguide that is optically coupled to the light emitting element is embedded in the insulating layer and disposed on the heat dissipation substrate. Thus, the light emitting element, the optical monitoring element, and the optical waveguide can be arranged in a positional relationship for suppressing increase in loss of optical coupling. Since various elements of the optical coupling system can be arranged close to each other, the coupling loss of the optical coupling system can be kept low. Therefore, it is possible to transmit a 10 Gbit / s level high-speed signal while suppressing deterioration due to the effects of loss and reflection.
Furthermore, the drive LSI and the light emitting element can be arranged close to each other by flip-chip mounting the drive LSI on the upper surface of the insulating layer of the heat dissipation substrate.
Furthermore, since the DC line, the drive signal line, and the electrical input transmission line are wired using the insulating layer containing the optical waveguide, the distance for constructing the line as a three-dimensional structure and transmitting and receiving signals Can be very short .

また電気配線と光配線を立体的な構成としているため、光結合系の近接配置と発光素子と駆動LSIの近接配置とを独立して最適化でき、モジュールの小型化が可能になる。   In addition, since the electrical wiring and the optical wiring have a three-dimensional configuration, the proximity arrangement of the optical coupling system and the proximity arrangement of the light emitting element and the driving LSI can be independently optimized, and the module can be downsized.

また、光素子と電気素子の実装を同一の基板で行えるため、部品数と工程数を減らし実装コストを抑制することができる。   Further, since the optical element and the electric element can be mounted on the same substrate, the number of parts and the number of processes can be reduced and the mounting cost can be suppressed.

また光素子を放熱基板真上に設置し、絶縁層の上部にある電気素子も樹脂層上部の上部グランド電極、ビア、下側の下部グランド電極を介して放熱基板に達する放熱パスにつながっているため、光素子・電気素子の放熱性にも問題ない。 In addition, the optical element is installed directly above the heat dissipation board, and the electrical element above the insulating layer is connected to the heat dissipation path that reaches the heat dissipation board via the upper ground electrode, via, and lower lower ground electrode above the resin layer. Therefore, there is no problem in the heat dissipation of the optical element / electric element.

さらに、プラットフォーム内で作り込まれた電極パッドと光導波路等を基準として光結合を行うことができるため、光結合系の無調芯実装が達成されるというメリットもある。 Furthermore, since optical coupling can be performed with reference to an electrode pad and an optical waveguide formed in the platform, there is also an advantage that non-aligned mounting of the optical coupling system is achieved.

次に、本発明に係る光電気複合モジュールの実施形態について図面を参照して詳細に説明する。本発明の光電気複合モジュールは、例えば、地域内ネットワーク、都市間ネットワーク等に代表される光通信、ならびにサーバ・ルータ間での光リンク等に使用することができる。   Next, an embodiment of the photoelectric composite module according to the present invention will be described in detail with reference to the drawings. The photoelectric composite module of the present invention can be used, for example, for optical communication typified by a regional network, an intercity network, etc., and an optical link between servers and routers.

図1(a)は本発明に係る光電気複合モジュールの構成を示す概略断面図である。図1(b)は本発明に係る光電気複合モジュールを構成する部品の配置を示し、配線関係を省略した平面図である。図2は、駆動LSIを取り外して、配線関係を示す平面図である。本発明に係る光電気複合モジュール4aは、放熱基板41の上に絶縁層42が積層され、前記絶縁層42上に絶縁層7、導波路型光素子としての発光素子1、光モニタ素子2、駆動LSI3等の各種の層や素子が設けられている。絶縁層42の所定の位置には光ファイバ51が配置され、この光ファイバ51のコア51aの光軸に沿って前記絶縁層7,発光素子1,光モニタ素子2が配列されている。   Fig.1 (a) is a schematic sectional drawing which shows the structure of the photoelectric composite module which concerns on this invention. FIG. 1B is a plan view showing the arrangement of components constituting the optoelectric composite module according to the present invention and omitting the wiring relationship. FIG. 2 is a plan view showing the wiring relationship with the drive LSI removed. In the photoelectric composite module 4a according to the present invention, an insulating layer 42 is laminated on a heat dissipation substrate 41, the insulating layer 7 is formed on the insulating layer 42, the light emitting element 1 as a waveguide type optical element, the light monitoring element 2, Various layers and elements such as the driving LSI 3 are provided. An optical fiber 51 is disposed at a predetermined position of the insulating layer 42, and the insulating layer 7, the light emitting element 1, and the optical monitoring element 2 are arranged along the optical axis of the core 51 a of the optical fiber 51.

前記発光素子1は端面発光型の素子であり、その前端面から光を前方(絶縁層7の光導波路71側)に向けて出力する構造になっている。前記発光素子1は、光信号の出力部1aを光ファイバ51のコア51aの高さ位置に一致させて、絶縁層42上に搭載されている。前記発光素子1は駆動LSI3からの電流振幅信号を受けて、光信号を生成し、その光信号を出力部1aの高さ位置から光ファイバ51のコア51aに向けて出力する。前記発光素子1の層構造および内部構造は光導波路の結合に適した構造となっている。   The light-emitting element 1 is an edge-emitting element, and has a structure that outputs light from the front end face toward the front (on the optical waveguide 71 side of the insulating layer 7). The light emitting element 1 is mounted on the insulating layer 42 so that the optical signal output portion 1 a is aligned with the height position of the core 51 a of the optical fiber 51. The light emitting element 1 receives the current amplitude signal from the driving LSI 3, generates an optical signal, and outputs the optical signal from the height position of the output unit 1 a toward the core 51 a of the optical fiber 51. The layer structure and the internal structure of the light emitting element 1 are suitable for coupling optical waveguides.

絶縁層7は光ファイバ51と発光素子1との間に配置され、絶縁層7と発光素子1と光ファイバ51とを接近させている。絶縁層7は光導波路71を内蔵しており、この光導波路71を発光素子1の出力部1aの高さ位置と光ファイバ51のコア51aの高さ位置に一致させて絶縁層42上に搭載されている。したがって、発光素子1から出力された光信号は、発光素子1aの出力部1aから絶縁層7の光導波路71に直に入力し、絶縁層7の光導波路71から光ファイバ51のコア51aに高い効率で入力する。絶縁層7の内部構造は、光導波に適した屈折率構造に形成され、その屈折率構造の内部に光導波路71が形成されている。絶縁層7は高速伝送線路(後述)を実現するために、低誘電率、低誘電損失等の特性を有している。絶縁層7の材料としては、たとえばポリマ樹脂材料が挙げられる。絶縁層7の材料としてポリマ樹脂を選ぶことにより、電気回路としての高速性と光の透過性を兼ね備えることができるので、絶縁層7として好適である。すなわち、絶縁層7の材料として厚膜のポリマ樹脂を用いることにより寄生容量の低減が図れ、低誘電率、低誘電損失のポリマ樹脂を用いれば、高速伝送線路の作製精度を緩和させることができる。そして、信号波長に対して低損失な樹脂を用いれば、絶縁層7内に低誘電損失の光導波路71を作製することができる。   The insulating layer 7 is disposed between the optical fiber 51 and the light emitting element 1, and brings the insulating layer 7, the light emitting element 1, and the optical fiber 51 close to each other. The insulating layer 7 incorporates an optical waveguide 71, and the optical waveguide 71 is mounted on the insulating layer 42 so as to coincide with the height position of the output portion 1 a of the light emitting element 1 and the height position of the core 51 a of the optical fiber 51. Has been. Therefore, the optical signal output from the light emitting element 1 is directly input from the output portion 1a of the light emitting element 1a to the optical waveguide 71 of the insulating layer 7, and is high from the optical waveguide 71 of the insulating layer 7 to the core 51a of the optical fiber 51. Enter with efficiency. The internal structure of the insulating layer 7 is formed in a refractive index structure suitable for optical waveguide, and an optical waveguide 71 is formed inside the refractive index structure. The insulating layer 7 has characteristics such as low dielectric constant and low dielectric loss in order to realize a high-speed transmission line (described later). Examples of the material of the insulating layer 7 include polymer resin materials. By selecting a polymer resin as the material of the insulating layer 7, it is possible to have both high speed as an electric circuit and light transmission, and therefore, it is suitable as the insulating layer 7. That is, the parasitic capacitance can be reduced by using a thick polymer resin as the material of the insulating layer 7, and the fabrication accuracy of the high-speed transmission line can be relaxed by using a low dielectric constant and low dielectric loss polymer resin. . If a resin having a low loss with respect to the signal wavelength is used, an optical waveguide 71 having a low dielectric loss can be produced in the insulating layer 7.

駆動LSI3は、絶縁層7の上面に形成される後述の高速信号線路上にバンプ66でフリップチップ実装されている。駆動LSI3は、外部からの電気信号(規定電圧の変調信号)に応じて発光素子1に、駆動に必要な電流振幅信号を与えて、発光素子1に光信号を生成させる。また、駆動LSI3は光モニタ素子2からの電流値に応じて電流振幅を調整して、自動パワー制御(Auto Power Control、APC)を行う機能を持つ。駆動LSI3は電圧の変調信号に対する電流振幅の調整機能とAPC機能とをあわせ持った形態である必要はなく、別のLSIがAPC機能を分担するように構成してもよい。 The driving LSI 3 is flip-chip mounted with bumps 66 on a high-speed signal line ( to be described later) formed on the upper surface of the insulating layer 7. The driving LSI 3 gives a current amplitude signal necessary for driving to the light emitting element 1 in accordance with an external electric signal (modulated signal of a specified voltage), and causes the light emitting element 1 to generate an optical signal. Further, the drive LSI 3 has a function of performing automatic power control (Auto Power Control, APC) by adjusting the current amplitude according to the current value from the optical monitor element 2. The driving LSI 3 does not have to have a function of adjusting the current amplitude with respect to the voltage modulation signal and the APC function, and another LSI may share the APC function.

光モニタ素子2は、発光素子1の後方(光導波路71と反対側の面)に接近して配置され、絶縁層42を介して放熱基板41に搭載されている。光モニタ素子2は導波路型または面型の光検知器で、発光素子1から後方に出力される光信号を受光面2aで受光し、その受光した光信号(モニタ光)を電流に変換して、駆動LSI3に送信する。なお図1(b)に示す例では、光モニタ素子2は、発光素子1の真後ろに配置したが、これに限られるものではない。光モニタ素子2は、発光素子1から後方に出力される光信号のビームの広がりを考慮して、光信号の光軸に対して光受光面2aを垂直に配置してもよい。更には、光モニタ素子2の受光面2aを放熱基板41と平行に配置して、ビームが広がった領域で光信号を受光するようにしてもよい。光モニタ素子2の側面からモニタ光が入射するようにしてもよい。これらのバリエーションは発光素子1と光モニタ素子2を近接しているため、可能となる。   The light monitoring element 2 is disposed close to the rear of the light emitting element 1 (surface opposite to the optical waveguide 71), and is mounted on the heat dissipation substrate 41 through the insulating layer 42. The optical monitor element 2 is a waveguide type or surface type photodetector. The optical signal output backward from the light emitting element 1 is received by the light receiving surface 2a, and the received optical signal (monitor light) is converted into a current. To the driving LSI 3. In the example shown in FIG. 1B, the light monitoring element 2 is disposed immediately behind the light emitting element 1, but the present invention is not limited to this. In the optical monitor element 2, the light receiving surface 2 a may be arranged perpendicular to the optical axis of the optical signal in consideration of the beam spread of the optical signal output backward from the light emitting element 1. Furthermore, the light receiving surface 2a of the light monitoring element 2 may be arranged in parallel with the heat dissipation substrate 41 so that the optical signal is received in the region where the beam has spread. The monitor light may be incident from the side surface of the light monitor element 2. These variations are possible because the light emitting element 1 and the light monitoring element 2 are close to each other.

これらの各素子は立体構造の線路によって相互に接続されている。以下に前記立体構造の線路を図1(a)及び図2に基づいて説明する。前記絶縁層7の上面には図2に示すように、駆動LSI3の外形より大きくしたL型形状の上部グランド線路68が形成されている。一方、絶縁層7の下面には下部グランド線路65aが上部グランド線路68と同様なL型形状に形成されている。この場合、上部グランド線路68は、後述する高速信号線路と交差する箇所に切り込み68a,68b,68cが形成され、前記高速信号線路との接触を回避しているが、下部グランド線路65aは、前記切り込み68a,68b,68cに相当する切込みが形成されずに連続したL型形状に形成されている。更に前記切り込み68aで分離された前記上部グランド線路68は、前記絶縁層7を光導波路71との干渉を避けて上下に貫通する複数のビア67で接続されている。この構造により、上部グランド線路68と下部グランド線路65aとは、安定したグランドを維持できる。後述するように、上部グランド線路68は駆動LSI3に接続される。この場合、上部グランド線路68は複数本のビア67を介して下部グランド線路65aに接続しているため、駆動LSI3が発生する熱は、上部グランド線路68,複数本のビア67及び下部グランド線路65aを通して放熱基板41に伝わり、放熱基板41により放散される。   These elements are connected to each other by a three-dimensional line. Hereinafter, the three-dimensional track will be described with reference to FIGS. As shown in FIG. 2, an L-shaped upper ground line 68 larger than the outer shape of the drive LSI 3 is formed on the upper surface of the insulating layer 7. On the other hand, a lower ground line 65 a is formed in the same L shape as the upper ground line 68 on the lower surface of the insulating layer 7. In this case, the upper ground line 68 is formed with cuts 68a, 68b, 68c at positions intersecting with a high-speed signal line, which will be described later, to avoid contact with the high-speed signal line. The cuts corresponding to the cuts 68a, 68b, and 68c are not formed, and are formed in a continuous L-shape. Further, the upper ground line 68 separated by the notch 68a is connected by a plurality of vias 67 penetrating vertically through the insulating layer 7 while avoiding interference with the optical waveguide 71. With this structure, the upper ground line 68 and the lower ground line 65a can maintain a stable ground. As will be described later, the upper ground line 68 is connected to the drive LSI 3. In this case, since the upper ground line 68 is connected to the lower ground line 65a through the plurality of vias 67, the heat generated by the driving LSI 3 is the upper ground line 68, the plurality of vias 67, and the lower ground line 65a. The heat is transmitted to the heat radiating board 41 through and is dissipated by the heat radiating board 41.

前記上部グランド線路68に形成した2箇所の切り込み68aには、高速信号線路63aが前記上部グランド線路68から隔離して形成されている。前記上部グランド線路68の切り込み68bには、高速信号線路63bが前記上部グランド線路68から隔離して形成されている。前記上部グランド線路68の切り込み68cには、DC線路61が前記上部グランド線路68から隔離して形成されている。前記高速信号線路63a,63bは、駆動LSI3に駆動信号を供給するものであり、前記高速信号線路63cは、駆動LSI3から発光素子1に駆動信号を供給するものである。前記DC線路61は、光モニタ素子2からの制御信号を駆動LSI3に供給するためのものである。   High-speed signal lines 63 a are formed in two cuts 68 a formed in the upper ground line 68 so as to be separated from the upper ground line 68. A high-speed signal line 63 b is formed in the notch 68 b of the upper ground line 68 so as to be isolated from the upper ground line 68. A DC line 61 is formed in the notch 68 c of the upper ground line 68 so as to be isolated from the upper ground line 68. The high-speed signal lines 63 a and 63 b supply a drive signal to the drive LSI 3, and the high-speed signal line 63 c supplies a drive signal from the drive LSI 3 to the light emitting element 1. The DC line 61 is for supplying a control signal from the optical monitor element 2 to the drive LSI 3.

以上のように立体構造の線路は、絶縁層7の上面に、高速信号線路63a,63b,63c,61とグランド線路68とを同一面に含むコプレーナ線路構造を形成し、絶縁層42上に高速信号線路62,DC線路60とグランド線路65a,65b,65cとを同一面に含むコプレーナ線路構造を形成し、これらのコプレーナ線路構造を絶縁層の厚み方向で接続して立体構造として形成している。   As described above, the three-dimensionally structured line forms a coplanar line structure including the high-speed signal lines 63 a, 63 b, 63 c, 61 and the ground line 68 on the same surface on the upper surface of the insulating layer 7. A coplanar line structure including the signal line 62, the DC line 60 and the ground lines 65a, 65b, 65c on the same surface is formed, and these coplanar line structures are connected in the thickness direction of the insulating layer to form a three-dimensional structure. .

前記駆動LSI3のグランド端子はバンプ66により前記上部グランド線路68に接続され、前記駆動LSI3の信号入力端子はバンプ66により前記高速信号線路63a,63bに接続される。前記駆動LSI3の信号出力端子はバンプ66により前記高速信号線路63cに接続され、前記駆動LSI3の制御信号入力端子はバンプ66により前記DC線路61に接続される。このようにして、前記駆動LSI3は絶縁層7上に搭載される。   The ground terminal of the driving LSI 3 is connected to the upper ground line 68 by a bump 66, and the signal input terminal of the driving LSI 3 is connected to the high-speed signal lines 63 a and 63 b by a bump 66. A signal output terminal of the driving LSI 3 is connected to the high-speed signal line 63 c by a bump 66, and a control signal input terminal of the driving LSI 3 is connected to the DC line 61 by a bump 66. In this way, the driving LSI 3 is mounted on the insulating layer 7.

前記絶縁層42のうち、前記発光素子1及び前記光モニタ素子2が搭載される領域には、高速信号線路62,DC線路60,グランド線路65b、65cが形成されている。前記絶縁層7には、光導波路71との干渉を避けて2本のビア69,75が上下に貫通して形成され、前記ビア69は前記高速信号線路62と前記高速信号線路63cとを接続し、前記ビア75は前記DC線路61と前記DC線路60とを接続している。   A high-speed signal line 62, a DC line 60, and ground lines 65b and 65c are formed in a region of the insulating layer 42 where the light emitting element 1 and the light monitoring element 2 are mounted. Two vias 69 and 75 are vertically formed in the insulating layer 7 so as to avoid interference with the optical waveguide 71. The via 69 connects the high-speed signal line 62 and the high-speed signal line 63c. The via 75 connects the DC line 61 and the DC line 60.

前記光モニタ素子2は、そのグランド端子が前記グランド線路65cに、その制御信号出力端子が前記DC線路60にそれぞれバンプにより接続されて放熱基板41上に搭載されている。前記発光素子1は、そのグランド端子が前記グランド線路65bに、その制御信号入力端子が前記高速信号線路62にそれぞれバンプにより接続されて放熱基板41上に搭載されている。駆動LSIには、図示しない電源供給用の電源線が接続されている。なお、高速信号線路62,63a,63b,63cは、実用的には数Gbit/s〜数10Gbit/sの電気信号の伝送を可能にする特性を有している。   The optical monitor element 2 is mounted on the heat dissipation substrate 41 with a ground terminal connected to the ground line 65c and a control signal output terminal connected to the DC line 60 by bumps. The light emitting element 1 is mounted on the heat dissipation substrate 41 with a ground terminal connected to the ground line 65b and a control signal input terminal connected to the high-speed signal line 62 by bumps. A power supply line (not shown) for power supply is connected to the drive LSI. The high-speed signal lines 62, 63a, 63b, and 63c have a characteristic that enables transmission of electrical signals of several Gbit / s to several tens Gbit / s practically.

上述した実施例では、絶縁層の厚み方向に分けて形成したコプレーナ線路構造をビア69で接続したが、コプレーナ線路構造を絶縁層の厚み方向で接続する構造はビア69に限られるものではない。図3(a),(b)に示すように、前記絶縁層7の切り立った端面に高速信号線路76を形成して、この高速信号線路76でコプレーナ線路構造の高速信号線路63(63a,63b,63c)と高速信号線路62とを接続してもよい。また、前記絶縁層7の切り立った端面を斜めに形成して、この斜面に破線で示すように前記高速信号線路76を形成してもよい。   In the embodiment described above, the coplanar line structure formed separately in the thickness direction of the insulating layer is connected by the via 69, but the structure connecting the coplanar line structure in the thickness direction of the insulating layer is not limited to the via 69. As shown in FIGS. 3A and 3B, a high-speed signal line 76 is formed on the end face of the insulating layer 7 and the high-speed signal line 63 has a coplanar line structure 63 (63a, 63b). 63c) and the high-speed signal line 62 may be connected. Further, the sharp end face of the insulating layer 7 may be formed obliquely, and the high-speed signal line 76 may be formed on the slope as indicated by a broken line.

図3(c),(d)に示すように、ワイヤ77を用いて高速信号線路63,62を接続してもよい。この場合、信号を高速伝送するためには、ワイヤ77の長さをできるだけ短くする必要がある。図3(a)〜(d)に示す接続構造は、DC線路60,61を接続するのに採用してもよいものである。   As shown in FIGS. 3C and 3D, the high-speed signal lines 63 and 62 may be connected using a wire 77. In this case, in order to transmit a signal at high speed, it is necessary to make the length of the wire 77 as short as possible. The connection structure shown in FIGS. 3A to 3D may be employed to connect the DC lines 60 and 61.

上述した光電気複合モジュール4における線路は、絶縁層7及び絶縁層42上に信号線路とグランド線路とを同一面に含むコプレーナ線路構造としたが、これに限られるものではない。それぞれのコプレーナ線路構造をなす前記信号線路及びグランド線路を絶縁層で挟み込んだマイクロストリップ線路構造とし、これらのマイクロストリップ構造の信号線路を絶縁層の厚み方向で接続した立体構造の線路としてよいものである。   The line in the above-described optoelectric composite module 4 has a coplanar line structure including the signal line and the ground line on the insulating layer 7 and the insulating layer 42 on the same plane, but is not limited thereto. A microstrip line structure in which the signal line and the ground line forming each coplanar line structure are sandwiched between insulating layers, and these microstrip structure signal lines may be connected in the thickness direction of the insulating layer to form a three-dimensional structure line. is there.

次に、光電気複合モジュールの動作を説明する。外部から規定電圧の電気論理信号と電源電圧とが駆動LSI3に供給されると、発光素子1を駆動するために必要な振幅を有し、外部電気信号に対応した電流が、駆動LSI3から高速信号線路63、ビア69、高速信号線路62を通って発光素子1に流れる。発光素子1は前記電流に基づいて光信号を出射する。発光素子1からの光信号は光導波路71に入力し、光導波路71を通して光ファイバ51に伝送され、光ファイバ51により必要な箇所に伝送される。   Next, the operation of the photoelectric composite module will be described. When an electrical logic signal having a specified voltage and a power supply voltage are supplied to the driving LSI 3 from the outside, a current corresponding to the external electrical signal has a necessary amplitude for driving the light emitting element 1 and is output from the driving LSI 3 as a high-speed signal. It flows to the light emitting element 1 through the line 63, the via 69, and the high-speed signal line 62. The light emitting element 1 emits an optical signal based on the current. An optical signal from the light emitting element 1 is input to the optical waveguide 71, is transmitted to the optical fiber 51 through the optical waveguide 71, and is transmitted to a necessary location by the optical fiber 51.

一方、光モニタ素子2は、発光素子1の反対側から出力された光をモニタ光として受光すると、モニタ光に応じた電流を出力する。この電流は、DC線路60、ビア75、DC線路61を介して駆動LSI3に流れる。駆動LSI3は、光モニタ素子2からの電流に応じて電流振幅を調整して、APC機能を実現する。   On the other hand, when the light monitor element 2 receives light output from the opposite side of the light emitting element 1 as monitor light, the light monitor element 2 outputs a current corresponding to the monitor light. This current flows to the drive LSI 3 via the DC line 60, the via 75, and the DC line 61. The drive LSI 3 adjusts the current amplitude according to the current from the optical monitor element 2 to realize the APC function.

図1に示す光電気複合モジュール4aの具体例を示す。発光素子1として発振波長1310nmの分布帰還形の端面発光レーザを用い、光モニタ素子2として面型のフォトダイオードを用い、これらの光素子を光電気複合モジュール4aにフリップチップ実装した。光電気複合モジュール4aの絶縁層7は光導波路の損失が0.5dB/cmであり、比誘電率3、誘電正接0.005のポリマ樹脂を用いた。高速伝送線路はインピーダンス抵抗が50Ωになるように作製した。駆動LSI3は、外部から10Gbit/sの差動入力の電気信号により発光素子1に供給される電流が制御される。駆動LSI3と発光素子1との間の配線長は、近接化により1mm以下となり、アイ開口特性において劣化のない光出力波形が得られた。一方、発光素子1と光モニタ素子2の結合損は0.5dBであり、このときの光モニタ素子2の出力電流は0.5mAでAPC動作を確認した。   The specific example of the photoelectric composite module 4a shown in FIG. 1 is shown. A distributed feedback type edge emitting laser having an oscillation wavelength of 1310 nm was used as the light emitting element 1 and a planar photodiode was used as the optical monitoring element 2, and these optical elements were flip-chip mounted on the photoelectric composite module 4a. For the insulating layer 7 of the photoelectric composite module 4a, a polymer resin having an optical waveguide loss of 0.5 dB / cm, a relative dielectric constant of 3, and a dielectric loss tangent of 0.005 was used. The high-speed transmission line was prepared so that the impedance resistance was 50Ω. In the driving LSI 3, the current supplied to the light emitting element 1 is controlled by an electrical signal of 10 Gbit / s differential input from the outside. The wiring length between the driving LSI 3 and the light emitting element 1 became 1 mm or less due to the proximity, and an optical output waveform without deterioration in eye opening characteristics was obtained. On the other hand, the coupling loss between the light emitting element 1 and the light monitoring element 2 was 0.5 dB, and the output current of the light monitoring element 2 at this time was 0.5 mA, and the APC operation was confirmed.

以上のように、本実施形態の光電気複合モジュール4aは、光モニタ素子2、発光素子1、光導波路71、光ファイバ51等からなる光学系と、駆動LSI3と発光素子1間との高速信号線路62、63(63a,63b,63c)を立体的に配置することが可能である。このため、結合系を近接配置して結合損失を抑え、かつ駆動LSI3と発光素子1とを近接配置することが可能となり、高速配線と光導波路の機能を同時に満たすことができ、損失や反射の影響による劣化を抑えながら、10Gbit/sレベルの高速信号を伝送することが可能になる。また、各素子の最近接が可能になることから光電気複合モジュールの小型化が可能となる。さらに、光素子・電気素子を同一基板上に搭載できるという素子搭載上のメリットもあり、実装が簡略化できるという効果がある。   As described above, the photoelectric composite module 4a of the present embodiment includes the optical system including the optical monitor element 2, the light emitting element 1, the optical waveguide 71, the optical fiber 51, and the like, and the high-speed signal between the driving LSI 3 and the light emitting element 1. The lines 62 and 63 (63a, 63b, and 63c) can be arranged three-dimensionally. For this reason, it is possible to suppress the coupling loss by arranging the coupling system close to each other, and to arrange the driving LSI 3 and the light emitting element 1 close to each other, so that the functions of the high-speed wiring and the optical waveguide can be satisfied at the same time. A high-speed signal of 10 Gbit / s level can be transmitted while suppressing deterioration due to the influence. In addition, since each element can be closest, the photoelectric composite module can be miniaturized. Further, there is an advantage in mounting the optical element and the electric element on the same substrate, and there is an effect that the mounting can be simplified.

次に本発明の第2の実施形態について、図面を参照して説明する。図4は光電気複合モジュールの概略上面図である。本実施形態は、電気入力を光電気複合モジュール4bの後部から入力する点が第1の実施形態と異なっている。すなわち、電気入力を行う高速信号線路63aが光電気複合モジュール4bの後部に設けられ、電気信号が高速信号線路63aに直接入力するようになっている。また、DC線路60は第1の実施形態と異なり、光導波路71の図面下側に設置されている。このような実施形態は、例えばプラグインタイプのモジュールに高速信号線路63aを差込み、この高速信号線路63aに電気信号を入力することとなるため、電気信号はコプレーナ線路構造の高速信号線路63aを介して伝送されることとなり、長いワイヤでボンディングしたような信号劣化をほとんど生じることなく、駆動LSI3まで伝送される。このような実施形態は、たとえばプラグインタイプのモジュールに有効に適用できるというメリットを有している。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic top view of the photoelectric composite module. The present embodiment is different from the first embodiment in that an electric input is input from the rear part of the photoelectric composite module 4b. That is, a high-speed signal line 63a for performing electric input is provided at the rear part of the photoelectric composite module 4b, and an electric signal is directly input to the high-speed signal line 63a. Further, unlike the first embodiment, the DC line 60 is installed on the lower side of the optical waveguide 71 in the drawing. In such an embodiment, for example, a high-speed signal line 63a is inserted into a plug-in type module, and an electric signal is input to the high-speed signal line 63a. Therefore, the electric signal passes through the high-speed signal line 63a having a coplanar line structure. Therefore, the signal is transmitted to the drive LSI 3 with almost no signal deterioration as if it was bonded with a long wire. Such an embodiment has an advantage that it can be effectively applied to, for example, a plug-in type module.

次に本発明の第3の実施形態について図面を参照して説明する。図5は光電気複合モジュールの構成図で、図5(a)は概略断面図、図5(b)は概略上面図である。本実施形態の光電気複合モジュール4cは、駆動LSI3を発光素子1の裏面側に配置した点が第1、2の実施形態と異なる。発光素子1の前方に、光導波路71を内蔵した絶縁層7が配置され、光信号が光導波路71及び光ファイバ51を介して光出力される。発光素子1の後方には絶縁層7cが配置され、絶縁層7cの内部に光導波路72が内蔵されている。光導波路72の後方には光モニタ素子2が配置されている。また、駆動LSI3が絶縁層7cの上部に配置されている。各素子の電気的接続や動作は第1の実施形態と同様である。第1の実施形態では発光素子1と光モニタ素子2は直結による光結合を行っていたが、本実施形態では光導波路72を介して光結合させたことが特徴である。これにより光モニタ素子2の位置を離しても、光導波路72で結合されているため、所望の位置で光モニタ素子2の配置が可能となる。この実施形態においては、高速信号線路63aは、第2の実施形態の場合と同様に光電気複合モジュール4cの後方に引き出しており、例えばプラグインタイプのモジュールに有効な構成になっている。   Next, a third embodiment of the present invention will be described with reference to the drawings. 5A and 5B are configuration diagrams of the photoelectric composite module. FIG. 5A is a schematic sectional view, and FIG. 5B is a schematic top view. The photoelectric composite module 4c of this embodiment is different from the first and second embodiments in that the drive LSI 3 is disposed on the back side of the light emitting element 1. An insulating layer 7 including an optical waveguide 71 is disposed in front of the light emitting element 1, and an optical signal is optically output through the optical waveguide 71 and the optical fiber 51. An insulating layer 7c is disposed behind the light emitting element 1, and an optical waveguide 72 is built in the insulating layer 7c. The optical monitor element 2 is disposed behind the optical waveguide 72. Further, the driving LSI 3 is disposed on the insulating layer 7c. The electrical connection and operation of each element are the same as in the first embodiment. In the first embodiment, the light emitting element 1 and the light monitoring element 2 are optically coupled by direct coupling. However, the present embodiment is characterized in that they are optically coupled via the optical waveguide 72. Thereby, even if the position of the optical monitor element 2 is separated, the optical monitor element 2 can be arranged at a desired position because the optical monitor element 2 is coupled by the optical waveguide 72. In this embodiment, the high-speed signal line 63a is drawn behind the photoelectric composite module 4c as in the second embodiment, and has a configuration effective for, for example, a plug-in type module.

次に本発明の第4の実施形態について図面を参照して説明する。図6は光電気複合モジュールの概略上面図である。本実施形態に係る光電気複合モジュール4dは4チャンネルアレイ化されたモジュールである点が上記の各実施形態と異なる。発光素子1はチャンネル毎に計4つ設けられ、2チャンネル分を一体化した光モニタ素子2は2つ設けられ、各々2つの発光素子1の光をモニタする。各発光素子1と各光モニタ素子2との間には、第3の実施形態と同様の光導波路72が4本設けられている。また、駆動LSI3は図示するのを省略しているが、絶縁層7c上に搭載され、1台の駆動LSI3から高速信号線路63cを介して4台の発光素子1に電流増幅信号を供給するようになっている。   Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a schematic top view of the photoelectric composite module. The photoelectric composite module 4d according to this embodiment is different from each of the above embodiments in that it is a four-channel array module. A total of four light-emitting elements 1 are provided for each channel, and two light monitoring elements 2 in which two channels are integrated are provided, and each monitor the light of the two light-emitting elements 1. Between each light emitting element 1 and each light monitoring element 2, four optical waveguides 72 similar to those of the third embodiment are provided. Although not shown in the figure, the driving LSI 3 is mounted on the insulating layer 7c and supplies current amplification signals from one driving LSI 3 to the four light emitting elements 1 via the high-speed signal line 63c. It has become.

このような光電気複合モジュール4dにあっては、光導波路と電気配線を独立に引き回せるので、一層の最適化が可能となる。本実施形態では、光モニタ素子2までの光導波路72およびDC線路61の等長配線等の制約がないため、光導波路72の片端を上下にずらして光モニタ素子2に結合させることが可能である。これによって駆動LSI3からの高速信号線路63cのピッチ変換が不要となり等長配線などの最適化が図れる。   In such a photoelectric composite module 4d, the optical waveguide and the electrical wiring can be routed independently, so that further optimization is possible. In this embodiment, since there is no restriction such as the equal length wiring of the optical waveguide 72 and the DC line 61 up to the optical monitor element 2, one end of the optical waveguide 72 can be shifted up and down to be coupled to the optical monitor element 2. is there. This eliminates the need for pitch conversion of the high-speed signal line 63c from the driving LSI 3, and makes it possible to optimize the equal length wiring.

なお、放熱の影響や隣接間のクロストークが無視できる場合は、複数の発光素子1を接近させてアレイ化してもよい。また、絶縁層7,7cは、光導波路72を内蔵する部分と光導波路71を内蔵する部分とが分離された構成になっているが、これらの絶縁層7,7cを一体構成としてもよい。上部グランド線路68は第3の実施形態と同様、絶縁層7c上に形成されていても構わない。さらに本実施形態では4チャンネルの場合を示したが、チャンネル数は任意の複数チャンネルとすることができる。   In addition, when the influence of heat radiation and crosstalk between adjacent ones can be ignored, a plurality of light emitting elements 1 may be brought close to each other to form an array. In addition, the insulating layers 7 and 7c have a configuration in which the portion incorporating the optical waveguide 72 and the portion incorporating the optical waveguide 71 are separated, but these insulating layers 7 and 7c may be integrated. Similar to the third embodiment, the upper ground line 68 may be formed on the insulating layer 7c. Furthermore, although the case of four channels is shown in the present embodiment, the number of channels can be any number of channels.

以上説明したように本発明によれば、発光素子と光モニタ素子、及び発光素子と駆動LSIとを近接配置することを可能としているため、光結合系の結合損失を低く抑えるとともに、10Gbit/sレベルの高速信号を、損失や反射の影響による劣化を最小限に抑えて伝送することが可能になる。   As described above, according to the present invention, since the light emitting element and the light monitoring element, and the light emitting element and the driving LSI can be arranged close to each other, the coupling loss of the optical coupling system can be kept low and 10 Gbit / s. It is possible to transmit a high-speed signal of a level with minimal deterioration due to the effects of loss and reflection.

図1(a)は、本発明の第1の実施形態に係る光電気複合モジュールの概略断面図、図1(b)は平面図である。FIG. 1A is a schematic cross-sectional view of the photoelectric composite module according to the first embodiment of the present invention, and FIG. 1B is a plan view. 図1に示す光電気複合モジュールの各素子の間の接続の詳細を示す説明図である。It is explanatory drawing which shows the detail of the connection between each element of the photoelectric composite module shown in FIG. 図1に示す光電気複合モジュールの発光素子と駆動LSIとの接続構造のバリエーションを示す図であって、図3(a)は側面図、図3(b)は図3(a)のA−A矢視図、図3(c)は側面図、図3(d)は図3(c)のB−B矢視図である。FIGS. 3A and 3B are diagrams showing variations of the connection structure between the light emitting element and the driving LSI of the photoelectric composite module shown in FIG. 1, in which FIG. 3A is a side view, and FIG. FIG. 3C is a side view, and FIG. 3D is a BB arrow view of FIG. 3C. 図4は、本発明の第2の実施形態に係る光電気複合モジュールの概略平面図である。FIG. 4 is a schematic plan view of the photoelectric composite module according to the second embodiment of the present invention. 図5(a)は、本発明の第3の実施形態に係る光電気複合モジュールの概略断面図、図5(b)は概略平面図である。FIG. 5A is a schematic cross-sectional view of a photoelectric composite module according to the third embodiment of the present invention, and FIG. 5B is a schematic plan view. 図6は、本発明の第4の実施形態に係る光電気複合モジュールの概略平面図である。FIG. 6 is a schematic plan view of a photoelectric composite module according to the fourth embodiment of the present invention. 図7(a)は、従来の光電気複合モジュールの概略断面図、図7(b)は概略平面図である。FIG. 7A is a schematic cross-sectional view of a conventional photoelectric composite module, and FIG. 7B is a schematic plan view.

符号の説明Explanation of symbols

1 発光素子
2 光モニタ素子
3 駆動LSI
4 光電気複合モジュール
41 放熱基板
42 絶縁層
43 配線基板
51 光ファイバ
60、61 DC線路
62、63、64 高速信号線路
65 下部グランド線路
68 上部グランド線路
66 バンプ
67、69、75 ビア
7 絶縁層
71、72 光導波路
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Optical monitor element 3 Drive LSI
4 Photoelectric Composite Module 41 Heat Dissipation Board 42 Insulating Layer 43 Wiring Board 51 Optical Fiber 60, 61 DC Line 62, 63, 64 High Speed Signal Line 65 Lower Ground Line 68 Upper Ground Line 66 Bump 67, 69, 75 Via 7 Insulating Layer 71 72 Optical waveguide

Claims (6)

放熱基板上に設置され、光信号を発生する発光素子と、
前記発光素子の光信号出力面及び前記出力面の反対側の面の少なくとも一方と対向し、前記発光素子で発生した前記光信号を伝達する光導波路と、
前記放熱基板に設けられ、前記光導波路を内蔵する絶縁層と、
前記絶縁層の上面にフリップチップ実装され、前記発光素子に電流増幅信号を供給する駆動LSIと、
前記放熱基板上に設置され、前記発光素子の発光をモニタする光モニタ素子と、
前記光モニタ素子のモニタ信号を前記駆動LSIに供給するDC線路と
前記駆動LSIと前記発光素子とを前記絶縁層の厚み方向に結ぶ駆動用信号線路と、
前記駆動LSIと接触して前記絶縁層の上面を延び、前記駆動LSIに電気入力信号を供給する電気入力用伝送線路と、を含み、
前記電気入力用伝送線路は、
前記駆動LSIと接触して前記絶縁層の上面を延びる上部グランド線路と、
前記放熱基板の上面を延びる下部グランド線路と、
前記上部グランド線路と前記下部グランド線路とを接続するグランド電極接続部と、
を有することを特徴とする光電気複合モジュール。
A light emitting element installed on a heat dissipation substrate and generating an optical signal;
An optical waveguide that transmits at least one of the optical signal output surface of the light emitting element and the surface opposite to the output surface, and transmits the optical signal generated by the light emitting element;
An insulating layer provided on the heat dissipation substrate and containing the optical waveguide;
A driving LSI which is flip-chip mounted on the upper surface of the insulating layer and supplies a current amplification signal to the light emitting element;
An optical monitoring element installed on the heat dissipation substrate and monitoring light emission of the light emitting element;
A DC line for supplying a monitor signal of the optical monitor element to the drive LSI ;
A driving signal line connecting the driving LSI and the light emitting element in the thickness direction of the insulating layer;
An electrical input transmission line that contacts the drive LSI and extends the upper surface of the insulating layer and supplies an electrical input signal to the drive LSI;
The transmission line for electrical input is
An upper ground line extending in contact with the drive LSI and extending the upper surface of the insulating layer;
A lower ground line extending from the upper surface of the heat dissipation substrate;
A ground electrode connecting portion for connecting the upper ground line and the lower ground line;
A photoelectric composite module comprising:
前記グランド電極接続部は、前記絶縁層内を前記光導波路と干渉しない位置で上下方向に延びるビアである、請求項に記載の光電気複合モジュール。The ground electrode connecting portion, the a via extending vertically insulating layer in a position not interfering with the optical waveguide, an optical-electrical composite module according to claim 1. 前記絶縁層は、上面に前記上部グランド電極を含むコプレーナ線路を有する、請求項に記載の光電気複合モジュール。The optoelectric composite module according to claim 1 , wherein the insulating layer has a coplanar line including the upper ground electrode on an upper surface. 前記絶縁層はポリマ樹脂材料からなる、請求項1に記載の光電気複合モジュール。  The photoelectric composite module according to claim 1, wherein the insulating layer is made of a polymer resin material. 前記導波路型光素子が設置された放熱基板上のガイド機構に設置され、前記光導波路と接続して光入出力を行う光ファイバをさらに有する、請求項1に記載の光電気複合モジュール。  2. The photoelectric composite module according to claim 1, further comprising: an optical fiber that is installed in a guide mechanism on a heat dissipation substrate on which the waveguide type optical element is installed and is connected to the optical waveguide to input and output light. 複数の前記光導波路がアレイ状に形成され、前記光導波路の各々に前記発光素子が接続している、請求項1に記載の光電気複合モジュール。A plurality of the optical waveguide is formed in an array, the light emitting element to each of the optical waveguides is connected, the optical-electrical composite module according to claim 1.
JP2005517249A 2004-01-21 2005-01-20 Photoelectric composite module Active JP4951971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517249A JP4951971B2 (en) 2004-01-21 2005-01-20 Photoelectric composite module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004013126 2004-01-21
JP2004013126 2004-01-21
JP2005517249A JP4951971B2 (en) 2004-01-21 2005-01-20 Photoelectric composite module
PCT/JP2005/000640 WO2005071807A1 (en) 2004-01-21 2005-01-20 Photoelectric composite module

Publications (2)

Publication Number Publication Date
JPWO2005071807A1 JPWO2005071807A1 (en) 2007-09-06
JP4951971B2 true JP4951971B2 (en) 2012-06-13

Family

ID=34805373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517249A Active JP4951971B2 (en) 2004-01-21 2005-01-20 Photoelectric composite module

Country Status (2)

Country Link
JP (1) JP4951971B2 (en)
WO (1) WO2005071807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216242A (en) * 2017-11-17 2019-12-19 株式会社東芝 Semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437185C (en) * 2004-09-02 2008-11-26 日本电气株式会社 Photoelectric composite module
JPWO2010038871A1 (en) * 2008-10-03 2012-03-01 ソニー株式会社 Semiconductor device
WO2010113968A1 (en) * 2009-03-30 2010-10-07 京セラ株式会社 Optical and electrical circuit board and optical module
JP6085526B2 (en) * 2013-06-12 2017-02-22 新光電気工業株式会社 Opto-electric hybrid board and optical module
JP6542668B2 (en) * 2013-10-04 2019-07-10 技術研究組合光電子融合基盤技術研究所 Transmitter of an optical transmitter or an optical transmitter / receiver provided on an optical / electrical hybrid board
JP2020068286A (en) * 2018-10-24 2020-04-30 富士通株式会社 Optical device and method of manufacturing the same
JP7188205B2 (en) * 2019-03-19 2022-12-13 日本電気株式会社 Opto-electric hybrid connector and method for manufacturing opto-electric hybrid connector
JP7477310B2 (en) * 2020-01-23 2024-05-01 日東電工株式会社 Photoelectric conversion module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878657A (en) * 1993-08-09 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> Opto-electric hybrid mounting board, manufacturing method and opto-electric hybrid integrated circuit
JPH0883955A (en) * 1994-09-12 1996-03-26 Hitachi Ltd Optical assembly
WO1998011460A1 (en) * 1996-09-13 1998-03-19 Hitachi, Ltd. Production method of waveguide type optical device
JP2000002817A (en) * 1998-06-15 2000-01-07 Nec Corp Optical waveguide platform and its production
JP2000156511A (en) * 1998-11-20 2000-06-06 Nippon Telegr & Teleph Corp <Ntt> Electric wiring structure and manufacture thereof
JP2002151782A (en) * 2000-11-13 2002-05-24 Sumitomo Electric Ind Ltd Light emitting device
JP2002252407A (en) * 2001-02-23 2002-09-06 Sumitomo Electric Ind Ltd Light-emitting module
JP2002261265A (en) * 2001-03-06 2002-09-13 Sumitomo Electric Ind Ltd Optical communication device
JP2003232967A (en) * 2002-02-13 2003-08-22 Sumitomo Electric Ind Ltd Parallel transmission/reception module
JP2003241028A (en) * 2002-02-14 2003-08-27 Sumitomo Electric Ind Ltd Optical communication module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878657A (en) * 1993-08-09 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> Opto-electric hybrid mounting board, manufacturing method and opto-electric hybrid integrated circuit
JPH0883955A (en) * 1994-09-12 1996-03-26 Hitachi Ltd Optical assembly
WO1998011460A1 (en) * 1996-09-13 1998-03-19 Hitachi, Ltd. Production method of waveguide type optical device
JP2000002817A (en) * 1998-06-15 2000-01-07 Nec Corp Optical waveguide platform and its production
JP2000156511A (en) * 1998-11-20 2000-06-06 Nippon Telegr & Teleph Corp <Ntt> Electric wiring structure and manufacture thereof
JP2002151782A (en) * 2000-11-13 2002-05-24 Sumitomo Electric Ind Ltd Light emitting device
JP2002252407A (en) * 2001-02-23 2002-09-06 Sumitomo Electric Ind Ltd Light-emitting module
JP2002261265A (en) * 2001-03-06 2002-09-13 Sumitomo Electric Ind Ltd Optical communication device
JP2003232967A (en) * 2002-02-13 2003-08-22 Sumitomo Electric Ind Ltd Parallel transmission/reception module
JP2003241028A (en) * 2002-02-14 2003-08-27 Sumitomo Electric Ind Ltd Optical communication module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216242A (en) * 2017-11-17 2019-12-19 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JPWO2005071807A1 (en) 2007-09-06
WO2005071807A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP4951971B2 (en) Photoelectric composite module
US20200310054A1 (en) Optical transceiver
JP4626614B2 (en) Photoelectric composite module
US9379276B2 (en) Optical interconnection module and optical-electrical hybrid board
US10444452B2 (en) Optical module and optical transmission equipment
EP1615304B1 (en) Optical module with simplified electrical wiring desing
JP6064530B2 (en) Light emitting module and optical transceiver
JP5837015B2 (en) Semiconductor laser module and manufacturing method thereof
KR101929465B1 (en) Optical module
KR20080015142A (en) Semiconductor chip module
JP2013008887A (en) Optical module
JP6232950B2 (en) Light emitting module
US11057112B1 (en) Monitor photodiode (MPD) submount for vertical mounting and alignment of monitoring photodiodes
JP2007207803A (en) Optical transmitting module
US8902947B2 (en) Optical module
US10418777B2 (en) Coaxial transmitter optical subassembly (TOSA) including side-by-side laser diode and monitor photodiode arrangement
US20120148190A1 (en) Optical module and optical transmission device using the same
JP6832091B2 (en) Optical module
JP2013110138A (en) Light emitting module
WO2020095355A1 (en) Optical semiconductor device, optical module and method for producing optical semiconductor device
JP2009086539A (en) Optical module
CN220915522U (en) Optical module circuit board assembly and optical module
KR102666812B1 (en) Multi-channel Optical Sub-Assembly
JP6204177B2 (en) Optical device substrate and optical device including the same
US11177887B2 (en) Substrate with stepped profile for mounting transmitter optical subassemblies and an optical transmitter or transceiver implementing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4951971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3