JP4951726B2 - Long-period wave reduction structure - Google Patents

Long-period wave reduction structure Download PDF

Info

Publication number
JP4951726B2
JP4951726B2 JP2006312493A JP2006312493A JP4951726B2 JP 4951726 B2 JP4951726 B2 JP 4951726B2 JP 2006312493 A JP2006312493 A JP 2006312493A JP 2006312493 A JP2006312493 A JP 2006312493A JP 4951726 B2 JP4951726 B2 JP 4951726B2
Authority
JP
Japan
Prior art keywords
water
wave
long
period
front wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006312493A
Other languages
Japanese (ja)
Other versions
JP2008031820A (en
Inventor
哲也 平石
香織 大島
陽一 森屋
正人 水流
繁樹 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Penta Ocean Construction Co Ltd
Original Assignee
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE, Penta Ocean Construction Co Ltd filed Critical INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Priority to JP2006312493A priority Critical patent/JP4951726B2/en
Publication of JP2008031820A publication Critical patent/JP2008031820A/en
Application granted granted Critical
Publication of JP4951726B2 publication Critical patent/JP4951726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Description

本発明は、主に船舶の荷役作業等が行われる港湾内において、岸壁、桟橋、護岸及び防波堤などの海洋構造物の港湾内側に設置し、長周期波を低減させるための長周期波低減対策構造物に関する。   The present invention is a long-period wave reduction measure for reducing long-period waves by installing it inside a marine structure such as a quay, a pier, a seawall and a breakwater in a harbor where ship handling operations etc. are mainly performed. Concerning structures.

従来、防波堤や海岸等に設置される波高低減構造物には、構造物の前部(海側)に消波ブロックを積み上げて消波工を設けたもの(例えば、特許文献1を参照)や、所謂スリットケーソンからなるもの(例えば、特許文献2を参照)が知られている。   Conventionally, wave height reducing structures installed on breakwaters, coasts, etc., are provided with wave-dissipating blocks stacked on the front (sea side) of the structure (see, for example, Patent Document 1) A so-called slit caisson (see, for example, Patent Document 2) is known.

消波工による消波は、構造物の前部に消波ブロックを積み重ねて消波工を形成し、この消波工を波が通過する際にエネルギー損失を生じさせて消波する構造である。一方、スリットケーソンからなる波高低減構造物は、複数の縦向きスリット状の透水孔が形成された遮壁と、遮壁の後方に十分な空間からなる遊水部とを有し、波が透水孔を通過する際に波動のエネルギー損失を生じさせて消波する構造である。   The wave-dissipation by the wave-dissipating work is a structure in which wave-dissipating blocks are stacked on the front part of the structure to form the wave-dissipating work, and energy is lost when the wave passes through the wave-dissipating work. . On the other hand, the wave height reducing structure made of slit caisson has a shielding wall in which a plurality of vertically oriented slit-shaped water-permeable holes are formed, and a water retentive part consisting of sufficient space behind the shielding wall, and the waves are water-permeable holes. It is a structure that causes wave energy loss when passing through the wave and quenches the wave.

このとき、遮壁を通過する際の流速が速いほど波動エネルギーの減衰が大きく、入射波が反射波と重なり合って遊水部の奥で腹となる重複波が形成され、該重複波の水平速度が最大となる節部の位置、即ち遮壁と遊水部の奥との間の距離が重複波の1/4波長となる位置に遮壁を設置することによって、最も消波効果が得られるようになっている。   At this time, the faster the flow velocity when passing through the shielding wall, the more the wave energy is attenuated, and the incident wave overlaps with the reflected wave to form a double wave that becomes a belly in the back of the water retentive part. By installing a shielding wall at a position where the maximum node position, that is, the distance between the shielding wall and the back of the water reserving part is ¼ wavelength of the overlapping wave, the most wave-dissipating effect is obtained. It has become.

海側から打ち寄せる波には、通常の波と共に長周期波が存在し、この長周期波は周期が数十秒〜数分の長い周期を有している。この長周期波は、港湾内に進入すると港湾の形状や岸壁の位置等の諸条件によって多重反射し、岸壁に接岸された船舶を大きく動揺させ、このため荷役作業等に支障を生じる場合があり、また、船舶を係留していた係留索が切断されてしまう等の被害が発生している。   A wave that rushes from the sea side includes a long-period wave along with a normal wave, and this long-period wave has a period that is long from several tens of seconds to several minutes. When entering the harbor, this long-period wave is reflected multiple times depending on various conditions such as the shape of the harbor and the position of the quay, and the ship touching the quay may be greatly shaken, which may hinder cargo handling work. In addition, damage such as the mooring line that moored the ship is cut off has occurred.

特に、大型の船舶(数万〜数十万DWT)を破断強度の大きな合成繊維からなる係留索を用いて係留した場合、その係留索の固有振動数が数十秒〜数分であると、その係留索と長周期波の周期帯が一致するため、係留索と共振を起こし船体を大きく動揺させる。   In particular, when a large ship (tens of thousands to hundreds of thousands DWT) is moored using a mooring line made of a synthetic fiber having a high breaking strength, the natural frequency of the mooring line is several tens of seconds to several minutes. Since the mooring line and the period band of the long-period wave coincide with each other, the mooring line is resonated to greatly shake the hull.

このため、長周期波を消波ないし低減する対策が求められているが、長周期波は数百m〜数kmの長い波長を有するため、消波ブロックやスリットケーソンを用いた従来の上記消波対策によって十分な消波効果を得るためには、遊水部や消波工の奥行きが100m以上ある大規模な構造物とする必要があり、実現性に乏しいという問題があった。   For this reason, there is a demand for countermeasures for quenching or reducing long-period waves. However, since long-period waves have a long wavelength of several hundred m to several km, the above-described conventional extinction using a quenching block or slit caisson is required. In order to obtain a sufficient wave-dissipating effect by countermeasures against waves, it is necessary to use a large-scale structure having a depth of 100 m or more for the water reclaiming section and the wave-dissipating work, and there is a problem that the feasibility is poor.

一方、この長周期波を低減する手段として、図15、図16に示す構造を有する長周期波低減対策構造物も開発されている(特許文献3)。   On the other hand, a long-period wave reduction countermeasure structure having the structure shown in FIGS. 15 and 16 has been developed as means for reducing this long-period wave (Patent Document 3).

図15に示す構造物は、海側及び陸側にそれぞれスリット状の透水孔が形成された遮壁1,2を配した所謂両面スリットケーソン3を備え、そのスリットケーソン3の奥側に裏込材として大型の雑石を積層させた雑石層4を設けた構造となっている。 The structure shown in FIG. 15 is provided with a so-called double-sided slit caisson 3 having barrier walls 1 and 2 each having slit-shaped water-permeable holes formed on the sea side and the land side. It has a structure in which a stone layer 4 in which large stones are laminated as a material is provided.

また、図16に示す構造物は、海側にスリット状の開口5aを有する透水部5と、その奥側(陸側)に側部仕切り壁6を隔てて配置された遊水部7と、透水部5内に積み上げられた砕石等からなる消波材層8とを備え、透水部5内の水位変動に伴って、側部仕切り壁6に形成された透水孔6aを通して透水部5と遊水部7との間で水が出入りし、透水部5の海側部における水位変動を抑制するようにしたものである。
特開2000−204528号公報 特開2002−146746号公報 特開2005−42528号公報
Further, the structure shown in FIG. 16 includes a water permeable portion 5 having a slit-like opening 5a on the sea side, a water retentive portion 7 disposed on the back side (land side) with a side partition wall 6 therebetween, and water permeable A water-absorbing material layer 8 made of crushed stone and the like stacked in the portion 5, and the water-permeable portion 5 and the water retentive portion through the water-permeable holes 6 a formed in the side partition wall 6 as the water level in the water-permeable portion 5 varies 7, water enters and exits, and water level fluctuations at the sea side of the permeable portion 5 are suppressed.
JP 2000-204528 A JP 2002-146746 A Japanese Patent Laid-Open No. 2005-42528

図15及び図16に示す海洋構造物の長周期波に対する消波低減手段は有効なものではあるが、何れも十分な消波低減効果を得るためには50m程度の奥行きが必要であり、これより小規模な構造にするのが難しいと云う問題がある。また、長周期波低減対策を施した従来の構造物は、主にプレキャスト製コンクリート構造体などを用い、これを施工現場に沈降させる等の方法によって構築されることが考えられる。このため、構造体を製造する工程と、これを現場に設置する工程とを必要とし、構造体製造のためのヤードや、製造のための時間及びコストがかかる等の問題がある。   15 and FIG. 16 are effective for reducing the long-period wave of the offshore structure. However, in order to obtain a sufficient effect of reducing the quenching, a depth of about 50 m is required. There is a problem that it is difficult to make a smaller structure. In addition, it is conceivable that conventional structures subjected to long-period wave reduction measures are mainly constructed by using a precast concrete structure or the like and sinking it to a construction site. For this reason, the process of manufacturing a structure and the process of installing this in the field are required, and there are problems such as a yard for manufacturing the structure, and time and cost for manufacturing.

本発明は、従来の長周期波に対する消波低減対策にみられた上記問題を解決したものであって、小規模でも長周期波の影響を十分に低減することができ、かつ、施工現場において直接に構築することができる長周期波低減効果を有する構造物を提供することを目的とする。   The present invention solves the above-mentioned problems seen in the conventional countermeasures for reducing the long-period wave, and can sufficiently reduce the influence of the long-period wave even on a small scale, and at the construction site. An object is to provide a structure having a long-period wave reduction effect that can be directly constructed.

上述の如き従来の問題を解決し、所期の目的を達成するための請求項1に記載する発明の特徴は、港湾内の船舶接岸岸壁や防波堤、護岸などの海洋構造物の港湾内側面に前面壁を有し、該前面壁に縦向きの通水口が開口し、上記前面壁には前記各通水口毎に奧側に向かって後退する凹部が形成されており、該凹部の奧側の位置に上記通水口が開口し、該通水口の背後にこれと連通した遊水部を備えることによって、周期が数十秒〜数分の長周期波の波高を低減させる低減対策構造物であって上記前面壁を鋼矢板、鋼管矢板又はコンクリート矢板をもって構築したことにある。 The feature of the invention described in claim 1 for solving the conventional problems as described above and achieving the intended purpose is that it is provided on the inner surface of the harbor of a marine structure such as a ship berth quay, a breakwater or a seawall in the harbor. The front wall has a vertical water passage opening in the front wall, and the front wall has a recessed portion that recedes toward the ridge side for each of the water passage ports. the through Mizuguchi is opened in a position, by providing a retarding portion communicating with this behind the vent Mizuguchi, a reduction measure structure period to reduce the height of a few tens of seconds to several minutes long periodic wave The front wall is constructed with a steel sheet pile, steel pipe sheet pile or concrete sheet pile.

請求項2に記載する発明の特徴は、請求項1の構成に加えて、上記前面壁背面の遊水部は、複数の前記通水口位置に跨って連続し、内部に仕切り壁を設けない構造であることにある。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the water retentive part on the back surface of the front wall is continuous across the plurality of water inlet positions and does not have a partition wall inside. There is to be.

請求項3に記載する発明の特徴は、請求項1の構成に加えて、上記遊水部には、1つの通水口に対応させて1つの遊水部が構成されるように側部仕切り壁及び周壁を備えていることにある。   According to a third aspect of the present invention, in addition to the configuration of the first aspect, the side partition wall and the peripheral wall are configured such that one water reserving part is formed in the water reserving part corresponding to one water passage. It is in having.

請求項4に記載する発明の特徴は、請求項1〜3の何れか1の請求項に記載の長周期波低減対策構造物が、桟橋、岸壁、護岸又は防波堤として用いられるものであることにある。   The feature of the invention described in claim 4 is that the long-period wave reduction countermeasure structure according to any one of claims 1 to 3 is used as a pier, a quay, a seawall or a breakwater. is there.

尚、本発明に係る長周期波低減対策構造物を船舶が接岸する桟橋下に施工する場合には、遊水部の上面を覆う床版を設置するものであり、該床版を支えるための杭等の支柱を遊水部内に設置しても良く、また、船舶が接岸するための接岸壁部を、前記前面壁の更に前方側に、前垂れ状、即ちその下端と水底面との間に長周期波が移動可能な間隔を持たせた状態で設置しても良い。   In addition, when constructing the long-period wave reduction countermeasure structure according to the present invention under the pier where the ship berths, a floor slab that covers the upper surface of the water retentive part is installed, and a pile for supporting the floor slab A pier, etc., may be installed in the water reserving part, and the berthing wall part for the ship to berth is in front of the front wall, a long period between the lower end and the bottom surface of the water. You may install in the state which gave the space | interval which a wave can move.

本発明に係る構造物は、該通水口の背後にこれと連通した遊水部を備えた海洋構造物であるので、前面壁に押し寄せる波が通水口に導かれて遊水部に流入する際に渦が発生し、波のエネルギー損失が生じ、有効な消波低減効果が得られる。   Since the structure according to the present invention is an offshore structure having a water recirculation part connected to the rear of the water inlet, a vortex is generated when a wave rushing to the front wall is led to the water inlet and flows into the water reserving part. Is generated, wave energy loss occurs, and an effective wave reduction effect is obtained.

更に、この構造物は鋼矢板、鋼管矢板、又はコンクリート矢板によって上記前面壁および上記遊水部の周壁を構築しているため、施工現場において直接に長周期波低減対策を有する構造物を構築することがで、例えば、桟橋、護岸、護岸又は防波堤などについて、プレキャスト工法のような段階的な工程を経ずに、長周期波低減対策構造物とすることができるとともに既存岸壁や護岸の構造にかかわらず既存構造物に対して追加的に設置できる。また、この構造物は、水底から水面に到るまでスリットを設けることができ、水底付近に直立基礎を必要とするケーソン構造とは異なり、スリットの有効長を大きくできる。   Furthermore, since this structure is constructed with steel sheet piles, steel pipe sheet piles, or concrete sheet piles, the front wall and the peripheral wall of the water retentive part are constructed. However, for example, piers, revetments, revetments or breakwaters can be made into long-period wave reduction countermeasure structures without step-by-step processes such as the precast method, and the structure of existing piers and revetments can be used. It can be installed additionally to existing structures. Moreover, this structure can provide a slit from the bottom of the water to the water surface, and can increase the effective length of the slit unlike the caisson structure that requires an upright foundation near the bottom of the water.

本発明では、各通水口毎に海側に面する前面壁が奧に向かって後退する後退する凹部を形成させ、その奧側の位置に上記通水口を設けることにより、前面壁に押し寄せる波が前面壁に導かれて通水口に寄せ集められ、遊水部に流入する波のエネルギー損失が増大し、長周期波に効果的な消波効果が得られる。   In the present invention, the front wall facing the sea side is formed for each water inlet to form a recessed part that recedes toward the reed, and the water is pushed toward the front wall by providing the water flow opening at a position on the reef side. The energy loss of the wave guided to the front wall and collected at the water inlet and flowing into the water retentive section increases, and an effective wave-dissipating effect is obtained for long-period waves.

更に、本発明では、桟橋、岸壁、護岸又は防波堤として用いることにより、何れも小規模でも長周期波を効果的に低減ないし消波することができ、海洋構造物に接岸する船舶の揺動を好適に抑制し、船舶への荷役作業等を容易に行うことができる。   Furthermore, in the present invention, by using as a pier, quay, revetment, or breakwater, long-period waves can be effectively reduced or wave-dissipated even at a small scale, and the oscillation of a ship that touches the offshore structure can be prevented. It is possible to appropriately suppress the cargo handling work to the ship and the like.

また、構造が簡単で、規模も小さくすることができるので既存の港湾にも対応させることができる。従って、桟橋、岸壁、護岸又は防波堤として好適に適用することができる。   In addition, since the structure is simple and the scale can be reduced, it can be adapted to existing ports. Therefore, it can be suitably applied as a pier, quay, revetment or breakwater.

本発明では、上記前面壁背面の遊水部は、複数の前記通水口位置に跨って連続し、側部仕切り壁を設けない構造である場合、及び該遊水部に1つの通水口に対応させて1つの遊水部が構成されるように側部仕切り壁及び周壁を設ける場合のいずれの場合においても略同等の消波効果が得られる。   In the present invention, the water reserving part on the back of the front wall is continuous across a plurality of the water outlet positions, and has a structure in which no side partition wall is provided, and the water reserving part corresponds to one water inlet. In any case where the side partition wall and the peripheral wall are provided so as to constitute one water reserving part, a substantially equivalent wave-dissipating effect can be obtained.

次に、本発明に係る長周期波低減対策構造物の実施形態を図に基づいて説明する。   Next, an embodiment of a long-period wave reduction countermeasure structure according to the present invention will be described with reference to the drawings.

本発明に係る海洋構造物の第一実施例を図1〜図4について説明する。図1に示す海洋構造物10は、長周期波を受ける海側に面する前面壁11と、その両側の側部仕切り壁12、12と、陸側の後壁13とを有しており、上記前面壁11には縦向き細長のスリット状をした通水口14が開口しており、通水口14の背部には通水口14に連通する遊水部15が形成されている。   A first embodiment of an offshore structure according to the present invention will be described with reference to FIGS. The offshore structure 10 shown in FIG. 1 has a front wall 11 facing the sea side that receives long-period waves, side partition walls 12 and 12 on both sides thereof, and a rear wall 13 on the land side. The front wall 11 is provided with a vertically elongated slit-shaped water passage 14, and a water reserving portion 15 communicating with the water passage 14 is formed at the back of the water passage 14.

この遊水部15は側部仕切り壁12,12および後壁13からなる周壁によって囲まれた閉鎖空間を形成しており、前面壁11が海側と遊水部13とを隔てる側部仕切り壁となっている。そして、側部仕切り壁12を隔てて複数の遊水部13,13......が側方に連続して造成されている。   The water reserving part 15 forms a closed space surrounded by a peripheral wall composed of the side partition walls 12, 12 and the rear wall 13, and the front wall 11 serves as a side partition wall that separates the sea side and the water reclaiming part 13. ing. A plurality of water retentive parts 13, 13... Are continuously formed laterally across the side partition wall 12.

通水口14は、海底面から通常の長周期波の最高波高よりも高い位置に到る長さに形成され、通水口14から遊水部15の内部に長周期波が出入りする際に、遊水部15内の空気が充分に出入りできる高さに達するように開口している。なお、図示する例では、通水口14は前面壁11の中央部に設けられているが、側部仕切り壁12に近づけて通水口14を設けても良い。   The water inlet 14 is formed to have a length from the sea bottom to a position higher than the highest wave height of a normal long-period wave, and when the long-period wave enters and exits the water-reserving part 15 from the water inlet 14, The air is opened so as to reach a height at which the air in 15 can sufficiently enter and exit. In the illustrated example, the water inlet 14 is provided at the center of the front wall 11, but the water inlet 14 may be provided close to the side partition wall 12.

図1の構造物は、上記前面壁11、側部仕切り壁12及び後壁13は、それぞれ矢板41、41......を連続させて水底地盤に打設することによって構築されている。尚、図示の矢板41は鋼管矢板を使用しており、鋼管矢板を互いに密接して一列に打設することによって、各壁11,12及び13の外面に、鋼管の外径寸法に応じた縦向きの凹凸を有る形状となっているが、この他、鋼矢板、コンクリート矢板等、各種の矢板を使用することができ、これらの矢板によって壁外面に凹凸を設けても良く、平らな矢板を使用し凹凸のないものとしても良い。   In the structure of FIG. 1, the front wall 11, the side partition wall 12, and the rear wall 13 are constructed by continuously placing sheet piles 41, 41... On the water bottom ground. . The illustrated sheet pile 41 uses a steel pipe sheet pile, and by placing the steel pipe sheet piles in close contact with each other in a row, the vertical surfaces corresponding to the outer diameter dimensions of the steel pipes are formed on the outer surfaces of the walls 11, 12 and 13. Although it has a shape with irregularities in the direction, various sheet piles such as steel sheet piles and concrete sheet piles can also be used, and irregularities may be provided on the outer wall surface by these sheet piles, flat sheet piles It can be used without unevenness.

鋼管矢板等41によって前面壁11を含む周壁を構築する場合、図2に示すように、連続する鋼管矢板等41の頭部を一体に連結するための、例えば笠コンクリートからなる梁材42を設けると良い。このような梁材42を設けることによって個々の矢板41の頭部が互いに連結されて一体化し、矢板41によって形成された前面壁11を含む周壁の全体の安定性を高めることができる。   When the peripheral wall including the front wall 11 is constructed by the steel pipe sheet pile 41 etc., as shown in FIG. 2, a beam material 42 made of, for example, shaded concrete is provided for connecting the heads of the continuous steel pipe sheet pile 41 etc. And good. By providing such a beam member 42, the heads of the individual sheet piles 41 are connected and integrated with each other, and the stability of the entire peripheral wall including the front wall 11 formed by the sheet piles 41 can be enhanced.

構造物10は、前面壁11に押し寄せる波が通水口14に導かれて遊水部15に流入する際に波のエネルギー損失が生じるので、有効な消波低減効果を得ることができる。さらに、この構造物10は鋼矢板、鋼管矢板、又はコンクリート矢板によって前面壁11および周壁を構築するので、プレキャスト工法のような箱型のコンクリート製構造体をあらかじめ構築する工程を経ずに、施工現場において直接に長周期波低減対策構造物を構築することができる構造体である。   Since the structure 10 has a wave energy loss when a wave rushing to the front wall 11 is guided to the water inlet 14 and flows into the water retentive part 15, an effective wave-reducing effect can be obtained. Furthermore, since this structure 10 constructs the front wall 11 and the peripheral wall with steel sheet piles, steel pipe sheet piles, or concrete sheet piles, it does not go through the process of pre-constructing a box-shaped concrete structure like the precast method. It is a structure that can construct a long-period wave reduction countermeasure structure directly on site.

図1に示す構造物10は、側部仕切り壁12,12間、即ち1つの通水孔14に対応させて、前面壁11の中央部分が奧に向かって後退する凹部11aが形成されており、その最奧側の位置に上記通水口14が設けられている。このように形成することによって、前面壁11に向かって進行してきた波が前面壁11に沿って流れ、通水口14に寄せ集められるので、遊水部15に流入する波のエネルギー損失が増大し、通常波域から長周期波域に渡って効果的な消波効果が得られる。   The structure 10 shown in FIG. 1 is formed with a recess 11a in which the central portion of the front wall 11 recedes toward the ridge between the side partition walls 12, 12, that is, corresponding to one water passage hole 14. The water inlet 14 is provided at the most extreme position. By forming in this way, waves that have traveled toward the front wall 11 flow along the front wall 11 and are gathered together at the water inlet 14, increasing the energy loss of the waves flowing into the water retentive unit 15, An effective wave-dissipating effect can be obtained from the normal wave region to the long-period wave region.

また、図3に示すように本発明に係る構造物10を、船舶が接岸できる桟橋に使用する等、遊水部15の上方開放部を天版17にて閉鎖し、上部を有効利用使用とするような場合においては、遊水部15に複数本の杭16、16...を設けて天版17を支持させるようにしても良い。   Further, as shown in FIG. 3, the structure 10 according to the present invention is used for a pier on which a ship can berth, and the upper open portion of the water reserving unit 15 is closed with a top plate 17, and the upper part is used effectively. In such a case, the top plate 17 may be supported by providing a plurality of piles 16, 16.

また、船舶が接岸できる桟橋に使用する場合には、図3中に仮想線で示すように、前面壁11の更に前方側に、前垂れ状に接岸壁部18設置しても良い。この場合接岸壁部18は、その下端と水底面との間に長周期波が移動可能な間隔を持たせた状態で設置する。   Moreover, when using it for the pier which a ship can berth, as shown by a virtual line in FIG. 3, you may install the berthing wall part 18 in the front drooping shape in the further front side of the front wall 11. FIG. In this case, the berthing wall portion 18 is installed in a state where a long-period wave can move between the lower end and the bottom surface of the water.

尚、上記杭16、16...はコンクリート矢板、鋼管コンクリート矢板など通常の杭を用いることができる。また、上記構造物10の天版17や上部工(図示省略)を支える高さを有するものを用いればよい。   The piles 16, 16... Can be ordinary piles such as concrete sheet piles and steel pipe concrete sheet piles. Moreover, what has the height which supports the top plate 17 and the superstructure (illustration omitted) of the said structure 10 should just be used.

上記海洋構造物10は、1つの通水口14に対応する1つの遊水部15を一単位として構成し、船舶が接岸する岸壁や防波堤などの長さに応じ、両側に多数連続させて構築するようにしても良い。   The offshore structure 10 is constructed with a single water reserving section 15 corresponding to a single water inlet 14 as a unit, and a large number of water structures are continuously constructed on both sides according to the length of a quay or a breakwater where a ship is berthed. Anyway.

また、本発明が適用される海洋構造物10は、船舶の荷役作業が行われる桟橋や、岸壁、防波堤に限定されず、どのような海洋構造物であってもよく、更に設置場所によっては、天版又は上部工はなくてもよい。   Further, the offshore structure 10 to which the present invention is applied is not limited to a pier, a quay, and a breakwater where a ship handling work is performed, and any offshore structure may be used. There is no need for a top plate or superstructure.

次に、図1〜図4に示す本発明に係る長周期波低減対策構造物の性能実験について説明する。
1.実験装置
Next, performance experiments of the long-period wave reduction countermeasure structure according to the present invention shown in FIGS. 1 to 4 will be described.
1. Experimental device

図5に示すように、長さ50m、幅0.6m、高さ1.2mの水槽を使用し、二次元水理模型実験を行った。模型縮尺を1/50、水深10mとした。なお、図中の符号20a〜20hは波高計、符号21は流速計である。
2.実験条件
(1)入射波
As shown in FIG. 5, a two-dimensional hydraulic model experiment was conducted using a water tank having a length of 50 m, a width of 0.6 m, and a height of 1.2 m. The model scale was 1/50 and the water depth was 10 m. In addition, the code | symbols 20a-20h in a figure are a wave height meter, and the code | symbol 21 is an anemometer.
2. Experimental conditions (1) Incident wave

入射波として表1に示す4通りのケースについて試験を行う。   Tests are conducted for the four cases shown in Table 1 as incident waves.

Figure 0004951726
Figure 0004951726

(2)実験モデル 表2に示す6つの実験モデルケースについて試験を行う。尚、該実験モデルケースは、図1に示す構造物において、前面壁および周壁がコンクリート製の構造物を比較基準の基本形状とし、本発明例として、図4(A)に示すように、遊水部に6本の杭を有するものと(杭6本と略記)、図4(B)に示すように、遊水部に8本の杭を有するもの(杭8本と略記)、前面壁が鋼管外周の直径が1mの鋼管矢板によって形成され、前面壁外面が凹凸形状を有するもの(鋼管矢板と略記)について実験を行う。 (2) Experimental model Tests are conducted for the six experimental model cases shown in Table 2. In the experimental model case, in the structure shown in FIG. 1, a structure whose front wall and peripheral wall are made of concrete is a basic shape for comparison, and as an example of the present invention, as shown in FIG. 6 having piles in the part (abbreviated as 6 piles), as shown in FIG. 4 (B), having 8 piles in the water retentive part (abbreviated as 8 piles), the front wall is steel pipe An experiment is performed on a steel pipe sheet pile having an outer diameter of 1 m and an outer surface of the front wall having an uneven shape (abbreviated as a steel pipe sheet pile).

図4(A)では、杭径1mの杭を用い、奥行6m、横幅7.5mの間隔で前列3本および後列3本の合計6本の杭が二列に設けられており、図4(B)では、同様の杭を用い奥行と横幅が6mの間隔で前列4本および後列4本の合計8本の杭が二列に設けられている。   In FIG. 4 (A), a pile with a diameter of 1 m is used, and a total of six piles of three front rows and three rear rows are provided in two rows at a depth of 6 m and a width of 7.5 m. In B), a total of eight piles of four front rows and four rear rows are provided in two rows at intervals of a depth and a width of 6 m using the same piles.

Figure 0004951726

(3)実験方法
Figure 0004951726

(3) Experimental method

上述構造物モデルに表1に示す入射波を与え、それぞれ場合における図6に示した波高計20d〜20fを用いて構造物前面の水位を計測するとともに、通水口近傍の流速を流速計21によって測定する。
3.実験結果
The incident wave shown in Table 1 is given to the above structure model, and the water level in front of the structure is measured using the wave height meters 20d to 20f shown in FIG. taking measurement.
3. Experimental result

実験結果を図6(A)、(B)、(C)、(D)のグラフに示す。図6(A)は波高0.5mで周期30s、図6(B)は波高0.25mで周期30s、図6(C)は波高0.5mで周期60s、図6(D)は波高0.25mで周期60sの場合である。   The experimental results are shown in the graphs of FIGS. 6 (A), (B), (C), and (D). 6A is a wave height of 0.5 m and a period of 30 s, FIG. 6B is a wave height of 0.25 m and a period of 30 s, FIG. 6C is a wave height of 0.5 m and a period of 60 s, and FIG. This is a case of .25 m and a period of 60 s.

図6に示すように、奥行き20m程度の小型の構造物で、全てのケースにおいて反射率は0.7〜0.8程度であり、多重反射する長周期波に対しては有効な性能を有していることが確認できた。施工エリアに余裕がある場合は奥行きを大きくすると更に反射率が低下し、有効な構造物となる。周期や波高により多少反射率は上下するが、性能としては問題がなく充分に効果が確認できた。   As shown in FIG. 6, it is a small structure with a depth of about 20 m, and the reflectivity is about 0.7 to 0.8 in all cases, and it has effective performance for long-period waves that are multiply reflected. I was able to confirm. If there is a margin in the construction area, increasing the depth further reduces the reflectivity, resulting in an effective structure. Although the reflectivity slightly fluctuated depending on the period and wave height, there was no problem in performance and the effect could be confirmed sufficiently.

次に本発明に係る長周期波低減対策構造物の第二実施例を図7、図8について説明する。尚、図1と同じ部分には同一符号を付して重複説明を省略する。   Next, a second embodiment of the long-period wave reduction countermeasure structure according to the present invention will be described with reference to FIGS. The same parts as those in FIG.

この実施例は、遊水部15が、複数の通水口14,14......位置に跨って連続し、内部に仕切り壁を設けない構造としているものであり、図1に示す実施例における側部仕切り壁12を設けずに、後壁13の前方側に遊水部15が構成されるだけの間隔を隔てて前面壁11を構築している。前面壁11には間隔を隔てて図1と同様の通水口14が設けられ、この通水口14毎に、前面壁11が奥側に向かって後退する凹部11aが形成され、その凹部11aの中央最奥部に通水口14が開口されている。   In this embodiment, the water reserving section 15 is continuous over a plurality of water inlets 14, 14... And has a structure in which no partition wall is provided therein. The embodiment shown in FIG. The front wall 11 is constructed with an interval sufficient to form the water retentive part 15 on the front side of the rear wall 13 without providing the side partition wall 12 in FIG. The front wall 11 is provided with water passages 14 similar to those shown in FIG. 1 at intervals, and for each of the water passages 14, a recess 11 a is formed in which the front wall 11 recedes toward the back side, and the center of the recess 11 a is formed. The water inlet 14 is opened in the innermost part.

この実施例においても、前面壁11を矢板41によって構築しており、この矢板には前述と同様に鋼管矢板を互いに密接して一列に打設することによって構成させる他、鋼矢板、コンクリート矢板等、各種の矢板を使用することができ、これらの矢板によって壁外面に凹凸を設けても良く、平らな矢板を使用し凹凸のないものとしても良い。   Also in this embodiment, the front wall 11 is constructed by a sheet pile 41, and the sheet pile is constructed by placing steel pipe sheet piles in close contact with each other in the same manner as described above, as well as a steel sheet pile, concrete sheet pile, etc. Various kinds of sheet piles can be used, and unevenness may be provided on the outer surface of the wall by these sheet piles, or flat sheet piles may be used and there may be no unevenness.

また、図2に示す例と同様に、連続する鋼管矢板等41の頭部を一体に連結するための、例えば笠コンクリートからなる梁材を設けてもよく、図3に示す例と同様に本発明に係る構造物10を、船舶が接岸できる桟橋に使用する等、遊水部15の上方開放部を天版にて閉鎖し、また、上部を有効利用使用とするような場合においては、遊水部15に複数本の杭を設けて天版を支持させるようにしても良い。更に、図3中に仮想線で示す例と同様に、前面壁11の更に前方側に、前垂れ状に接岸壁部設置しても良い。   Further, similarly to the example shown in FIG. 2, a beam member made of, for example, captive concrete for integrally connecting the heads of the continuous steel pipe sheet piles 41 or the like may be provided. In the case where the structure 10 according to the invention is used for a pier where a ship can berth, the upper open part of the water reserving part 15 is closed with a top plate, and the upper part is used for effective use. A plurality of piles may be provided on 15 to support the top plate. Further, as in the example shown by the phantom line in FIG. 3, the berthing wall portion may be installed in a front hanging shape further forward of the front wall 11.

尚、上述した各実施例では後壁13を鋼管矢板等の矢板をもって構成させているが、この後壁は、岸壁等や護岸用のコンクリート壁であってもよい。   In each of the above-described embodiments, the rear wall 13 is constituted by a sheet pile such as a steel pipe sheet pile. However, the rear wall may be a quay wall or a concrete wall for revetment.

次に、本発明に係る長周期波低減対策構造物の図1に示す実施例と図7に示す実施例との比較実験について説明する。
実験装置
Next, a comparative experiment between the embodiment shown in FIG. 1 and the embodiment shown in FIG. 7 of the long-period wave reduction countermeasure structure according to the present invention will be described.
Experimental device

図9(a)(b)に示す如き形状の平面造波水槽を使用した。この水槽は、長さ20m、幅30m、高さ1.5mのものを使用した。
実験条件は表3のとおりである。
A plane wave water tank having a shape as shown in FIGS. 9A and 9B was used. This water tank was 20 m long, 30 m wide and 1.5 m high.
Table 3 shows the experimental conditions.

Figure 0004951726
Figure 0004951726

ただし、水深、波高、周期は現地スケールである。   However, the water depth, wave height, and cycle are local scales.

現地スケールで水深10m、周期30s、波高0.25mの規則波を用いた。縮尺は長周期波の波長を考慮し、1/100とした。造波する波向は造波板に対して鉛直方向のみとし、造波される波向に対する設置角度を図9(a)(b)の如く違えることによって模型に対する波向を0°と30°とした。   A regular wave having a depth of 10 m, a period of 30 s, and a wave height of 0.25 m was used on a local scale. The scale was set to 1/100 in consideration of the wavelength of the long period wave. The wave direction to be waved is only perpendicular to the wave plate, and the wave direction with respect to the model is set to 0 ° and 30 ° by changing the installation angle with respect to the wave direction to be waved as shown in FIGS. It was.

また、回析散乱波の影響を減らすため、幅20mの造波装置の横に側壁を設置した。サンプリング周波数20Hzで造波開始から60s間計測を行った。
実験模型
Moreover, in order to reduce the influence of a diffraction scattering wave, the side wall was installed beside the 20 m wide wave-making apparatus. Measurement was performed for 60 s from the start of wave making at a sampling frequency of 20 Hz.
Experimental model

図10(a)に示す如き、図1に示す実施例に対応する仕切り壁付き模型A−1(対策工)と、図10(b)に示す如き図7に示す仕切りなし模型A−2(対策工)と、前壁が背部に遊水部を有しない直立壁である直立壁型模型Bを使用し、仕切り付き模型A−1は側部仕切り壁間の間隔を30m、側部仕切り壁部分の奥行き(前壁と後壁間の間隔)を25m、スリット開口幅を0.75mとし、仕切りなし模型A−2は前記仕切り付き模型の側部仕切り壁を取り除いた形状及び大きさとした。
波高計設置状況
As shown in FIG. 10A, a model A-1 with a partition wall (countermeasure) corresponding to the embodiment shown in FIG. 1 and a model A-2 without partition shown in FIG. 7 as shown in FIG. Measures) and an upright wall model B whose front wall is an upright wall with no irrigation part at the back, and the model A-1 with a partition has a space between the side partition walls of 30 m, and the side partition wall part The depth (space between the front wall and the rear wall) was 25 m, the slit opening width was 0.75 m, and the non-partitioned model A-2 was shaped and sized without the side partition walls of the model with partitions.
Wave height meter installation status

波高計の設置は図11に示すように、模型中央において、該模型と鉛直方向に、30cm,20cm,50cm,50cmの順に間隔を開けて設置するとともに、模型前面より30cmの間隔をおいて、該模型と並行に37.5cm間隔に模型中央から両端側にむけて直線上に並べて設置した。
実験結果
As shown in FIG. 11, the wave height meter is installed in the center of the model in the vertical direction with a distance of 30 cm, 20 cm, 50 cm, 50 cm in the order of 30 cm, 30 cm from the front of the model, Parallel to the model, they were placed side by side on a straight line from the center of the model to both ends at an interval of 37.5 cm.
Experimental result

a.模型より30m(現地スケール)の波高分布   a. 30m (local scale) wave height distribution from the model

模型より30mの波高分布は、波向0°については図12に示すとおりであり、波向30°においては図13に示す如くであった。   The wave height distribution of 30 m from the model is as shown in FIG. 12 for the wave direction of 0 °, and as shown in FIG. 13 at the wave direction of 30 °.

何れの波向に対しても、本発明による模型A−1、A−2とも、直立壁型模型Bに比べて高い消波効果が得られ、また、模型A−1、A−2は何れも略同じ消波効果が認められた。
b.模型中央の反射率
For any wave direction, both the models A-1 and A-2 according to the present invention have a higher wave-dissipation effect than the upright wall model B, and the models A-1 and A-2 The same wave-dissipating effect was observed.
b. Reflectance at the center of the model

模型中央の反射率は、波向0°については図14(a)に示す如くであり、波向30°については図14(b)5に示す如くであった。   The reflectivity at the center of the model was as shown in FIG. 14A for the wave direction 0 ° and as shown in FIG. 14B 5 for the wave direction 30 °.

何れの波向に対しても、本発明による模型A−1、A−2とも、直立壁型模型Bに比べて反射率は低く、また、模型A−1、A−2は何れも略同じ反射率の低減効果が認められた。   In any wave direction, the models A-1 and A-2 according to the present invention have a lower reflectance than the upright wall model B, and the models A-1 and A-2 are both substantially the same. The effect of reducing reflectivity was observed.

本発明に係る長周期波低減対策構造物であって、鋼管矢板によって構築した例を示す部分斜視図である。It is a long-period wave reduction countermeasure structure which concerns on this invention, Comprising: It is a fragmentary perspective view which shows the example constructed | assembled with the steel pipe sheet pile. 本発明に係る長周期波低減対策構造物であって、鋼管矢板頭部を梁材によって連結した例を示す部分斜視図である。It is a long-period wave reduction countermeasure structure which concerns on this invention, Comprising: It is a fragmentary perspective view which shows the example which connected the steel pipe sheet pile head with the beam material. 本発明に係る長周期波低減対策構造物であって、遊水部に杭を有する例を示す部分斜視図である。It is a long-period wave reduction countermeasure structure which concerns on this invention, Comprising: It is a fragmentary perspective view which shows the example which has a pile in a water retentive part. 図3に示す構造物において、遊水部の杭の配置を示す平面図である。In the structure shown in FIG. 3, it is a top view which shows arrangement | positioning of the pile of a water retentive part. 試験水槽の断面図である。It is sectional drawing of a test water tank. 実験結果を示すグラフである。It is a graph which shows an experimental result. 本発明に係る長周期波低減対策構造物であって、遊水部に側部仕切り壁を設けない例を示す平面図である。FIG. 2 is a plan view showing an example of a long-period wave reduction countermeasure structure according to the present invention, in which a side partition wall is not provided in a water retentive part. 図7に示す長周期波低減対策構造物の部分拡大斜視図である。FIG. 8 is a partially enlarged perspective view of the long-period wave reduction countermeasure structure shown in FIG. 7. 実験装置である示平面造波水槽を示す平面図であり、(a)は、波向0゜の場合、(b)は波向30゜の場合を示している。It is a top view which shows the display plane wave water tank which is an experimental apparatus, (a) has shown the case where the wave direction is 0 degree, (b) shows the case where the wave direction is 30 degrees. 図9に示す実験装置に使用した模型を示す平面図であり(a)は仕切り壁付き模型A−1、(b)は仕切りなし模型A−2を示している。It is a top view which shows the model used for the experimental apparatus shown in FIG. 9, (a) shows model A-1 with a partition wall, (b) has shown model A-2 without a partition. 図9に示す実験装置における波高計の設置状況を示す平面図である。It is a top view which shows the installation condition of the wave height meter in the experimental apparatus shown in FIG. 図9に示す実験装置により得られた模型より30m(現地スケール)の位置における波向0°場合の波高分布を示すグラフである。10 is a graph showing a wave height distribution when the wave direction is 0 ° at a position of 30 m (local scale) from the model obtained by the experimental apparatus shown in FIG. 9. 同じく波向30°の場合の波高分布を示すグラフである。It is a graph which similarly shows the wave height distribution in case of 30 degrees of wave directions. 図9に示す実験装置により得られた模型中央の反射率を示しており、(a)は波向0°の場合を、(b)は波向30°の場合を示すグラフである。9 shows the reflectance at the center of the model obtained by the experimental apparatus shown in FIG. 9, where (a) is a graph showing a case where the wave direction is 0 °, and (b) is a graph showing a case where the wave direction is 30 °. 長周期波低減対策構造物の従来例を示す縦断面である。It is a longitudinal section which shows the conventional example of a long period wave reduction measure structure. 長周期波低減対策構造物の他の従来例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other conventional example of a long-period wave reduction countermeasure structure.

10 長周期波低減対策構造物
11 前面壁
12 側部仕切り壁
13 後壁
14 通水口
15 遊水部
16 杭
17 天版
18 接岸壁部
20a〜20h 波高計
21 流速計
41 鋼管矢板等
42 梁材
DESCRIPTION OF SYMBOLS 10 Long-period wave reduction countermeasure structure 11 Front wall 12 Side partition wall 13 Rear wall 14 Water inlet 15 Reservoir part 16 Pile 17 Top plate 18 Quay wall part 20a-20h Wave height meter 21 Current meter 41 Steel pipe sheet pile etc. 42 Beam material

Claims (4)

港湾内の船舶接岸岸壁や防波堤、護岸などの海洋構造物の港湾内側面に前面壁を有し、該前面壁に縦向きの通水口が開口し、上記前面壁には前記各通水口毎に奧側に向かって後退する凹部が形成されており、該凹部の奧側の位置に上記通水口が開口し、該通水口の背後にこれと連通した遊水部を備えることによって、周期が数十秒〜数分の長周期波の波高を低減させる低減対策構造物であって
上記前面壁を鋼矢板、鋼管矢板又はコンクリート矢板をもって構築したことを特徴としてなる長周期波低減対策構造物。
There is a front wall on the inner surface of the harbor of marine structures such as ship berths, breakwaters, revetments, etc. in the harbor, and a vertical water passage opening is opened in the front wall, and the front wall is provided for each of the water passages. A recess that recedes toward the dredging side is formed, and the water flow port is opened at a position on the dredging side of the recess , and a water reserving unit that communicates with this is provided behind the water flow port, so that the period is several tens. a reduction measure structure to reduce the height of the second to a few minutes long period waves,
A long-period wave reduction countermeasure structure characterized in that the front wall is constructed of steel sheet piles, steel pipe sheet piles or concrete sheet piles.
上記前面壁背面の遊水部は、複数の前記通水口位置に跨って連続し、内部に仕切り壁を設けない構造である請求項1に記載の長周期波低減対策構造物。   2. The long-period wave reduction countermeasure structure according to claim 1, wherein the water reserving portion on the back surface of the front wall is a structure that is continuous across a plurality of the water inlet positions and does not have a partition wall inside. 上記遊水部には、1つの通水口に対応させて1つの遊水部が構成されるように側部仕切り壁及び周壁を備えてなる請求項1に記載の長周期波低減対策構造物。   The long-period wave reduction countermeasure structure according to claim 1, wherein the water-reserving part includes a side partition wall and a peripheral wall so that one water-reserving part is configured corresponding to one water passage. 桟橋、岸壁、護岸又は防波堤として用いられる請求項1〜4の何れか1の請求項に記載の長周期波低減対策構造物。   The long-period wave reduction countermeasure structure according to any one of claims 1 to 4, which is used as a pier, a quay, a revetment or a breakwater.
JP2006312493A 2006-07-07 2006-11-20 Long-period wave reduction structure Active JP4951726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312493A JP4951726B2 (en) 2006-07-07 2006-11-20 Long-period wave reduction structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006187630 2006-07-07
JP2006187630 2006-07-07
JP2006312493A JP4951726B2 (en) 2006-07-07 2006-11-20 Long-period wave reduction structure

Publications (2)

Publication Number Publication Date
JP2008031820A JP2008031820A (en) 2008-02-14
JP4951726B2 true JP4951726B2 (en) 2012-06-13

Family

ID=39121542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312493A Active JP4951726B2 (en) 2006-07-07 2006-11-20 Long-period wave reduction structure

Country Status (1)

Country Link
JP (1) JP4951726B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285751A (en) * 2009-06-09 2010-12-24 Shimizu Corp Steel pipe sheet pile dolphin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141210A (en) * 1985-12-16 1987-06-24 Kajima Corp Permeation type breakwater
JPH05321224A (en) * 1992-05-27 1993-12-07 Taisei Corp Wave breaking structure
JPH07286316A (en) * 1994-04-19 1995-10-31 Nippon Solid Co Ltd Shore protection method
JP3333838B2 (en) * 1994-07-25 2002-10-15 独立行政法人 港湾空港技術研究所 Water body structure having a water retarding chamber
JPH09143954A (en) * 1995-11-17 1997-06-03 Nippon Solid Co Ltd Caisson and water structure
JPH11350450A (en) * 1998-06-05 1999-12-21 Hokkaido Development Bureau Hakodate Development & Construction Department Slope slit caisson
JP4182523B2 (en) * 2003-07-04 2008-11-19 五洋建設株式会社 Wavebreak revetment structure

Also Published As

Publication number Publication date
JP2008031820A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
CN102535391B (en) Anti-wave ocean platform
JP4904582B2 (en) Long-period wave reduction structure
JP4951726B2 (en) Long-period wave reduction structure
JP4953125B2 (en) Long-period wave reduction structure
CN211646245U (en) High-pile wharf and breakwater structure
JP4512895B2 (en) Long period wave height reduction structure
KR20150141225A (en) Seawater exchanging caisson type breakwater
JP4883452B2 (en) Overflow type long-period wave reduction structure
JP5519613B2 (en) Wave-absorbing structure for long-period wave countermeasures
JP4775738B2 (en) Long-period wave reduction structure
JP2010144437A (en) Structure for reducing long-period wave
JP4183601B2 (en) Flood control dam composed of stalagmite fishway and stone dam
JP4775736B2 (en) Long-period wave reduction structure
JP5587489B1 (en) Wavebreak block, wavebreak block structure, and construction method thereof
JP4764968B2 (en) breakwater
JP4883450B2 (en) Construction method of long-period wave reduction countermeasure structure
JPS63176511A (en) Permeation-type sea area control structure
JP4182523B2 (en) Wavebreak revetment structure
JP5557142B2 (en) Long-period wave reducing structure and its impermeable wall building block
JP5574260B2 (en) Long-period wave reducing structure construction method and guide member used in the method
JP5080614B2 (en) breakwater
KR20100090838A (en) Breakwater for removing wave and construction method for the same
Akgul Effect of Pipe Spacing on the Performance of a Trimaran Floating Pipe Breakwater
JPS6221915A (en) Control structure for tidal waves
JP2014169560A (en) Breakwater structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4951726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250