JP4949359B2 - Underground temperature stratified thermal storage tank - Google Patents

Underground temperature stratified thermal storage tank Download PDF

Info

Publication number
JP4949359B2
JP4949359B2 JP2008299944A JP2008299944A JP4949359B2 JP 4949359 B2 JP4949359 B2 JP 4949359B2 JP 2008299944 A JP2008299944 A JP 2008299944A JP 2008299944 A JP2008299944 A JP 2008299944A JP 4949359 B2 JP4949359 B2 JP 4949359B2
Authority
JP
Japan
Prior art keywords
steel pipe
water tank
tank
heat storage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008299944A
Other languages
Japanese (ja)
Other versions
JP2009103442A (en
Inventor
靖 中村
徹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2008299944A priority Critical patent/JP4949359B2/en
Publication of JP2009103442A publication Critical patent/JP2009103442A/en
Application granted granted Critical
Publication of JP4949359B2 publication Critical patent/JP4949359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0043Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material specially adapted for long-term heat storage; Underground tanks; Floating reservoirs; Pools; Ponds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Earth Drilling (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Building Environments (AREA)

Description

本発明は、水等の蓄熱媒体を使用した蓄熱利用システムにおいて、蓄熱効率が高い地中埋設温度成層型蓄熱水槽に係るものである。   The present invention relates to an underground stratified thermal storage tank with high thermal storage efficiency in a thermal storage system using a thermal storage medium such as water.

従来、水を蓄熱媒体とする蓄熱水槽は、安価に築造するために、建物の地下ピットを利用することが多い。地下ピットは、一般的に水深が2m以下であり、高温側の水と低温側の水が混合しやすい構造(連結完全混合型蓄熱水槽)となるため、蓄熱性能が低くならざるを得ない。高い蓄熱性能が要求される場合は、温度成層型蓄熱水槽が用いられるが、温度成層を確実に形成するためには、かなりの水深(一般的に単一型で6m以上、連結型で3m以上)が必要とされ、建物構造的な要求から必要な地下ピット水槽水深を越えるため、地下掘削量を増やし、必要水深以上の地下ピット水槽を築造するか、ステンレスパネル水槽等の独立した高水深蓄熱水槽の設置が必要となるため、その築造は高コストになる。また、蓄熱水槽としてある程度の容量が必要な場合、水深が浅いため、平面的にかなりの面積を必要とする。さらに、地上設置のパネル水槽はもとより、地下ピット水槽の場合も水深が浅いため、外気温度の影響を受けやすく、熱エネルギーのロスが大きく、ランニングコストの増加を招くため、外気の影響を受けないように断熱工事が必要となり、蓄熱水槽の製作コストが高くなる。   Conventionally, a heat storage tank using water as a heat storage medium often uses an underground pit of a building in order to build it at a low cost. The underground pit generally has a water depth of 2 m or less and has a structure in which high-temperature water and low-temperature water can be easily mixed (connected fully mixed heat storage water tank), so heat storage performance must be lowered. When high heat storage performance is required, a temperature stratification type heat storage water tank is used. However, in order to reliably form a temperature stratification, a considerable water depth (generally 6m or more for a single type, 3m or more for a connected type) ) Is required and the depth of the underground pit tank is exceeded due to the structural requirements of the building, so the amount of underground excavation should be increased and an underground pit tank larger than the required depth should be constructed, or an independent high water depth heat storage such as a stainless steel panel tank Since it is necessary to install an aquarium, its construction is expensive. Moreover, when a certain amount of capacity is required as a heat storage water tank, since the water depth is shallow, a considerable area in plan is required. In addition, the depth of the underground pit tank as well as the panel tank installed on the ground is not affected by the outside air because it is easily affected by the outside air temperature, causing a large loss of thermal energy and increasing the running cost. Thus, heat insulation work is required, and the production cost of the heat storage tank increases.

安価に温度成層型蓄熱水槽を築造する技術として、特開平8−4350号公報に開示されたものがある。これは,基礎杭の中空部を蓄熱水槽として利用するものである。予め地中に杭孔を掘削し、掘削された杭孔に、底蓋を設けた既製鋼管杭を挿入し、杭孔の孔壁と既製鋼管杭の外周との環状空間にグラウト材を充填して地中に設置するものであるが、杭孔掘削による地盤の緩みにより高い支持力が得られず基礎杭としての利用範囲が限定されると共に、施工に伴い発生する掘削土砂や掘削泥水の処理が必要となり、施工コストが高くなる。
特開平8−4350号公報
As a technique for constructing a temperature stratified heat storage water tank at a low cost, there is one disclosed in JP-A-8-4350. This uses the hollow part of the foundation pile as a heat storage tank. Drill a hole in the ground in advance, insert a pre-made steel pipe pile with a bottom cover into the excavated pile hole, and fill the annular space between the hole wall of the pile hole and the outer periphery of the pre-made steel pipe pile with grout material. However, due to the looseness of the ground due to excavation of the pile hole, high bearing capacity is not obtained and the range of use as a foundation pile is limited. Is required, and the construction cost becomes high.
JP-A-8-4350

本発明は、前記従来の蓄熱水槽の持つ問題点を解決することを目的とする。   An object of this invention is to solve the problem which the said conventional thermal storage water tank has.

請求項1記載の地中埋設温度成層型蓄熱水槽は、複数の鋼管杭または鋼管製水槽を継ぎ足して構成された地中埋設温度成層型蓄熱水槽であって、上記鋼管杭または鋼管製水槽の底蓋取付部内面に予め突起物を取付けておき、上記底蓋取付部より下側の上記鋼管杭または鋼管製水槽の側壁部に圧力逃がし穴を開口させ、上記鋼管杭または鋼管製水槽に内接する円盤状の落し蓋をし、周囲を固着して底蓋を形成した後に上記鋼管杭または鋼管製水槽を埋設・据付し、先端部の上記鋼管杭または鋼管製水槽には、上記鋼管杭または鋼管製水槽の内径よりも小径でかつ先端が閉塞されている内挿管が配置されており、上記鋼管杭または鋼管製水槽を所定位置まで回転圧入した後に、継手によって内挿管を延長した上で上記鋼管杭または鋼管製水槽と継ぎ足し鋼管とを接続して蓄熱水槽の水深を確保したことを特徴とする。 The underground buried thermal stratification type thermal storage tank according to claim 1 is an underground buried thermal stratification type thermal storage tank constructed by adding a plurality of steel pipe piles or steel pipe tanks, and the bottom of the steel pipe piles or the steel pipe tanks. A protrusion is attached in advance to the inner surface of the lid mounting portion, and a pressure relief hole is opened in the side wall portion of the steel pipe pile or the steel pipe water tank below the bottom lid mounting portion, and is inscribed in the steel pipe pile or the steel pipe water tank. a disc-shaped drop lid, the steel pipe pile or steel pipe water tank buried-and installed after the formation of the bottom cover to secure the surroundings, the above steel pipe pile or steel pipe tank tip, the steel pipe pile or steel pipe than the inner diameter of the water tank are arranged among intubation smaller in diameter and the distal end is closed, after rotating pressed the steel pipe pile or steel pipe water tank to a predetermined position, the steel pipe pile after having extended inner intubation by joint Or a steel pipe tank By connecting the steel pipe added, characterized in that securing the depth of the heat storage tank.

請求項2記載の地中埋設温度成層型蓄熱水槽は、先端に掘削歯を取付けた大口径の鋼管製水槽の底蓋取付部内面に予め突起物を取付けておき、上記底蓋取付部より下側の上記鋼管製水槽の側壁部に圧力逃がし穴を開口させ、上記鋼管製水槽に内接する円盤状の落し蓋をし、周囲を固着して底蓋を形成して上記鋼管製水槽の先端または中途に底蓋を設け密閉し、貯水可能とし、上記鋼管製水槽を内部に侵入する土砂を排除しながら回転力と下向きの力を付加して地中に回転圧入させて埋設・据付し、上記鋼管製水槽の内部に注水配管・取水配管を設置し、上記鋼管製水槽の内径よりも小径でかつ先端が閉塞されている内挿管が上記鋼管製水槽の内側に配置され、上記鋼管製水槽と上記内挿管との間隙には空気または気体を含む断熱材が充填されており、注水配管・取水配管を上記内挿管の内側に設置し、複数の鋼管製水槽を継ぎ足して構成された地中埋設温度成層型蓄熱水槽であって、先端部の羽根付鋼管製水槽には、上記羽根付鋼管製水槽の内径よりも小径でかつ先端が閉塞されている内挿管が配置されており、上記羽根付鋼管製水槽を所定位置まで回転圧入した後に、継手によって内挿管を延長した上で上記羽根付鋼管製水槽と継ぎ足し鋼管とを接続して蓄熱水槽の水深を確保したことを特徴とする。 The underground buried thermal stratification type thermal storage tank according to claim 2 has a protrusion attached in advance to the inner surface of the bottom lid attachment part of a large-diameter steel pipe water tank with excavating teeth attached to the tip, and is below the bottom lid attachment part. A pressure relief hole is opened in the side wall of the steel pipe water tank on the side, a disk-shaped drop lid inscribed in the steel pipe water tank is formed, and a bottom cover is formed by fixing the periphery to the tip or middle of the steel pipe water tank. the sealed provided bottom cover, store water and then, the steel pipe water tank embedded and installed by rotating pressed into the ground by adding a rotational force and a downward force while excluding sand entering the interior, the steel tube internal water injection pipes and water intake pipes installed in the manufacturing aquarium intubation inner diameter a and the tip is closed than the inner diameter of the steel pipe water tank is arranged inside said steel pipe water tank, the steel pipe water tank and the The gap with the intubation tube is filled with a heat insulating material containing air or gas. Cage, water injection piping-water intake pipes installed inside said intubation, a underground temperature stratified heat storage water tank constructed by replenishing the plurality of steel pipe water tank, the winged steel pipe aquarium tip , than the inner diameter of the vaned steel pipe water tank are arranged among intubation smaller in diameter and the distal end is closed, after rotating pressed the steel pipe water tank with the blade to a predetermined position, and extending the inner intubation by joint The above- mentioned bladed steel pipe water tank and the additional steel pipe are connected to ensure the water depth of the heat storage water tank.

請求項3記載の地中埋設温度成層型蓄熱水槽は、請求項1又は2に記載の発明において、上記鋼管製水槽の内面および外面の少なくとも一方が、塩化ビニル、ポリエチレン、ウレタン、エポキシ等で防食被覆されていることを特徴とする。 Underground temperature stratified heat storage tank according to claim 3, wherein the corrosion protection in the invention of claim 1 or 2, at least one of the inner and outer surfaces of the steel pipe water tank, vinyl chloride, polyethylene, urethane, epoxy or the like It is characterized by being coated.

本願の構成により、前記の課題を次のように解決できる。本発明の底部に掘削羽根を溶接した鋼管製水槽は、回転圧入により地中に埋設することができるため、地下掘削の必要がなく、施工時間を短縮でき、施工コストが安価となる。本発明の建物を支持する基礎杭としての回転圧入鋼管杭を地中埋設温度成層型蓄熱水槽として使用する場合には、さらに施工コストが安価になるとともに、基礎杭として高い支持力が得られる。本発明の底部先端に掘削羽根を取付けた鋼管製水槽と回転圧入鋼管杭からなる蓄熱水槽の地中への埋設には、事前に孔を掘削する必要がないため、掘削土砂や掘削泥水が発生せず、その処理コストがないので、施工コストが安価になる。また、埋設時と逆回転させれば撤去も容易であるため、リサイクルも可能である。本発明の底部先端に掘削羽根または掘削歯を有する鋼管製水槽は、回転圧入鋼管杭を蓄熱槽とする場合に比べ、構造的な支持力が必要ないため、鋼管の厚さが薄くてよく、材質的に低強度だが耐食性の高いステンレス等を使用することも可能である。さらに、大口径の鋼管の埋設が可能なため、大容量の蓄熱水槽を安価に製作することが可能である。本発明の底部先端に掘削歯を有する鋼管製水槽は、内部に浸入する土砂の排除が必要なものの、掘削羽根付きの鋼管を排土なしで圧入する場合に比べて、回転耐力が小さくてよいため、鋼管の厚さがさらに薄くてもよい。また、さらに大口径の鋼管の埋設が可能である。本発明の温度成層型蓄熱水槽は、地中深く埋設され、地中深くは外気の影響を受けず、その周囲が土砂で覆われており、断熱効果が期待できるため熱エネルギーのロスが少なく、断熱に要するコストは安価になる。本発明の底部先端に掘削羽根または掘削歯を取付けた鋼管製水槽と回転圧入鋼管杭からなる蓄熱水槽は、地中に深く埋設可能であるため、平面的に少ない設置面積で大量の水を蓄えることができる。例えば、1000m3の蓄熱水槽を構築する場合、連結型の温度成層型蓄熱水槽では、水深3mで約330m2の平面的設置面積が必要であるが、本発明の底部に羽根を溶接した鋼管製蓄熱水槽では、直径2m、有効水深20mの蓄熱水槽1本で容量は60m3であるから、約16本の温度成層型蓄熱水槽を構築すればよく、3〜4mのピッチで温度成層型蓄熱水槽を地中に埋設した場合でも、約半分の平面的専有面積程度で済む。本発明における地中埋設温度成層型蓄熱水槽は、建物を支持する基礎杭としての回転圧入鋼管杭の一部または全部を蓄熱水槽として利用すると共に、建物の屋外または前記建物の基礎杭の間の鋼管製蓄熱水槽を配置し、連結使用することもできる構成としているため、地下を有効に活用して大量の蓄熱媒体としての水を蓄えることができるとともに、その上部空間も他用途に有効に活用することができる。 According to the configuration of the present application, the above problem can be solved as follows. The steel pipe water tank in which the excavation blades are welded to the bottom of the present invention can be buried in the ground by rotary press-fitting, so there is no need for underground excavation, construction time can be shortened, and construction cost is low. When the rotary press-fit steel pipe pile as the foundation pile supporting the building of the present invention is used as an underground buried thermal stratification type heat storage water tank, the construction cost is further reduced and a high bearing capacity is obtained as the foundation pile. Since there is no need to dig a hole in advance in the underground storage of a heat storage tank consisting of a steel pipe tank and a rotary press-fit steel pipe pile with a drilling blade attached to the bottom tip of the present invention, drilling earth and mud are generated. Without the processing cost, the construction cost becomes low. Moreover, if it is rotated reversely to the time of embedding, it can be easily removed, so that it can be recycled. Compared to the case where a rotary press-fit steel pipe pile is used as a heat storage tank, a steel pipe water tank having a drilling blade or a drilling tooth at the bottom end of the present invention does not require a structural support force, so the thickness of the steel pipe may be thin, It is also possible to use stainless steel having a low strength but high corrosion resistance. Furthermore, since a large-diameter steel pipe can be embedded, a large-capacity heat storage water tank can be manufactured at low cost. The steel pipe water tank having the excavating teeth at the bottom end of the present invention needs to eliminate the earth and sand entering the inside, but the rotational proof stress may be smaller than the case where the steel pipe with the excavating blade is press-fitted without draining. Therefore, the thickness of the steel pipe may be further reduced. Furthermore, it is possible to embed a steel pipe having a larger diameter. The temperature stratified heat storage tank of the present invention is deeply buried in the ground, is not affected by outside air deep in the ground, and its surroundings are covered with earth and sand, and since a heat insulation effect can be expected, there is little loss of thermal energy, The cost required for insulation is low. The heat storage water tank consisting of a steel pipe water tank and a rotary press-fit steel pipe pile with a drilling blade or drilling tooth attached to the bottom tip of the present invention can be deeply buried in the ground, and therefore stores a large amount of water with a small installation area in a plane. be able to. For example, when constructing a heat storage tank of 1000 m 3 , a connected temperature stratification type heat storage tank requires a plane installation area of about 330 m 2 at a water depth of 3 m, but it is made of a steel pipe with blades welded to the bottom of the present invention. The heat storage tank has a diameter of 2 m and an effective water depth of 20 m and a capacity of 60 m 3 , so it is sufficient to construct about 16 temperature stratified heat storage tanks, and a temperature stratified heat storage tank with a pitch of 3 to 4 m. Even if it is buried in the ground, it suffices to occupy about half of the plane exclusive area. The underground stratified thermal storage tank in the present invention uses part or all of a rotary press-fit steel pipe pile as a foundation pile for supporting a building as a thermal storage tank, and is located outside the building or between the foundation piles of the building. The steel heat storage water tank is arranged and can be connected and used, so it is possible to store a large amount of water as a heat storage medium by effectively using the underground, and the upper space can also be used effectively for other purposes. can do.

本発明の構成により以下のような効果が得られる。
(1)蓄熱性能の高い地下埋設温度成層型蓄熱水槽を安価に構築できる。
(2)建物を支持する基礎杭としての回転圧入鋼管杭を蓄熱水槽として利用すれば、より安価に地下埋設温度成層型蓄熱水槽を構築できる。
(3)蓄熱性能の高い地下埋設温度成層型蓄熱水槽を、平面的に少ない面積で構築でき、蓄熱水槽が全て地下に埋設されるため、上部空間を有効に活用できる。
(4)回転圧入鋼管杭は、高い支持力が得られるため、建物の基礎杭としての本来の性能を損なわない。
(5)地下埋設温度成層蓄熱水槽は、回転圧入により地中に埋設されるので、事前に孔を掘削する必要がなく、掘削土砂・掘削泥水の処理を必要としない。
(6)地下深く埋設されるため、断熱効果が期待でき蓄熱水槽の熱エネルギーロスを低減でき、断熱にようするコストを安価にできる。
The following effects can be obtained by the configuration of the present invention.
(1) An underground buried temperature stratified heat storage water tank with high heat storage performance can be constructed at low cost.
(2) If a rotary press-fit steel pipe pile as a foundation pile supporting a building is used as a thermal storage tank, an underground buried thermal stratified thermal storage tank can be constructed at a lower cost.
(3) An underground buried thermal stratification type thermal storage water tank with high heat storage performance can be constructed with a small area in a plane, and since the entire thermal storage tank is buried underground, the upper space can be used effectively.
(4) Since the rotational press-fit steel pipe pile has a high bearing capacity, it does not impair the original performance of the building as a foundation pile.
(5) The underground buried thermal stratified thermal storage water tank is buried in the ground by rotary press-fitting, so there is no need to excavate holes in advance, and no treatment of excavated sediment / drilling mud is required.
(6) Since it is buried deep underground, a heat insulation effect can be expected, the thermal energy loss of the heat storage tank can be reduced, and the cost for heat insulation can be reduced.

本発明の実施形態を図により説明する。図1は、建物を支持する基礎杭としての回転圧入鋼管杭1を温度成層型蓄熱水槽として利用した例を示すものである。鉛直力を支持する場合の回転圧入鋼管杭1の直径は1.2〜1.5m程度のものであり、水平力を支持する場合の鋼管杭はより大口径のものも考えられる。回転圧入鋼管杭1の下部には、掘削羽根3が設けられる。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example in which a rotary press-fit steel pipe pile 1 as a foundation pile supporting a building is used as a temperature stratified heat storage tank. The diameter of the rotary press-fit steel pipe pile 1 when supporting the vertical force is about 1.2 to 1.5 m, and the steel pipe pile when supporting the horizontal force may have a larger diameter. Excavation blades 3 are provided below the rotary press-fit steel pipe pile 1.

図2に回転圧入鋼管杭1を示す。この回転圧入鋼管杭1が単管では蓄熱水槽の水深が不足する場合は、現場での円周溶接等によって継ぎ足すことで対応できる。なお、回転圧入鋼管杭1に外面防食が必要な場合にはポリエチレンやウレタン等で外面被覆を施してもよく、内面防食が必要な場合には硬質塩化ビニルやエポキシ等で内面被覆を施してもよい。   FIG. 2 shows a rotary press-fit steel pipe pile 1. If this rotary press-fit steel pipe pile 1 is a single pipe, the water storage tank can be deficient in the water storage tank by adding by circumferential welding or the like at the site. The outer surface of the rotary press-fit steel pipe pile 1 may be coated with polyethylene, urethane or the like, and if inner surface corrosion is required, the inner surface may be coated with hard vinyl chloride or epoxy. Good.

図2(a)に示すように、回転圧入鋼管杭1の下端は螺旋状に切り欠かれており、この螺旋状切り欠きの始端部と終端部とは段差部分を介して接続されている。そして、螺旋状に切り欠かれた回転圧入鋼管杭1の下端面に沿って、掘削羽根3が回転圧入鋼管杭1に対して同心状に固定されている。   As shown in FIG. 2A, the lower end of the rotary press-fit steel pipe pile 1 is notched in a spiral shape, and the start end and the end end of the spiral notch are connected via a stepped portion. And the excavation blade | wing 3 is fixed concentrically with respect to the rotation press-fit steel pipe pile 1 along the lower end surface of the rotary press-fit steel pipe pile 1 cut out helically.

掘削羽根3は、図3に示すように円盤状(リング状)の鋼板を半径方向に一部切欠いて形成されており、掘削羽根3の始端切断面31には掘削刃32が溶接により固着されている。掘削羽根3はその始端切断面31から徐々に回転圧入鋼管杭1の下端部から離れながら螺旋状に上昇し、終端切断面33までほぼ1周程度周回するように形成されている。   As shown in FIG. 3, the excavation blade 3 is formed by partially cutting a disk-shaped (ring-shaped) steel plate in the radial direction, and an excavation blade 32 is fixed to the starting end cut surface 31 of the excavation blade 3 by welding. ing. The excavation blade 3 is formed so as to gradually spiral from the starting end cutting surface 31 while being separated from the lower end portion of the rotary press-fit steel pipe pile 1 and to circulate about one turn to the terminal cutting surface 33.

掘削羽根3の始端切断面31と終端切断面33との開き角度34は、図3の例では45度程度であるが、10度から90度の範囲で設定することができる。なお回転羽根2を延長して開き角度34を0度の位置にした場合には、破線で示す仮想終端切断面33aと始端切断面31とが平行となる。   The opening angle 34 between the start end cut surface 31 and the end cut surface 33 of the excavation blade 3 is about 45 degrees in the example of FIG. 3, but can be set in the range of 10 degrees to 90 degrees. In addition, when the rotary blade 2 is extended and the opening angle 34 is set to a position of 0 degree, the virtual end cut surface 33a and the start end cut surface 31 indicated by broken lines are parallel to each other.

また掘削羽根3の中心部には開端穴4が開口されている。図2、図3の例では開端穴4の直径Dが回転圧入鋼管杭1の内径の0.6倍程度に設定されているが、本発明の開端穴4の直径は回転圧入鋼管杭1の内径以下であればいかなる直径であってもよく、また回転圧入鋼管杭1に開端穴4を設けなくともよい。   An open end hole 4 is opened at the center of the excavation blade 3. 2 and 3, the diameter D of the open end hole 4 is set to about 0.6 times the inner diameter of the rotary press-fit steel pipe pile 1, but the diameter of the open end hole 4 of the present invention is that of the rotary press-fit steel pipe pile 1. Any diameter may be used as long as it is equal to or smaller than the inner diameter, and the open end hole 4 may not be provided in the rotary press-fit steel pipe pile 1.

上記のような開き角度34、開端穴4を備えた掘削羽根3は、回転圧入鋼管杭1の優れた貫入性を確保し、施工効率向上によるコストの低減に寄与する。また、上記形状の掘削羽根3は、管内部への土壌の侵入を管直径の1.5倍程度から管体長さの半分程度までの間に調節することができ、回転圧入鋼管杭1の内部空間の有効利用が可能となる。なお、図1,図2では、掘削羽根は、螺旋状羽根として示されているが、回転圧入に適したものであれば、掘削羽根の形状、その設置位置は、他のどのようなものでもよい。   The excavation blade 3 having the opening angle 34 and the open end hole 4 as described above ensures excellent penetration of the rotary press-fit steel pipe pile 1 and contributes to cost reduction by improving construction efficiency. Further, the excavation blade 3 having the above-described shape can adjust the invasion of soil into the pipe between about 1.5 times the pipe diameter and about half the pipe length, and the inside of the rotary press-fit steel pipe pile 1 Effective use of space becomes possible. 1 and 2, the excavation blade is shown as a spiral blade, but the shape of the excavation blade and its installation position are not limited as long as it is suitable for rotary press-fitting. Good.

回転圧入鋼管杭1を回転圧入する過程で、掘削羽根3で掘削された土砂の一部は、回転圧入鋼管杭1の周囲に排土され、回転圧入鋼管杭1の回転により、その外周に圧密される
。また、掘削土砂の一部は、掘削羽根3の内側開放部4から杭内に浸入する。地盤・土壌の状況により異なるが、土砂の浸入は、図1の5で示した範囲(概ね杭全長の40〜50%)である。土砂浸入上部を蓋で密閉し、蓄熱水槽の底蓋7とすることにより、蓄熱水槽の水深は図1の6で示される範囲(概ね杭全長の50〜60%)となる。より深い水深を確保したい場合は、杭内部に浸入した土砂を排除して確保してもよい。回転圧入鋼管杭1の上部には、建物の下部構造としてのフーチング2が構築される。鋼管杭蓄熱水槽の内部には、注水配管9、取水配管10を設置する。蓄熱水槽の配管端部は、温度成層を形成した熱媒体としての水から効率良く蓄熱および蓄熱回収を行うため、一方は蓄熱水槽底部近傍、他方は蓄熱水槽の高水位レベル近傍に配置する。
In the process of rotationally press-fitting the rotary press-fit steel pipe pile 1, a part of the earth and sand excavated by the excavation blades 3 is discharged around the rotary press-fit steel pipe pile 1, and the rotary press-fit steel pipe pile 1 is rotated and consolidated on its outer periphery. Is done. Further, a part of the excavated earth and sand enters the pile from the inner opening 4 of the excavating blade 3. Although depending on the ground and soil conditions, the infiltration of earth and sand is in the range indicated by 5 in FIG. 1 (approximately 40 to 50% of the entire pile length). By closing the soil infiltration top with a lid and using the bottom lid 7 of the heat storage tank, the water depth of the heat storage tank is in the range indicated by 6 in FIG. 1 (generally 50-60% of the total pile length). When it is desired to secure a deeper water depth, it may be ensured by removing earth and sand that has entered the pile. On the upper part of the rotary press-fit steel pipe pile 1, a footing 2 as a lower structure of the building is constructed. A water injection pipe 9 and a water intake pipe 10 are installed inside the steel pipe pile heat storage water tank. In order to efficiently store and recover heat from water as a heat medium having formed a temperature stratification, one end of the pipe of the heat storage tank is disposed near the bottom of the heat storage tank and the other is disposed near the high water level of the heat storage tank.

図4は、掘削羽根付きの鋼管製水槽を地中に回転圧入して埋設し、温度成層型蓄熱水槽を構築した一例を示すものである。鋼管製水槽8とする大径の鋼管の一端に、掘削用の羽根3を取り付ける。掘削羽根3の形状、設置位置については、回転圧入に適するものであれば、図2、図3に示すような螺旋状羽根をはじめとして、どのようなものでもよい。この鋼管製水槽8に回転力と下向きの付勢力を加え、先端の掘削羽根3によって地盤を掘削しながら地中に回転圧入して埋設し、底部を底蓋7で密閉し、地中埋設温度成層型蓄熱水槽を構築する。単管では蓄熱水槽の水深が不足する場合は、鋼管杭の施工と同様に、現場円周溶接により鋼管を継ぐことで対応する。蓄熱水槽の内部には、建物を支持する基礎杭としての回転圧入鋼管杭を温度成層型蓄熱水槽として利用する場合と同様に、注水配管9、取水配管10を設置する。   FIG. 4 shows an example in which a steel pipe water tank with excavation blades is rotationally press-fitted into the ground and embedded to construct a temperature stratified heat storage water tank. A blade 3 for excavation is attached to one end of a large-diameter steel pipe used as a steel pipe water tank 8. The shape and installation position of the excavation blade 3 may be anything including a spiral blade as shown in FIGS. 2 and 3 as long as it is suitable for rotary press-fitting. A rotational force and a downward biasing force are applied to the steel pipe water tank 8, and the ground is excavated with the excavation blade 3 at the tip while being rotatively pressed and buried in the ground. Build a stratified thermal storage tank. When the water depth of the heat storage tank is insufficient with a single pipe, it is handled by joining the steel pipe by in-situ circumferential welding in the same way as the construction of the steel pipe pile. As in the case of using a rotary press-fit steel pipe pile as a foundation pile supporting a building as a temperature stratified heat storage water tank, a water injection pipe 9 and a water intake pipe 10 are installed inside the heat storage water tank.

同様に、図6は掘削歯付きの鋼管製水槽を地中に回転圧入して埋設し、温度成層型蓄熱水槽を構築した一例を示すものである。図11は、掘削歯付きの鋼管製水槽を地中に回転圧入する施工法の一例を示すもので、底部先端に掘削歯23を有する大口径の鋼管8を、内部に侵入する土砂をハンマーグラブ25で排除しながら、ケーシングジャッキ24で回転揺動させ地中に圧入する。鋼管の回転は、回転揺動ではなく全旋回連続回転でもよい。   Similarly, FIG. 6 shows an example in which a temperature stratified heat storage tank is constructed by rotating and embedding a steel pipe tank with excavated teeth into the ground. FIG. 11 shows an example of a construction method in which a steel pipe water tank with excavating teeth is rotationally press-fitted into the ground. A large-diameter steel pipe 8 having excavating teeth 23 at the bottom end is inserted into a hammer grab. While being excluded at 25, the casing jack 24 is rotated and oscillated and press-fitted into the ground. The rotation of the steel pipe may be a full turn continuous rotation instead of rotational swinging.

図13〜図16は、鋼管杭および鋼管製水槽の底蓋の施工方法の実施例を示したものである。図13は、鋼管杭および鋼管製水槽の底蓋取付部内面に予め突起物としての鋼輪26を溶接しておき、鋼管杭および鋼管製水槽の埋設・据付後に鋼管杭および鋼管製水槽に内接する円盤状の落し蓋7を前記鋼輪26に係合させ、周囲を溶接27して底蓋を形成する例である。   FIGS. 13-16 shows the Example of the construction method of the bottom cover of a steel pipe pile and a steel pipe water tank. FIG. 13 shows that a steel ring 26 as a projection is welded in advance to the inner surface of the bottom lid mounting portion of the steel pipe pile and the steel pipe water tank, and the steel pipe pile and the steel pipe water tank are internally embedded after installation and installation of the steel pipe pile and the steel pipe water tank. In this example, the disk-shaped drop lid 7 in contact is engaged with the steel wheel 26 and the periphery is welded 27 to form the bottom lid.

図14は、鋼管杭および鋼管製水槽内部に土壌があまり侵入してこない場合において底蓋7を回転圧入後に形成する態様の一例である。図14の例では、予め鋼管杭および鋼管製水槽内周の土壌侵入位置上部(底蓋形成位置)に鋼輪26を溶接しておく。次に鋼管杭および鋼管製水槽の回転圧入後に、鋼管に内接する落し蓋7を投下した上で、防水目地を鋼管との取合部に取ったシンダーコンクリート35を打設する。そして目地部をシール36した後に塗膜防水37を行い底蓋7を形成する。   FIG. 14 is an example of an embodiment in which the bottom lid 7 is formed after the rotary press-fitting when the soil does not penetrate so much into the steel pipe pile and the steel pipe water tank. In the example of FIG. 14, the steel wheel 26 is welded in advance to the upper part of the soil intrusion position (bottom lid formation position) on the inner periphery of the steel pipe pile and the steel pipe water tank. Next, after the rotary press-fitting of the steel pipe pile and the steel pipe water tank, after dropping the drop lid 7 inscribed in the steel pipe, cinder concrete 35 having a waterproof joint at the joint with the steel pipe is placed. Then, after sealing the joint portion 36, a waterproof coating 37 is applied to form the bottom lid 7.

図15の例は、鋼管杭および鋼管製水槽の内面の所定の位置に予め底蓋7を取付けておく例を示したものである。この実施例において、硬質地盤等で貫入抵抗が大きい場合には、先端から浸入する土壌38により底蓋7下部の空間で圧縮される空気を抜くために空気抜き孔29を形成して貫入抵抗を減少させるのが好ましい。   The example of FIG. 15 shows an example in which the bottom cover 7 is attached in advance at predetermined positions on the inner surfaces of the steel pipe pile and the steel pipe water tank. In this embodiment, when the penetration resistance is large due to hard ground or the like, an air vent hole 29 is formed to remove the air compressed in the space below the bottom cover 7 by the soil 38 entering from the tip, thereby reducing the penetration resistance. It is preferable to do so.

図15(a),(b)は、底蓋7に空気抜き孔29を設け、鋼管杭および鋼管製水槽の回転圧入後に空気抜き孔29をプレート30で塞ぐことで底蓋7の形成を完了する例である。また図15(c)は空気抜き孔29を底蓋7直下の鋼管杭および鋼管製水槽の側壁部に開口した例である。この場合には回転圧入後に空気抜き孔29を塞ぐ必要はない。   FIGS. 15A and 15B show an example in which an air vent hole 29 is provided in the bottom lid 7 and the formation of the bottom lid 7 is completed by closing the air vent hole 29 with a plate 30 after the rotary press-fitting of the steel pipe pile and the steel pipe water tank. It is. FIG. 15C shows an example in which the air vent hole 29 is opened in the steel pipe pile just below the bottom cover 7 and the side wall of the steel pipe water tank. In this case, it is not necessary to block the air vent hole 29 after the rotational press-fitting.

また図16は、鋼管杭および鋼管製水槽の内部に土壌がある程度侵入してくる場合において底蓋7を回転圧入後に形成する態様の一例である。図16の例では、予め鋼管内周の土壌侵入位置上部(底蓋形成位置)にコンクリート定着用の輪状鉄筋26aを溶接しておく。次に鋼管杭および鋼管製水槽の回転圧入後にコンクリート28を流し込み、さらに防水目地を鋼管との取り合い部に取ったシンダーコンクリート35を打設する。以下、図14の上記例と同様の工程で底蓋7が形成される。なお、底蓋形成位置より地下水位が浅い場合でも、水中コンクリートを打設することにより底蓋7の形成が可能である。   FIG. 16 is an example of an embodiment in which the bottom lid 7 is formed after the rotary press-fitting when the soil enters the steel pipe pile and the steel pipe water tank to some extent. In the example of FIG. 16, a ring-shaped reinforcing bar 26a for concrete fixing is previously welded to the upper part of the soil intrusion position (bottom lid forming position) on the inner periphery of the steel pipe. Next, concrete 28 is poured into the steel pipe pile and the steel pipe water tank after the rotary press-fitting, and cinder concrete 35 having a waterproof joint at the joint with the steel pipe is placed. Thereafter, the bottom cover 7 is formed in the same process as the above example of FIG. Even when the groundwater level is shallower than the bottom lid formation position, the bottom lid 7 can be formed by placing underwater concrete.

また図17は、鋼管杭および鋼管製水槽の内側に内挿管39を配置した例である。内挿管39はその外径が鋼管の内径よりも小さく設定されており、内挿管39の先端はキャップなどによって閉塞されている。鋼管と内挿管39との間隙には空気、または気体を含む断熱材40が充填されている。そして、内挿管39の内側には2本の配管41,42が配置され、水またはその他の熱媒が内挿管39の内部を循環するように構成されている。なお、図17は、冷水の蓄熱運転時または温水の蓄熱回収(放熱)運転時の例であって、配管41を注水配管とし、配管42を取水配管としているが、冷水の放熱運転時または温水の蓄熱運転時に切り替えた場合には、配管42が注水配管となり、配管41が取水配管に切り替わる[図示を省略する]。   Moreover, FIG. 17 is the example which has arrange | positioned the intubation 39 inside the steel pipe pile and the steel pipe water tank. The outer diameter of the inner intubation 39 is set smaller than the inner diameter of the steel pipe, and the distal end of the inner intubation 39 is closed by a cap or the like. The gap between the steel pipe and the inner tube 39 is filled with a heat insulating material 40 containing air or gas. Two pipes 41 and 42 are disposed inside the inner intubation 39, and water or other heat medium is circulated inside the inner intubation 39. FIG. 17 shows an example of a cold water heat storage operation or a hot water heat storage recovery (radiation) operation, in which the pipe 41 is a water injection pipe and the pipe 42 is a water pipe. When the heat storage operation is switched, the pipe 42 becomes a water injection pipe and the pipe 41 is switched to a water intake pipe [not shown].

また図18は、単管では蓄熱水槽の水深が不足する場合において、鋼管杭および鋼管製水槽の鋼管と内挿管39とを継ぎ足して温度成層型蓄熱水槽を延長する例である。   Moreover, FIG. 18 is an example which extends the temperature stratification type | mold thermal storage water tank by adding the steel pipe of the steel pipe pile and the steel pipe water tank, and the internal insertion pipe 39, when the water depth of a heat storage tank is insufficient with a single pipe.

図18の蓄熱水槽の設置作業では、まず先端部の羽根付鋼管43の内側に先端が閉塞された小径の内挿管39を挿入する。羽根付鋼管43と内挿管39との間隙には気体を含む断熱材40が充填されており、必要に応じて冶具等を用いることによって羽根付鋼管43内に内挿管39が固定されている。   In the heat storage water tank installation operation of FIG. 18, first, a small-diameter inner tube 39 whose tip is closed is inserted inside the bladed steel pipe 43 at the tip. A gap between the bladed steel tube 43 and the inner tube 39 is filled with a heat insulating material 40 containing gas, and the inner tube 39 is fixed in the bladed steel tube 43 by using a jig or the like as necessary.

次に、羽根付鋼管43を所定位置まで回転圧入し、継ぎ足し用鋼管44を吊り込んで羽根付鋼管43と継ぎ足し用鋼管44とを接合する。継ぎ足し用鋼管44の内側にも内挿管39が固定されており、継ぎ足し用鋼管44と内挿管39の間隙においても気体を含む断熱材40が充填されている。ここで、内挿管39同士の接合は、水密性、可撓性および伸縮性に優れた継手45によって行い、羽根付鋼管43と継ぎ足し用鋼管44との接合は、現場円周溶接等により行なわれる。   Next, the bladed steel pipe 43 is rotationally press-fitted to a predetermined position, the additional steel pipe 44 is suspended, and the bladed steel pipe 43 and the additional steel pipe 44 are joined. An inner intubation 39 is also fixed inside the additional steel pipe 44, and a heat insulating material 40 containing gas is also filled in the gap between the additional steel pipe 44 and the inner intubation 39. Here, the joints 39 are joined by a joint 45 having excellent water tightness, flexibility and stretchability, and the joint between the bladed steel pipe 43 and the additional steel pipe 44 is performed by on-site circumferential welding or the like. .

上記の羽根付鋼管43と継ぎ足し用鋼管44との接合が完了した後、一体化した羽根付鋼管43および継ぎ足し用鋼管44を回転圧入する。必要に応じて上記の継ぎ足し作業を繰り返すことで、所望の長さまで蓄熱水槽を延長することができる。そして、回転圧入の完了後に内挿管39の内側に2本の配管41,42を配置して蓄熱水槽が完成する。ここで、図18(b)は、冷水の蓄熱運転時または温水の蓄熱回収(放熱)運転時の例であって、配管41を注水配管とし、配管42を取水配管としているが、冷水の放熱運転時または温水の蓄熱運転時に切り替えた場合には、配管42が注水配管となり、配管41が取水配管に切り替わる[図示を省略する]。   After the joining of the bladed steel pipe 43 and the extension steel pipe 44 is completed, the integrated bladed steel pipe 43 and the extension steel pipe 44 are rotationally press-fitted. The heat storage tank can be extended to a desired length by repeating the above-described addition work as necessary. Then, after completion of the rotary press-fitting, the two pipes 41 and 42 are arranged inside the inner intubation 39 to complete the heat storage water tank. Here, FIG. 18B is an example of the cold water heat storage operation or the hot water heat storage recovery (radiation) operation, in which the pipe 41 is a water injection pipe and the pipe 42 is a water supply pipe. When switching during operation or during hot water heat storage operation, the pipe 42 becomes a water injection pipe, and the pipe 41 is switched to a water intake pipe [not shown].

なお、上記の設置作業はあくまで1例であって、図示の例に限定されることはない。例えば、継ぎ足し用鋼管44に予め内挿管39を固定することなく、継ぎ足し用鋼管44と内挿管39とを同時に吊り込んで各々接合してもよい。また、内挿管39の固定を冶具のみによって行い、羽根付鋼管43および継ぎ足し用鋼管44の埋設が完了した後で鋼管43,44と内挿管39との間隙を閉鎖して、空気による断熱層を形成するようにしてもよい[ともに図示を省略する]。   Note that the above installation work is merely an example, and is not limited to the illustrated example. For example, the extension steel pipe 44 and the inner insertion pipe 39 may be suspended at the same time and joined to each other without fixing the inner insertion pipe 39 to the extension steel pipe 44 in advance. Further, the inner tube 39 is fixed only with a jig, and after the embedment of the bladed steel tube 43 and the additional steel tube 44 is completed, the gap between the steel tubes 43, 44 and the inner tube 39 is closed, and a heat insulating layer is formed by air. It may be formed [both are not shown].

図1、図4および図6には、回転圧入鋼管杭及び回転圧入鋼管製水槽で構築された地下
埋設温度成層型蓄熱水槽において、冷水の蓄熱時および温水の熱回収時の運転状態を示している。さらに、図5は、掘削羽根付きの回転圧入鋼管製水槽で構築された地中埋設温度成層型蓄熱水槽における、冷水の熱回収時および温水の蓄熱時の運転状態を示す。この場合、注水配管9と取水配管は、図1および図4の運転状態の逆になる。回転圧入鋼管杭および掘削歯付きの回転圧入鋼管製水槽により構築される地中埋設温度成層型蓄熱水槽においても同様である。
1, 4, and 6 show an operation state at the time of storing cold water and recovering heat of hot water in an underground buried thermal stratification type thermal storage tank constructed by rotary press-fit steel pipe piles and rotary press-fit steel pipe water tanks. Yes. Furthermore, FIG. 5 shows the driving | running state at the time of the heat | fever recovery of cold water and the thermal storage of the warm water in the underground buried temperature stratification type thermal storage water tank constructed with the rotary press-fit steel pipe water tank with the excavation blade. In this case, the water injection pipe 9 and the water intake pipe are opposite to the operation states of FIGS. 1 and 4. The same applies to the underground buried thermal stratification type thermal storage tank constructed by a rotary press-fit steel pipe pile and a rotary press-fit steel pipe water tank with excavating teeth.

図7〜図10は、本発明による地中埋設温度成層型蓄熱水槽を複数並列に連結して利用する場合の空調システムを簡略化した一例の概略図である。熱源機11で製造した冷水または温水は、蓄熱時は、蓄熱ポンプ13を運転し、地下埋設温度成層型蓄熱水槽との間で循環する。空調時には、冷温水ポンプ14を運転し、負荷側に循環する。蓄熱回収時には、蓄熱回収1次ポンプ15と蓄熱回収2次ポンプ16を運転し、地下埋設温度成層型水槽内の冷水または温水を熱交換器12に循環し、同時に負荷側の冷水または温水も熱交換器12に循環しながら熱交換して熱回収する。   7-10 is the schematic of an example which simplified the air-conditioning system in the case of connecting and using two or more underground temperature stratification type thermal storage water tanks by this invention in parallel. The cold water or hot water produced by the heat source device 11 is circulated between the underground storage temperature stratified heat storage water tank by operating the heat storage pump 13 during heat storage. During the air conditioning, the cold / hot water pump 14 is operated and circulated to the load side. At the time of heat storage recovery, the heat storage recovery primary pump 15 and the heat storage recovery secondary pump 16 are operated to circulate cold water or hot water in the underground buried temperature stratified water tank to the heat exchanger 12, and at the same time, the cold water or hot water on the load side is also heated. Heat is recovered by circulating heat through the exchanger 12.

熱源機11〜地中埋設温度成層型蓄熱水槽8の蓄熱循環系統には、温度成層型蓄熱水槽を効率良く利用するために、冷水運転・温水運転の切替バルブ17a、17bが設けられている。地中埋設温度成層型蓄熱水槽8〜熱交換器12の蓄熱回収循環系統にも、同様に冷水運転・温水運転の切替バルブ18a、18bが設けられている。空調時には、熱源系統と蓄熱回収循環系統を併用して空調を行うため、それぞれの冷水または温水は、送水ヘッダー19で合流し、負荷側の空調機20に供給され、熱利用された後、還水ヘッダー21で分岐し、それぞれの系統に戻る。   In the heat storage circulation system of the heat source apparatus 11 to the underground buried temperature stratified heat storage water tank 8, in order to efficiently use the temperature stratified heat storage water tank, switching valves 17a and 17b for cold water operation and hot water operation are provided. Similarly, the cold water operation / warm water operation switching valves 18a and 18b are also provided in the heat storage and recovery circulation system of the underground stratified thermal storage water tank 8 to the heat exchanger 12. During air conditioning, the heat source system and the heat storage / recovery circulation system are used together to perform air conditioning. Therefore, each cold water or hot water joins at the water supply header 19 and is supplied to the load-side air conditioner 20 to be used for heat and then returned. Branches at the water header 21 and returns to each system.

冷水の蓄熱運転時には、図7に示されるように切替バルブ17bを開き、図1および図4に示されるように、蓄熱水槽上部の熱媒水を取水配管10で取水し、熱源機11に送り、熱源機11で冷却された冷水を蓄熱水槽の下部に注水配管9で注水する。蓄熱水槽内の熱媒体としての水は、槽形状により温度成層を形成し、底部より徐々に冷却され、蓄熱水槽上部の水まで所定の温度まで冷却されたところで蓄熱が完了する。   During the cold water heat storage operation, the switching valve 17b is opened as shown in FIG. 7, and the heat transfer water in the upper part of the heat storage water tank is taken in by the water pipe 10 and sent to the heat source unit 11 as shown in FIGS. The cold water cooled by the heat source unit 11 is poured into the lower part of the heat storage water tank through the water injection pipe 9. The water as the heat medium in the heat storage water tank forms a temperature stratification by the tank shape, is gradually cooled from the bottom, and the heat storage is completed when the water in the upper part of the heat storage water tank is cooled to a predetermined temperature.

冷水の蓄熱回収(放熱)運転時には、図8に示されるように切替バルブ18bを開き、図5に示されるように、蓄熱水槽8の下部の冷水を取水配管10で取水し、熱交換器12に送り、負荷側の空調を行ない、熱交換器12により熱を与えられた冷水を、注水配管9で蓄熱水槽8の上部に戻す。蓄熱水槽内の熱媒体としての水は、槽形状により温度成層を形成し、その底部から常に一定温度の冷水の供給が可能で、効率よく蓄熱回収ができる。蓄熱水槽8内は、戻りの冷水により上部から徐々に温度が上がり、蓄熱水槽8の底部の冷水まで温度が上昇し、所定温度の冷水が取り出せなくなったところで蓄熱回収が完了する。   At the time of the cold water heat storage recovery (radiation) operation, the switching valve 18b is opened as shown in FIG. 8, the cold water in the lower part of the heat storage water tank 8 is taken in by the water pipe 10 as shown in FIG. , The load-side air conditioning is performed, and the cold water heated by the heat exchanger 12 is returned to the upper part of the heat storage water tank 8 through the water injection pipe 9. Water as a heat medium in the heat storage water tank forms a temperature stratification according to the tank shape, and cold water having a constant temperature can always be supplied from the bottom thereof, and heat storage and recovery can be efficiently performed. In the heat storage water tank 8, the temperature gradually rises from the top due to the return cold water, the temperature rises to the cold water at the bottom of the heat storage water tank 8, and the heat storage recovery is completed when the predetermined temperature of cold water cannot be taken out.

温水の蓄熱運転時には、図9に示されるように切替バルブ17aを開き、図5に示されるように、蓄熱水槽8の下部から熱媒体としての水を取水配管10により取水し、熱源機11に送り、熱源機11で加熱した温水を蓄熱水槽8の上部に注水配管9により注水する。蓄熱水槽8内の熱媒体としての水は、槽形状により温度成層を形成し、蓄熱水槽8の上部より徐々に昇温され、蓄熱水槽8の底部まで所定の温度に昇温されたところで蓄熱が完了する。   At the time of the hot water heat storage operation, the switching valve 17a is opened as shown in FIG. 9, and water as a heat medium is taken from the lower part of the heat storage water tank 8 through the water pipe 10 as shown in FIG. The hot water heated and heated by the heat source device 11 is poured into the upper part of the heat storage water tank 8 through the water injection pipe 9. The water as the heat medium in the heat storage water tank 8 forms a temperature stratification according to the tank shape, is gradually heated from the top of the heat storage water tank 8, and the heat is stored when the temperature is raised to a predetermined temperature to the bottom of the heat storage water tank 8. Complete.

温水の蓄熱回収(放熱)運転時には、図10に示されるように切替バルブ18aを開き、図1および図4に示されるように、蓄熱水槽8の上部の水を取水配管10で取水し、熱交換器12に送り、負荷側の空調を行ない、熱交換器12により熱を奪われた温水を、注水配管9で蓄熱水槽8の下部に戻す。蓄熱水槽内の熱媒体としての水は、槽形状により温度成層を形成し、その上部から常に一定温度の温水の供給が可能で、効率よく蓄熱回収が
できる。蓄熱水槽8内は、戻りの温水により底部から徐々に温度が下がり、蓄熱水槽8の上部の温水まで温度が低下し、所定温度の温水が取り出せなくなったところで蓄熱回収が完了する。
During the heat storage and recovery (heat radiation) operation of the hot water, the switching valve 18a is opened as shown in FIG. 10, the water in the upper part of the heat storage water tank 8 is taken in the water pipe 10 as shown in FIGS. It is sent to the exchanger 12 to perform air conditioning on the load side, and the hot water deprived of heat by the heat exchanger 12 is returned to the lower part of the heat storage tank 8 by the water injection pipe 9. Water as a heat medium in the heat storage water tank forms a temperature stratification according to the tank shape, and it is possible to always supply hot water at a constant temperature from the upper part, and heat storage and recovery can be efficiently performed. In the heat storage water tank 8, the temperature gradually decreases from the bottom due to the return hot water, the temperature decreases to the hot water at the top of the heat storage water tank 8, and the heat storage recovery is completed when hot water at a predetermined temperature cannot be taken out.

図11は、建物内の杭の間に複数設置した鋼管製蓄熱水槽と建物を支持する基礎杭としての回転圧入鋼管杭の一部を蓄熱水槽として連結利用する地下埋設温度成層型蓄熱水槽の一例を示すものである。図11(a)は平面図、図11(b)は断面図である。4箇所のフーチング2ので囲まれた空所に、回転圧入工法により地中に埋設された鋼管製蓄熱水槽8が設置される。4箇所のフーチング2にそれぞれ2本ずつ接続された回転圧入鋼管杭のうち1本ずつの計4本を蓄熱水槽1として利用している。蓄熱水槽として利用するものは、その上端をフーチング2の床レベルの上に突き出させ、注水配管9、取水配管10を設置し、蓄熱水槽として利用しない回転圧入鋼管杭22は、その杭頭をフーチング2内に埋め込む。   FIG. 11 shows an example of an underground buried thermal stratification type thermal storage tank in which a plurality of steel pipe thermal storage tanks installed between piles in a building and a rotary press-fit steel pipe pile as a foundation pile supporting the building are connected and used as a thermal storage tank. Is shown. FIG. 11A is a plan view, and FIG. 11B is a cross-sectional view. In a space surrounded by four footings 2, a steel pipe heat storage water tank 8 buried in the ground by a rotary press-fitting method is installed. A total of four of the rotary press-fit steel pipe piles connected to the four footings 2 are used as the heat storage tank 1. What is used as a heat storage water tank has its upper end protruding above the floor level of the footing 2, the water injection pipe 9 and the water intake pipe 10 are installed, and the rotary press-fit steel pipe pile 22 that is not used as a heat storage water tank is footed at its head. 2 is embedded.

回転圧入鋼管杭を地下埋設温度成層型蓄熱水槽として使用した一例を示す図である。It is a figure which shows an example which used the rotary press-fit steel pipe pile as an underground buried temperature stratification type thermal storage water tank. 回転圧入鋼管杭の正面図およびその断面図である。It is the front view of a rotary press-fit steel pipe pile, and its sectional drawing. 回転圧入鋼管杭先端に設けられた掘削羽根の平面図および斜視図である。It is the top view and perspective view of an excavation blade provided in the rotation press fit steel pipe pile tip. 掘削羽根付鋼管製水槽を地下埋設温度成層型蓄熱水槽として使用した一例を示す図である。It is a figure which shows an example which used the steel pipe water tank with an excavation blade | blade as an underground buried temperature stratification type thermal storage water tank. 地下埋設温度成層型蓄熱水槽の冷水の蓄熱回収時および温水の蓄熱時の運転状況を示す図である。It is a figure which shows the driving | running state at the time of the thermal storage collection | recovery of the cold water of a underground embedment temperature stratification type thermal storage tank, and the thermal storage of hot water. 掘削歯付鋼管製水槽を地下埋設温度成層型蓄熱水槽として使用した一例を示す図である。It is a figure which shows an example which used the excavation toothed steel pipe water tank as an underground buried temperature stratification type heat storage water tank. 冷水の蓄熱時の運転状況を示す図である。It is a figure which shows the driving | running state at the time of thermal storage of cold water. 冷水の蓄熱回収時の運転状況を示す図である。It is a figure which shows the driving | running state at the time of the heat storage collection | recovery of cold water. 温水の蓄熱時の運転状況を示す図である。It is a figure which shows the driving | running state at the time of thermal storage of warm water. 温水の蓄熱回収時の運転状況を示す図である。It is a figure which shows the driving | running state at the time of the heat storage collection | recovery of warm water. 建物のフーチングの間に回転圧入鋼管杭と回転圧入鋼管製水槽を配置した図である。It is the figure which has arrange | positioned the rotary press-fit steel pipe pile and the rotary press-fit steel pipe water tank between the footings of a building. 掘削歯付鋼管製水槽を地中に圧入する施工法の一例を示す図である。It is a figure which shows an example of the construction method which press-fits the excavation toothed steel pipe water tank. 本願発明の底蓋の取付け状態の一例を示す図である。It is a figure which shows an example of the attachment state of the bottom cover of this invention. 本願発明の底蓋の取付け状態の一例を示す図である。It is a figure which shows an example of the attachment state of the bottom cover of this invention. 本願発明の底蓋の取付け状態の一例を示す図である。It is a figure which shows an example of the attachment state of the bottom cover of this invention. 本願発明の底蓋の取付け状態の一例を示す図である。It is a figure which shows an example of the attachment state of the bottom cover of this invention. 鋼管杭等の内側に内挿管を配置した例を示す図である。It is a figure which shows the example which has arrange | positioned the internal intubation inside steel pipe piles. 鋼管杭等の鋼管と内挿管とを継ぎ足して温度成層型蓄熱水槽を延長する例を示す図である。It is a figure which shows the example which extends the temperature stratification type | mold thermal storage water tank by adding steel pipes, such as a steel pipe pile, and an internal intubation.

符号の説明Explanation of symbols

1 回転圧入鋼管杭
2 フーチング
3 掘削羽根
4 回転圧入鋼管杭の下端中央部空所(開端穴)
5 回転圧入鋼管杭の土砂浸入範囲
6 回転圧入鋼管杭の貯水範囲
7 底蓋
8 回転圧入鋼管製水槽
9 注水配管
10 取水配管
11 熱源機
12 熱交換器
13 蓄熱ポンプ
14 冷温水ポンプ
15 蓄熱回収1次ポンプ
16 蓄熱回収2次ポンプ
17a 切替バルブ
17b 切替バルブ
18a 切替バルブ
18b 切替バルブ
19 送水ヘッダー
20 空調機
21 還水ヘッダー
22 蓄熱槽として利用しない回転圧入鋼管杭
23 掘削歯
24 ケーシングジャッキ
25 ハンマーグラブ
26 鋼輪
26a 輪状鉄筋
27 溶接
28 コンクリート
29 空気抜き孔
30 プレート
31 始端切断面
32 掘削刃
33 終端切断面
33a 仮想終端切断面
34 開き角度
35 シンダーコンクリート
36 シール
37 防水塗膜
38 土壌
39 内挿管
40 断熱材
41 配管
42 配管
43 羽根付鋼管
44 継ぎ足し用鋼管
45 継手
1 Rotating press-fit steel pipe pile 2 Footing 3 Excavation blade 4 Rotating press-fit steel pipe pile lower end central space (open end hole)
5 Soil infiltration range of rotary press-fit steel pipe piles 6 Storage range of rotary press-fit steel pipe piles 7 Bottom cover 8 Rotary press-fit steel pipe water tank 9 Injection pipe 10 Intake pipe 11 Heat source machine 12 Heat exchanger 13 Heat storage pump 14 Cold / hot water pump 15 Heat storage recovery 1 Secondary pump 16 Heat storage recovery secondary pump 17a Switching valve 17b Switching valve 18a Switching valve 18b Switching valve 19 Water feed header 20 Air conditioner 21 Return water header 22 Rotary press-fit steel pipe pile 23 not used as a heat storage tank 23 Excavation teeth 24 Casing jack 25 Hammer grab 26 Steel wheel 26a Ring-shaped rebar 27 Welding 28 Concrete 29 Air vent hole 30 Plate 31 Start end cut surface 32 Excavation blade 33 End cut surface 33a Virtual end cut surface 34 Opening angle 35 Cinder concrete 36 Seal 37 Waterproof coating 38 Soil 39 Intubation tube 40 Thermal insulation 41 Piping 42 Piping 43 With blades Steel pipe 44 Additional steel pipe 45 Joint

Claims (3)

複数の鋼管杭または鋼管製水槽を継ぎ足して構成された地中埋設温度成層型蓄熱水槽であって、
上記鋼管杭または鋼管製水槽の底蓋取付部内面に予め突起物を取付けておき、上記底蓋取付部より下側の上記鋼管杭または鋼管製水槽の側壁部に圧力逃がし穴を開口させ、上記鋼管杭または鋼管製水槽に内接する円盤状の落し蓋をし、周囲を固着して底蓋を形成した後に上記鋼管杭または鋼管製水槽を埋設・据付し、
先端部の上記鋼管杭または鋼管製水槽には、上記鋼管杭または鋼管製水槽の内径よりも小径でかつ先端が閉塞されている内挿管が配置されており、
上記鋼管杭または鋼管製水槽を所定位置まで回転圧入した後に、継手によって内挿管を延長した上で上記鋼管杭または鋼管製水槽と継ぎ足し鋼管とを接続して蓄熱水槽の水深を確保したこと
を特徴とする地中埋設温度成層型蓄熱水槽。
Underground temperature stratified thermal storage tank constructed by adding a plurality of steel pipe piles or steel pipe tanks,
Protrusion is attached in advance to the inner surface of the bottom lid mounting portion of the steel pipe pile or the steel pipe water tank, and a pressure relief hole is opened in the side wall portion of the steel pipe pile or the steel pipe water tank below the bottom lid mounting portion. A disk-shaped drop lid inscribed in a steel pipe pile or a steel pipe water tank, and after fixing the periphery to form a bottom cover, the steel pipe pile or the steel pipe water tank is buried and installed,
The above steel pipe pile or steel pipe tank tip, are arranged within intubation smaller in diameter and the distal end is closed than the inner diameter of the steel pipe pile or steel pipe water tank,
After rotating pressed the steel pipe pile or steel pipe water tank to a predetermined position, characterized in that on the extended inner intubation by joints to ensure a depth of the heat storage water tank by connecting the steel pipe pile or steel pipe water tank and replenishing steel Underground temperature stratified thermal storage tank.
先端に掘削歯を取付けた大口径の鋼管製水槽の底蓋取付部内面に予め突起物を取付けておき、上記底蓋取付部より下側の上記鋼管製水槽の側壁部に圧力逃がし穴を開口させ、上記鋼管製水槽に内接する円盤状の落し蓋をし、周囲を固着して底蓋を形成して上記鋼管製水槽の先端または中途に底蓋を設け密閉し、貯水可能とし、上記鋼管製水槽を内部に侵入する土砂を排除しながら回転力と下向きの力を付加して地中に回転圧入させて埋設・据付し、上記鋼管製水槽の内部に注水配管・取水配管を設置し、
上記鋼管製水槽の内径よりも小径でかつ先端が閉塞されている内挿管が上記鋼管製水槽の内側に配置され、上記鋼管製水槽と上記内挿管との間隙には空気または気体を含む断熱材が充填されており、注水配管・取水配管を上記内挿管の内側に設置し、
複数の鋼管製水槽を継ぎ足して構成された地中埋設温度成層型蓄熱水槽であって、先端部の羽根付鋼管製水槽には、上記羽根付鋼管製水槽の内径よりも小径でかつ先端が閉塞されている内挿管が配置されており、上記羽根付鋼管製水槽を所定位置まで回転圧入した後
に、継手によって内挿管を延長した上で上記羽根付鋼管製水槽と継ぎ足し鋼管とを接続して蓄熱水槽の水深を確保したこと
を特徴とする地中埋設温度成層型蓄熱水槽。
A protrusion is attached in advance to the inner surface of the bottom lid mounting part of a large-diameter steel pipe water tank with excavating teeth attached to the tip, and a pressure relief hole is opened in the side wall part of the steel pipe water tank below the bottom cover mounting part. A disk-shaped drop lid inscribed in the steel pipe water tank, and the bottom is formed by fixing the periphery, and a bottom cover is provided at the tip or middle of the steel pipe water tank so that the water can be stored . While removing the earth and sand that penetrates the water tank , it adds rotational force and downward force and rotates and presses it into the ground, embeds and installs it, and installs water injection and intake pipes inside the steel pipe water tank .
Among intubation smaller in diameter and the distal end than the inner diameter of the steel pipe water tank is closed is arranged inside said steel pipe water tank insulation in the gap between the steel pipe water tank and the intubation containing air or gas The water injection pipe and water intake pipe are installed inside the above intubation,
A underground temperature stratified heat storage water tank constructed by replenishing the plurality of steel pipe water tank, the winged steel pipe tank tip, is smaller in diameter and the distal end than the inner diameter of the steel pipe water tank with the wings closed It is arranged intubation inner being, after rotating pressed the steel pipe water tank with the blade to a predetermined position, the heat storage after having extended inner intubation by joint and connecting the steel pipe water tank winged and shirttail steel Underground temperature stratified thermal storage tank characterized by securing the water depth of the tank.
上記鋼管製水槽の内面および外面の少なくとも一方が、塩化ビニル、ポリエチレン、ウレタン、エポキシ等で防食被覆されていること
を特徴とする請求項1又は2に記載の地中埋設温度成層型蓄熱水槽。
The underground buried thermal stratification type heat storage water tank according to claim 1 or 2 , wherein at least one of an inner surface and an outer surface of the steel pipe water tank is anticorrosive coated with vinyl chloride, polyethylene, urethane, epoxy, or the like.
JP2008299944A 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank Expired - Fee Related JP4949359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299944A JP4949359B2 (en) 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001384034 2001-12-18
JP2001384034 2001-12-18
JP2008299944A JP4949359B2 (en) 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002354514A Division JP2003247792A (en) 2001-12-18 2002-12-06 Underground temperature stratified heat accumulating water tank using rotary pressure insertion steel pipe pile or rotary pressure insertion steel pipe-made water tank

Publications (2)

Publication Number Publication Date
JP2009103442A JP2009103442A (en) 2009-05-14
JP4949359B2 true JP4949359B2 (en) 2012-06-06

Family

ID=40705264

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008299942A Expired - Fee Related JP4764912B2 (en) 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank
JP2008299943A Expired - Fee Related JP4949358B2 (en) 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank
JP2008299944A Expired - Fee Related JP4949359B2 (en) 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008299942A Expired - Fee Related JP4764912B2 (en) 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank
JP2008299943A Expired - Fee Related JP4949358B2 (en) 2001-12-18 2008-11-25 Underground temperature stratified thermal storage tank

Country Status (1)

Country Link
JP (3) JP4764912B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512595A (en) * 2019-08-22 2019-11-29 伍和龙 The construction method of supporting tubular pole in a kind of ground temperature exchange system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183703B2 (en) * 2010-09-06 2013-04-17 株式会社久米設計 Heat exchange pile and its installation structure
NO332707B1 (en) 2011-06-09 2012-12-17 Nest As Thermal energy storage and plant, method and use thereof
CN103255784B (en) * 2013-04-26 2015-04-08 同济大学 Steel support temperature deforming adjuster
JP6172366B2 (en) * 2016-08-25 2017-08-02 Jfeスチール株式会社 Underground heat exchanger
CN107906643B (en) * 2017-11-14 2020-05-05 湖南中大经纬地热开发科技有限公司 Ground source heat energy integrated system
CN111502594B (en) * 2020-04-28 2024-05-10 大庆兴华天义石油钻采设备制造有限公司 Double-tube separate injection tool capable of drilling bridge plug

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431905A (en) * 1977-08-15 1979-03-09 Obayashi Gumi Kk Heat accumulating pile
JPS6198818A (en) * 1984-10-19 1986-05-17 Shiraishi:Kk Rotary pressing-in type steel pipe pile
JPH0647823B2 (en) * 1988-07-28 1994-06-22 株式会社藤井組 Steel pipe pile construction method
JPH04356636A (en) * 1991-06-03 1992-12-10 Central Res Inst Of Electric Power Ind Heat accumulating tank device and its method of using
JP2660779B2 (en) * 1991-10-14 1997-10-08 株式会社クボタ Heat storage device for heating using steel tube column retaining wall
JP2757240B2 (en) * 1992-03-17 1998-05-25 株式会社クボタ Corrosion-proof construction method of steel pipe pile which is also used as storage tank
JPH0688333A (en) * 1992-03-17 1994-03-29 Kubota Corp Construction of storage tank utilizing steel pipe pile
JP2879633B2 (en) * 1992-03-17 1999-04-05 株式会社クボタ Construction method of storage tank using steel pipe pile
JP3301104B2 (en) * 1992-03-27 2002-07-15 日揮株式会社 Underground thermal storage tank
JPH06272244A (en) * 1993-03-23 1994-09-27 Kawasaki Steel Corp Execution method for tip opened pile
JPH084350A (en) * 1994-06-21 1996-01-09 Nippon Steel Corp Foundation pile serving as storage tank
JPH08184063A (en) * 1994-12-28 1996-07-16 Toshiba Corp Underground heat storage device
JPH08226124A (en) * 1995-02-21 1996-09-03 Nippon Steel Corp Steel pipe pile and burial method therefor
JPH10317389A (en) * 1997-05-20 1998-12-02 Ohbayashi Corp Method for constructing heating medium container in borehole type heat storage device
JPH11181767A (en) * 1997-12-24 1999-07-06 Sekisui House Ltd End metal fitting of steel pipe pile
JP3389118B2 (en) * 1998-10-01 2003-03-24 新日本製鐵株式会社 Ground improvement method using rotary press-fitting pipe pile, method for burying rotary press-fitting pipe pile, and rotary press-fitting pipe pile
JP2000170160A (en) * 1998-12-07 2000-06-20 Hokoku Eng Kk Steel pipe pile
JP3643303B2 (en) * 1999-10-20 2005-04-27 新日本製鐵株式会社 Rotary press-fit steel pipe pile
JP2001303604A (en) * 2000-04-25 2001-10-31 Nippon Steel Corp Joining structure of steel pipe pile and upper structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512595A (en) * 2019-08-22 2019-11-29 伍和龙 The construction method of supporting tubular pole in a kind of ground temperature exchange system

Also Published As

Publication number Publication date
JP4764912B2 (en) 2011-09-07
JP2009103441A (en) 2009-05-14
JP4949358B2 (en) 2012-06-06
JP2009109184A (en) 2009-05-21
JP2009103442A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4949359B2 (en) Underground temperature stratified thermal storage tank
CN102587365B (en) Method for embedding precession-type backfill grouting ground source thermal energy conversion precast pile device into stratum
JP2004233031A (en) Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
US20050061472A1 (en) Heat source or heat sink unit with thermal ground coupling
CN102016218A (en) A method and system for installing geothermal heat exchangers, energy piles, concrete piles, micropiles, and anchors using a sonic drill and a removable or retrievable drill bit
IE20070192A1 (en) Geothermal foundations
CN202543904U (en) Screw-in wall-post-grouting precast pile device for ground-source heat energy conversion
JP2006052588A (en) Pile with underground heat exchanging outer pipe, and method of constructing underground heat exchanger using the pile
KR100654151B1 (en) Geothermal exchanger using hollow of pile and method of construction thereof
KR200417382Y1 (en) Ground heat exchange system for high quality heat pump
JP4333359B2 (en) Geothermal steel pipe pile
JP2003247792A (en) Underground temperature stratified heat accumulating water tank using rotary pressure insertion steel pipe pile or rotary pressure insertion steel pipe-made water tank
KR20180133579A (en) Heat pump system using geothermal energy and controlling apparatus contrl
KR101709990B1 (en) Underwater structure construction apparatus and construction method
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
CN111102765A (en) Novel prefabricated energy pile system and construction method thereof
JP2005188865A (en) Steel pipe pile utilizing ground heat
CN211650816U (en) Prefabricated energy pile application structure
JPH0819667B2 (en) Excavation method for clay ground
JP4619105B2 (en) Construction method of geothermal facilities
CN105698437A (en) U-shaped joint for ground source heat pump, ground source heat pump and ground source heat pump construction method
JP4528029B2 (en) Underground snow melting tank with hollow tube embedded by rotary press-in method and snow melting equipment equipped with it
JP6018983B2 (en) Geothermal heat exchanger for geothermal heat pump system
KR100721676B1 (en) Construction method of submarine vertical waterway for supplying and discharging cooling water for industrial facilities utilizing jack up barge and guide frame and inner casing and casing clamp
CN215860015U (en) Drilling device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees