JP6018983B2 - Geothermal heat exchanger for geothermal heat pump system - Google Patents

Geothermal heat exchanger for geothermal heat pump system Download PDF

Info

Publication number
JP6018983B2
JP6018983B2 JP2013152983A JP2013152983A JP6018983B2 JP 6018983 B2 JP6018983 B2 JP 6018983B2 JP 2013152983 A JP2013152983 A JP 2013152983A JP 2013152983 A JP2013152983 A JP 2013152983A JP 6018983 B2 JP6018983 B2 JP 6018983B2
Authority
JP
Japan
Prior art keywords
pipe
buried
heat
buried pipe
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013152983A
Other languages
Japanese (ja)
Other versions
JP2015021714A (en
Inventor
田中 弘
弘 田中
Original Assignee
北海バネ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北海バネ株式会社 filed Critical 北海バネ株式会社
Priority to JP2013152983A priority Critical patent/JP6018983B2/en
Publication of JP2015021714A publication Critical patent/JP2015021714A/en
Application granted granted Critical
Publication of JP6018983B2 publication Critical patent/JP6018983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、地中熱ヒートポンプシステムに係り、とくに地面に対して垂直方向に埋設する地中熱交換器に関する。   The present invention relates to a geothermal heat pump system, and more particularly to a geothermal heat exchanger embedded in a direction perpendicular to the ground.

地中熱ヒートポンプシステムは熱(Heat)を汲み上げる(Pump)システム、すなわち、温度の低いところから温度の高いところへ熱を移動させるシステムである。冬期は外気に較べて温かい地中熱を採熱して室内の暖房等に活用し、夏場は外気に較べて温度の低い地中に熱を捨てて室内等の冷房効率を高める。   A geothermal heat pump system is a system that pumps heat, that is, a system that moves heat from a low temperature to a high temperature. In winter, the ground heat that is warmer than the outside air is collected and used for indoor heating and the like, and in summer, the heat is thrown away into the ground where the temperature is lower than the outside air to increase the cooling efficiency of the room.

地中熱ヒートポンプシステムは、再生可能エネルギーの一種である地中熱を利用し、同一のヒートポンプ装置を用いて暖冷房を行うことが出来るだけでなく、投入エネルギーの数倍の熱エネルギーを取り出せるので、暖房時のCO2排出量を抑え、冷房時の電力消費を低減できる等、さまざまな利点をもつもので、システム構成としては、地中熱交換器(一次側システム)と、ヒートポンプ装置(熱源機器システム)と、室内機(二次側システム)とから構成される(特許文献1)。   The geothermal heat pump system uses geothermal heat, which is a kind of renewable energy, and can not only perform heating and cooling using the same heat pump device, but also extract heat energy several times the input energy. It has various advantages such as reducing CO2 emissions during heating and reducing power consumption during cooling. The system configuration includes a ground heat exchanger (primary system) and a heat pump device (heat source equipment) System) and an indoor unit (secondary system) (Patent Document 1).

本発明は、地中熱交換器(一次側システム)に係る技術である。採排熱用(熱交換用)の流体を循環させる地中熱交換器(一次側システム)は、さまざまな構成がある。大きく分けると水平埋設型と垂直埋設型であるが、本発明は、垂直埋設型に係るものである。   The present invention is a technology related to a ground heat exchanger (primary system). The underground heat exchanger (primary system) that circulates fluid for sampling and exhausting heat (for heat exchange) has various configurations. Broadly divided into a horizontal burying mold and a vertical burying mold, the present invention relates to a vertical burying mold.

わが国における地中熱ヒートポンプシステムは、ボアホール方式と呼ばれる垂直埋設型を採用することが多い。図11に示すように、従来一般のボアホール式の地中熱ヒートポンプシステムは、例えば家屋5の冷暖房を行うため、地面に対して垂直に掘削穴を設け、この掘削穴にU字状チューブ管7を納めた後、掘削穴を土等で埋め戻し、地中熱交換器を作る。   The geothermal heat pump system in Japan often adopts a vertical buried type called the borehole system. As shown in FIG. 11, a conventional borehole type geothermal heat pump system is provided with a drilling hole perpendicular to the ground in order to cool and heat a house 5, for example, and a U-shaped tube tube 7 is provided in the drilling hole. After paying, fill the excavation hole with soil and make a ground heat exchanger.

そして、ヒートポンプ装置2を介してU字状チューブ管7の内部の採排熱用流体(例えば水、不凍液)を循環させ、ヒートポンプ装置2において熱エネルギーの移動を行い、室内機3を介して室内の冷房/暖房を行う。   Then, the heat for collecting and exhausting heat (for example, water and antifreeze liquid) inside the U-shaped tube tube 7 is circulated through the heat pump device 2, the heat energy is transferred in the heat pump device 2, and the indoor unit 3 is Air conditioning / heating.

U字状チューブ管7の内部を循環させる採排熱用流体(例えば水、不凍液)を介して、冬場には地中熱を採熱し、夏場には地中に熱を捨てるので、採排熱用流体は出来るだけ長時間U字状チューブ管7の内部を流れることが好ましく、このため、従来、掘削穴の深度H1は通常100〜150mに設定された。   Since heat is collected in the winter and in the summer, the heat is discharged into the ground through a fluid for heat extraction (such as water and antifreeze) that circulates inside the U-shaped tube 7. It is preferable that the working fluid flows inside the U-shaped tube tube 7 for as long as possible. For this reason, conventionally, the depth H1 of the excavation hole is usually set to 100 to 150 m.

特開2013−007551号JP2013-007551A

ところで、欧米諸外国に較べてわが国における地中熱ヒートポンプシステムの普及率はきわめて低い。理由は次の通りである。   By the way, the penetration rate of geothermal heat pump systems in Japan is very low compared to other countries in Europe and the United States. The reason is as follows.

第一に、ボアホール方式の場合、地中熱交換器として使用するUチューブから取り出せる熱量が少ないため、掘削深度を100〜150m程度にする必要があること。   First, in the case of the borehole method, the amount of heat that can be taken out from the U tube used as an underground heat exchanger is small, so that the excavation depth needs to be about 100 to 150 m.

第二に、掘削費用が高いこと(例えば1万円/1m)。   Secondly, the excavation cost is high (for example, 10,000 yen / 1 m).

第三に、掘削に伴って残土等の産業廃棄物が発生し処理費用が嵩むこと、などである。   Thirdly, industrial waste such as residual soil is generated along with excavation, resulting in increased processing costs.

とくに、掘削費用が嵩む点が普及を妨げる大きな原因となっている。大規模なマンションやオフィスビル等では、深度100mを超える掘削穴を複数本設ける必要があるが、掘削費用だけでも経済的負担が重くなるため、地中熱ヒートポンプシステムの利点を勘案しても、導入するのをためらうケースが少なくないからである。   In particular, the high cost of excavation is a major cause that hinders its spread. In large-scale condominiums and office buildings, etc., it is necessary to provide multiple drilling holes with a depth of over 100 m. This is because there are many cases that hesitate to introduce.

そこで、本発明の目的は、地面に対して垂直に埋設するボアホール方式の地中熱交換器の設置コストを、より低減させることにある。   Therefore, an object of the present invention is to further reduce the installation cost of a borehole type underground heat exchanger that is buried perpendicularly to the ground.

前記目的を達成するため、本発明に係る地中熱交換器は、地面に垂直に埋設する地中熱ヒートポンプシステム用の地中熱交換器を技術的前提として、ヒートポンプ装置を介して循環させる採排熱用流体を暫時貯留する金属製の埋設管と、ヒートポンプ装置を介して該埋設管へ前記採排熱用流体を送り込む流体送入管と、該埋設管の内部の採排熱用流体を前記ヒートポンプ装置へ還流させる流体送出管とを備えるとともに、前記埋設管の外周面に、金属製の螺旋翼板を外方へ突出させて固定し、前記螺旋翼板の横幅を、前記埋設管の外径の2〜3倍の寸法に設定する(請求項1)。   In order to achieve the above-mentioned object, the underground heat exchanger according to the present invention circulates through the heat pump device on the technical premise of the underground heat exchanger for the underground heat pump system embedded perpendicularly to the ground. A metal buried pipe for temporarily storing the waste heat fluid, a fluid feed pipe for feeding the collection and exhaust heat fluid to the buried pipe via a heat pump device, and a collection and exhaust heat fluid inside the buried pipe. A fluid delivery pipe for reflux to the heat pump device, and a metal spiral blade projecting outwardly and fixed to the outer peripheral surface of the buried pipe, and the lateral width of the spiral blade is set to The dimension is set to 2 to 3 times the outer diameter (Claim 1).

本発明に係る地中熱交換器は、埋設管の外周に金属製の螺旋翼板を備えるので、地中における接触面積が拡大する。   Since the underground heat exchanger according to the present invention includes a metal spiral blade on the outer periphery of the buried pipe, the contact area in the ground is expanded.

このため、採排熱用流体の採熱/排熱(放熱)の効率は、螺旋翼板の面積に略比例して向上させることが出来、埋設管の埋設深度を浅くした場合でも、好ましい採熱/排熱を行うことが可能となる。本発明に係る金属製の螺旋翼板の横幅は、埋設管の外径の2〜3倍の寸法に設定するので、埋設管の外周面積の総計が少ない場合でも、螺旋翼板の面積がそれを補って十分な熱交換を実現する。   For this reason, the efficiency of heat collection / exhaust heat (radiation) of the fluid for collecting and exhausting heat can be improved substantially in proportion to the area of the spiral blade, and even when the embedment depth of the buried pipe is reduced, preferable sampling is performed. Heat / waste heat can be performed. Since the width of the metal spiral blade according to the present invention is set to a dimension that is two to three times the outer diameter of the buried pipe, the area of the spiral blade is small even when the total outer peripheral area of the buried pipe is small. To achieve sufficient heat exchange.

ボアホール方式の地中熱交換器の問題は、地面掘削に伴うコストが嵩む点にあったので、埋設管の埋設深度を浅くしても十分な熱交換を実現することによって、地中熱ヒートポンプシステムの導入コストを確実に低減できる。   The problem with the borehole type underground heat exchanger was that the cost associated with ground excavation was high, so by realizing sufficient heat exchange even when the buried pipe depth was shallow, the underground heat pump system The introduction cost can be reliably reduced.

また、本発明に係る地中熱交換器は、埋設管の外周面に螺旋翼板を備えるので、地面に掘削穴を設けてから埋設管を埋設しなくても良い。螺旋翼板を利用して埋設管を回転貫入させることが出来るからである。回転貫入させた場合は、地面の垂直掘削に要した工事費用を大幅に減少させることが出来る。   Moreover, since the underground heat exchanger which concerns on this invention equips the outer peripheral surface of a buried pipe with a spiral blade board, it is not necessary to bury a buried pipe after providing an excavation hole in the ground. This is because the buried pipe can be rotated and penetrated using a spiral blade. In the case of rotational penetration, the construction cost required for vertical excavation of the ground can be greatly reduced.

螺旋翼板は、上面および下面のうち少なくとも一方に、複数のディンプルまたは小凸部を備える場合がある(請求項2)。   The spiral blade may include a plurality of dimples or small convex portions on at least one of the upper surface and the lower surface (Claim 2).

螺旋翼板の面積が同一である場合、螺旋翼板の上面/下面に複数のディンプル(小凹部)を設けることにより、或いは、当該螺旋翼板の上面/下面に複数の小凸部(例えば断面円弧状のもの)を設けることにより、地中における接触面積を増大させることが可能となり、採排熱用流体の採熱/排熱(放熱)の効率をより高めることが出来る。   When the areas of the spiral blades are the same, a plurality of dimples (small concave portions) are provided on the upper surface / lower surface of the spiral blade plate, or a plurality of small convex portions (for example, a cross section) are provided on the upper surface / lower surface of the spiral blade plate. By providing a circular arc), it is possible to increase the contact area in the ground, and it is possible to further increase the efficiency of heat collection / exhaust heat (radiation) of the collection / exhaust heat fluid.

埋設管の上端部に内部中空の埋設補助管を固定して設け、当該埋設補助管を、地面下に埋設して設ける場合がある(請求項3)。   In some cases, an embedded hollow auxiliary pipe is fixedly provided at the upper end of the buried pipe, and the buried auxiliary pipe is provided under the ground.

埋設管の上端部に内部中空の埋設補助管を設けることにより、パワーショベル等の作業機械に取り付けたモータ装置を介して埋設補助管を回転貫入出来る。このため、埋設管の埋設深度は、埋設補助管の上下寸法に応じて自由に設定できるようになる。   By providing an internal hollow buried auxiliary pipe at the upper end of the buried pipe, the buried auxiliary pipe can be rotated through a motor device attached to a work machine such as a power shovel. For this reason, the embedment depth of the buried pipe can be freely set according to the vertical dimension of the buried auxiliary pipe.

地面下の温度は、通常、地面下の浅い深度、例えば約5〜10m程度で安定する。このため、気候条件等に応じて、埋設補助管を介して埋設管の深度を調整することにより、設置コストを最も抑えることが出来る埋設深度を実現することが可能となる。なお、無用な熱損失を防止するため埋設補助管も地面下に埋設した上で、当該埋設補助管の上端部から外部へ引き出す流体送入管および流体送出管も、所定長を地面下に埋設することが望ましい。   The temperature below the ground is usually stable at a shallow depth below the ground, for example, about 5 to 10 m. For this reason, according to climatic conditions etc., it becomes possible to implement | achieve the embedding depth which can suppress installation cost most by adjusting the depth of an embedding pipe via an embedding auxiliary pipe. In order to prevent unnecessary heat loss, the buried auxiliary pipe is also buried under the ground, and the fluid feed pipe and the fluid delivery pipe to be drawn out from the upper end of the buried auxiliary pipe are also buried under a predetermined length below the ground. It is desirable to do.

本発明に係る地中熱交換器によれば、地面に対して垂直に埋設する地中熱交換器の設置コストを、より低減させることが可能となる。   According to the underground heat exchanger which concerns on this invention, it becomes possible to further reduce the installation cost of the underground heat exchanger embed | buried perpendicularly | vertically with respect to the ground.

実施形態に係る地中熱交換器を例示する断面図である。It is sectional drawing which illustrates the underground heat exchanger which concerns on embodiment. 実施形態に係る埋設管の外観を例示する斜視図である。It is a perspective view which illustrates the appearance of an embedding pipe concerning an embodiment. 本発明に係る螺旋翼板の第二の実施形態を例示する図である。It is a figure which illustrates 2nd embodiment of the spiral blade board which concerns on this invention. 本発明に係る螺旋翼板の第三の実施形態を例示する図である。It is a figure which illustrates 3rd embodiment of the spiral blade board which concerns on this invention. 本発明に係る埋設管の埋設例を例示する図である。It is a figure which illustrates the example of embedding of the buried pipe which concerns on this invention. 本発明に係る埋設補助管を例示する図である。It is a figure which illustrates the burial auxiliary pipe concerning the present invention. 本発明に係る継手部材を例示する図である。It is a figure which illustrates the joint member concerning the present invention. 図7に示す継手部材を介した埋設管と埋設補助管の接続例を示す図である。It is a figure which shows the example of a connection of the buried pipe and the buried auxiliary pipe through the joint member shown in FIG. 図8における流体送入管と流体送出管の延設状態を例示する図である。It is a figure which illustrates the extension state of the fluid inflow tube and fluid delivery tube in FIG. 本発明に係る埋設補助管を用いた場合の埋設状態を例示する図である。It is a figure which illustrates the embedding state at the time of using the embedding auxiliary pipe | tube which concerns on this invention. 従来の地中熱ヒートポンプシステムを例示する図である。It is a figure which illustrates the conventional geothermal heat pump system.

図1に示すように、本発明に係る地中熱交換器10は、ヒートポンプ装置2を介して循環させる採排熱用流体Rを暫時貯留する金属製の埋設管11と、ヒートポンプ装置2を介して該埋設管11へ採排熱用流体Rを送り込む流体送入管14と、該埋設管11の内部の採排熱用流体Rをヒートポンプ装置2へ還流させる流体送出管15とを備え、埋設管11の外周面に金属製の螺旋翼板20を備える。この地中熱交換器10は、工場において予め螺旋翼板20を固定しておく。   As shown in FIG. 1, the underground heat exchanger 10 according to the present invention includes a metal buried pipe 11 that temporarily stores a heat extraction fluid R to be circulated through the heat pump device 2, and a heat pump device 2. A fluid feed pipe 14 for feeding the sampling / exhaust heat fluid R into the buried pipe 11 and a fluid delivery pipe 15 for returning the collection / exhaust heat fluid R inside the buried pipe 11 to the heat pump device 2. A metal spiral blade 20 is provided on the outer peripheral surface of the tube 11. This underground heat exchanger 10 has a spiral blade 20 fixed in advance in a factory.

埋設管(主管)11は、金属製であり、例えば鋼管を用いる。この埋設管11は、採排熱用流体Rを暫時貯留して地中熱との熱交換(採熱/排熱)を行うものであるから、下端と上端は適宜材を用いて閉じておく。有底有蓋の封入管とすることによって、採排熱用流体Rは、流体送入管14と流体送出管15とを介して埋設管11の内部に貯留され、熱交換を行いつつヒートポンプ装置2との間を循環する。   The buried pipe (main pipe) 11 is made of metal, for example, a steel pipe. Since the buried pipe 11 is for temporarily storing the sampling / exhaust heat fluid R and performing heat exchange (sampling / exhaust heat) with the underground heat, the lower end and the upper end are appropriately closed using a material. . By using a sealed tube with a bottom and a lid, the fluid R for collecting and exhausting heat is stored in the embedded tube 11 via the fluid inlet tube 14 and the fluid outlet tube 15, and the heat pump device 2 performs heat exchange. Circulate between.

埋設管11の内面には、発錆処理を施すことが望ましい。例えば、メッキ処理を施すこと、防錆材をコーティングすること、或いは、樹脂成形した円筒形のインナー材を配する等である。埋設管11の上下寸法H2は、例えば5〜15m程度とすることが出来る。好ましくは5.5〜6mの鋼管を用いる。   It is desirable to rust the inner surface of the buried pipe 11. For example, plating treatment, coating with a rust preventive material, or providing a resin-molded cylindrical inner material. The vertical dimension H2 of the buried pipe 11 can be set to about 5 to 15 m, for example. Preferably, a steel pipe of 5.5 to 6 m is used.

流体送入管14と流体送出管15は、樹脂管または金属管を用いる。   A resin pipe or a metal pipe is used for the fluid inlet pipe 14 and the fluid outlet pipe 15.

流体送入管14の下端開口は、埋設管11の底部近傍に配設することが望ましい。埋設管11の採排熱用流体Rを流動攪拌して地中熱との熱交換を均等化させるためである。   It is desirable that the lower end opening of the fluid inlet pipe 14 is disposed near the bottom of the buried pipe 11. This is for fluidizing and agitating the sampling and exhaust heat fluid R of the buried pipe 11 to equalize heat exchange with the underground heat.

流体送出管15は、埋設管11の適宜位置、例えば上部近傍に配する。埋設管11の内部に暫時貯留される採排熱用流体Rは、流動攪拌されるので温度は均等化されているからである。採排熱用流体Rとしては、水、不凍液、冷媒等、適宜の流体を使用できる。   The fluid delivery pipe 15 is disposed at an appropriate position of the buried pipe 11, for example, near the upper part. This is because the heat for collecting and exhausting heat R stored for a while in the buried pipe 11 is fluidized and stirred, so that the temperature is equalized. As the fluid for collecting and exhausting heat R, an appropriate fluid such as water, antifreeze liquid, refrigerant or the like can be used.

螺旋翼板20は金属製であり、冬期暖房時は地中熱を金属製の埋設管11に伝達し、夏期冷房時は埋設管11の熱を奪って地中に排熱する機能を営む。金属製の螺旋翼板20は、例えば、適宜の肉厚をもった長尺の金属板(平板)を用いて成形することが出来る。金属板としては、例えば鋼板を用いることが出来る。   The spiral blade 20 is made of metal, and transmits the underground heat to the metal buried pipe 11 at the time of heating in winter and functions to take the heat of the buried pipe 11 and exhaust the heat to the ground at the time of cooling in summer. The metal spiral blade 20 can be formed using, for example, a long metal plate (flat plate) having an appropriate thickness. As the metal plate, for example, a steel plate can be used.

螺旋翼板20は、先端部が埋設管11の外方へ突出するよう固定する。螺旋翼板20の内周基端部は、適宜の手段、例えば溶接によって埋設管11の外周面に固定する。   The spiral blade 20 is fixed so that the tip protrudes outward from the buried tube 11. The inner peripheral base end portion of the spiral blade 20 is fixed to the outer peripheral surface of the buried pipe 11 by appropriate means, for example, welding.

採熱または排熱の効果を高めるには、図2に示すように、埋設管11の外径W1に対して螺旋翼板20の突出量W2を大きくするか、或いは、螺旋翼板20のピッチを狭めて翼数を増やす。これらの条件は、地中熱交換器10を設置する土地の気候条件、使用環境(ヒートポンプ装置の稼働能力)等に応じて設定することが好ましいが、少なくとも、螺旋翼板20の突出量(横幅)W2は、埋設管11の外径W1の1.5〜3.5倍に設定する。螺旋翼板20を介した採熱/排熱(放熱)の効果を担保するためである。実施に際しては、螺旋翼板20の突出量(横幅)W2は、埋設管11の外径W1の2〜3倍程度とすることが望ましい。   In order to enhance the effect of heat collection or exhaust heat, as shown in FIG. 2, the protrusion amount W2 of the spiral blade plate 20 is increased with respect to the outer diameter W1 of the buried pipe 11, or the pitch of the spiral blade plate 20 is increased. Increase the number of wings by narrowing. These conditions are preferably set according to the climatic conditions of the land where the underground heat exchanger 10 is installed, the usage environment (operating capacity of the heat pump device), etc., but at least the amount of protrusion of the spiral blade 20 (width) ) W2 is set to 1.5 to 3.5 times the outer diameter W1 of the buried pipe 11. This is to ensure the effect of heat collection / exhaust heat (heat radiation) through the spiral blade plate 20. At the time of implementation, it is desirable that the protrusion amount (lateral width) W2 of the spiral blade 20 is about 2 to 3 times the outer diameter W1 of the buried pipe 11.

従って、かかる地中熱交換器10によれば、金属製の螺旋翼板20が、地面中における接触面積を増大させ、埋設管11の採熱/排熱効果を高める。   Therefore, according to the underground heat exchanger 10, the metal spiral blade 20 increases the contact area in the ground and enhances the heat collection / exhaust heat effect of the buried pipe 11.

この結果、埋設管11の上下寸法H2を小さくしても、埋設管11の内部の採排熱用流体Rは十分な熱交換を行うことが可能であり、従来のボアホール方式の地中熱交換器に較べて、格段に浅い深度での熱交換効率を実現できる。   As a result, even if the vertical dimension H2 of the buried pipe 11 is reduced, the heat extraction fluid R inside the buried pipe 11 can perform sufficient heat exchange, and the conventional borehole type underground heat exchange is possible. Compared to a vessel, heat exchange efficiency can be achieved at a much shallower depth.

従来のように細いUチューブを用いるのではなく、ある程度の内径をもった埋設管11を用いて採排熱用流体Rを暫時貯留しつつ循環させれば、螺旋翼板20を介した採熱/排熱の加算的効果によって、より浅い深度での地中熱交換が可能となる。   Instead of using a thin U-tube as in the prior art, if the buried heat 11 is circulated while temporarily storing it using the buried pipe 11 having a certain inner diameter, heat collection through the spiral blade 20 is performed. / Additional effect of exhaust heat enables underground heat exchange at shallower depths.

このため、埋設管11の上下寸法を5〜15mに設置すれば、Uチューブを用いた従来の深度100〜150mのボアホール方式の地中熱交換器に相当する熱交換効率を獲得できる。埋設深度を浅くできるため、設置コストは確実に低減される。   For this reason, if the vertical dimension of the buried pipe 11 is set to 5 to 15 m, heat exchange efficiency corresponding to a conventional borehole type underground heat exchanger using a U tube and having a depth of 100 to 150 m can be obtained. Since the burial depth can be reduced, the installation cost is surely reduced.

また、埋設管11の外周面に螺旋翼板20を設けることによって、埋設管11の埋設に際しては、ボアホール(掘削穴)を設ける必要がなくなる。螺旋翼板20がネジと同じ作用を営むため、埋設管11を地面に対して垂直に回転貫入させることが出来るからである。このため、従来、掘削に要した経済負担も大幅に低減できる。   Further, by providing the spiral blade 20 on the outer peripheral surface of the buried pipe 11, it is not necessary to provide a bore hole (excavation hole) when the buried pipe 11 is buried. This is because the spiral wing plate 20 performs the same function as the screw, so that the buried pipe 11 can be rotated and penetrated perpendicularly to the ground. For this reason, the economic burden conventionally required for excavation can be greatly reduced.

本発明に係る地中熱交換器は、前記実施形態のものに限定されない。例えば、図3に示すように、螺旋翼板20として使用する金属板(平板)Pの表面(上面/下面/両面)には、複数の小さなディンプル(小凹部)31を形成してもよい。全体面積が同一である場合には、ディンプル31の形成によって地中における接触面積が増大するからである。   The underground heat exchanger according to the present invention is not limited to that of the above embodiment. For example, as shown in FIG. 3, a plurality of small dimples (small concave portions) 31 may be formed on the surface (upper surface / lower surface / both surfaces) of a metal plate (flat plate) P used as the spiral blade plate 20. This is because the contact area in the ground increases due to the formation of the dimple 31 when the entire area is the same.

同様に、複数の小凸部33を形成してもよい(図4参照)。螺旋翼板20の全体面積が同一である場合には、小凸部33の形成によって接触面積が増大するからである。小凸部33は、例えば断面円弧状の小突起とすることが出来る。埋設管11を回転貫入させる場合は、小凸部33は螺旋翼板20の上面に配し、貫入時の障害にならないようにすることが望ましい。   Similarly, a plurality of small convex portions 33 may be formed (see FIG. 4). This is because, when the entire area of the spiral blade 20 is the same, the contact area increases due to the formation of the small protrusions 33. The small convex part 33 can be made into the small protrusion of a cross-sectional arc shape, for example. When the embedded tube 11 is rotated and penetrated, it is desirable that the small convex portion 33 is disposed on the upper surface of the spiral blade plate 20 so as not to obstruct the penetration.

埋設管11の埋設深度を深くするため、埋設管11の上に、埋設管11の回転貫入を支援する補助部材を設けても良い。   In order to increase the embedding depth of the buried pipe 11, an auxiliary member that supports the rotation penetration of the buried pipe 11 may be provided on the buried pipe 11.

図5〜図10は、埋設管11の上に補助部材である埋設補助管30を設け、埋設管11を地面下に回転貫入させる埋設方法を例示するものである。   5 to 10 illustrate a burying method in which a buried auxiliary pipe 30 as an auxiliary member is provided on the buried pipe 11, and the buried pipe 11 is rotated and penetrated below the ground.

この場合、埋設管11を地面下に回転貫入させる場合は、まず、図5に示すように地表面GLを少し掘り下げて作業面GL2を作り、この作業面GL2から埋設管11を垂直に回転貫入させる。作業面GL2は、地表面GLを、例えば0.5〜2m程度掘り下げて成形する。掘り下げ量は、通常の場合、1m程度とすることが望ましい。   In this case, when the buried pipe 11 is rotated and penetrated below the ground, first, as shown in FIG. 5, the ground surface GL is slightly dug to create a work surface GL2, and the buried pipe 11 is rotated and penetrated vertically from the work surface GL2. Let The work surface GL2 is formed by digging the ground surface GL, for example, by about 0.5 to 2 m. In general, the amount of digging is desirably about 1 m.

この状態で、流体送入管14と流体送出管15とをヒートポンプ装置2に接続させてから掘り下げた土砂を埋め戻しても良いが、埋設管11の上下寸法を5〜6m程度とした場合は、埋設管11の埋設深度が若干浅くなるので、好ましくは、図6に示すように、埋設管11の上端部に内部中空の埋設補助管30を固定して設け、この埋設補助管30を回転させることによって埋設管11をより深い地中へ貫入埋設させる。   In this state, the earth and sand dug down after connecting the fluid inlet pipe 14 and the fluid outlet pipe 15 to the heat pump device 2 may be backfilled, but when the vertical dimension of the buried pipe 11 is about 5 to 6 m. Since the burial depth of the burial pipe 11 is slightly shallower, preferably, as shown in FIG. 6, an inner hollow burial auxiliary pipe 30 is fixedly provided at the upper end portion of the burial pipe 11, and the burial auxiliary pipe 30 is rotated. By doing so, the buried pipe 11 is buried in deeper underground.

埋設補助管30は、例えば鋼管を使用できる。埋設管11と異なり内部に流体を満たすものではないから、とくに必要がない場合は、防錆処理を施さなくても構わない。埋設補助管30は、その上端部を作業面GL2の近傍まで貫入させる。   As the buried auxiliary pipe 30, for example, a steel pipe can be used. Unlike the buried pipe 11, it does not fill the fluid inside. Therefore, if not particularly necessary, the rust prevention treatment may not be performed. The buried auxiliary pipe 30 penetrates the upper end portion to the vicinity of the work surface GL2.

埋設管11の上端部と埋設補助管30の下端部との接続は、溶接、ボルト締め等、適宜の手段をもって行うことが出来る。   The connection between the upper end portion of the buried pipe 11 and the lower end portion of the buried auxiliary pipe 30 can be performed by appropriate means such as welding and bolting.

図7は、埋設管11と埋設補助管30との接続の一例を示すもので、例えば、埋設管11の上端部に金属製の継手部材42を設け、この継手部材42を介して埋設管11と埋設補助管30の接続を行う。   FIG. 7 shows an example of the connection between the buried pipe 11 and the buried auxiliary pipe 30. For example, a metal joint member 42 is provided at the upper end of the buried pipe 11, and the buried pipe 11 is interposed via the joint member 42. And the buried auxiliary pipe 30 are connected.

継手部材42は、埋設管11に嵌合できる外径をもった肉厚の円板形状に成形する。この継手部材42には、例えば、流体送入管14と流体送出管15と上方へ案内する縦方向のガイド孔44、45と、横方向のボルト穴36とを設ける。   The joint member 42 is formed into a thick disk shape having an outer diameter that can be fitted into the buried pipe 11. For example, the joint member 42 is provided with the fluid inlet pipe 14 and the fluid outlet pipe 15, longitudinal guide holes 44 and 45 for guiding the fluid upward, and a lateral bolt hole 36.

図8に示すように、埋設管11の上端部に継手部材42を設置した後、埋設管11の上に埋設補助管30を載置して、ボルト穴36に螺合させるボルトBを介して埋設管11と埋設補助管30とを接続固定する。ボルト穴36の数は適宜増減して良い。   As shown in FIG. 8, after installing the joint member 42 on the upper end portion of the buried pipe 11, the buried auxiliary pipe 30 is placed on the buried pipe 11, and the bolt B is screwed into the bolt hole 36. The buried pipe 11 and the buried auxiliary pipe 30 are connected and fixed. The number of bolt holes 36 may be increased or decreased as appropriate.

また、図9に示すように、ガイド孔44、45を利用し、埋設管11が備える流体送入管14と流体送出管15を上方へ延設させる。流体送入管14、流体送出管15は、適宜の管継手(図示せず)を介して延長させれば良い。   Further, as shown in FIG. 9, the fluid inlet pipe 14 and the fluid outlet pipe 15 included in the buried pipe 11 are extended upward using guide holes 44 and 45. The fluid inlet tube 14 and the fluid outlet tube 15 may be extended via appropriate pipe joints (not shown).

従って、かかる構成によれば、作業面GL2から埋設管11を地面に回転貫入させた後、埋設管11の上に埋設補助管30を設けることによって、埋設管11をさらに深度深くに回転貫入させることが可能となる。   Therefore, according to such a configuration, the buried pipe 11 is rotated and penetrated into the ground from the work surface GL2, and then the buried auxiliary pipe 30 is provided on the buried pipe 11, so that the buried pipe 11 is further rotated and penetrated deeper. It becomes possible.

その後、流体送入管14と流体送出管15とを適宜の接続管を用いてヒートポンプ装置2に接続し、作業面GL2と地表面GLとの掘削段差を埋め戻すことによって地熱交換器の設置作業を終了する。   Thereafter, the fluid inlet pipe 14 and the fluid outlet pipe 15 are connected to the heat pump device 2 using an appropriate connecting pipe, and the excavation step between the work surface GL2 and the ground surface GL is backfilled to install the geothermal exchanger. Exit.

このようにすれば、例えば、埋設管11の上下寸法を5m、埋設補助管30の上下寸法を4m、埋め戻しの上下寸法を1mとした場合、図10に示すように、地表面GLから埋設管11の下端までの上下寸法Dは10mとなり、埋設管11は、ほぼ全体が地中熱の安定温度帯域である地面下5m以下の位置に埋設されることになる。   In this way, for example, when the vertical dimension of the buried pipe 11 is 5 m, the vertical dimension of the buried auxiliary pipe 30 is 4 m, and the vertical dimension of the backfill is 1 m, the buried pipe 11 is buried from the ground surface GL as shown in FIG. The vertical dimension D to the lower end of the pipe 11 is 10 m, and the entire buried pipe 11 is buried at a position below 5 m below the ground, which is a stable temperature zone of underground heat.

このように、埋設補助管30を設けることによって、埋設管11を比較的浅めの深度に自由に埋設でき、螺旋翼板20を介した採熱/放熱による効率的な熱交換を行うことが出来る。   As described above, by providing the burial auxiliary pipe 30, the burial pipe 11 can be buried freely at a relatively shallow depth, and efficient heat exchange by heat collection / radiation via the spiral blade plate 20 can be performed. .

埋設補助管30の配設数は、ひとつに限定されない。埋設管11の上に埋設補助管30を設けた後、さらに当該埋設補助管30の上に二段目の埋設補助管(30)を設けても良い。埋設管11の埋設深度を調整するためである。二段目の埋設補助管(30)の上に三段目の埋設補助管(30)を接続固定しても良い。埋設補助管(30)の個数は限定されない。埋設補助管(30)同士の接続は、適宜方法、例えば、前記継手部材(42)を介して行うことが出来る。   The number of the buried auxiliary pipes 30 is not limited to one. After providing the buried auxiliary pipe 30 on the buried pipe 11, a second-stage buried auxiliary pipe (30) may be provided on the buried auxiliary pipe 30. This is to adjust the embedding depth of the embedding pipe 11. The third stage buried auxiliary pipe (30) may be connected and fixed on the second stage buried auxiliary pipe (30). The number of burial auxiliary pipes (30) is not limited. The connection between the buried auxiliary pipes (30) can be appropriately performed, for example, through the joint member (42).

2 ヒートポンプ装置
10 地中熱交換器
11 埋設管
14 流体送入管
15 流体送出管
20 螺旋翼板
30 埋設補助管
31 ディンプル(小凹部)
33 小凸部
36 ボルト穴
42 継手部材
44、45 ガイド孔
GL 地表面
GL2 作業面
H2 埋設管の上下寸法
R 採排熱用流体
W1 埋設管の外径
W2 螺旋翼板の突出量
DESCRIPTION OF SYMBOLS 2 Heat pump apparatus 10 Ground heat exchanger 11 Buried pipe 14 Fluid inflow pipe 15 Fluid delivery pipe 20 Spiral blade 30 Buried auxiliary pipe 31 Dimple (small recessed part)
33 Small convex portion 36 Bolt hole 42 Joint member 44, 45 Guide hole GL Ground surface GL2 Work surface H2 Vertical dimension of buried pipe R Heat extraction fluid W1 Outer diameter of buried pipe W2 Projection amount of spiral blade

Claims (2)

地面に垂直に埋設する地中熱ヒートポンプシステム用の地中熱交換器において、
ヒートポンプ装置を介して循環させる採排熱用流体を暫時貯留する金属製の埋設管と、
当該埋設管の上端部に固定した埋設補助管と、
ヒートポンプ装置を介して前記埋設管へ前記採排熱用流体を送り込む流体送入管と、
前記埋設管の内部の採排熱用流体を前記ヒートポンプ装置へ還流させる流体送出管とを備えるとともに、
前記埋設管の外周面に、金属製の螺旋翼板を外方へ突出させて固定し、
前記螺旋翼板の横幅を、前記埋設管の外径の1.5〜3.5倍に設定するものであって、
前記埋設補助管は、
前記埋設管の埋設深度を調整するものであり、その内部に前記採排熱用流体を満たさないことを特徴とする地中熱ヒートポンプシステム用の地中熱交換器。
In the underground heat exchanger for the underground heat pump system buried vertically in the ground,
A metal buried pipe for temporarily storing a fluid for collecting and exhausting heat to be circulated through a heat pump device;
A buried auxiliary pipe fixed to the upper end of the buried pipe;
A fluid inlet tube feeding the Tohai thermal fluid into the buried pipe through the heat pump device,
Provided with a fluid delivery tube for recirculating the interior of the adoption waste heat fluid of the buried pipe to the heat pump device,
A metal spiral blade is protruded outward and fixed to the outer peripheral surface of the buried pipe,
The lateral width of the spiral blade is set to 1.5 to 3.5 times the outer diameter of the buried pipe ,
The buried auxiliary pipe is
A geothermal heat exchanger for a geothermal heat pump system, which adjusts the embedment depth of the buried pipe and does not fill the inside of the heat for collecting and exhausting heat .
螺旋翼板は、
上面および下面のうち少なくとも一方に、
複数のディンプルまたは小凸部を備えることを特徴とする請求項1記載の地中熱ヒートポンプシステム用の地中熱交換器。
The spiral vane
At least one of the upper surface and the lower surface,
The ground heat exchanger for a geothermal heat pump system according to claim 1, comprising a plurality of dimples or small convex portions.
JP2013152983A 2013-07-23 2013-07-23 Geothermal heat exchanger for geothermal heat pump system Active JP6018983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152983A JP6018983B2 (en) 2013-07-23 2013-07-23 Geothermal heat exchanger for geothermal heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013152983A JP6018983B2 (en) 2013-07-23 2013-07-23 Geothermal heat exchanger for geothermal heat pump system

Publications (2)

Publication Number Publication Date
JP2015021714A JP2015021714A (en) 2015-02-02
JP6018983B2 true JP6018983B2 (en) 2016-11-02

Family

ID=52486319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152983A Active JP6018983B2 (en) 2013-07-23 2013-07-23 Geothermal heat exchanger for geothermal heat pump system

Country Status (1)

Country Link
JP (1) JP6018983B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357839B (en) * 2021-06-26 2022-12-02 中化地质矿山总局山东地质勘查院 Medium-deep buried pipe heat exchange device and heat supply system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818087A (en) * 1981-07-26 1983-02-02 Natl House Ind Co Ltd Structure of heat exchanger pipe used for air conditioning system
JPS5871575U (en) * 1981-10-31 1983-05-14 ナショナル住宅産業株式会社 Heat exchanger tube structure for air conditioning
JPS58102988U (en) * 1981-12-29 1983-07-13 日本建鐵株式会社 Heat exchanger tube with helical fins
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP2003194487A (en) * 2001-12-28 2003-07-09 Usui Internatl Ind Co Ltd Finned tube
DE10202261A1 (en) * 2002-01-21 2003-08-07 Waterkotte Waermepumpen Gmbh Heat source or heat sink system with thermal earth coupling
JP2004177012A (en) * 2002-11-27 2004-06-24 Asahi Kasei Homes Kk Steel pipe pile for heat exchange
JP2007183008A (en) * 2005-12-29 2007-07-19 Yasushi Miyauchi Spiral blade with auxiliary blade
FR2918086B1 (en) * 2007-06-26 2013-02-08 Climatisation Par Puits Canadiens HEAT EXCHANGER VERTICAL BURNER FOR HEATING OR REFRESHING INSTALLATION
JP5100270B2 (en) * 2007-09-12 2012-12-19 古河電気工業株式会社 Heat exchanger and heat exchanger construction method
JP5339962B2 (en) * 2008-02-27 2013-11-13 Jfeスチール株式会社 Construction method for underground heat exchanger and hollow tube used in the method
JP3142735U (en) * 2008-03-21 2008-06-26 株式会社東光工業 Heat pump type air conditioner
JP2012136823A (en) * 2009-04-10 2012-07-19 Nippon Steel Engineering Co Ltd Steel pipe pile and construction method for the same
NL1037890C2 (en) * 2010-04-06 2011-10-13 Demar Heiwerken B V METHOD FOR INSERTING A LONG-TERM ELEMENT INTO A BOTTOM
JP5868636B2 (en) * 2011-08-25 2016-02-24 新日鉄住金エンジニアリング株式会社 Steel pipe pile and construction method of steel pipe pile
CN102587365B (en) * 2012-03-02 2014-11-26 中国京冶工程技术有限公司 Method for embedding precession-type backfill grouting ground source thermal energy conversion precast pile device into stratum

Also Published As

Publication number Publication date
JP2015021714A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
EP2078161B1 (en) A wind energy converter, a method and use hereof
KR100880675B1 (en) Closed type underground heat exchanger device and construction method using double insertion geothermal tube
US20050061472A1 (en) Heat source or heat sink unit with thermal ground coupling
US20090212575A1 (en) Wind Energy Converter, A Wind Turbine Foundation, A Method And Use Of A Wind Turbine Foundation
JP4727761B1 (en) Cast-in-place concrete piles with steel pipes for underground heat collection
JP2004233031A (en) Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
US20150007960A1 (en) Column Buffer Thermal Energy Storage
KR101944023B1 (en) Complex underground thermal exchanger using ground water tube well
JP4764912B2 (en) Underground temperature stratified thermal storage tank
KR100981527B1 (en) High depth vertical hermetic underground heat exchanger device and construction method
EP3940313A1 (en) Borehole heat exchanger with macro-encapsulated phase change material
JP2016223270A (en) Geothermal heat collection device
JP6018983B2 (en) Geothermal heat exchanger for geothermal heat pump system
JP2004225936A (en) Cooling system utilizing groundwater heat
JP2009041894A (en) Underground heat exchange method by pulling out rotary leading steel pipe
GB2442803A (en) Multiple depth subterranean heat exchanger and installation method
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
JP6609880B2 (en) Underground heat exchanger burying method inside steel pipe pile
KR101606830B1 (en) Tube Well-type Heat Exchanger for Heat Pump System
JP6170228B1 (en) Horizontally inclined convection type underground heat exchanger with large horizontal pipe, horizontal inclined type convective underground heat exchanger for horizontal pipe, and installation method thereof
KR100768064B1 (en) Heating exchange system using the geothermal
GB2463237A (en) Geothermal heating or cooling apparatus and method
KR20140004459U (en) That the effective depth of groundwater-exchange method using a geothermal system
CN205537374U (en) Hole device is settleed fast in presplit blasting hole
EP2674693A2 (en) Closed loop underground heat exchanger of high efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6018983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250