JP4947739B2 - Desiccant air conditioner for supplying dry air with ultra-low dew point temperature - Google Patents

Desiccant air conditioner for supplying dry air with ultra-low dew point temperature Download PDF

Info

Publication number
JP4947739B2
JP4947739B2 JP2009218141A JP2009218141A JP4947739B2 JP 4947739 B2 JP4947739 B2 JP 4947739B2 JP 2009218141 A JP2009218141 A JP 2009218141A JP 2009218141 A JP2009218141 A JP 2009218141A JP 4947739 B2 JP4947739 B2 JP 4947739B2
Authority
JP
Japan
Prior art keywords
air
desiccant rotor
zone
desiccant
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009218141A
Other languages
Japanese (ja)
Other versions
JP2011064439A (en
Inventor
勝司 河本
雅弘 山口
泰 鍋島
啓介 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinko Industries Ltd
Original Assignee
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinko Industries Ltd filed Critical Sinko Industries Ltd
Priority to JP2009218141A priority Critical patent/JP4947739B2/en
Publication of JP2011064439A publication Critical patent/JP2011064439A/en
Application granted granted Critical
Publication of JP4947739B2 publication Critical patent/JP4947739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は、超低露点温度の乾燥空気を供給するデシカント空調機に係り、特に、超低露点温度を必要とする製造ラインに極めて乾燥した空気を供給するデシカント空調機に関する。   The present invention relates to a desiccant air conditioner that supplies dry air having an ultra-low dew point temperature, and more particularly to a desiccant air conditioner that supplies extremely dry air to a production line that requires an ultra-low dew point temperature.

従来、超低露点温度を必要とする製造ラインへの外気の取り入れには、温湿度のコントロールが必要であり、特に、電子デバイス製造ラインでは、空気中に含まれる水分等が製品に付着することにより不良品の発生に繋がることから、極めて高い乾燥した空気、即ち超低露点の乾燥空気を供給することが求められていた。
このため、従来の超低露点の乾燥空気SAを供給する空調機には、図2に示されるように、外気OAをフィルターaを介してファンbにより取込み、冷却器cで外気OAを冷却し、回転式のデシカントロータdを用いた乾式除湿器が使用されている。
この乾式除湿装置は、塩化リチウムや塩化カルシウムなどの吸収液を含浸させたハニカム状のロータや、シリカゲル、ゼオライトなどの吸着材で構成したロータを備え、このロータの端面に位置する空気の通過域、すなわち例えばロータの端面に配置するチャンバ等の仕切りによる空気の通過区域を除湿ゾーン(処理ゾーン)eと再生ゾーンfとに仕切り、ロータを回転させながら除湿ゾーンeに処理空気を通過させて乾燥空気を作り出すと共に、再生ゾーンfに140℃程度の高温の再生空気を通過させることによって、前記吸着材中の水分を再生空気中に蒸発させて、連続的に除湿処理を行うように構成され、より低露点を得る場合には、多段式、すなわち複数の乾式除湿装置を直列系統接続して運転する方法が知られている(例えば、特許文献1)。
Conventionally, control of temperature and humidity is necessary for taking outside air into a production line that requires an ultra-low dew point temperature. In particular, in an electronic device production line, moisture contained in the air adheres to the product. Therefore, it has been required to supply extremely high dry air, that is, dry air having an ultra-low dew point.
For this reason, as shown in FIG. 2, the conventional air conditioner for supplying dry air SA with an ultra-low dew point takes outside air OA through a filter a by a fan b, and cools the outside air OA by a cooler c. A dry dehumidifier using a rotary desiccant rotor d is used.
This dry dehumidifier has a honeycomb-shaped rotor impregnated with an absorbing liquid such as lithium chloride or calcium chloride, and a rotor composed of an adsorbent such as silica gel or zeolite, and an air passage area located on the end face of the rotor. That is, for example, the air passage area by a partition such as a chamber arranged on the end face of the rotor is divided into a dehumidification zone (treatment zone) e and a regeneration zone f, and the treatment air is passed through the dehumidification zone e while rotating the rotor and dried. The air is created, and the regeneration air having a temperature of about 140 ° C. is allowed to pass through the regeneration zone f to evaporate the moisture in the adsorbent into the regeneration air and continuously perform dehumidification. In order to obtain a lower dew point, a multistage type, that is, a method of operating by connecting a plurality of dry dehumidifiers in series system is known (for example, a patent Document 1).

この場合、ロータが高温の状態で除湿区域に移行すると、処理空気が除湿しないままロータを通過して露点を上昇させるので、低湿度に制御された空間からの空気など、低温の空気を通過させてロータを冷却するためのパージゾーンgが再生区域と除湿区域との間に設けなければならなかった。すなわち、パージゾーンgは、再生ゾーンf(水分放出側)から除湿ゾーンe(水分吸着側)へ回転してきたデシカントロータd自体が高温の状態であり、相当量の顕熱が再生側から処理側へ移動することになるため、デシカントロータdが再生ゾーンf通過後、除湿ゾーンeに入る前に、デシカントロータ冷却用の第3のゾーンであるパージゾーンgを設けて冷却(及び除湿)空気を通過させ、ロータを冷却する。通常、図示するように、パージゾーンgには低露点の空気SAの一部を供給とともに、還気RAのヒータhで140℃程度の高温空気にしてデシカントロータdの再生ゾーンfに供給して乾燥させ、この空気とSAの一部とをファンiで排気することで、超低露点温度の乾燥空気を供給するデシカント空調機を形成していた。
特許第3483752号公報
In this case, if the rotor moves to a dehumidifying zone while the temperature is high, the process air passes through the rotor without dehumidification and raises the dew point, so low temperature air such as air from a space controlled to low humidity is allowed to pass. Thus, a purge zone g for cooling the rotor had to be provided between the regeneration zone and the dehumidification zone. That is, in the purge zone g, the desiccant rotor d itself that has rotated from the regeneration zone f (moisture release side) to the dehumidification zone e (moisture adsorption side) is in a high temperature state, and a considerable amount of sensible heat is transferred from the regeneration side to the processing side. After the desiccant rotor d passes through the regeneration zone f and before entering the dehumidifying zone e, a purge zone g, which is a third zone for cooling the desiccant rotor, is provided to supply cooling (and dehumidifying) air. Pass and cool the rotor. Normally, as shown in the figure, a part of the low dew point air SA is supplied to the purge zone g, and the high temperature air of about 140 ° C. is supplied to the regeneration zone f of the desiccant rotor d by the heater h of the return air RA. A desiccant air conditioner for supplying dry air having an ultra-low dew point temperature was formed by drying and exhausting this air and a part of SA with a fan i.
Japanese Patent No. 3483752

しかしながら、上述した従来の低露点デシカント空調機は、再生ゾーンが140℃程度の高温空気やパージゾーンを設けなければならないことから、次のような問題点がある。
(1)再生空気温度が、100℃少なくとも80℃以上の高温であり、熱源に蒸気または電気ヒータを用いる必要があること。
(2)蒸気源を使用することが多いが、蒸気の生産時にCO2を大量に生じる場合があり、CO2の削減に寄与できないこと。
(3)再生器に他の機器からの80℃以下の温水の排熱が利用できないこと。
(4)除湿器の除湿性能を上げるため、パージが必要になること。
(5)再生側より処理側への熱移動が大きいため、処理側では顕熱が上がり、それによって除湿性能の低下が生じる。場合よっては、そのため一部を冷却する必要がある。
However, the conventional low dew point desiccant air conditioner described above has the following problems because the regeneration zone must be provided with high-temperature air of about 140 ° C. or a purge zone.
(1) The regeneration air temperature is a high temperature of at least 100 ° C. and at least 80 ° C., and it is necessary to use steam or an electric heater as a heat source.
(2) Although a steam source is often used, a large amount of CO 2 may be generated during the production of steam, and it cannot contribute to the reduction of CO 2 .
(3) Exhaust heat of hot water of 80 ° C or less from other equipment cannot be used for the regenerator.
(4) Purging is required to improve the dehumidifying performance of the dehumidifier.
(5) Since the heat transfer from the regeneration side to the treatment side is large, the sensible heat rises on the treatment side, thereby degrading the dehumidifying performance. In some cases, it is therefore necessary to cool a part.

本発明は、このような問題点に鑑みてなされたもので、デシカントロータの再生ゾーンに、再生空気を80℃以下に加熱する再生器を使用することが可能で、使用する部材も通常の耐熱性のものが使用可能な超低露点温度の乾燥空気を室内に供給するデシカント空調機を提供することにある。   The present invention has been made in view of such problems, and it is possible to use a regenerator that heats the regenerated air to 80 ° C. or less in the regeneration zone of the desiccant rotor, and the members to be used are also normal heat resistant. It is an object of the present invention to provide a desiccant air conditioner that supplies dry air having an ultra-low dew point temperature that can be used in a room.

上記課題を解決するために、請求項1の発明は、処理ラインとして前段に第1冷却器を配置した第1デシカントロータの処理ゾーンと、前段に第2冷却器を配置した第2デシカントロータの処理ゾーンと、前段に第3冷却器を配置した第3デシカントロータの処理ゾーンとを直列に連通し、第1ファンを第1デシカントロータの処理ゾーン下流から室内側への供給と排気ラインとの分岐点の間に配置し、第1冷却器側から外気を吸い込み順次第2デシカントロータ及び第3デシカントロータの処理ゾーンで処理して超低露点の給気を室内側に供給し、給気全体の少なくとも30%以上を還気として前記第1ファンの上流であって第2冷却器又は第3冷却器の上流に合流させて循環させるとともに、
再生ラインとして前段に第3再生器を配置した第3デシカントロータの再生ゾーンと、前段に第2再生器を配置した第2デシカントロータの処理ゾーンと、前段に第1再生器を配置した第1デシカントロータの処理ゾーンとを直列に連通し、排気のための第2ファンを配置し、前記室内側に供給する前記給気の一部を第3デシカントロータの再生ゾーンに供給し、順次第2デシカントロータの再生ゾーン、第1デシカントロータの再生ゾーンを通過させるとともに、各デシカントロータの再生器は80℃以下で加熱するようにしたパージゾーンのない超低露点温度の乾燥空気を供給するデシカント空調機である。
In order to solve the above-mentioned problems, the invention of claim 1 is directed to a processing zone of a first desiccant rotor in which a first cooler is disposed in the preceding stage as a processing line, and a second desiccant rotor in which a second cooler is disposed in the preceding stage. The processing zone and the processing zone of the third desiccant rotor in which the third cooler is arranged in the preceding stage are connected in series, and the first fan is supplied from the downstream of the processing zone of the first desiccant rotor to the indoor side and the exhaust line. Arranged between the branch points, sucks outside air from the first cooler side, processes it in the processing zone of the second desiccant rotor and third desiccant rotor and supplies the air supply with ultra-low dew point to the indoor side, and the whole air supply And at least 30% or more of the air as a return air , upstream of the first fan and upstream of the second cooler or the third cooler, and circulated,
As a regeneration line, a regeneration zone of a third desiccant rotor in which a third regenerator is disposed in the preceding stage, a processing zone in a second desiccant rotor in which the second regenerator is disposed in the preceding stage, and a first regenerator disposed in the preceding stage. A second fan for exhaust is disposed in series with the processing zone of the desiccant rotor, a part of the supply air supplied to the indoor side is supplied to the regeneration zone of the third desiccant rotor, desiccant rotor of the regeneration zone, with passing a regeneration zone of the first desiccant rotor, regenerator of each desiccant rotor supplies dry air without Unishi was purge zone by you heated ultra-low dew point at 80 ° C. or less desiccant It is an air conditioner.

本発明によれば、少なくとも3台のデシカントロータを直列に配置し、給気した室内から大量の還気を第1ファンの上流に循環処理するようにし、かつ、給気の一部を再生ゾーンを通過させて排気するようにしたので、従来のパージゾーンを設けた高温再生型乾式除湿器と同等の超低露点(−50℃DP)が実現可能となり、再生空気が80℃以下で良いのでパージゾーンが必要でなくなることから、従来の超低露点温度の乾燥空気を供給するデシカント空調機と比べて、次のような利点がある。
(1)パージゾーンが不要であること。
(2)デシカントロータの再生器に低温再生乾式除湿器を用いることができること。
(3)再生空気が80℃以下となることから、従来のデシカントロータ空調機のパネル等の部材も使用可能となること。
(4)再生器には80℃以下の温水でもいいので、他の施設の排熱を容易に再生器に利用が可能であり、蒸気源が不必要になること。
According to the present invention, at least three desiccant rotors are arranged in series so that a large amount of return air is circulated from the supplied air chamber upstream of the first fan, and a part of the supply air is regenerated. Since the exhaust gas is exhausted through the air, it is possible to realize an ultra-low dew point (-50 ° C DP) equivalent to that of a conventional high-temperature regenerative dry dehumidifier with a purge zone. Since a purge zone is not necessary, the following advantages are obtained as compared with a conventional desiccant air conditioner that supplies dry air having an ultra-low dew point temperature.
(1) A purge zone is not required.
(2) A desiccant rotor regenerator can use a low-temperature regenerated dry dehumidifier.
(3) Since the regeneration air is 80 ° C. or lower, members such as a panel of a conventional desiccant rotor air conditioner can be used.
(4) Since the regenerator may be hot water of 80 ° C. or less, the exhaust heat from other facilities can be easily used for the regenerator, and a steam source becomes unnecessary.

本発明の好適な実施例1を図面に沿って説明する。
[実施例]
図1は、実施例の超低露点温度の乾燥空気を供給するデシカント空調機1の系統図であって、主に直列に配置される第1デシカントロータ21、第2デシカントロータ22、第3デシカントロータ23から構成される。そして、各デシカントロータの除湿する処理ゾーンの上流側には冷却器が配置され、第1デシカントロータ21の前段には第1冷却器31、第2デシカントロータ22の前段には第2冷却器32、第3デシカントロータ23の前段には第3冷却器33がそれぞれ配置される。また、各デシカントロータを加熱する再生ゾーンの上流側には再生器が配置され、空気の流れ順に第3デシカントロータ23の前段には第3再生器43、第2デシカントロータ22の前段には第2再生器42、第1デシカントロータ21の前段には第1再生器41がそれぞれ配置される。この第1〜3デシカントロータは、各再生器が低温度の80℃以下の温水で加熱しているので、高温再生型乾式除湿器を用いる場合のパージゾーンを設けてはいない。
A preferred embodiment 1 of the present invention will be described with reference to the drawings.
[Example]
FIG. 1 is a system diagram of a desiccant air conditioner 1 that supplies dry air having an ultra-low dew point temperature according to an embodiment, and mainly includes a first desiccant rotor 21, a second desiccant rotor 22, and a third desiccant arranged in series. The rotor 23 is configured. A cooler is disposed upstream of the treatment zone where each desiccant rotor dehumidifies. The first cooler 31 is disposed upstream of the first desiccant rotor 21, and the second cooler 32 is disposed upstream of the second desiccant rotor 22. The third coolers 33 are arranged in front of the third desiccant rotor 23, respectively. Further, a regenerator is disposed upstream of the regeneration zone for heating each desiccant rotor, and the third regenerator 43 and the second desiccant rotor 22 are arranged in the upstream of the third desiccant rotor 23 in the order of the air flow. The first regenerator 41 is disposed in front of the two regenerators 42 and the first desiccant rotor 21. In each of the first to third desiccant rotors, each regenerator is heated with a low-temperature hot water of 80 ° C. or lower, and therefore a purge zone is not provided when a high-temperature regenerative dry dehumidifier is used.

先ず、図1で外気OAから室内に乾燥空気の給気SAを供給する処理ライン(図面下側)の構成から説明する。
外気OAは第1ファン51により吸い込まれるが、ダンパ61により吸入量を規制されフィルター71により第1冷却器(冷却コイル)31で冷やされ、第1デシカントロータ21の処理ゾーン211を通過してある程度除湿される。本実施例での第1ファン51で吸い込まれる外気OA風量は1000CMH(m3/h)程度で、第1冷却器(冷却コイル)31直後の到達露点は9.24℃DP程度であった。
この除湿された中間空気は、室内Rからの還気RAと混合され、第1ファン51により次の第2デシカントロータ22の前段の第2冷却器32で冷やされ、第2デシカントロータ22の処理ゾーン221を通過して更に除湿される。
本実施例では、前記還気RA量は、1000CMH(m3/h)程度で到達露点は−40℃DP程度であるので、第1ファン51は合計2000(m3/h)で到達露点は−20.21℃DP程度となっている。
First, the configuration of the processing line (lower side of the drawing) for supplying the dry air supply SA from the outside air OA into the room will be described with reference to FIG.
The outside air OA is sucked by the first fan 51, but the amount of suction is restricted by the damper 61, cooled by the first cooler (cooling coil) 31 by the filter 71, and passes through the processing zone 211 of the first desiccant rotor 21 to some extent. Dehumidified. In this embodiment, the outside air OA air volume sucked by the first fan 51 is about 1000 CMH (m 3 / h), and the ultimate dew point immediately after the first cooler (cooling coil) 31 is about 9.24 ° C. DP.
The dehumidified intermediate air is mixed with the return air RA from the room R, cooled by the first fan 51 in the second cooler 32 in front of the next second desiccant rotor 22, and processed by the second desiccant rotor 22. It passes through the zone 221 and is further dehumidified.
In this embodiment, the return air RA amount is about 1000 CMH (m 3 / h) and the dew point is about −40 ° C. DP, so the first fan 51 has a total of 2000 (m 3 / h) and the dew point is It is about −20.21 ° C. DP.

この中間到達露点が−20℃DP程度に達した空気を、第2デシカントロータ22の処理ゾーン221と第3冷却コイル33を通過させ到達露点を−35.46℃DP程度して、最終の第3デシカントロータ23に送風し更に除湿する。この第3デシカントロータ23の処理ゾーン231の上流には第3冷却器33が配置され、乾燥空気は冷却されて到達露点は−50℃DP程度まで除湿された後に、ドライルーム等の室内Rに給気通路81より給気され、一部は返還通路82から再生ラインに戻される。
本実施例では給気全体の約50%に当たる1000CMH(m3/h)程度の給気を返還通路82及び風量を制御するダンパ63を介して再生ラインに戻している。この戻し率は、多ければそれだけ乾燥度合いが上がるが、室内の給気SAの量が少なくなるので、実際には戻し量は30%から70%が限度である。
また、室内側には給気全体の50%に当たる給気が供給されるが、その−50℃DP程度の乾燥空気の給気SAは室内Rを満たした後、大部分は1000CMH(m3/h)程度で到達露点は−40℃DP程度の還気RAとなって、ダンパ62によって風量制御されて、第1デシカントロータ21の処理ゾーン211の下流の直後で、第2冷却コイル32及び第2デシカントロータ22の上流に配置した第1ファン51の合流点Aに戻され循環される。この循環処理により−50℃DP程度の乾燥空気を維持している。なお、この場合に、還気RAの一部(僅かな量)は漏れがあり、9CMH(m3/h)程度であるが外部に放出(EA:一部)される。
なお、第1ファン51の配置位置は、必ずしも、第1デシカントロータ21と第2冷却コイル32の間で合流点A直後でなくても、合流点Aの下流であって、第1冷却器31の下流から、後述する給気通路81と返還通路82との分岐点Bの上流との間であればよい。
また、室内還気と処理ラインとの合流点Aも、第1デシカントロータ21の処理ゾーン211の下流の直後でなくとも、前記第1ファンの上流であれば、第1冷却器の下流から第3デシカントロータ23の処理ゾーン231の上流の間に配置させればよく、到達露点は−50℃DP程度になるように室内還気を合流させて循環させればよい。
The air whose intermediate reaching dew point has reached about −20 ° C. DP is passed through the processing zone 221 and the third cooling coil 33 of the second desiccant rotor 22 to reach the final dew point of about −35.46 ° C. DP. The air is blown to the 3-desiccant rotor 23 and further dehumidified. A third cooler 33 is disposed upstream of the processing zone 231 of the third desiccant rotor 23, the dry air is cooled and the dew point is dehumidified to about −50 ° C. DP, and is then placed in a room R such as a dry room. Air is supplied from the air supply passage 81, and a part is returned from the return passage 82 to the regeneration line.
In the present embodiment, the supply air of about 1000 CMH (m 3 / h), which is about 50% of the entire supply air, is returned to the regeneration line via the return passage 82 and the damper 63 that controls the air volume. The higher the return rate, the higher the degree of drying. However, since the amount of air supply SA in the room decreases, the return amount is actually limited to 30% to 70%.
In addition, air supply corresponding to 50% of the total supply air is supplied to the indoor side, but the supply air SA of about −50 ° C. DP is mostly 1000 CMH (m 3 / m h), the ultimate dew point is the return air RA of about −40 ° C. DP, the air volume is controlled by the damper 62, and immediately after the downstream of the processing zone 211 of the first desiccant rotor 21, the second cooling coil 32 and the second It is returned to the junction A of the first fan 51 disposed upstream of the two desiccant rotor 22 and circulated. By this circulation treatment, dry air of about −50 ° C. DP is maintained. In this case, a part (a small amount) of the return air RA leaks and is released to the outside (EA: a part) although it is about 9 CMH (m 3 / h).
The first fan 51 is not necessarily located immediately after the merge point A between the first desiccant rotor 21 and the second cooling coil 32, but is located downstream of the merge point A and the first cooler 31. May be between the upstream of a branch point B between an air supply passage 81 and a return passage 82, which will be described later.
Further, if the confluence A between the indoor return air and the processing line is not immediately after the downstream of the processing zone 211 of the first desiccant rotor 21, but is upstream of the first fan, What is necessary is just to arrange | position between the upstream of the process zone 231 of the 3 desiccant rotor 23, and what is necessary is just to circulate by returning indoor return air so that an attainment dew point may become about -50 degreeCDP.

先ず、図1で給気SAの一部が再生ゾーンを通過して外部に排気EAとなって排出される再生ライン(図面上側)の構成を説明する。
第3デシカントロータ23の到達露点は−50℃DP程度までであり、その除湿空気の一部(全体の50%に当たる1000CMH)は室内(R)へ給気され、また、その除湿空気の一部(全体の50%に当たる1000CMH)は再生ラインに戻される。その戻された除湿空気は、まず、第3デシカントロータ23の再生ゾーン232の前段の第3再生器(再生コイル)43で加熱され、その後再生ゾーン232を通過して、第3デシカントロータの再生ゾーン232で湿気を飛ばし、次段の第2デシカントロータ22の再生ゾーン222に送風される。
First, the configuration of a regeneration line (upper side in the drawing) in which a part of the supply air SA passes through the regeneration zone and is exhausted to the outside as exhaust EA in FIG. 1 will be described.
The reached dew point of the third desiccant rotor 23 is up to about −50 ° C. DP, and a part of the dehumidified air (1000 CMH corresponding to 50% of the whole) is supplied to the room (R), and a part of the dehumidified air (1000 CMH corresponding to 50% of the total) is returned to the reproduction line. The returned dehumidified air is first heated by the third regenerator (regeneration coil) 43 in the preceding stage of the regeneration zone 232 of the third desiccant rotor 23 and then passes through the regeneration zone 232 to regenerate the third desiccant rotor. Moisture is blown off in the zone 232 and blown to the regeneration zone 222 of the second desiccant rotor 22 in the next stage.

この第2デシカントロータ22では、その再生ゾーン222に第2再生器42が配置され、この第2再生器42の下流側での空気の到達露点は−35.51℃DP程度(1000CMH(m3/h)程度)であり、第2デシカントロータの再生ゾーン222で湿気を飛ばし、最終の第1デシカントロータ21の再生ゾーン212に送風される。
この第1デシカントロータ21では、その再生ゾーン212に第1再生器41が配置され、この第1再生器41の下流側での空気の到達露点は−20.23℃DP程度(1000CMH(m3/h)程度)であり、さらに、第1デシカントロータの再生ゾーン212で湿気を飛ばし、第2ファン53によって、1000CMH(m3/h)程度が戸外に排気EAされる。
なお、本実施例では第2ファン53を再生ライン下流の最後の戸外放出点Cに配置したが、排気EAを戸外に排出できるのであれば、分岐点Bから実施例の再生ラインの最後の戸外放出点Cとの間のどこに配置してもよい。
In the second desiccant rotor 22, a second regenerator 42 is disposed in the regeneration zone 222, and the dew point of the air downstream of the second regenerator 42 is about −35.51 ° C. DP (1000 CMH (m 3 / H), and the moisture is blown off in the regeneration zone 222 of the second desiccant rotor, and the air is blown to the regeneration zone 212 of the final first desiccant rotor 21.
In the first desiccant rotor 21, the first regenerator 41 is disposed in the regeneration zone 212, and the ultimate dew point of the air on the downstream side of the first regenerator 41 is about −20.23 ° C. DP (1000 CMH (m 3 Further, moisture is blown off in the regeneration zone 212 of the first desiccant rotor, and about 1000 CMH (m 3 / h) is exhausted EA by the second fan 53 to the outdoors.
In the present embodiment, the second fan 53 is disposed at the last outdoor discharge point C downstream of the regeneration line. However, if the exhaust EA can be discharged outdoors, the last outdoor of the regeneration line of the embodiment is started from the branch point B. You may arrange | position anywhere between the discharge points C.

本発明の特徴の1つは、デシカントロータの再生ゾーンの再生器として再生空気温度80℃以下の所謂低温再生乾式除湿器を用いて、超低露点(−50℃DP)の乾燥空気を得るものである。
ここで、図1に、実施例での室内(R)が無負荷の状態での各ライン上での風量及び露点温度の実験値を示して説明するが、勿論、室内(R)に負荷がある場合の数値とは多少異なる。
本発明の上記の課題を達成するため構成上の特徴の1つは、少なくとも、大量の給気を室内で処理した後、大量の還気(図1のB点での供給量2000CMHの30〜70%)を循環させることであり、第2デシカントロータの上流に返還する空気量は、給気全体の2000CMHの半分である1000CMHで、実に50%程度を循させている。
また、循環処理して給気した一部を直接再生ラインに戻しているが、この戻し率は、多ければそれだけ乾燥度合いが上がるが、室内の給気SAの量が少なくなるので、実際には戻し量は給気全体の70%から30%が限度であり、本実施例での戻し率は50%である。
なお、本発明を実現するためには、少なくとも、次工程への処理空気以上の大量の還気を返還する必要があり、即ち、少なくとも給気全体の30%以上の返還量が必要であるが、余り多くすると室内への供給量が減るので70%が上限である。
One of the features of the present invention is that a so-called low temperature regeneration dry dehumidifier having a regeneration air temperature of 80 ° C. or lower is used as a regenerator in the regeneration zone of the desiccant rotor to obtain dry air having an ultra low dew point (−50 ° C. DP) It is.
Here, FIG. 1 shows experimental values of air volume and dew point temperature on each line when the room (R) in the embodiment is in an unloaded state. Of course, there is a load in the room (R). Some values are slightly different.
One of the structural features for achieving the above-described object of the present invention is that at least after a large amount of supply air is processed in a room, a large amount of return air ( a supply amount of 2000CMH at point B in FIG. is to circulate 70%), the amount of air returned to the upstream of the second desiccant rotor is a 1000CMH is half the 2000CMH the entire supply, and a really 50% by circulation.
In addition, a part of the air supplied through the circulation process is directly returned to the regeneration line, but if this return rate is large, the degree of drying increases as much, but the amount of indoor air supply SA decreases, so in practice The return amount is limited to 70% to 30% of the entire supply air , and the return rate in this embodiment is 50%.
In order to realize the present invention, it is necessary to return at least a large amount of return air more than the processing air to the next step, that is, a return amount of at least 30% of the entire supply air is required. If the amount is too large, the supply amount to the room decreases, so 70% is the upper limit.

実施例は、以上のような構成であるので、大量の給気の循環処理を行い、また、従来のパージゾーンを設けた高温再生型乾式除湿器と同等の超低露点(−50℃DP)が実現可能となった。
これにより、デシカントロータの再生ゾーンの再生器として再生空気温度80℃以下の所謂低温再生乾式除湿器を用いたので、通常のデシカント空調機の部品を使用でき、また、再生に他の施設の排熱を利用した温水が使用可能となる。
なお、本発明の特徴を損なうものでなければ、上記の各実施例に限定されるものでないことは勿論である。
Since the embodiment is configured as described above, a large amount of supply air is circulated, and an ultra-low dew point (−50 ° C. DP) equivalent to a high temperature regenerative dry dehumidifier having a conventional purge zone is provided. Became feasible.
As a result, a so-called low-temperature regenerative dry dehumidifier with a regenerative air temperature of 80 ° C. or lower is used as a regenerator in the regeneration zone of the desiccant rotor, so that parts of a normal desiccant air conditioner can be used, and the exhaust of other facilities can be used for regeneration. Hot water using heat can be used.
Of course, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.

本発明の実施例の超低露点温度の乾燥空気を供給するデシカント空調機の概念とした系統図。The system diagram made into the concept of the desiccant air conditioner which supplies the dry air of the ultra-low dew point temperature of the Example of this invention. 従来例の超低露点温度の乾燥空気を供給するデシカント空調機の系統図。The system diagram of the desiccant air conditioner which supplies the dry air of the ultra-low dew point temperature of a prior art example.

1…デシカント空調機、
21…第1デシカントロータ、211…処理ゾーン、212…再生ゾーン、
22…第2デシカントロータ、221…処理ゾーン、222…再生ゾーン、
23…第3デシカントロータ、231…処理ゾーン、232…再生ゾーン、
31…第1冷却器(冷却コイル)、32…第2冷却器、33…第3冷却器、
41…第1再生器(再生コイル)、42…第2再生器、43…第3再生器、
51・・第1ファン(送風機)、53・・第2ファン(送風機)、
61,62,63,…ダンパ、
71…フィルター、81…給気通路、82…返還通路
A…合流点、B…分岐点、C…戸外放出点、
1 ... Desiccant air conditioner,
21 ... First desiccant rotor, 211 ... Processing zone, 212 ... Regeneration zone,
22 ... second desiccant rotor, 221 ... processing zone, 222 ... regeneration zone,
23 ... Third desiccant rotor, 231 ... Processing zone, 232 ... Regeneration zone,
31 ... 1st cooler (cooling coil), 32 ... 2nd cooler, 33 ... 3rd cooler,
41 ... 1st regenerator (reproduction coil), 42 ... 2nd regenerator, 43 ... 3rd regenerator,
51 .. First fan (blower), 53 .. Second fan (blower),
61,62,63, ... Damper,
71 ... Filter, 81 ... Air supply passage, 82 ... Return passage A ... Junction point, B ... Branch point, C ... Outdoor release point,

Claims (1)

処理ラインとして前段に第1冷却器を配置した第1デシカントロータの処理ゾーンと、前段に第2冷却器を配置した第2デシカントロータの処理ゾーンと、前段に第3冷却器を配置した第3デシカントロータの処理ゾーンとを直列に連通し、第1ファンを第1デシカントロータの処理ゾーン下流から室内側への供給と排気ラインとの分岐点の間に配置し、第1冷却器側から外気を吸い込み順次第2デシカントロータ及び第3デシカントロータの処理ゾーンで処理して超低露点の給気を室内側に供給し、給気全体の少なくとも30%以上を還気として前記第1ファンの上流であって第2冷却器又は第3冷却器の上流に合流させて循環させるとともに、
再生ラインとして前段に第3再生器を配置した第3デシカントロータの再生ゾーンと、前段に第2再生器を配置した第2デシカントロータの処理ゾーンと、前段に第1再生器を配置した第1デシカントロータの処理ゾーンとを直列に連通し、排気のための第2ファンを配置し、前記室内側に供給する前記給気の一部を第3デシカントロータの再生ゾーンに供給し、順次第2デシカントロータの再生ゾーン、第1デシカントロータの再生ゾーンを通過させるとともに、各デシカントロータの再生器は80℃以下で加熱するようにしたことを特徴とするパージゾーンのない超低露点温度の乾燥空気を供給するデシカント空調機。
A first desiccant rotor processing zone in which the first cooler is disposed in the previous stage as a processing line, a second desiccant rotor processing zone in which the second cooler is disposed in the previous stage, and a third cooler disposed in the previous stage. The processing zone of the desiccant rotor is connected in series, and the first fan is arranged between the branch point between the supply of the first desiccant rotor from the downstream of the processing zone of the first desiccant rotor to the indoor side and the exhaust line, and the outside air from the first cooler side. In the second desiccant rotor and the third desiccant rotor in order to supply air supply with an ultra-low dew point to the indoor side, and at least 30% or more of the entire air supply is returned to the upstream side of the first fan. And the second cooler or the third cooler is joined upstream and circulated,
As a regeneration line, a regeneration zone of a third desiccant rotor in which a third regenerator is disposed in the preceding stage, a processing zone in a second desiccant rotor in which the second regenerator is disposed in the preceding stage, and a first regenerator disposed in the preceding stage. A second fan for exhaust is disposed in series with the processing zone of the desiccant rotor, a part of the supply air supplied to the indoor side is supplied to the regeneration zone of the third desiccant rotor, desiccant rotor of the regeneration zone, with passing a regeneration zone of the first desiccant rotor, drying of the desiccant rotor regenerators no purge zone, characterized in that was due you heated Unishi at 80 ° C. or less ultra low dew point temperature Desiccant air conditioner that supplies air.
JP2009218141A 2009-09-18 2009-09-18 Desiccant air conditioner for supplying dry air with ultra-low dew point temperature Active JP4947739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218141A JP4947739B2 (en) 2009-09-18 2009-09-18 Desiccant air conditioner for supplying dry air with ultra-low dew point temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009218141A JP4947739B2 (en) 2009-09-18 2009-09-18 Desiccant air conditioner for supplying dry air with ultra-low dew point temperature

Publications (2)

Publication Number Publication Date
JP2011064439A JP2011064439A (en) 2011-03-31
JP4947739B2 true JP4947739B2 (en) 2012-06-06

Family

ID=43950877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218141A Active JP4947739B2 (en) 2009-09-18 2009-09-18 Desiccant air conditioner for supplying dry air with ultra-low dew point temperature

Country Status (1)

Country Link
JP (1) JP4947739B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827589B (en) 2011-09-29 2016-10-19 大金工业株式会社 Dehumidification system
US9297543B2 (en) 2012-12-28 2016-03-29 Daikin Industries, Ltd. Dehumidification system
CN110207283A (en) * 2018-09-26 2019-09-06 重庆宝元通检测有限公司 A kind of ultra-low dew point temperature high/low temperature energy-saving fresh air source device
WO2021085307A1 (en) * 2019-10-29 2021-05-06 五和工業株式会社 Dehumidification system
CN112443905A (en) * 2020-12-10 2021-03-05 艾尔科建设工程(江苏)有限公司 Energy-saving air conditioning unit with rotating wheel dehumidification function

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231340A (en) * 1983-06-14 1984-12-26 Sanyo Electric Co Ltd Dehumidifying air conditioner
JPS63129228A (en) * 1986-11-18 1988-06-01 Daikin Ind Ltd Air cooling apparatus
JP3483752B2 (en) * 1997-12-26 2004-01-06 高砂熱学工業株式会社 Dry dehumidification system
JP3485161B2 (en) * 1998-08-27 2004-01-13 高砂熱学工業株式会社 Dehumidification system
JP2002102642A (en) * 2000-10-03 2002-04-09 Daikin Ind Ltd Dehumidifier
JP4990443B2 (en) * 2001-04-24 2012-08-01 高砂熱学工業株式会社 Dehumidifying device and dehumidifying method
JP4297847B2 (en) * 2004-08-12 2009-07-15 大阪瓦斯株式会社 Air conditioner
JP2006240956A (en) * 2005-03-07 2006-09-14 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP4827906B2 (en) * 2008-10-03 2011-11-30 新晃工業株式会社 A desiccant air conditioner that supplies dry air with an ultra-low dew point temperature without a purge zone.

Also Published As

Publication number Publication date
JP2011064439A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4827906B2 (en) A desiccant air conditioner that supplies dry air with an ultra-low dew point temperature without a purge zone.
JP5606946B2 (en) Desiccant air conditioner supplying ultra low dew point temperature dry air without purge zone
JP4169747B2 (en) Air conditioner
KR101630143B1 (en) Dehumidification device and dehumidification system
JP2009275955A (en) Desiccant air-conditioning device
JP6612575B2 (en) Dehumidification method and dehumidifier
JP4947739B2 (en) Desiccant air conditioner for supplying dry air with ultra-low dew point temperature
CN104870907B (en) Dehumidification system
JP2011089665A (en) Humidity conditioner
JP5250362B2 (en) Dehumidifier and operation control method thereof
JP6018938B2 (en) Air conditioning system for outside air treatment
JP2006326504A (en) Dehumidifier
JP5686311B2 (en) Gas removal system
JP5844611B2 (en) Desiccant air conditioner
JP4844498B2 (en) Dehumidifying air conditioner
JP5537832B2 (en) External air conditioner and external air conditioning system
JP3300565B2 (en) Low dew point air supply system
JP2022523252A (en) Drying system for product air with extremely low dew point
JP2015048982A (en) Dehumidification system for dry room
JPH1085546A (en) Low dew point air supply system
KR20200046697A (en) A apparatus for dehumidifying
JPH11304194A (en) Desiccant air-conditioning method
KR102597628B1 (en) Hybrid Desiccant Dehumidifier Without Regenerative Exhaust And Dehumidification Method
JP2000346396A (en) Method and device for dehumidification
JP2001182967A (en) Dehumidifier/air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250