JP4946691B2 - Equipment plan support apparatus, support method and program for electric and heat cogeneration system - Google Patents
Equipment plan support apparatus, support method and program for electric and heat cogeneration system Download PDFInfo
- Publication number
- JP4946691B2 JP4946691B2 JP2007188931A JP2007188931A JP4946691B2 JP 4946691 B2 JP4946691 B2 JP 4946691B2 JP 2007188931 A JP2007188931 A JP 2007188931A JP 2007188931 A JP2007188931 A JP 2007188931A JP 4946691 B2 JP4946691 B2 JP 4946691B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- electric
- load
- ratio
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 52
- 238000005457 optimization Methods 0.000 claims description 20
- 238000005485 electric heating Methods 0.000 claims description 13
- 230000005611 electricity Effects 0.000 claims description 12
- 230000001932 seasonal effect Effects 0.000 claims description 12
- 238000007599 discharging Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
本発明は、電熱併給システムの設備計画を支援する装置および方法に係り、特に設備計画モデルを基にした最適設備構成の決定装置および決定方法に関する。 The present invention relates to an apparatus and method for supporting an equipment plan of an electric heat cogeneration system, and more particularly to an apparatus and a method for determining an optimum equipment configuration based on an equipment planning model.
電熱併給システムの構築に際し、設備計画モデルに対して線形計画法(LP)や非線形計画法(NLP)で最適の設備構成を決定する方法がある。 There is a method of determining an optimal equipment configuration by linear programming (LP) or nonlinear programming (NLP) with respect to the equipment planning model when constructing the combined electric and heat system.
例えば、電力・熱の負荷パターンに対して電熱併給システムの最適設備構成を決定するために、問題を混合整数線形計画としてモデル化し、このモデルでは、負荷パターンに合わせて電熱発生器(発電機、コージェネレーション、ボイラーなど)やその他の電熱設備を制御し、どの設備をいくつ導入してどのように運転すればコストあるいはCO2排出量が最小になるかを計算することで最適な設備構成を求める方法がある(例えば、特許文献1参照)。 For example, in order to determine the optimal equipment configuration of a combined heat and power system for a power / heat load pattern, the problem is modeled as a mixed integer linear program, in which an electric heat generator (generator, generator, Cogeneration, boilers, etc.) and other electric heating facilities are controlled, and the optimal equipment configuration is obtained by calculating which equipment is installed and how it is operated to minimize costs or CO 2 emissions There exists a method (for example, refer patent document 1).
他の手法として、電熱併給システムを線形計画モデルとして表すのに代えて、部分負荷の考慮、複数台運転の制御、経済性制約などの詳細な設定ができる非線形混合整数計画法により設備構成を求める方法がある(例えば、非特許文献1参照)。
非線形混合整数計画法(非特許文献1)により最適化設備計画を求める演算には、設備計画モデルの各設備に多数の変数が設定されることになり、変数の組み合わせが膨大になり、実用的な演算時間で解が求められない問題がある。 In the calculation to obtain an optimized equipment plan by nonlinear mixed integer programming (Non-Patent Document 1), a large number of variables are set for each equipment in the equipment planning model, and the combination of variables becomes enormous and practical. There is a problem that a solution cannot be obtained in a long calculation time.
例えば、電熱発生器の運転において出力に下限があり、最小出力未満での運転はできないことを表現するため、各時刻の発生器の状態を、運転数を表す整数変数と運転出力を表す連続変数で表現している。このため、多数の整数変数を用意する必要があり、最適化設備構成を求めるための演算時間が膨大になる。 For example, in order to express that there is a lower limit in the output in the operation of the electric heat generator and it is not possible to operate less than the minimum output, the state of the generator at each time is represented by an integer variable representing the number of operations and a continuous variable representing the operation output It is expressed with. For this reason, it is necessary to prepare a large number of integer variables, and the calculation time for obtaining the optimized equipment configuration becomes enormous.
同様に、混合整数線形計画法(特許文献1)の解法として、厳密解法である分枝限定法を使う場合、整数変数が多すぎると演算時間が指数的に増大して実用的な時間で解が求められない。これに対応するために運転数を扱う時間区分を「昼・夜の2区分」や「1日6区分」など、大きく取ると解の精度が落ち、最適解として十分でない。 Similarly, when a branch and bound method, which is an exact solution, is used as a solution for mixed integer linear programming (Patent Document 1), if there are too many integer variables, the operation time increases exponentially and the solution takes a practical time. Is not required. In order to cope with this, if the time interval for handling the number of operations is set to “2 categories of day / night” or “6 categories per day”, the accuracy of the solution is lowered and it is not sufficient as an optimal solution.
混合整数線形計画法の他の解法としてタブサーチ法などの近似解法もあるが、出てきた解の精度(真の最適解との目的値の差)を測る方法がないため最適解を保証することができない。 There is an approximate solution method such as the tab search method as another solution method of mixed integer linear programming, but there is no method to measure the accuracy of the solution that came out (difference in target value from the true optimal solution), so the optimal solution is guaranteed. I can't.
本発明の目的は、混合整数線形計画法による電熱併給システムの最適化設備構成の決定に、解の精度を落とすことなく演算時間を短縮できる電熱併給システムの設備計画支援装置、支援方法およびプログラムを提供することにある。 An object of the present invention is to provide an equipment plan support apparatus, a support method, and a program for an electric heat cogeneration system that can shorten the calculation time without reducing the accuracy of the solution to the determination of the optimized equipment configuration of the electric cogeneration system by mixed integer linear programming. It is to provide.
本発明は、前記の課題を解決するため、電熱モデルの電熱設備情報と、負荷パターン、コストやCO2排出量の最適化目的情報および電熱モデルの制約条件が与えられ、これら情報を整数変数として設定して設備構成の最適化問題を分枝限定法により解く最適化設備構成決定装置を備え、電力負荷・熱負荷を大まかに分類した時間区分ごとに電熱設備の運転台数を変数として設定し、該電力負荷・熱負荷ともに同じ分類に属する連続する時間を1つの時間区分とすることで整数変数の数を減らし、実用的な演算時間で適切な解を得るようにしたもので、以下の装置、方法およびプログラムを特徴とする。 In order to solve the above-mentioned problems, the present invention is provided with electric facility information of an electric heat model, load pattern, optimization objective information of cost and CO 2 emission amount, and constraints of the electric heat model. It is equipped with an optimized equipment configuration determination device that solves the optimization problem of equipment configuration by the branch and bound method, sets the number of operating electric heating equipment as a variable for each time segment roughly classifying power load and heat load, By reducing the number of integer variables by making consecutive times belonging to the same classification for both the power load and the heat load into one time segment, an appropriate solution can be obtained with a practical calculation time. , Features methods and programs.
(装置の発明)
(1)電熱併給システムの設備計画を表現する電熱モデルの電熱設備情報と、電熱モデルに要求される電力負荷・熱負荷パターンと、電熱モデルの運転コストまたはCO2排出量の最適化目的情報と、電熱モデルの制約条件が与えられ、これら情報を変数として設定して設備構成の最適化問題を分枝限定法により解く最適化設備構成決定装置を備えた電熱併給システムの設備計画支援装置において、
前記電力負荷・熱負荷を大まかに分類した時間区分ごとに電熱設備の運転台数を整数変数として設定し、該時間区分は電力負荷・熱負荷ともに同じ分類に属する連続する時間を1つの時間区分として前記最適化設備構成決定装置に設定する動的時間区分設定手段を備えたことを特徴とする。
(Invention of the device)
(1) Electric heat equipment information of the electric heat model expressing the equipment plan of the cogeneration system, electric load / heat load pattern required for the electric heat model, optimization objective information of the operating cost of the electric heat model or CO 2 emissions In the facility planning support device of the cogeneration system equipped with the optimized facility configuration determination device, which is given the constraints of the electric heat model, sets the information as variables and solves the optimization problem of the facility configuration by the branch and bound method,
For each time segment roughly classifying the power load and heat load, the number of operating electric heating facilities is set as an integer variable, and the time segment is defined as one time segment for consecutive times belonging to the same category for both power load and heat load. Dynamic time segment setting means for setting in the optimized equipment configuration determining device is provided.
(2)前記動的時間区分設定手段は、
電力・熱それぞれについて年間で最大の負荷に対する比率から、4つの時間区分に分類して設定する年間最大負荷比4分類手段、
電力・熱それぞれについて年間で最大の負荷に対する比率から、5つの時間区分に分類して設定する年間最大負荷比5分類手段、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、4つの時間区分に分類して設定する季節最大負荷比4分類手段、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、5つの時間区分に分類して設定する季節最大負荷比5分類手段、
のうち、いずれか1つの手段を備えたことを特徴とする。
(2) The dynamic time segment setting means includes:
The annual
The annual
The seasonal
5 seasonally maximum load ratio classification means set by classifying into 5 time segments from the ratio of maximum load in each season for each of electric power and heat,
Among them, any one means is provided.
(方法の発明)
(3)電熱併給システムの設備計画を表現する電熱モデルの電熱設備情報と、電熱モデルに要求される電力負荷・熱負荷パターンと、電熱モデルの運転コストまたはCO2排出量の最適化目的情報と、電熱モデルの制約条件が与えられ、これら情報を変数として設定して設備構成の最適化問題を分枝限定法により解く最適化設備構成決定装置を備えた電熱併給システムの設備計画支援方法において、
前記電力負荷・熱負荷を大まかに分類した時間区分ごとに電熱設備の運転台数を整数変数として設定し、該時間区分は電力負荷・熱負荷ともに同じ分類に属する連続する時間を1つの時間区分として前記最適化設備構成決定装置に設定する動的時間区分設定手順を備えたことを特徴とする。
(Invention of method)
(3) Electric heat equipment information of the electric heat model expressing the equipment plan of the combined electric heat system, electric load / heat load pattern required for the electric heat model, optimization cost information of the operating cost of the electric heat model or CO 2 emissions In the facility planning support method of the cogeneration system with the optimized facility configuration determination device, which is given the constraint conditions of the electric heat model, sets the information as variables and solves the optimization problem of the facility configuration by the branch and bound method,
For each time segment roughly classifying the power load and heat load, the number of operating electric heating facilities is set as an integer variable, and the time segment is defined as one time segment for consecutive times belonging to the same category for both power load and heat load. A dynamic time segment setting procedure for setting in the optimized equipment configuration determining apparatus is provided.
(4)前記動的時間区分設定手順は、
電力・熱それぞれについて年間で最大の負荷に対する比率から、4つの時間区分に分類して設定する年間最大負荷比4分類手順、
電力・熱それぞれについて年間で最大の負荷に対する比率から、5つの時間区分に分類して設定する年間最大負荷比5分類手順、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、4つの時間区分に分類して設定する季節最大負荷比4分類手順、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、5つの時間区分に分類して設定する季節最大負荷比5分類手順、
のうち、いずれか1つの手順を有することを特徴とする。
(4) The dynamic time segment setting procedure is as follows:
The annual
The annual
Four seasonal maximum load ratio classification procedures set by classifying into four time segments from the ratio of maximum load in each season for power and heat,
The seasonal
Among these, it has any one procedure.
(プログラムの発明)
(5)請求項3,4に記載の電熱併給システムの設備計画支援方法における処理手順を、コンピュータで実行可能に構成したことを特徴とする。
(Invention of the program)
(5) A processing procedure in the facility planning support method for the combined electric and heat system according to
以上のとおり、本発明によれば、電熱モデルの電熱設備情報と、負荷パターン、コストやCO2排出量の最適化目的情報および電熱モデルの制約条件が与えられ、これら情報を変数として設定して設備構成の最適化問題を分枝限定法により解く最適化設備構成決定装置を備え、電力負荷・熱負荷を大まかに分類した時間区分ごとに電熱設備の運転台数を整数変数として設定し、該電力負荷・熱負荷ともに同じ分類に属する連続する時間を1つの時間区分とすることで整数変数の数を減らしたため、解の精度を落とすことなく演算時間を短縮して電熱併給システムの最適化設備構成を決定できる。 As described above, according to the present invention, the electric facility information of the electric heating model, the load pattern, the cost and the optimization objective information of the CO 2 emission amount, and the constraints of the electric heating model are given, and these information are set as variables. Equipped with an optimized equipment configuration determination device that solves the optimization problem of equipment configuration by the branch and bound method, and sets the number of operating electric heating equipment as an integer variable for each time segment roughly classifying power load and heat load. Since the number of integer variables has been reduced by making consecutive times that belong to the same category for both load and heat load, the number of integer variables has been reduced. Can be determined.
具体的には、運転台数を表す整数変数が制約されることで実質的に1/3〜1/2の数になり、これにより最適化計算時間が長くなるような場合においては大幅に短縮される。制約されるのは元々同じ値になる部分であるため、最適化結果の目的値は制約がない場合に十分に近くなり、設備構成もほぼ同じになる。 Specifically, the integer variable representing the number of units in operation is constrained to substantially reduce the number to 1/3 to 1/2, which greatly shortens the optimization calculation time. The Since the part that is originally restricted is the same value, the target value of the optimization result is close enough when there is no restriction, and the equipment configuration is almost the same.
図1は、本実施形態で対象とする電熱併給システムの設備計画支援装置を示し、電熱モデルを基にした最適設備構成の決定装置を示す。最適設備構成決定装置10は、コンピュータ資源とこれを利用したソフトウェア構成とし、混合整数線形計画法の厳密解法である分枝限定法により最適設備構成を求める。基本的には、電熱モデル20の設備情報Aと電力・熱負荷パターンのパラメータB、コストやCO2排出量の最適化目的情報Cおよび電熱モデルの制約条件Dから最適設備構成決定装置10に最適化問題を構築し、これを解くことで最適な設備構成を決定する。
FIG. 1 shows an equipment plan support apparatus for an electric and heat cogeneration system targeted in the present embodiment, and shows an apparatus for determining an optimum equipment configuration based on an electric heat model. The optimum facility
電熱併給システムの電熱モデル20の例を図2に示す。電熱発生器(発電機・コージェネレーション設備・ボイラー等)1は電力エネルギーおよび熱エネルギーの発生源とし、買電(系統からの電力購入)2は電力エネルギーの発生源とし、蓄電池3は電力エネルギーの蓄積源とし、電力変換器4は電力エネルギーから熱エネルギーへの変換装置とし、これらで発生する電力エネルギーは電力負荷5に供給し、熱エネルギーは熱負荷6に供給する。
An example of the electric heat model 20 of the electric heat combined supply system is shown in FIG. An electric heat generator (generator, cogeneration facility, boiler, etc.) 1 is a source of electric energy and thermal energy, an electric power purchase (purchasing electric power from the grid) 2 is an electric energy source, and a
設備情報Aは、電熱モデル20の各設備に設定した電力・熱の定格出力、運転コスト、CO2排出量等が変数として設定される。なお、設備情報Aには各設備の設置に必要な設置面積も含ませることもできる。パラメータBは、電熱モデル20の各負荷に想定される負荷パターン(季節ごと、時刻ごとの電力・熱の利用状況)が変数として設定される。最適化目的情報Cは、各設備の運転に伴う経済性(コスト)、CO2排出量の目標値などが設定される。電熱モデルの制約条件Dは、電熱モデルの各設備間のエネルギーの需給の制約条件が設定される。 In the facility information A, the rated power / heat output set for each facility of the electric heat model 20, the operating cost, the CO2 emission amount, and the like are set as variables. The facility information A can also include an installation area necessary for installing each facility. As the parameter B, a load pattern assumed for each load of the electric heat model 20 (a state of use of power and heat for each season and each time) is set as a variable. As the optimization objective information C, economic efficiency (cost) associated with operation of each facility, a target value of CO 2 emission amount, and the like are set. As the constraint condition D of the electric heating model, a constraint condition of energy supply and demand between each facility of the electric heating model is set.
以下、設備情報Aと負荷パターンBおよび制約条件Dについて詳細に説明する。また、これら設定、制約条件の元に、最適設備構成決定装置10における演算時間の改善について説明する。
Hereinafter, the facility information A, the load pattern B, and the constraint condition D will be described in detail. Moreover, the improvement of the calculation time in the optimal installation
(1)電熱モデルの制約条件D
エネルギーの需給制約として、電力は供給と需要が常に一致し、熱は供給が常に需要以上であることを必要とする。
(1) Electrothermal model constraint D
As energy supply and demand constraints, electricity requires that supply and demand always match, and heat requires that supply always exceed demand.
図2の電熱モデルにおいて、電力供給は買電2と電熱発生器1の電力出力と蓄電池3の放電出力とからなり、電力需要は電力負荷5と蓄電池3の充電電力と電力変換器4の変換電力からなるため、電力需給制約は以下のようになる。
In the electric heating model of FIG. 2, the power supply consists of the
熱供給は電熱発生器1の熱出力と電力変換器4の出力からなり、熱需要は熱負荷6からなるため、熱需給制約は以下のようになる。
The heat supply is composed of the heat output of the
(2)電力・熱負荷パターンのパラメータB
電力負荷・熱負荷は、それぞれについて、1日の負荷パターンを1時間ごとのデータで与えて、これを3季節分用意する。
(2) Parameter B of power / heat load pattern
For each of the electric power load and the heat load, a daily load pattern is given by hourly data, and these are prepared for three seasons.
買電は、買電契約条件ごとに、契約電力を整数変数、1時間ごとの買電電力量を連続変数で設定する。買電契約は最小契約電力と最大契約電力を条件としてもつ。また、各時間の買電電力量は契約電力以下である。なお、買電は複数の契約条件の中から一つの契約だけを選択するため、契約条件ごとに二値変数を用意して一つの契約のみ選べる制約を与える。これらを合せると以下の式(3)〜(5)のようになる。 In the power purchase, for each power purchase contract condition, the contract power is set as an integer variable, and the amount of power purchased per hour is set as a continuous variable. A power purchase contract is subject to minimum contract power and maximum contract power. In addition, the amount of power purchased at each hour is less than the contract power. In addition, since power purchase selects only one contract from a plurality of contract conditions, a binary variable is prepared for each contract condition to give a restriction that only one contract can be selected. When these are combined, the following equations (3) to (5) are obtained.
(3)設備情報A
買電コストは、契約電力に比例する月額基本料金と、買電電力量に比例し、昼(8時台〜21時台)・夜(22時台〜7時台)と季節によって単価の異なる従量料金からなり、CO2排出量は買電電力量に比例した値とする。
(3) Facility information A
The cost of purchasing electricity is the basic monthly charge that is proportional to the contracted power, and the amount of electricity purchased, which is proportional to the amount of electricity purchased. It consists of a fee, and the CO 2 emission is a value proportional to the amount of power purchased.
電熱発生器1、蓄電池3、電力変換器4は、それぞれ複数の設備に関するスペックを用意し、それぞれの設備の導入数を整数変数で表現する。各設備の導入コスト、導入に伴うCO2排出量はスペックで与える。
Each of the
電熱発生器1は、運転台数を設定する整数変数と運転レベルを設定する連続変数を1時間ごとに設定し、運転レベルを以下の式(6)、(7)のように制約することで最小出力以下での運転ができないことを表現する(図3参照)。
The
また、最小運転と最大運転のそれぞれの場合について、1台1時間の運転による電力出力・熱出力・コスト・CO2排出量をスペックとして与え、その間の値については式(8)に示す電力出力の例のように線形補間する(図3参照)。 Also, for each of the minimum operation and maximum operation, the power output, heat output, cost, and CO 2 emissions from one hour of operation per unit are given as specifications, and the values in between are shown in equation (8). As shown in FIG. 3, linear interpolation is performed (see FIG. 3).
熱出力・コスト・CO2排出量についても同様に補間する。なお、電熱モデルでは効率を陽に表現していないが、燃料消費量がコストに反映されるため、およそ2つの線形量の比として補間されることになる。通常は図3の破線のような上弦の曲線を描く。 The heat output, cost, and CO 2 emission amount are similarly interpolated. Although the efficiency is not explicitly expressed in the electrothermal model, since the fuel consumption is reflected in the cost, it is interpolated as a ratio of approximately two linear quantities. Usually, a curve of an upper chord like a broken line in FIG. 3 is drawn.
蓄電池3および電力変換器4は簡易モデルとし、これらの蓄電池の充電レベル、放電レベル、電力変換器の運転レベルをそれぞれ連続変数で設定する。蓄電池モデルには、最大充電電力、最大放電電力、充電効率、充電容量をスペックとして与え、充(放)電のレベルに応じて最大充(放)電電力以下で充(放)電し、充電時には充電電力×充電効率の電力が充電される。一つの蓄電池で充放電を同時にはできないが、これは式(9)のように充放電レベルの合計が導入数を超えられないことで示す。
The
また、次の式(10)のように、1日の累積充電量が充電容量以下で、1日の累積放電量が1日の累積充電量以下であることを課す。 Further, as shown in the following equation (10), it is imposed that the accumulated charge amount per day is equal to or less than the charge capacity and the accumulated discharge amount per day is equal to or less than the accumulated charge amount per day.
電力変換器4は、最大運転時の使用電力と熱出力をスペックで与え、次の(11)〜(13)のように運転レベルに応じて線形で運転する。
The
なお、蓄電池3と電力変換器4の運転によるコストやCO2排出量は計算に入れない。また、蓄電池3と電力変換器4のコストとCO2排出量は、各設備を導入する際に必要なものと、指定した年数だけそれらを負荷パターンに沿って運用する際に必要なものを積算する。積算に当たっては各季節の日数も勘案する。
In addition, the cost by the operation of the
(4)演算時間の改善
〈4・1〉演算時間の問題
上記までの設定および制約条件の元にして決定装置10による最適設備構成の演算は、電熱発生器1の運転台数と運転レベルを1時間ごとに設定できるが、運転台数設定のための整数変数が多くなる。この数は電熱発生器1機種あたり72変数(24時間×3季節)あり、5機種で360変数に達する。一般的に、このような問題が実用的に解けるのは、整数変数が150個程度までと推定されるため、設定するデータによっては実用的には解けないことが予測され、実際にもそのような例が発生する。
(4) Improvement of calculation time 4.1 Problem of calculation time The calculation of the optimum equipment configuration by the determining
この問題を改善するため、運転台数変数を実質的に削減する。具体的には、いくつかの時間をまとめた新たな時間区分を用意し、これを運転台数制御の時間単位として、同一時間区分に属する各時間の運転台数を一致させる制約を加える。これにより時間区分ごとに運転台数変数が1つあるのと同等になる。 In order to remedy this problem, the operating unit variable is substantially reduced. Specifically, a new time section in which several times are collected is prepared, and this is used as a unit of time for controlling the number of operating units, and a constraint is added to match the number of operating units in each time belonging to the same time section. This is equivalent to having one operating unit variable for each time segment.
時間区分は、整数変数を150個程度に抑えることを考えると、電熱発生器の候補機種を5機種にするとして、1機種当たり25〜30区分くらいが妥当と考えられる。各季節8〜10区分になるが、全ての季節で同一の時間区分である必要はない。 Considering that the number of integer variables is limited to about 150, the time division is considered to be about 25 to 30 divisions per model, assuming that there are five candidate models for the electric heat generator. Each season has 8 to 10 divisions, but it is not necessary to have the same time division for all seasons.
もちろん、新たな時間区分の導入により、運転台数の制御点が減るため、最適化設備構成の演算結果は変化(悪化)するが、時間区分の取り方を工夫することにより違いを小さくすることができると考える。 Of course, the introduction of new time divisions will reduce the number of operating points, so the calculation result of the optimized equipment configuration will change (deteriorate), but the difference can be reduced by devising the way of time division. I think I can.
〈4・2〉時間区分方式
運転台数と運転出力は、負荷に合わせて制御されるが、小さな負荷変動には運転出力で、大きな負荷変動には運転台数で対応するのが自然である。このため、運転台数を制御する時間区分は負荷値を大まかに分類した結果を基に作成すれば、実際に運転台数が変化すべき点と一致して結果を悪化させずに変数を削減できると考えられる。したがって、時間区分を負荷パターンの値の分類から動的に生成することにした。
4.2 Time division method The number of operating units and the operating output are controlled according to the load, but it is natural to respond to small load fluctuations with operating output and large load fluctuations with operating units. For this reason, if the time division for controlling the number of operating units is created based on the result of roughly classifying the load values, it is possible to reduce the variables without degrading the results in line with the fact that the number of operating units should actually change. Conceivable. Therefore, we decided to dynamically generate time segments from the classification of load pattern values.
具体的には、時間を電力負荷・熱負荷の値により分類して、図4に例を示すように、電力負荷・熱負荷ともに同じ分類に属する連続する時間を1つの時間区分とし、同じ区分に入る時間においては電熱発生器等の運転台数が同じであることにして整数変数の実質的削減を図る。 Specifically, time is classified according to the values of power load and heat load, and as shown in the example in FIG. 4, continuous time belonging to the same classification for both power load and heat load is set as one time section, and the same section In the time to enter, the number of operating electric heat generators, etc. is the same, and the integer variables are substantially reduced.
この方式による時間区分は一般的に季節ごとに異なることになる。値の分類方式としては次の4つの方式とする。 The time division according to this method generally varies from season to season. The following four methods are used as the value classification method.
(a)年間最大負荷比4分類
電力・熱それぞれについて年間で最大の負荷に対する比率を見て、1/4未満、1/4以上1/2未満、1/2以上3/4未満、3/4以上の4つに分類する。
(A) Annual
負荷値が各分類の間をきれいに動いた場合、4分類からは負荷ごとに各季節6区分の時間区分が得られる。電力・熱を合わせると、各季節6〜12区分になるが、電力・熱の負荷変動は似た傾向になるため、時間区分は妥当な数に収まると期待できる。 When the load value moves cleanly between the respective classes, the time classification of 6 classes for each season is obtained for each load from the 4 classes. When power and heat are combined, each season has 6 to 12 divisions, but load fluctuations of power and heat tend to be similar, so it can be expected that the time divisions will fall within a reasonable number.
(b)年間最大負荷比5分類
電力・熱それぞれについて、年間で最大の負荷に対する比率を見て、1/8未満、1/8以上1/4未満、1/4以上1/2未満、1/2以上3/4未満、3/4以上の5つに分類する。
(B) Annual
これは電熱発生器の出力を最小値以下にはできないことから、低負荷時の運転台数制御をより詳細化する。5分類からは理想的には負荷ごとに各季節8区分の時間区分が得られる。電力・熱を合わせると、各季節8〜16区分になるが、電力・熱の負荷変動が重なれば時間区分は妥当な数に収まると期待できる。 Since the output of the electric heat generator cannot be reduced below the minimum value, the control of the number of operating units at low load is further detailed. Ideally, there are 8 time segments for each season for each load. When the power and heat are combined, each season has 8 to 16 divisions. However, if the load fluctuations of power and heat overlap, the time division can be expected to fall within a reasonable number.
(c)季節最大負荷比4分類
電力・熱それぞれについて各季節で最大の負荷に対する比率を見て、1/4未満、1/4以上1/2未満、1/2以上3/4未満、3/4以上の4つに分類する。
(C) Seasonal
これは、年間最大負荷を基準にすると、季節による負荷の違いが大きい場合には、負荷の低い季節に時間区分が少なくなることから、季節ごとの時間区分を同等にするものである。 This is because the time division for each season is made equal because the time division is reduced in the low load season when the difference in load depending on the season is large, based on the maximum annual load.
(d)季節最大負荷比5分類
電力・熱それぞれについて各季節で最大の負荷に対する比率を見て、1/8未満、1/8以上1/4未満、1/4以上1/2未満、1/2以上3/4未満、3/4以上の5つに分類する。
(D) Seasonal maximum load ratio of 5 categories Looking at the ratio to the maximum load in each season for power and heat, less than 1/8, 1/8 or more, less than 1/4, 1/4 or more, less than 1/2, / 2 or more, less than 3/4, and 3 or more.
(5)最適設備構成の試算
この試算は、市販の数理計画法パッケージ((株)数理システム(NUOPT))を用いてモデリング言語《SIMPLE》でモデルを構築することで行った。
(5) Trial Calculation of Optimal Equipment Configuration This trial calculation was performed by building a model with the modeling language << SIMPLE >> using a commercially available mathematical programming package (Mathematical System (NUOPT)).
また、試算のために以下のデータを用意した。なお、10年間運用での総コストで最適化を行ったため、CO2排出量のデータは省略している。 In addition, the following data was prepared for calculation. Since optimization was performed with the total cost of operation for 10 years, data on CO 2 emissions is omitted.
〈5・1〉負荷パターン
負荷パターンは、公開情報を基に、需要家として標準型オフィス(5000m2)、店舗(10000m2)、ホテル(30000m2)の電力と熱(給湯、冷房、暖房の合計)の24時間12月の負荷データを作成し、それを夏期(7〜9月)、冬期(1〜3月)、中間期にそれぞれの季節の日数を勘案して再編成した。
5.1 Load pattern The load pattern is based on public information, and the power and heat (hot water supply, cooling and heating) of standard offices (5000 m 2 ), stores (10000 m 2 ), and hotels (30000 m 2 ) as consumers. Total) 24 hour December load data was created and reorganized in the summer (July-September), winter (January-March), and interim periods, taking into account the number of days in each season.
負荷の特徴として、オフィスは時間と季節で負荷が大きく変わる。店舗は時間で負荷が大きく変わるが季節変動は少ない。ホテルは負荷の低いときでも一定の負荷がある。 As a feature of the load, the load varies greatly with time and season in the office. The store's load changes greatly with time, but there is little seasonal variation. The hotel has a certain load even when the load is low.
〈5・2〉買電モデル
買電モデルは2つの契約(BP1,BP2)を用意した。条件は表1に示す。
5.2 Power purchase model The power purchase model prepared two contracts (BP1, BP2). The conditions are shown in Table 1.
〈5・3〉電熱発生器モデル
電熱発生器モデルはボイラー2機種(BR1,BR2)と、コジュネ3機種(GE1、GE2,GE3)を用意した。スペックは表2に示す。
5.3 Electric heat generator model Two types of boiler models (BR1, BR2) and three cogeneration models (GE1, GE2, GE3) were prepared as electric heat generator models. The specifications are shown in Table 2.
〈5・4〉蓄電池モデル
蓄電池モデルは3機種(ST1、ST2,ST3)を用意した。スペックは表3に示す。
<5.4> Storage battery model Three types of storage battery models (ST1, ST2, ST3) were prepared. The specifications are shown in Table 3.
〈5・5〉電力変換器モデル
電力変換器モデルは2機種(EH1,EH2)を用意した。スペックは表4に示す。電力変換器の出力エネルギーが入力エネルギーを越えているが、これはヒートポンプを想定しているためである。
5.5 Power converter model Two models (EH1, EH2) of power converter models were prepared. The specifications are shown in Table 4. The output energy of the power converter exceeds the input energy because a heat pump is assumed.
〈5・6〉試算
上記までの各データを使って、最適設備計画モデルによりコスト最適化の決定を演算した。時間区分については、1時間ごとの区分のほか、前記の(a)年間最大負荷比4分類区分、(b)年間最大負荷比5分類区分、(c)季節最大負荷比4分類区分、(d)季節最大負荷比5分類区分について演算した。
5.6 Trial calculation Using each of the above data, a cost optimization decision was calculated using an optimal equipment planning model. Regarding the time division, in addition to the hourly division, (a) the four annual maximum load ratio classification categories, (b) the five annual maximum load ratio five classification categories, (c) the seasonal maximum load ratio four classification categories, (d ) Calculations were made for five classification categories with seasonal maximum load ratios.
まず、負荷データから運転台数制御の時間区分を計算すると、時間区分の数は表5のようになった。なお、ホテルの負荷パターンでは4分類と5分類で時間区分が同じである。このため、最適化計算ではホテルの5分類は省略している。 First, when calculating the time division for controlling the number of operating units from the load data, the number of time divisions is as shown in Table 5. In the hotel load pattern, the time classification is the same for the 4 classifications and the 5 classifications. For this reason, five classifications of hotels are omitted in the optimization calculation.
最適化計算の結果を表6に示す。ただし、ホテルの負荷パターンで1時間ごと区分の最適化は4日以上計算しても結果が出なかったので、この時点でのコストの下界を参考のために記載した。なお、この時点での上界は季節最大負荷比4分類区分の結果より大きかったため省略した。 Table 6 shows the result of the optimization calculation. However, the optimization of the hourly segment in the hotel load pattern did not produce a result even if it was calculated for more than 4 days, so the lower bound of cost at this point was described for reference. Note that the upper bound at this point was omitted because it was larger than the results of the four categories of seasonal maximum load ratios.
表6に示す試算結果では、試算の負荷パターンでは時間区分の数はほぼ妥当な数に収まっている。また、負荷値による分類で運転台数制御の時間区分を設定しても、最適化結果への影響は数%に抑えられていることが分かった。特に、5分類では、オフィスや店舗において、1時間ごとと同じ設備構成(オフィスの契約電力は異なる)でコストも0.1%程度の差しかないので、設備計画として十分に実用になる精度である。ホテルについては、1時間ごとの最適解が得られていないので、設備構成の比較はできないが、暫定下界値と比較してもコストは2%以内であり、最適解に十分近いと考えられる。 In the trial calculation results shown in Table 6, the number of time segments is almost reasonable in the trial calculation load pattern. In addition, it was found that even if the time division for controlling the number of operating units was set by classification based on the load value, the effect on the optimization result was suppressed to a few percent. In particular, in the 5 classifications, in an office or a store, the equipment configuration is the same as every hour (the contracted power of the office is different) and the cost is only about 0.1%. . As for the hotel, since the optimal solution for each hour is not obtained, the equipment configuration cannot be compared, but the cost is within 2% even when compared with the provisional lower bound value, which is considered to be sufficiently close to the optimal solution.
演算時間は、オフィスと店舗については1時間ごとでも1分以内の短い時間で処理できており、有意な差は出なかった。しかし、ホテルでは1時間ごとでは終了する見込みのない演算に対し、5〜6分と大きく短縮できている。 As for the calculation time, the office and the store could be processed in a short time of less than 1 minute every hour, and there was no significant difference. However, in a hotel, the calculation that is not expected to be completed every hour can be greatly shortened to 5 to 6 minutes.
(6)まとめ
以上のとおり、電熱最適設備計画を混合整数線形計画問題としてモデル化し、用意した設備リストと与えられた負荷パターンに対して最適な設備構成を分枝限定法で計算できる。
(6) Summary As described above, the electric heat optimum equipment plan is modeled as a mixed integer linear programming problem, and the optimum equipment configuration can be calculated by a branch and bound method for the prepared equipment list and a given load pattern.
また、電熱発生器の部分負荷特性を表現するために整数変数が多いモデルとなり、データによっては多くの演算時間を要することになるが、運転時間区分を負荷パターンから動的に作ることで結果に与える影響を少なくしながら実質的な整数変数の数を減らすことができ、実用的な演算時間で適切な解を得ることができた。 In addition, it becomes a model with many integer variables to express the partial load characteristics of the electric heat generator, and depending on the data, it takes a lot of calculation time, but by creating the operation time division dynamically from the load pattern, the result is The number of substantial integer variables could be reduced while reducing the effect, and an appropriate solution could be obtained in a practical calculation time.
なお、本発明は、上記の実施形態で示す電熱併給システムの設備計画支援装置の一部又は全部の処理手順を有する開発支援方法とすること、あるいはこの方法の処理手順をコンピュータで実行可能に構成したプログラムとして提供することができる。 The present invention is a development support method having a part or all of the processing procedure of the equipment plan support device of the combined electric and heating system shown in the above embodiment, or the processing procedure of this method can be executed by a computer. Can be provided as a program.
1 電熱発生器
2 買電
3 蓄電池
4 電力変換器
5 電力負荷
6 熱負荷
10 最適設備構成決定装置
20 電熱モデル
DESCRIPTION OF
Claims (5)
前記電力負荷・熱負荷を大まかに分類した時間区分ごとに電熱設備の運転台数を整数変数として設定し、該時間区分は電力負荷・熱負荷ともに同じ分類に属する連続する時間を1つの時間区分として前記最適化設備構成決定装置に設定する動的時間区分設定手段を備えたことを特徴とする電熱併給システムの設備計画支援装置。 Electric heat equipment information of the electric heat model that expresses the equipment plan of the combined electric heat system, electric load / heat load pattern required for the electric heat model, optimizing information on the operating cost or CO 2 emission amount of the electric heat model, and electric heat model In the facility planning support device of the combined heat and power system with the optimized facility configuration determination device that solves the facility configuration optimization problem by the branch and bound method by setting these information as variables,
For each time segment roughly classifying the power load and heat load, the number of operating electric heating facilities is set as an integer variable, and the time segment is defined as one time segment for consecutive times belonging to the same category for both power load and heat load. An equipment plan support apparatus for an electric and heat cogeneration system, comprising dynamic time section setting means for setting in the optimized equipment configuration determining apparatus.
電力・熱それぞれについて年間で最大の負荷に対する比率から、4つの時間区分に分類して設定する年間最大負荷比4分類手段、
電力・熱それぞれについて年間で最大の負荷に対する比率から、5つの時間区分に分類して設定する年間最大負荷比5分類手段、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、4つの時間区分に分類して設定する季節最大負荷比4分類手段、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、5つの時間区分に分類して設定する季節最大負荷比5分類手段、
のうち、いずれか1つの手段を備えたことを特徴とする請求項1に記載の電熱併給システムの設備計画支援装置。 The dynamic time segment setting means includes:
The annual maximum load ratio 4 classification means set by classifying into 4 time segments from the ratio to the maximum load for each year of electricity and heat,
The annual maximum load ratio 5 classification means to classify and set in 5 time segments from the ratio to the maximum load for each year of electricity and heat,
The seasonal maximum load ratio 4 classification means set by classifying into 4 time segments from the ratio to the maximum load in each season for each electric power and heat,
5 seasonally maximum load ratio classification means set by classifying into 5 time segments from the ratio of maximum load in each season for each of electric power and heat,
The facility planning support device for the combined electric and heat system according to claim 1, comprising any one of the means.
前記電力負荷・熱負荷を大まかに分類した時間区分ごとに電熱設備の運転台数を整数変数として設定し、該時間区分は電力負荷・熱負荷ともに同じ分類に属する連続する時間を1つの時間区分として前記最適化設備構成決定装置に設定する動的時間区分設定手順を備えたことを特徴とする電熱併給システムの設備計画支援方法。 Electric heat equipment information of the electric heat model that expresses the equipment plan of the combined electric heat system, electric load / heat load pattern required for the electric heat model, optimizing information on the operating cost or CO 2 emission amount of the electric heat model, and electric heat model In the facility planning support method of the combined heat and power system with the optimized facility configuration determination device that solves the facility configuration optimization problem by the branch and bound method by setting these information as variables,
For each time segment roughly classifying the power load and heat load, the number of operating electric heating facilities is set as an integer variable, and the time segment is defined as one time segment for consecutive times belonging to the same category for both power load and heat load. A facility planning support method for a combined electric and heat system comprising a dynamic time segment setting procedure for setting in the optimized facility configuration determining device.
電力・熱それぞれについて年間で最大の負荷に対する比率から、4つの時間区分に分類して設定する年間最大負荷比4分類手順、
電力・熱それぞれについて年間で最大の負荷に対する比率から、5つの時間区分に分類して設定する年間最大負荷比5分類手順、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、4つの時間区分に分類して設定する季節最大負荷比4分類手順、
電力・熱それぞれについて各季節で最大の負荷に対する比率から、5つの時間区分に分類して設定する季節最大負荷比5分類手順、
のうち、いずれか1つの手順を有することを特徴とする請求項3に記載の電熱併給システムの設備計画支援方法。 The dynamic time segment setting procedure includes:
The annual maximum load ratio 4 classification procedure set by classifying into 4 time segments from the ratio to the maximum load for each year for power and heat,
The annual maximum load ratio 5 classification procedure to set by classifying into 5 time segments from the ratio to the maximum load for each year of electricity and heat,
Four seasonal maximum load ratio classification procedures set by classifying into four time segments from the ratio of maximum load in each season for power and heat,
The seasonal maximum load ratio 5 classification procedure to set and classify into 5 time categories from the ratio to the maximum load in each season for each electric power and heat,
4. The facility planning support method for the combined electric and heat system according to claim 3, further comprising any one of the steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007188931A JP4946691B2 (en) | 2007-07-20 | 2007-07-20 | Equipment plan support apparatus, support method and program for electric and heat cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007188931A JP4946691B2 (en) | 2007-07-20 | 2007-07-20 | Equipment plan support apparatus, support method and program for electric and heat cogeneration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009026092A JP2009026092A (en) | 2009-02-05 |
JP4946691B2 true JP4946691B2 (en) | 2012-06-06 |
Family
ID=40397839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007188931A Active JP4946691B2 (en) | 2007-07-20 | 2007-07-20 | Equipment plan support apparatus, support method and program for electric and heat cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4946691B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108062022A (en) * | 2016-11-05 | 2018-05-22 | 南京理工大学 | A kind of optimal control method of thermoelectricity cooperative system |
CN110209135A (en) * | 2019-06-12 | 2019-09-06 | 东北大学 | Home energy source Optimization Scheduling based on minisize thermoelectric coproduction Multiple Time Scales |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130060667A1 (en) * | 2011-09-01 | 2013-03-07 | Robert James Burke | Energy management modeling language |
CN102593901B (en) * | 2012-02-22 | 2014-04-30 | 华北电力大学 | Load forecasting system of electromobile charging facility and forecasting method |
JP6121755B2 (en) * | 2013-03-08 | 2017-04-26 | 株式会社東芝 | Energy control device, control method, and control program |
JP6462284B2 (en) * | 2014-09-13 | 2019-01-30 | 大和ハウス工業株式会社 | Energy management system and energy management method |
JP6535173B2 (en) * | 2015-02-04 | 2019-06-26 | 川崎重工業株式会社 | Method and apparatus for optimizing configuration of distributed energy system |
JP2018025982A (en) * | 2016-08-10 | 2018-02-15 | 富士電機株式会社 | Energy plant plan support device and energy plant plan support system |
CN110033119A (en) * | 2019-03-01 | 2019-07-19 | 中国电力科学研究院有限公司 | A kind of family electric car charging optimization method and system |
CN112886571B (en) * | 2021-01-18 | 2022-07-08 | 清华大学 | Decomposition, coordination and optimization operation method and device of electric heating comprehensive energy system based on boundary variable feasible region |
JPWO2023073863A1 (en) * | 2021-10-28 | 2023-05-04 | ||
JP2024141054A (en) * | 2023-03-29 | 2024-10-10 | 株式会社日立製作所 | Facility configuration proposal system and facility configuration proposal method |
-
2007
- 2007-07-20 JP JP2007188931A patent/JP4946691B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108062022A (en) * | 2016-11-05 | 2018-05-22 | 南京理工大学 | A kind of optimal control method of thermoelectricity cooperative system |
CN110209135A (en) * | 2019-06-12 | 2019-09-06 | 东北大学 | Home energy source Optimization Scheduling based on minisize thermoelectric coproduction Multiple Time Scales |
CN110209135B (en) * | 2019-06-12 | 2021-05-25 | 东北大学 | Family energy optimization scheduling method based on micro cogeneration multi-time scale |
Also Published As
Publication number | Publication date |
---|---|
JP2009026092A (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4946691B2 (en) | Equipment plan support apparatus, support method and program for electric and heat cogeneration system | |
Popovski et al. | The role and costs of large-scale heat pumps in decarbonising existing district heating networks–A case study for the city of Herten in Germany | |
Mehleri et al. | Optimal design and operation of distributed energy systems: Application to Greek residential sector | |
Sperling et al. | End-use energy savings and district heating expansion in a local renewable energy system–A short-term perspective | |
Gebretsadik et al. | Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa | |
Duran et al. | An analysis of renewable mini-grid projects for rural electrification | |
Egerer et al. | Two price zones for the German electricity market—Market implications and distributional effects | |
Hu et al. | Stochastic programming and market equilibrium analysis of microgrids energy management systems | |
Hagos et al. | Towards a flexible energy system–A case study for Inland Norway | |
López-González et al. | Renewable microgrid projects for autonomous small-scale electrification in Andean countries | |
Denholm et al. | How low can you go? The importance of quantifying minimum generation levels for renewable integration | |
Lynch et al. | Optimal interconnection and renewable targets for north-west Europe | |
Marchenko et al. | Efficiency of wind energy utilization for electricity and heat supply in northern regions of Russia | |
Ahn et al. | Opportunities for installed combined heat and power (CHP) to increase grid flexibility in the US | |
Ang et al. | Multi-objective optimization of hybrid renewable energy systems with urban building energy modeling for a prototypical coastal community | |
Barone et al. | Supporting the sustainable energy transition in the Canary Islands: Simulation and optimization of multiple energy system layouts and economic scenarios | |
Jeppesen et al. | Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 1: Problem formulation and modelling | |
Capuder et al. | Specifics of integration of wind power plants into the Croatian transmission network | |
Jones et al. | Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation | |
Ferrari et al. | Development of an optimization algorithm for the energy management of an industrial Smart User | |
van Leeuwen et al. | Upscaling a district heating system based on biogas cogeneration and heat pumps | |
Schreiber et al. | Optimal energy portfolios in the electricity sector: trade-offs and interplay between different flexibility options | |
Razeghi et al. | A spatially and temporally resolved model of the electricity grid–Economic vs environmental dispatch | |
Ivezic et al. | Assessments of effects of implementation of strategic plans for development of Belgrade District heating system | |
Fichtner et al. | The efficiency of international cooperation in mitigating climate change: analysis of joint implementation, the clean development mechanism and emission trading for the Federal Republic of Germany, the Russian Federation and Indonesia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120220 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4946691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |