JP4946659B2 - Abnormality detection method for fiber reinforced plastic panel and fiber reinforced base material used in this abnormality detection method - Google Patents

Abnormality detection method for fiber reinforced plastic panel and fiber reinforced base material used in this abnormality detection method Download PDF

Info

Publication number
JP4946659B2
JP4946659B2 JP2007167557A JP2007167557A JP4946659B2 JP 4946659 B2 JP4946659 B2 JP 4946659B2 JP 2007167557 A JP2007167557 A JP 2007167557A JP 2007167557 A JP2007167557 A JP 2007167557A JP 4946659 B2 JP4946659 B2 JP 4946659B2
Authority
JP
Japan
Prior art keywords
fiber reinforced
fiber
reinforced plastic
plastic panel
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007167557A
Other languages
Japanese (ja)
Other versions
JP2009006497A (en
Inventor
眞人 田所
輝規 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2007167557A priority Critical patent/JP4946659B2/en
Publication of JP2009006497A publication Critical patent/JP2009006497A/en
Application granted granted Critical
Publication of JP4946659B2 publication Critical patent/JP4946659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing

Description

本発明は、硬化させた後の繊維強化プラスチックパネルの内部の異常を容易に検出できるようにした繊維強化プラスチックパネルの異常検出方法およびこの異常検出方法に用いる繊維補強基材に関するものである。 The present invention relates to a fiber reinforced plastic panel abnormality detection method and a fiber reinforced base material used in the abnormality detection method, which can easily detect abnormality inside the fiber reinforced plastic panel after being cured.

近年、船舶の分野では大型船体の繊維強化プラスチック(FRP)パネル化が進み、これに伴って大型の繊維強化プラスチックパネルが必要になってきた。繊維強化プラスチックパネル等の樹脂成型物を製造する方法は種々知られているが、オートクレーブ法による樹脂成型方法では、オートクレーブの大きさの制約があるため、十分に大きな繊維強化プラスチックパネルを製造することができない。   In recent years, in the field of ships, large hulls have been made into fiber reinforced plastic (FRP) panels, and accordingly, large fiber reinforced plastic panels have become necessary. Various methods for producing resin molded products such as fiber reinforced plastic panels are known. However, the resin molding method using the autoclave method has restrictions on the size of the autoclave, so a sufficiently large fiber reinforced plastic panel must be produced. I can't.

そこで、設備として大きさの制約が少なく、品質の向上やコスト低減も期待できる樹脂トランスファー成形法(RTM)またはバキューム樹脂トランスファー成形法(VaRTM:Vacuum-assisted Resin Transfer Molding)による繊維強化プラスチックパネルの開発が進められている。このバキューム樹脂トランスファー成形法(VaRTM)は、常温プロセスで簡便に大型樹脂成型物を成型できる点で非常にメリットが大きく、風力発電機ブレード等の製造に適用されている(例えば、特許文献1、2参照)。   Therefore, development of fiber reinforced plastic panels by resin transfer molding method (RTM) or vacuum-assisted resin transfer molding method (VaRTM) that can be expected to improve quality and reduce costs as equipment has little size restrictions. Is underway. This vacuum resin transfer molding method (VaRTM) is extremely advantageous in that a large-sized resin molding can be easily molded in a room temperature process, and is applied to the manufacture of wind power generator blades (for example, Patent Document 1, 2).

この製造方法では、繊維補強基材を積層した積層体にモールド上で樹脂材料を含浸させる際に、積層体の内部や下部については目視では含浸状況を把握できないため、経験則等に基づいて判断しなければならず、場合によっては含浸状況の判断を誤り、樹脂材料の含浸が不十分な状態で硬化させてパネル内部に空隙が生じて製造不良になることがある。しかしながら、硬化後に、このようなパネル内部の異常を検出することは難しく、パネルを破壊する或いは超音波検査を行なうなど、多大に工数や高価な設備が必要であった。
特表2000−501659号公報 特表2001−510748号公報
In this manufacturing method, when impregnating the resin material on the mold with the laminate laminated with fiber reinforced base material, the impregnation status cannot be grasped visually with respect to the inside and the lower part of the laminate. In some cases, the determination of the impregnation state may be wrong, and the resin material may be cured in a state where the impregnation is insufficient, resulting in a void in the panel, resulting in a manufacturing defect. However, it is difficult to detect such abnormalities inside the panel after curing, and much man-hours and expensive equipment such as breaking the panel or performing ultrasonic inspection are required.
JP 2000-501659 A JP-T-2001-510748

本発明は、かかる従来の問題点に着目して案出されたもので、その主たる目的は、硬化させた後の繊維強化プラスチックパネルの内部の異常を容易に検出できるようにした繊維強化プラスチックパネルの異常検出方法およびこの異常検出方法に用いる繊維補強基材を提供することにある。 The present invention, such conventional ones that have been proposed in view of problems, the main object, fiber-reinforced plastic panels to the abnormality of the interior of the fiber-reinforced plastic panels after curing can be easily detected It is an object of the present invention to provide a method for detecting an abnormality and a fiber-reinforced base material used in the abnormality detection method .

上記目的を達成するため本発明の繊維強化プラスチックパネルの異常検出方法は、繊維補強基材を積層した積層体に樹脂材料を含浸させた後に、硬化させて形成した繊維強化プラスチックパネルの内部に導線が複数本、互いを非接触状態で埋設され、該導線の両端部がパネル端面まで延設され、この繊維強化プラスチックパネルに埋設された複数本の導線の中、選択した2本の導線間の電気容量または電気抵抗を測定し、該測定結果に基づいて繊維強化プラスチックパネルの空隙の有無を検出するようにしたことを要旨とするものである。 In order to achieve the above object, the fiber reinforced plastic panel abnormality detection method according to the present invention is a method in which a laminate obtained by laminating a fiber reinforced base material is impregnated with a resin material and then cured to form a conductive wire inside the fiber reinforced plastic panel. Are embedded in a non-contact state with each other, and both ends of the conductor wire are extended to the panel end surface. Among the plurality of conductor wires embedded in the fiber reinforced plastic panel, between the two selected conductor wires The gist is that the electric capacity or electric resistance is measured, and the presence or absence of voids in the fiber-reinforced plastic panel is detected based on the measurement result .

ここで、例えば、前記導線が格子状に繊維強化プラスチックパネルの内部に埋設される。 Here, for example, the conductive wires are embedded in a fiber-reinforced plastic panel in a lattice shape.

また、本発明の繊維補強基材は、複数積層した状態にして負圧下で樹脂材料を含浸させた後に、硬化させることにより繊維強化プラスチックパネルを形成する繊維補強基材において、前記繊維補強基材を構成する繊維織物の中に導線を配設し、該導線の両端部が前記形成する繊維強化プラスチックパネルの端面まで延設されることを要旨とするものである。 The fiber reinforced base material of the present invention is a fiber reinforced base material in which a plurality of laminated layers are impregnated with a resin material under negative pressure and then cured to form a fiber reinforced plastic panel. disposed conductors in a fiber woven fabric constituting the one in which the subject matter that both ends of the conductor line is extended to the end face of the fiber-reinforced plastic panels to the formation.

ここで、前記導線を複数本、互いを非接触状態で繊維織物に配設することもできる。この際に、前記導線を格子状に繊維織物に配設することもできる。   Here, a plurality of the conductive wires can be arranged on the fiber fabric in a non-contact state with each other. At this time, the conductive wires may be arranged on the fiber fabric in a lattice shape.

繊維強化プラスチックパネルに埋設された複数本の導線の中、選択した2本の導線間の電気容量または電気抵抗を測定する本発明の異常検出方法により、測定した電気容量または電気抵抗が所定の値よりも大きな場合には、パネル内部に空隙があると容易に判断することができる。 The electrical capacitance or electrical resistance measured by the anomaly detection method of the present invention in which the electrical capacitance or electrical resistance between two selected electrical wires embedded in the fiber reinforced plastic panel is measured is a predetermined value. If it is larger, it can be easily determined that there is a gap inside the panel.

また、本発明の繊維補強基材によれば、繊維補強基材を構成する繊維織物の中に導線を配設し、該導線の両端部が前記形成する繊維強化プラスチックパネルの端面まで延設されているので、繊維強化プラスチックパネルを製造する際に、繊維補強基材の積層体の一部として積層するだけで、パネルの硬化後には、繊維織物の中に配設した導線を上記した本発明の異常検出方法によるパネル内部の異常を検出する導線として用いることができる。 Further, according to the fiber reinforcement material of the present invention, by disposing the conductors in a fiber woven fabric constituting the fiber reinforcing substrate, are extended at both ends of the conductor wire to the end face of the fiber-reinforced plastic panels to the form since it is, when manufacturing a fiber-reinforced plastic panels, only stack as part of the laminate of the fiber-reinforced base material, after curing of the panel, the present invention in which a conductive wire that is disposed within the fiber fabric described above It can be used as a conductor for detecting an abnormality inside the panel by the abnormality detection method.

以下、本発明を図に示した実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on the embodiments shown in the drawings.

図1、図2に例示するように、本発明に用いる繊維強化プラスチックパネル1は、樹脂材料Wを含浸させた複数の繊維補強基材3を積層した積層体2を硬化させることにより形成されている。この繊維強化プラスチックパネル1の内部には、複数の導線4a〜4hがその両端部をパネル端面まで延設して格子状に埋設されている。これら導線4a〜4hは、互いに接触していない状態になっている。 As illustrated in FIGS. 1 and 2, the fiber reinforced plastic panel 1 used in the present invention is formed by curing a laminate 2 in which a plurality of fiber reinforced base materials 3 impregnated with a resin material W are laminated. Yes. Inside the fiber reinforced plastic panel 1, a plurality of conductive wires 4a to 4h are embedded in a lattice shape with their both ends extending to the panel end surface. These conducting wires 4a to 4h are not in contact with each other.

繊維強化プラスチックパネル1の内部に埋設される導線4の数は複数本であり、その両端部がパネル端面まで延設される。互いの導線4を非接触状態にする。導線4の素材としては、炭素繊維、ステンレス鋼繊維や銅繊維などの金属繊維等を用いることができる。 The number of the conductive wires 4 embedded in the fiber reinforced plastic panel 1 is plural, and both ends thereof are extended to the panel end surface. The mutual conducting wires 4 are brought into a non-contact state. As a material of the conducting wire 4, metal fibers such as carbon fiber, stainless steel fiber and copper fiber can be used.

繊維補強基材3は、図4に例示するような繊維織物により構成されている。この繊維補強基材3は、ポリエステル、アラミド等の有機繊維5或いはガラス等の無機繊維5から成り、この繊維織物の中にそれぞれの導線4a〜4dが互いに非接触状態で配設されている。1枚の繊維補強基材3に配設する導線4は単数でもよく、複数の導線4を埋設する場合は、互いの導線4を非接触状態にする。複数の導線4を格子状に配設してもよい。   The fiber reinforced base material 3 is configured by a fiber fabric as illustrated in FIG. The fiber reinforced substrate 3 is made of organic fibers 5 such as polyester and aramid, or inorganic fibers 5 such as glass, and the conductors 4a to 4d are arranged in a non-contact state in the fiber fabric. A single conductor 4 may be disposed on one fiber-reinforced substrate 3, and when a plurality of conductors 4 are embedded, the conductors 4 are brought into a non-contact state. A plurality of conducting wires 4 may be arranged in a lattice shape.

図1に例示する繊維強化プラスチックパネル1は、導線4を有しない繊維補強基材3aを介在させて、図4に例示する2枚の繊維補強基材3を、それぞれの導線4a〜4dと導線4e〜4hとが、直交するように積層して形成される。繊維強化プラスチックパネル1の製造方法については後述する。   The fiber reinforced plastic panel 1 illustrated in FIG. 1 includes two fiber reinforced base materials 3 illustrated in FIG. 4 as conductors 4a to 4d and conductors with a fiber reinforced base material 3a having no conductive wires 4 interposed therebetween. 4e to 4h are stacked so as to be orthogonal to each other. A method for manufacturing the fiber reinforced plastic panel 1 will be described later.

次いで、本発明の繊維強化プラスチックパネルの異常検出方法について説明する。図2に例示するように、繊維強化プラスチックパネル1に埋設された複数本の導線4の中、2本の導線4a、4eを選択し、これら導線4a、4eのパネル端面に位置する端部を、リード線を介して測定器6に接続する。この測定器6は、互いの導線4a、4e間の電気容量を測定し、その測定結果はモニタリング装置7に表示される。測定器6としては互いの導線4a、4e間の電気抵抗を測定するものでもよい。   Next, the abnormality detection method for the fiber-reinforced plastic panel of the present invention will be described. As illustrated in FIG. 2, two conductors 4 a and 4 e are selected from among a plurality of conductors 4 embedded in the fiber reinforced plastic panel 1, and end portions of the conductors 4 a and 4 e positioned on the panel end surface are selected. , And connected to the measuring instrument 6 through a lead wire. The measuring device 6 measures the electric capacity between the conducting wires 4a and 4e, and the measurement result is displayed on the monitoring device 7. The measuring device 6 may measure the electrical resistance between the conducting wires 4a and 4e.

2本の導線4a、4eの間に空隙がある場合は、樹脂材料Wが充填されていて空隙のない場所に比べて、電気容量や電気抵抗が変化する。そこで、測定器6により測定した電気容量或いは電気抵抗の結果に基づいて、測定値が所定の値よりも大きな場合は、空隙があると判断することができる。判断基準となる所定の値(基準電気容量値、基準電気抵抗値)は、空隙のない健全な位置での測定値を用いればよい。   When there is a gap between the two conducting wires 4a and 4e, the electric capacity and the electric resistance change as compared with a place where the resin material W is filled and there is no gap. Therefore, based on the result of the electric capacity or electric resistance measured by the measuring instrument 6, when the measured value is larger than a predetermined value, it can be determined that there is a gap. As predetermined values (reference electric capacity value, reference electric resistance value) serving as a determination criterion, a measured value at a healthy position without a gap may be used.

導線4を格子状に配設している場合には、電気容量或いは電気抵抗を測定する2本の導線4の組み合わせを順次変えて測定を行なうことにより、空隙のある位置を一段と容易に特定することができる。
次いで、本発明の参考形態となる異常検出方法について説明する。図3に例示するように、繊維強化プラスチックパネル1に埋設された複数本の導線4の中、1本の導線4aを選択し、この導線4aのパネル端面に位置する両端部を、リード線を介して測定器6に接続する。この測定器6は、導線4aの通電の有無を検査するものであり、その検査結果はモニタリング装置7に表示される。測定器6としては電気抵抗計(テスター)を用いることができる。
When the conducting wires 4 are arranged in a lattice shape, the position of the gap is more easily specified by sequentially changing the combination of the two conducting wires 4 for measuring electric capacity or electric resistance. be able to.
Next, an abnormality detection method as a reference form of the present invention will be described. As illustrated in FIG. 3, one conductor 4 a is selected from among a plurality of conductors 4 embedded in the fiber reinforced plastic panel 1, and both ends of the conductor 4 a positioned on the panel end surface are connected to lead wires. To the measuring device 6. The instrument 6 is for inspecting the presence or absence of energization of the conductors 4a, the inspection results are displayed on the monitoring device 7. An electric resistance meter (tester) can be used as the measuring device 6.

導線4aが通電しない場合は、繊維強化プラスチックパネル1が過大な変形等により導線4aが断線したと考えられる。そこで、測定器6による通電の有無の検査結果に基づいて、通電しない場合には繊維強化プラスチックパネル1の内部に変形等の損傷があると判断することができる。
このように、硬化させた後の繊維強化プラスチックパネル1の内部の異常(空隙や損傷等)を、高価な装置を用いることなく容易に検出することができる。
When the conducting wire 4a is not energized, it is considered that the conducting wire 4a is disconnected due to excessive deformation of the fiber reinforced plastic panel 1. Therefore, based on the result of the presence or absence of energization by the measuring instrument 6, it can be determined that there is damage such as deformation inside the fiber reinforced plastic panel 1 when no energization is performed.
In this way, abnormalities (such as voids and damage) inside the fiber reinforced plastic panel 1 after being cured can be easily detected without using an expensive device.

次いで、本発明の繊維補強基材3を用いて繊維強化プラスチックパネル1を製造する方法を説明する。   Next, a method for producing a fiber reinforced plastic panel 1 using the fiber reinforced substrate 3 of the present invention will be described.

図5に例示するように、モールド8上に複数枚の繊維補強基材3、3aを積層した積層体2を載置し、積層体2上に、コンティニアスマット等の樹脂流路媒体や樹脂材料W(主剤,硬化剤,促進剤)の供給チューブ9を順に配設して、これら全体をバキュームバッグ10によって覆った状態にする。ここで、積層体2は図1、図2に例示したように、導線4を有しない繊維補強基材3aを介在させて、2枚の繊維補強基材3、3を、それぞれの導線4a〜4dと導線4e〜4hとが、直交するように積層して形成されている。   As illustrated in FIG. 5, a laminate 2 in which a plurality of fiber reinforced base materials 3 and 3 a are laminated on a mold 8 is placed, and a resin flow path medium such as a continuous mat or a resin material is placed on the laminate 2. The supply tubes 9 for W (main agent, curing agent, accelerator) are arranged in order, and the whole is covered with the vacuum bag 10. Here, as illustrated in FIG. 1 and FIG. 2, the laminated body 2 interposes a fiber reinforced base material 3 a that does not have the conductive wire 4, and connects the two fiber reinforced base materials 3 and 3 to the respective conductive wires 4 a to 4. 4d and conductive wires 4e to 4h are formed so as to be orthogonal to each other.

モールド8の外周側にはそれぞれの導線4a〜4hを延設させて、バキュームバッグ10の周囲をシールテープによりモールド8上に気密的に固定する。積層体2の下部近傍には、ポンプに接続された吸引パイプ11が配置されている。   Lead wires 4a to 4h are extended on the outer peripheral side of the mold 8, and the periphery of the vacuum bag 10 is hermetically fixed on the mold 8 with a sealing tape. A suction pipe 11 connected to a pump is disposed in the vicinity of the lower portion of the laminate 2.

そして、吸引パイプ11を通じてバキュームバッグ10の内側の空気を吸引しつつ、供給チューブ9を通じて樹脂材料Wをバキュームバッグ10の内側に供給する。これにより、吸引パイプ11を通じて空気とともに樹脂材料Wが、バキュームバッグ10の内側から外側に排出され、これと同時に積層体2に樹脂材料Wが含浸されてゆく。   Then, the resin material W is supplied to the inside of the vacuum bag 10 through the supply tube 9 while sucking the air inside the vacuum bag 10 through the suction pipe 11. As a result, the resin material W is discharged from the inside of the vacuum bag 10 to the outside through the suction pipe 11, and at the same time, the laminate 2 is impregnated with the resin material W.

次いで、樹脂材料Wが含浸された積層体2を硬化させる。積層体2から延出している導線4a〜4hは積層体2(パネル)端面で切断する。これにより本発明の繊維強化プラスチックパネル1が製造される。   Next, the laminate 2 impregnated with the resin material W is cured. Conductive wires 4a to 4h extending from the laminate 2 are cut at the end face of the laminate 2 (panel). Thereby, the fiber reinforced plastic panel 1 of the present invention is manufactured.

このように、本発明の繊維補強基材3を用いれば、繊維強化プラスチックパネル1を製造する際に、積層体2の一部として積層するだけで、パネルの硬化後には、繊維織物に配設した導線4をパネル内部の異常を検出する導線4として用いることができる。   As described above, when the fiber reinforced base material 3 of the present invention is used, when the fiber reinforced plastic panel 1 is manufactured, the fiber reinforced plastic panel 1 is simply laminated as a part of the laminated body 2 and disposed on the fiber fabric after the panel is cured. The conducting wire 4 can be used as the conducting wire 4 for detecting an abnormality inside the panel.

また、この導線4は、繊維強化プラスチックパネル1を製造する際に、積層体2の上層から下層に至る全体に樹脂材料Wが均一に含浸されているか否かをモニタリングするための電気容量センサとしても用いることができる。   In addition, when the fiber reinforced plastic panel 1 is manufactured, the conductive wire 4 serves as an electric capacitance sensor for monitoring whether or not the resin material W is uniformly impregnated from the upper layer to the lower layer of the laminate 2. Can also be used.

含浸過程において樹脂材料Wが導線4を配置した位置まで達すると、導線4間の電気容量値が変化する。そこで、選択した2本の導線4をリード線を介して測定器6に接続し、測定器6により測定した導線4間の電気容量をモニタリング装置7で監視することによって、樹脂材料Wの積層体4への含浸状況を把握することができる。例えば、測定した電気容量値が予め設定した基準値よりも大きくなった場合に、導線4が配置されている位置では、樹脂材料Wが積層体2に含浸したと判断するようにする。   When the resin material W reaches the position where the conducting wire 4 is arranged in the impregnation process, the electric capacity value between the conducting wires 4 changes. Therefore, the selected two conducting wires 4 are connected to the measuring device 6 via the lead wires, and the electric capacity between the conducting wires 4 measured by the measuring device 6 is monitored by the monitoring device 7, whereby the laminate of the resin material W is obtained. 4 can be ascertained. For example, when the measured electric capacity value is larger than a preset reference value, it is determined that the resin material W is impregnated in the laminate 2 at the position where the conducting wire 4 is disposed.

これにより、目視することが不可能な積層体2の内部や下部であっても樹脂材料Wの含浸状況を確実に把握できるので、樹脂材料Wの含浸が不十分な状態の積層体2を硬化させるような製造不良を防止できる。そのため、高精度で品質の優れた繊維強化プラスチックパネル1を製造することができるようになる。   As a result, since the impregnation state of the resin material W can be reliably grasped even inside or under the laminate 2 that cannot be visually observed, the laminate 2 in a state where the impregnation of the resin material W is insufficient is cured. Such manufacturing defects can be prevented. Therefore, the fiber reinforced plastic panel 1 having high accuracy and excellent quality can be manufactured.

導線4を格子状に配設している場合には、電気容量を測定する2本の導線4の組み合わせを順次変えて測定を行なうことにより、含浸の不十分な位置を容易に特定することができる。   When the conducting wires 4 are arranged in a grid, it is possible to easily specify the position where the impregnation is insufficient by sequentially changing the combination of the two conducting wires 4 for measuring the electric capacity. it can.

本発明に用いる繊維強化プラスチックパネルを例示する内部透視斜視図である。It is an internal perspective view which illustrates the fiber reinforced plastic panel used for this invention. 図1の繊維強化プラスチックパネルを用いた本発明の異常検出方法を例示する説明図である。It is explanatory drawing which illustrates the abnormality detection method of this invention using the fiber reinforced plastic panel of FIG. 本発明の参考形態となる異常検出方法を例示する説明図である。It is explanatory drawing which illustrates the abnormality detection method used as the reference form of this invention. 本発明の繊維補強基材を例示する斜視図である。It is a perspective view which illustrates the fiber reinforced base material of this invention. 図4の繊維補強基材を用いて本発明に用いる繊維強化プラスチックパネルを製造する方法を例示する説明図である。With fibrous reinforcing substrate of FIG. 4 is an explanatory diagram illustrating a method of manufacturing a fiber-reinforced plastic panels for use in the present invention.

符号の説明Explanation of symbols

1 繊維強化プラスチックパネル
2 積層体
3 繊維補強基材
3a 導線を有しない繊維補強基材
4、4a、4b、4c、4d、4e、4f、4g、4h 導線
5 繊維
6 測定器
7 モニタリング装置
8 モールド
9 供給チューブ
10 バキュームバッグ
11 吸引パイプ
W 樹脂材料
DESCRIPTION OF SYMBOLS 1 Fiber reinforced plastic panel 2 Laminated body 3 Fiber reinforced base material 3a Fiber reinforced base material which does not have conducting wire 4, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h Conducting wire 5 Fiber 6 Measuring instrument 7 Monitoring apparatus 8 Mold 9 Supply tube 10 Vacuum bag 11 Suction pipe W Resin material

Claims (5)

繊維補強基材を積層した積層体に樹脂材料を含浸させた後に、硬化させて形成した繊維強化プラスチックパネルの内部に導線が複数本、互いを非接触状態で埋設され、該導線の両端部がパネル端面まで延設され、この繊維強化プラスチックパネルに埋設された複数本の導線の中、選択した2本の導線間の電気容量または電気抵抗を測定し、該測定結果に基づいて繊維強化プラスチックパネルの空隙の有無を検出するようにした繊維強化プラスチックパネルの異常検出方法。 After impregnating a resin material into a laminated body in which fiber reinforced base materials are laminated, a plurality of conductive wires are embedded in a fiber reinforced plastic panel formed by curing, and both ends of the conductive wires are embedded in a non-contact state. The electrical capacity or electrical resistance between the two selected conductors extending from the panel end face and embedded in the fiber reinforced plastic panel is measured, and the fiber reinforced plastic panel is measured based on the measurement result. An abnormality detection method for a fiber-reinforced plastic panel that detects the presence or absence of voids. 前記導線格子状に繊維強化プラスチックパネルの内部に埋設された請求項1に記載の繊維強化プラスチックパネルの異常検出方法。 The abnormality detection method for a fiber reinforced plastic panel according to claim 1 , wherein the conductive wires are embedded in a fiber reinforced plastic panel in a lattice shape. 複数積層した状態にして負圧下で樹脂材料を含浸させた後に、硬化させることにより繊維強化プラスチックパネルを形成する繊維補強基材において、前記繊維補強基材を構成する繊維織物の中に導線を配設し、該導線の両端部が前記形成する繊維強化プラスチックパネルの端面まで延設される繊維補強基材。 Distribution after the resin material is impregnated in the negative pressure in the stacked state, the fiber-reinforced base material to form a fiber-reinforced plastic panels by curing a conducting wire into the woven fabric constituting the fibrous reinforcing substrate And a fiber reinforced base material in which both ends of the conducting wire are extended to the end face of the fiber reinforced plastic panel to be formed. 前記導線を複数本、互いを非接触状態で繊維織物に配設した請求項3に記載の繊維補強基材。 The fiber reinforced base material according to claim 3 , wherein a plurality of the conductive wires are arranged on a fiber fabric in a non-contact state with each other. 前記導線を格子状に繊維織物に配設した請求項4に記載の繊維補強基材。 The fiber-reinforced base material according to claim 4 , wherein the conductive wires are arranged in a fiber fabric in a lattice shape.
JP2007167557A 2007-06-26 2007-06-26 Abnormality detection method for fiber reinforced plastic panel and fiber reinforced base material used in this abnormality detection method Expired - Fee Related JP4946659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167557A JP4946659B2 (en) 2007-06-26 2007-06-26 Abnormality detection method for fiber reinforced plastic panel and fiber reinforced base material used in this abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167557A JP4946659B2 (en) 2007-06-26 2007-06-26 Abnormality detection method for fiber reinforced plastic panel and fiber reinforced base material used in this abnormality detection method

Publications (2)

Publication Number Publication Date
JP2009006497A JP2009006497A (en) 2009-01-15
JP4946659B2 true JP4946659B2 (en) 2012-06-06

Family

ID=40322109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167557A Expired - Fee Related JP4946659B2 (en) 2007-06-26 2007-06-26 Abnormality detection method for fiber reinforced plastic panel and fiber reinforced base material used in this abnormality detection method

Country Status (1)

Country Link
JP (1) JP4946659B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233765B2 (en) 2011-06-16 2016-01-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-dimensional damage detection
JP6506564B2 (en) 2015-02-04 2019-04-24 川崎重工業株式会社 Condition monitoring device of leaf spring of bogie for railway vehicle
KR101781687B1 (en) 2015-07-23 2017-09-25 한양대학교 산학협력단 Deveice for detection and recordation of damages on conductive composite material and method for manufacturing the same
JP6510938B2 (en) * 2015-09-10 2019-05-08 川崎重工業株式会社 Method of manufacturing an electroded plate spring of a bogie for a railway vehicle
KR101991891B1 (en) * 2017-07-06 2019-06-21 조선대학교 산학협력단 Damage detection technology for composite structures using grid sensing approach
EP3616891B1 (en) * 2018-09-03 2021-04-07 Subaru Corporation Resin impregnation measurement system
KR102145246B1 (en) * 2018-11-27 2020-08-18 울산과학기술원 System and method of predicting damage of carbon fiber composites
FR3132865B1 (en) * 2022-02-22 2024-02-16 Safran Aircraft Engines PART MADE OF COMPOSITE MATERIAL, FOR A TURBOMACHINE, EQUIPPED WITH A DETECTION ELEMENT AND METHOD FOR MANUFACTURING SUCH A PART

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590803B2 (en) * 2001-08-20 2010-12-01 東レ株式会社 RTM molding method
JP3882081B2 (en) * 2003-05-08 2007-02-14 独立行政法人産業技術総合研究所 Damage detection method for shape memory alloy, self-sensing heating control method, and panel self-repair method

Also Published As

Publication number Publication date
JP2009006497A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4946659B2 (en) Abnormality detection method for fiber reinforced plastic panel and fiber reinforced base material used in this abnormality detection method
Todoroki et al. Matrix crack detection of CFRP using electrical resistance change with integrated surface probes
US6277771B1 (en) Reinforcing carbon fiber material, laminate and detecting method
ES2590147T3 (en) A method for online control of a manufacturing process of a multi-component sheet material
Qing et al. Built-in sensor network for structural health monitoring of composite structure
US8522614B2 (en) In-line inspection methods and closed loop processes for the manufacture of prepregs and/or laminates comprising the same
US9068929B2 (en) Capacitance-based system health monitoring system, apparatus and method for layered structure
KR101961408B1 (en) Monitoring method of CFRP damage
EP3276339A1 (en) Electrical inspection method for fibre composite materials
WO2011131995A1 (en) Testing joints between composite and metal parts
CA2926066C (en) Fiber waviness detection method and apparatus for conductive composite materials
JP5151269B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic panel
JP5381007B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic panel
JP5762406B2 (en) Method for manufacturing aircraft parts by resin injection
JP5386947B2 (en) Fiber reinforced plastic panel manufacturing equipment
KR101978467B1 (en) Sensor and method for detecting crack propagation of CFRP structures
US11787131B2 (en) Method for fabricating a member in a resin-infusion-based casting process and wind turbine blade
KR101939335B1 (en) Apparatus and method of monitoring alignment of fibers using smart mold
US20200200696A1 (en) Fiber Composite Component Having An Integrated Structural Health Sensor Arrangement
Todoroki et al. Detection of matrix crack density of CFRP using an electrical potential change method with multiple probes
Peng et al. Study on the damages detection of 3 dimensional and 6 directional braided composites using FBG sensor
EP3159655A1 (en) Profilometry inspection systems and methods for spar caps of composite wind turbine blades
US11273616B2 (en) Composite tube with an embedded stranded wire and method for making the same
JP2004309333A (en) Method for monitoring lifetime of composite material
CN109906378A (en) The moulded parts made of fibrous composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees