JP4946098B2 - Bonding structure of ultrasonic bonding - Google Patents

Bonding structure of ultrasonic bonding Download PDF

Info

Publication number
JP4946098B2
JP4946098B2 JP2006056760A JP2006056760A JP4946098B2 JP 4946098 B2 JP4946098 B2 JP 4946098B2 JP 2006056760 A JP2006056760 A JP 2006056760A JP 2006056760 A JP2006056760 A JP 2006056760A JP 4946098 B2 JP4946098 B2 JP 4946098B2
Authority
JP
Japan
Prior art keywords
ultrasonic
joining
bonding
electrode tab
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006056760A
Other languages
Japanese (ja)
Other versions
JP2007229788A (en
Inventor
宗人 早見
剛 榎田
明 清水
秀信 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006056760A priority Critical patent/JP4946098B2/en
Publication of JP2007229788A publication Critical patent/JP2007229788A/en
Application granted granted Critical
Publication of JP4946098B2 publication Critical patent/JP4946098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、2枚の板状部材の接合面を重ね合わせ、加圧しながら超音波振動を与えて超音波接合する場合における超音波接合の接合構造に関する。   The present invention relates to a bonding structure of ultrasonic bonding in the case where ultrasonic bonding is performed by applying ultrasonic vibration while pressing and bonding the bonding surfaces of two plate-like members.

近年、環境意識の高まりを受けて、自動車の動力源を、化石燃料を利用するエンジンから電気エネルギーを利用するモータに移行しようとする動きがある。このため、モータの電力源となる電池の技術も急速に発展しつつある。   In recent years, in response to growing environmental awareness, there is a movement to shift the power source of automobiles from an engine using fossil fuel to a motor using electric energy. For this reason, the technology of the battery that serves as a power source for the motor is also rapidly developing.

自動車には、小型軽量で、大きな電力を頻繁に充電可能な、耐振動性、放熱性に優れた電池の搭載が望まれる。この要望を受けて、近年では扁平型の単電池を多数直列に接続してなる組電池が開発されている。自動車などの駆動用途として用いる場合には大きなエネルギーを要するため、個々の単電池を大型化する必要があり、それに伴って電池重量も増大する。   An automobile is desired to be equipped with a battery that is small and light and can be charged with a large amount of power frequently and has excellent vibration resistance and heat dissipation. In response to this demand, recently, an assembled battery in which a large number of flat type cells are connected in series has been developed. When used as a driving application for automobiles or the like, a large amount of energy is required, so that it is necessary to increase the size of each unit cell, and the battery weight increases accordingly.

上記組電池としてはリチウムイオン電池モジュールが挙げられ、扁平型の単電池の正極タブと負極タブとを超音波接合により多数直列に接続して使用される。そして、このような超音波接合の接合技術が特許文献1および特許文献2に提案されている。
特開2000−260478号公報 特開平10−225779号公報
Examples of the assembled battery include a lithium ion battery module, which is used by connecting a large number of positive electrode tabs and negative electrode tabs of a flat unit cell in series by ultrasonic bonding. And the joining technique of such an ultrasonic joining is proposed by patent document 1 and patent document 2. FIG.
JP 2000-260478 A Japanese Patent Laid-Open No. 10-225779

ところで、単電池同士を直列に接続する際には、一方の単電池と他方の単電池の電極タブ同士を超音波接合するが、超音波接合時には電極タブ(特に単電池への付け根部分)に応力がかかってしまうという問題がある。   By the way, when connecting the cells in series, the electrode tabs of one unit cell and the other unit cell are ultrasonically bonded to each other, but at the time of ultrasonic bonding, the electrode tab (particularly the root portion of the unit cell) is used. There is a problem that stress is applied.

また、単電池同士を多数直列に接続した組電池では、個々の単電池が大型化する傾向にあることから、接合部の存する電極タブに組電池の自重がかかり易い。したがって、悪路走行中などに自動車に振動が加わると、自動車に搭載した組電池にも振動が生じ、電極タブに上下振動による張力が加わってしまうという問題がある。   Further, in an assembled battery in which a large number of single cells are connected in series, since the individual single cells tend to increase in size, the weight of the assembled battery tends to be applied to the electrode tab where the joint exists. Therefore, when vibration is applied to the automobile while traveling on a rough road, there is a problem that the assembled battery mounted on the automobile is also vibrated, and tension due to vertical vibration is applied to the electrode tab.

本発明は、上記のような従来の技術の問題点を解消するために成されたものであり、振動が加わっても、2枚の板状部材に余分な応力がかからないようにする超音波接合の接合構造を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and is an ultrasonic bonding that prevents excessive stress from being applied to two plate-like members even when vibration is applied. It is an object to provide a joint structure.

上記目的を達成するための本発明に係る超音波接合の接合構造は、単電池が内包する発電要素の積層方向に前記単電池を複数積層し、それぞれ隣り合って対となる2つの単電池から同一方向にそれぞれ延出する2枚の電極タブそれぞれの接合面を重ね合わせて加圧しながら前記接合面に超音波振動を与え、前記接合面同士を超音波接合する超音波接合の接合構造であって、各対の2つの単電池から同一方向にそれぞれ延出する2枚の電極タブそれぞれの、一方の電極タブの固定されている端部と前記接合面同士が超音波接合される接合部との間に、前記端部と前記接合部との間に加わる応力を吸収しうる応力吸収部を形成し、前記各対の2つの単電池から同一方向にそれぞれ延出する2枚の電極タブは、前記端部から互いに略平行に離間させて前記接合部に向けて突出し、各応力吸収部は、前記端部と前記接合部との間で、前記2枚の電極タブの一方をその延出方向から接合部側へ向けて屈曲させた屈曲成形部であり、前記各応力吸収部は屈曲強度が高い側の電極タブに形成され、前記各応力吸収部は、超音波接合によって加わる応力と走行中に加わる振動とを吸収することを特徴とする。 In order to achieve the above object, a joining structure of ultrasonic bonding according to the present invention includes a plurality of unit cells stacked in the stacking direction of a power generating element included in a unit cell, and two adjacent unit cells adjacent to each other. The bonding structure of ultrasonic bonding is to ultrasonically bond the bonding surfaces by applying ultrasonic vibration to the bonding surfaces while superimposing and pressing the bonding surfaces of the two electrode tabs extending in the same direction. Each of the two electrode tabs extending in the same direction from the two unit cells of each pair, and an end where one of the electrode tabs is fixed and a joint where the joint surfaces are ultrasonically joined to each other The two electrode tabs that form a stress absorbing portion that can absorb the stress applied between the end portion and the joint portion and extend in the same direction from the two unit cells of each pair, , Spaced substantially parallel to each other from the end Each of the stress absorbing portions is bent toward one side of the two electrode tabs from the extending direction toward the joint portion between the end portion and the joint portion. Each stress absorbing portion is formed on an electrode tab on a side having a high bending strength, and each stress absorbing portion absorbs stress applied by ultrasonic bonding and vibration applied during traveling. To do.

本発明に係る超音波接合の接合構造では、接合面を重ね合わせた2枚の板状部材のうちの一方の板状部材に、その端部と接合部との間に加わる応力を吸収しうる応力吸収部を形成している。したがって、接合した2枚の板状部材に振動が加わっても、応力吸収部が振動によって接合部に加わろうとする応力を吸収するので、接合部に余分な応力がかからなくなる。   In the joining structure of ultrasonic joining according to the present invention, stress applied between the end portion and the joining portion can be absorbed in one of the two plate-like members having the joining surfaces superimposed. A stress absorbing portion is formed. Therefore, even if vibration is applied to the two joined plate-like members, the stress absorbing portion absorbs the stress that is applied to the bonded portion by the vibration, so that no extra stress is applied to the bonded portion.

上記目的を達成するための本発明に係る超音波接合の接合方法は、一端部が固定されている2枚の板状部材のそれぞれの接合面を重ね合わせて加圧しながら超音波振動を与え、前記接合面同士を接合する場合における接合方法であって、前記2枚の板状部材の少なくとも一方に応力吸収部材を形成する工程と、前記2枚の板状部材を超音波接合する工程と、を含むことを特徴とする。   In order to achieve the above object, the ultrasonic bonding method according to the present invention provides ultrasonic vibration while applying pressure by superimposing the respective bonding surfaces of the two plate-like members having one end fixed thereto, It is a joining method in the case of joining the joining surfaces, a step of forming a stress absorbing member on at least one of the two plate-like members, a step of ultrasonically joining the two plate-like members, It is characterized by including.

本発明に係る超音波接合の接合方法も、本発明に係る超音波接合の接合構造の場合と同様の効果を得ることができる。   The bonding method of ultrasonic bonding according to the present invention can also obtain the same effects as those of the bonding structure of ultrasonic bonding according to the present invention.

以上のような構成を有する本発明に係る超音波接合の接合構造および超音波接合の接合方法によれば、一方の板状部材の固定されている端部と接合部との間に、前記端部と前記接合部との間に加わる応力を吸収しうる応力吸収部を形成したので、接合した2枚の板状部材に振動が加わっても、応力吸収部が振動によって端部または接合部に加わろうとする応力を吸収し、板状部材に余分な応力がかかることを防止することができる。   According to the joining structure of ultrasonic joining and the joining method of ultrasonic joining according to the present invention having the above-described configuration, the end is fixed between the fixed end of one plate-like member and the joined part. Since the stress absorbing portion capable of absorbing the stress applied between the portion and the joint portion is formed, even if vibration is applied to the two joined plate-like members, the stress absorbing portion is moved to the end portion or the joint portion by vibration. It is possible to absorb the stress to be applied and prevent an excessive stress from being applied to the plate-like member.

また、本発明に係る接合方法によれば、電池に振動が加わっても、応力吸収部での応力吸収により、接合部の応力を緩和することができる。   Moreover, according to the joining method according to the present invention, even when vibration is applied to the battery, the stress at the joined portion can be relaxed by the stress absorption at the stress absorbing portion.

以下に、本発明に係る超音波接合の接合構造を図面に基づいて詳細に説明する。   Below, the joining structure of ultrasonic joining concerning the present invention is explained in detail based on a drawing.

図1は本実施形態の超音波接合の接合構造を適用する組電池の断面図、図2は単電池の斜視図である。   FIG. 1 is a cross-sectional view of an assembled battery to which the ultrasonic wave bonding structure of this embodiment is applied, and FIG. 2 is a perspective view of a single battery.

単電池20は、図2に示すように、扁平型に形成された電池である。正極層、負極層およびこれらの電極層間に電解質層を積層した発電要素(不図示)を、扁平型電池本体26内部に複数含んでいる。単電池20は、たとえば、リチウムイオン二次電池などの二次電池である。組電池10においては、単電池20は、内包する発電要素の積層方向と同じ方向に積層される。   The unit cell 20 is a battery formed in a flat shape as shown in FIG. A plurality of power generation elements (not shown) in which a positive electrode layer, a negative electrode layer, and an electrolyte layer are laminated between these electrode layers are included in the flat battery body 26. The single battery 20 is a secondary battery such as a lithium ion secondary battery, for example. In the assembled battery 10, the unit cells 20 are stacked in the same direction as the stacking direction of the power generation elements included.

単電池20は、発電要素を内包する扁平型電池本体26から延びる正極タブ22および負極タブ24を有する。負極タブ24は、アルミニウム薄板により形成されている。また、正極タブ22は、銅薄板により形成されている。そして、複数の単電池20は、正極タブ22および負極タブ24が積層方向に交互となるように積層されている。   The unit cell 20 includes a positive electrode tab 22 and a negative electrode tab 24 that extend from a flat battery body 26 that encloses a power generation element. The negative electrode tab 24 is formed of an aluminum thin plate. The positive electrode tab 22 is formed of a copper thin plate. And the several cell 20 is laminated | stacked so that the positive electrode tab 22 and the negative electrode tab 24 may become alternate in the lamination direction.

単電池20同士は、扁平型電池本体26に両面テープまたは接着剤等が付けられることによって、相互に固定されている。最上層の単電池20では、負極タブ24が不図示の正極端子と接続され、最下層の単電池20では、正極タブ22が不図示の負極端子と接続される。   The unit cells 20 are fixed to each other by attaching a double-sided tape or an adhesive to the flat battery body 26. In the uppermost cell 20, the negative electrode tab 24 is connected to a positive electrode terminal (not shown), and in the lowermost cell 20, the positive electrode tab 22 is connected to a negative electrode terminal (not shown).

このように組電池10は、隣接する単電池20同士の正極タブ22と負極タブ24とを順に直列接続することにより上下に積層して組み立てられ、その接合には超音波接合装置が用いられる。   Thus, the assembled battery 10 is assembled by stacking up and down by sequentially connecting the positive electrode tab 22 and the negative electrode tab 24 of the adjacent unit cells 20 in series, and an ultrasonic bonding apparatus is used for the bonding.

図3は、超音波接合装置の一例を示す模式図である。図3に示すように、超音波接合装置30は2枚の板状部材を挟持するアンビル40とホーン50と呼ばれる接合工具を備え、特に異種金属の接合に適している。上述したように、負極タブ24の材質はアルミニウム(Al)であり、正極タブ22の材質は銅(Cu)であるので、超音波接合はこれらの接合に適している。   FIG. 3 is a schematic diagram illustrating an example of an ultrasonic bonding apparatus. As shown in FIG. 3, the ultrasonic bonding apparatus 30 includes an anvil 40 that sandwiches two plate members and a bonding tool called a horn 50, and is particularly suitable for bonding dissimilar metals. As described above, since the material of the negative electrode tab 24 is aluminum (Al) and the material of the positive electrode tab 22 is copper (Cu), ultrasonic bonding is suitable for these bondings.

アンビル40は、接合する2枚の板状部材(たとえば、正極タブ22と負極タブ24)を載置する台座であって、その挟持面には複数の突起41が形成されている。ホーン50は、アンビル40に対する相対的な位置を適宜調整可能であり、その挟持面にも複数の突起51が形成されている。また、ホーン50には、これを挟持方向の後方から押圧する加圧手段60が備えられている。超音波接合時には、ホーン50がアンビル40に載置された2枚の板状部材を一定の圧力で加圧しながら、超音波振動を発生する。   The anvil 40 is a pedestal on which two plate-like members to be joined (for example, the positive electrode tab 22 and the negative electrode tab 24) are placed, and a plurality of protrusions 41 are formed on the holding surface. The horn 50 can adjust the relative position with respect to the anvil 40 as appropriate, and a plurality of protrusions 51 are also formed on the holding surface. Further, the horn 50 is provided with a pressurizing means 60 that presses the horn 50 from the rear in the clamping direction. At the time of ultrasonic bonding, the horn 50 generates ultrasonic vibration while pressing the two plate-like members placed on the anvil 40 with a constant pressure.

すなわち、超音波接合装置30は、ホーン50による超音波振動で2枚の板状部材に往復直線運動を生じさせ、板状部材の接触面が擦り合わされることにより、部材表面の酸化皮膜等の不純物を除去して綺麗な金属面を露出させて接触させるとともに、その際に発生する摩擦熱により、2枚の板状部材を固相接合するものである。   That is, the ultrasonic bonding apparatus 30 causes the two plate-like members to reciprocate linearly by ultrasonic vibration by the horn 50, and the contact surfaces of the plate-like members are rubbed together, so that an oxide film or the like on the member surface can be obtained. Impurities are removed to expose and contact a beautiful metal surface, and two plate-like members are solid-phase bonded by frictional heat generated at that time.

上記のような超音波接合装置30を用いて、リチウムイオン二次電池などの組電池は組み立てられるが、その際、本実施の形態では以下に説明するような接合構造を採用する。図4は、本実施の形態に係る超音波接合の接合構造の模式図である。なお、説明の便宜上から、2組の単電池を直列接続する場合について説明する。   An assembled battery such as a lithium ion secondary battery is assembled using the ultrasonic bonding apparatus 30 as described above. In this case, a bonding structure as described below is adopted in the present embodiment. FIG. 4 is a schematic diagram of a joining structure of ultrasonic joining according to the present embodiment. For convenience of explanation, a case where two sets of unit cells are connected in series will be described.

図4に示すように、2組の単電池20が内包する発電要素の積層方向と同じ方向に上下に積層され、たとえば、上部の単電池20の正極タブ22を下部の単電池の負極タブ24に接合して、2組の単電池20が直列接続される。超音波接合に先立って、一方の板状部材である負極タブ24の接合部手前に離間させて、撓み力や伸縮力のような接合部に加わる応力を吸収しうる応力吸収部70が形成されている。本実施の形態では、上記応力吸収部70は屈曲成形部により形成され、上側の負極タブ22をその延出方向から接合部側斜め下方へ向けて屈曲させてクランク状(カギ状)に形成されている。すなわち、上部の単電池20の正極タブ22と下部の単電池の負極タブ24とは積層方向に離間しているが、上部の単電池20の正極タブ22は、応力吸収部70を介して下部の単電池20の負極タブ24と重ね合わされ、その端部側に接合部71が位置するように超音波接合されることになる。   As shown in FIG. 4, two sets of unit cells 20 are stacked one above the other in the same direction as the stacking direction of the power generating elements contained therein. For example, the positive tab 22 of the upper unit cell 20 is replaced with the negative tab 24 of the lower unit cell. 2 sets of unit cells 20 are connected in series. Prior to ultrasonic bonding, a stress absorbing portion 70 that can be separated from the negative electrode tab 24, which is one plate-like member, before the bonded portion to absorb stress applied to the bonded portion, such as bending force and stretching force, is formed. ing. In the present embodiment, the stress absorbing portion 70 is formed by a bent portion, and is formed in a crank shape (key shape) by bending the upper negative electrode tab 22 obliquely downward from the extending direction toward the joint portion. ing. That is, the positive electrode tab 22 of the upper unit cell 20 and the negative electrode tab 24 of the lower unit cell are separated from each other in the stacking direction. Is superposed on the negative electrode tab 24 of the unit cell 20 and is ultrasonically bonded so that the bonding portion 71 is positioned on the end side thereof.

このように本実施の形態に係る超音波接合の接合構造では、接合面を重ね合わせた2枚の板状部材(たとえば、正極タブ22と負極タブ24)のうちの一方の板状部材(たとえば、正極タブ22)の接合部手前に離間させて、接合部71に加わる応力を吸収しうる屈曲成形部70を形成している。したがって、たとえば、超音波接合時に接合部から伝達してくる高周波振動が加わっても、または上記組電池10を車両に搭載して悪路等を走行することにより、接合した2枚の板状部材(正極タブ22と負極タブ24)に上下振動が加わっても、屈曲成形部70が単電池20と正極タブ22との接合部分(正極タブ22の端部)または接合部71に振動によって加わろうとする張力を吸収するので、接合部71が破断することはない。   Thus, in the joining structure of ultrasonic joining according to the present embodiment, one of the two plate-like members (for example, the positive electrode tab 22 and the negative electrode tab 24) on which the joining surfaces are superimposed (for example, the positive electrode tab 22 and the negative electrode tab 24). The bent forming portion 70 is formed so as to be able to absorb the stress applied to the joining portion 71 by being separated from the joining portion of the positive electrode tab 22). Therefore, for example, even when high-frequency vibration transmitted from the joint portion is applied during ultrasonic joining, or when the assembled battery 10 is mounted on a vehicle and travels on a rough road or the like, the two plate-like members joined together Even if vertical vibration is applied to the (positive electrode tab 22 and the negative electrode tab 24), the bent molded portion 70 is to be applied to the joint portion (the end portion of the positive electrode tab 22) between the unit cell 20 and the positive electrode tab 22 or the joint portion 71 by vibration. Since the tension | tensile_strength to absorb is absorbed, the junction part 71 does not fracture | rupture.

上記屈曲成形部70の屈曲形状はクランク形状(カギ状)に限定されるものではなく、たとえば、図5に示すようなS字形状(A)やZ字形状(B)に成形しても構わない。   The bent shape of the bent forming portion 70 is not limited to the crank shape (key shape), and may be formed into, for example, an S shape (A) or a Z shape (B) as shown in FIG. Absent.

超音波接合した2枚の板状部材に振動が加わると、屈曲強度が低い側の板状部材が変形し易いので、屈曲強度が高い側の板状部材で応力を吸収させるべく、この屈曲成形部70は屈曲強度が高い側の板状部材の接合部手前に形成することが好ましい。たとえば、Cu製の正極タブ22とAl製の負極タブ24とでは、これらを同一板厚と仮定した場合、Cu材の方が高い屈曲強度を有するので、正極タブ22に屈曲成形部70を形成する。なお、この屈曲強度は、板状部材の材質だけでなく、板厚にも依存する。   When vibration is applied to two ultrasonically joined plate-like members, the plate-like member having a lower bending strength is likely to be deformed. Therefore, this bending molding is performed so that stress is absorbed by the plate-like member having a higher bending strength. The portion 70 is preferably formed before the joint portion of the plate-like member having the higher bending strength. For example, in the case where the positive electrode tab 22 made of Cu and the negative electrode tab 24 made of Al are assumed to have the same plate thickness, since the Cu material has higher bending strength, the bent forming portion 70 is formed on the positive electrode tab 22. To do. The bending strength depends not only on the material of the plate member but also on the plate thickness.

また、図6は本実施の形態に係る超音波接合の接合構造の変形例を示す模式図である。図6に示すように、上記屈曲成形部70と上記接合部71との間には、伸縮機構部73が介設されている。この伸縮機構部73としては、たとえば、コルゲート加工による蛇腹形状のベローズや、コイル等のダンパーなどを採用することができる。このように、屈曲成形部70と接合部71との間に伸縮機構部73を介設することにより、上下振動だけでなく、様々な方向の振動を積極的に吸収することができる。   FIG. 6 is a schematic diagram showing a modification of the joining structure of ultrasonic joining according to the present embodiment. As shown in FIG. 6, an expansion / contraction mechanism portion 73 is interposed between the bending portion 70 and the joint portion 71. As this expansion-contraction mechanism part 73, the bellows-shaped bellows by corrugation processing, dampers, such as a coil, etc. are employable, for example. In this manner, by providing the expansion / contraction mechanism 73 between the bending molded part 70 and the joint 71, not only vertical vibration but also vibrations in various directions can be positively absorbed.

ところで、製品構造上の制約から、超音波接合の接合位置を板端部から離れた位置に設定せざるを得ない場合がある。このように接合部から板端部までの距離(D)が長くなると(図9参照)、接合部から板端部までの材料部分が、アンビルとホーンとに挟持される接合部に振り回される現象が起きる。特に、2枚の板状部材が厚板部材であるために大きな接合エネルギーを要する場合には、図9に示すように、接合部との境界に疲労による板厚方向の亀裂80が発生し易い。本発明者らは、たとえば、厚さ0.4mmのアルミニウム板を上板81とし、厚さ0.2mmの銅板を下板82として重ね合わせて、板端部から離れた位置において、径6mmのホーンに120KPaの加圧力を加えて、振動周波数20Khzで振幅50μの振動を0.2秒間与えることにより超音波接合すると、図10(A)(B)(C)に示すような態様で、接合部71の境界部に板厚方向の亀裂80が生じることを確認している。   By the way, due to restrictions on the product structure, there are cases where the joining position of ultrasonic joining must be set at a position away from the plate end. In this way, when the distance (D) from the joint to the plate end becomes long (see FIG. 9), the material portion from the joint to the plate end is swung around the joint sandwiched between the anvil and the horn. Happens. In particular, when two plate-like members are thick plate members and require large joining energy, as shown in FIG. 9, cracks 80 in the thickness direction due to fatigue tend to occur at the boundary with the joint portion. . The inventors of the present invention, for example, overlaps an aluminum plate having a thickness of 0.4 mm as the upper plate 81 and a copper plate having a thickness of 0.2 mm as the lower plate 82 and has a diameter of 6 mm at a position away from the plate end. When ultrasonic bonding is performed by applying a pressure of 120 KPa to the horn and applying vibration of 50 μm in amplitude at a vibration frequency of 20 Khz for 0.2 seconds, bonding is performed in the manner shown in FIGS. 10A, 10B, and 10C. It has been confirmed that a crack 80 in the thickness direction occurs at the boundary portion of the portion 71.

本実施の形態に係る超音波接合の接合構造は、このように2枚の板状部材が異種材質の厚板部材である場合にも適用することができる。すなわち、図7および図10に示すように、アルミニウム板からなる上板81において、振動方向に対し、亀裂発生部位から5〜6mmの位置に応力吸収部(屈曲成形部)70を形成することにより、上記亀裂80の発生を防止することができる。図7では屈曲成形部70をクランク形状(カギ状)に形成しているが、これに限定されるものではなく、上述したように、S字形状およびZ字形状などの他の屈曲形状に形成することができる。   The joining structure of ultrasonic joining according to the present embodiment can also be applied to the case where the two plate-like members are thick plate members made of different materials. That is, as shown in FIGS. 7 and 10, in the upper plate 81 made of an aluminum plate, a stress absorbing portion (bending molded portion) 70 is formed at a position of 5 to 6 mm from the crack generation site in the vibration direction. The occurrence of the crack 80 can be prevented. In FIG. 7, the bent molded portion 70 is formed in a crank shape (key shape), but is not limited to this, and is formed in other bent shapes such as an S-shape and a Z-shape as described above. can do.

また、図8に示すように、確実な応力吸収性能を得るためには、屈曲成形部70の屈曲角度θは45度以上であることが好ましい。屈曲角度θを45度以上に設定することによって、屈曲成形部70にダンパー効果をもたせることができる。   Further, as shown in FIG. 8, in order to obtain a reliable stress absorbing performance, the bending angle θ of the bending formed portion 70 is preferably 45 degrees or more. By setting the bending angle θ to 45 degrees or more, the bending molded portion 70 can have a damper effect.

上記亀裂80は、アルミニウム板のように強度が低く、厚板部材であるために大きな接合エネルギーを要する場合に顕著に現れる。しかし、亀裂発生部位から5〜6mmの位置に応力吸収部(屈曲成形部)70を組み込むことにより、接合部71の振動による疲労強度を向上させることができ、当該亀裂80の発生を防止することができる。   The crack 80 has a low strength like an aluminum plate, and is prominent when a large bonding energy is required because it is a thick plate member. However, by incorporating the stress absorbing portion (bending molded portion) 70 at a position 5 to 6 mm from the crack occurrence site, the fatigue strength due to vibration of the joint portion 71 can be improved, and the occurrence of the crack 80 is prevented. Can do.

すなわち、2枚の板状部材が厚板部材であるために大きな接合エネルギーを要する場合にも、振動方向に対して屈曲成形部70を形成することにより、屈曲成形部70がダンパーの役割を果たし、厚板部材を振動させたときに振り回される材料部分の重量が軽減される効果を発揮する。これにより、接合部71の境界から板端部までの間において超音波接合時に亀裂が発生することなく、健全な接合を行うことができる。   That is, even when a large plate energy is required because the two plate-like members are thick plate members, the bent molded portion 70 serves as a damper by forming the bent molded portion 70 in the vibration direction. The effect of reducing the weight of the material portion swung when the thick plate member is vibrated is exhibited. Thereby, sound joining can be performed without cracking during ultrasonic joining between the boundary of the joining portion 71 and the plate end.

以上の如く構成した本実施の形態に係る超音波接合の接合構造によれば、超音波接合する2枚の板状部材のうちの一方の板状部材の接合部手前に離間させて、接合部71に加わる応力を吸収しうる応力吸収部70が形成されているので、接合した2枚の板状部材に振動が加わっても、応力吸収部70が振動によって接合部71に加わろうとする応力を吸収し、接合部71の破断を防止することができる。   According to the joining structure of the ultrasonic joining according to the present embodiment configured as described above, the joining part is separated from the joining part of one of the two plate-like members to be ultrasonically joined. Since the stress absorbing portion 70 capable of absorbing the stress applied to 71 is formed, even if vibration is applied to the two joined plate-like members, the stress that the stress absorbing portion 70 tries to apply to the bonded portion 71 due to the vibration is applied. It can absorb and prevent the joint 71 from being broken.

また、本実施の形態に係る超音波接合の接合構造をリチウム二次電池などの組電池の組み立てに適用する場合には、単電池20同士が連結しているため、電極タブ22、24の加工をモジュール単位で行うことができ、作業工数の削減が可能であり、単電池20の積層順による電極タブ22、24の加工間違いが生じ難い。さらに、単電池20を積み重ねたときに、接合すべき電極タブ以外は接触しないため、安全かつ迅速に一括接合することができるものである。   In addition, when the joining structure of ultrasonic joining according to the present embodiment is applied to the assembly of a battery pack such as a lithium secondary battery, the unit cells 20 are connected to each other, so that the electrode tabs 22 and 24 are processed. Can be performed on a module-by-module basis, and the number of work steps can be reduced, and it is unlikely that processing errors of the electrode tabs 22 and 24 due to the stacking order of the unit cells 20 will occur. Furthermore, when the unit cells 20 are stacked, only the electrode tabs to be joined do not come into contact with each other. Therefore, the unit cells 20 can be collectively and safely joined.

本発明は、同種または異種の2枚の板状部材の接合面を重ね合わせ、加圧しながら超音波振動を与えて超音波接合する場合の接合構造として種々の製造分野に広く適用することができ、一方の板状部材の接合部手前に離間させて、接合部に加わる応力を吸収しうる応力吸収部を形成するという簡単な構造であるので、汎用性に富む接合構造である。   INDUSTRIAL APPLICABILITY The present invention can be widely applied to various manufacturing fields as a bonding structure in the case where ultrasonic bonding is performed by applying ultrasonic vibration while pressing the bonding surfaces of two plate members of the same type or different types. Since the simple structure of forming a stress absorbing portion that can absorb the stress applied to the joint portion by separating the plate-like member before the joint portion, it is a versatile joint structure.

本実施形態の超音波接合の接合構造を適用する組電池の断面図である。It is sectional drawing of the assembled battery to which the joining structure of the ultrasonic joining of this embodiment is applied. 単電池の斜視図である。It is a perspective view of a cell. 超音波接合装置の一例を示す模式図である。It is a schematic diagram which shows an example of an ultrasonic bonding apparatus. 本実施の形態に係る超音波接合の接合構造の模式図である。It is a schematic diagram of the joining structure of the ultrasonic joining which concerns on this Embodiment. 本実施の形態における屈曲成形部の他の屈曲形状を示す模式図である。It is a schematic diagram which shows the other bending shape of the bending shaping | molding part in this Embodiment. 本実施の形態に係る超音波接合の接合構造の変形例を示す模式図である。It is a schematic diagram which shows the modification of the joining structure of the ultrasonic joining which concerns on this Embodiment. 本実施の形態の接合構造を厚板部材に適用する場合の模式図である。It is a schematic diagram in the case of applying the joining structure of the present embodiment to a thick plate member. 本実施の形態の接合構造を厚板部材に適用する場合の模式図である。It is a schematic diagram in the case of applying the joining structure of the present embodiment to a thick plate member. 2枚の厚板部材を超音波接合する際に生じる亀裂を説明する概略図である。It is the schematic explaining the crack which arises when ultrasonically joining two thick board members. 厚板部材における亀裂の発生状態を説明する概略図である。It is the schematic explaining the generation | occurrence | production state of the crack in a thick board member.

符号の説明Explanation of symbols

10 組電池、
20 単電池、
26 扁平型電池本体、
22 正極タブ、
24 負極タブ、
30 超音波接合装置、
40 アンビル、
41 突起、
50 ホーン、
51 突起、
60 加圧手段、
70 応力吸収部(屈曲成形部)、
71 接合部、
73 伸縮機構部、
80 亀裂、
81 上板、
82 下板。
10 battery packs,
20 cells,
26 Flat battery body,
22 positive electrode tab,
24 negative electrode tab,
30 ultrasonic bonding equipment,
40 Anvil,
41 protrusions,
50 horns,
51 protrusions,
60 pressure means,
70 Stress absorption part (bent molding part),
71 joints,
73 telescopic mechanism,
80 crack,
81 Upper plate,
82 Lower plate.

Claims (5)

単電池が内包する発電要素の積層方向に前記単電池を複数積層し、それぞれ隣り合って対となる2つの単電池から同一方向にそれぞれ延出する2枚の電極タブそれぞれの接合面を重ね合わせて加圧しながら前記接合面に超音波振動を与え、前記接合面同士を超音波接合する超音波接合の接合構造であって、
各対の2つの単電池から同一方向にそれぞれ延出する2枚の電極タブそれぞれの、一方の電極タブの固定されている端部と前記接合面同士が超音波接合される接合部との間に、前記端部と前記接合部との間に加わる応力を吸収しうる応力吸収部を形成し
前記各対の2つの単電池から同一方向にそれぞれ延出する2枚の電極タブは、前記端部から互いに略平行に離間させて前記接合部に向けて突出し、
各応力吸収部は、前記端部と前記接合部との間で、前記2枚の電極タブの一方をその延出方向から接合部側へ向けて屈曲させた屈曲成形部であり、
前記各応力吸収部は屈曲強度が高い側の電極タブに形成され、
前記各応力吸収部は、超音波接合によって加わる応力と走行中に加わる振動とを吸収することを特徴とする超音波接合の接合構造。
A plurality of the unit cells are stacked in the stacking direction of the power generating elements included in the unit cells, and the joint surfaces of the two electrode tabs extending in the same direction from the two adjacent unit cells are overlapped. Applying ultrasonic vibration to the bonding surfaces while applying pressure, and a bonding structure of ultrasonic bonding for ultrasonic bonding between the bonding surfaces ,
Between each of the two electrode tabs extending in the same direction from the two cells of each pair, between the fixed end of one electrode tab and the joint where the joint surfaces are ultrasonically joined Forming a stress absorbing portion capable of absorbing stress applied between the end portion and the joint portion ;
Two electrode tabs respectively extending in the same direction from the two unit cells of each pair protrude from the end portion toward the joint portion and spaced apart from each other substantially in parallel.
Each of the stress absorbing portions is a bent molded portion formed by bending one of the two electrode tabs from the extending direction toward the bonded portion between the end portion and the bonded portion,
Each of the stress absorbing portions is formed on the electrode tab on the side having a high bending strength,
Each said stress absorption part absorbs the stress added by ultrasonic joining, and the vibration added during driving | running | working, The joining structure of ultrasonic joining characterized by the above-mentioned.
前記屈曲成形部の前記電極タブの屈曲角度は45度以上であることを特徴とする請求項1に記載の超音波接合の接合構造。 Junction structure of ultrasonic bonding according to claim 1 wherein the bending angle of the electrode tabs, wherein Der Rukoto than 45 degrees of the bent forming portion. 前記屈曲成形部には前記電極タブの一部を伸縮させる伸縮機構部が含まれていることを特徴とする請求項1または2に記載の超音波接合の接合構造。 The joining structure of ultrasonic joining according to claim 1 or 2 , wherein said bending forming part includes an extension / contraction mechanism part for extending / contracting a part of said electrode tab . 前記電極タブは扁平型の単電池の正極タブおよび負極タブであることを特徴とする請求項1から3のいずれかに記載の超音波接合の接合構造。 The ultrasonic electrode joining structure according to any one of claims 1 to 3, wherein the electrode tabs are a positive electrode tab and a negative electrode tab of a flat unit cell . 前記対となる2つの単電池からそれぞれ延出する電極タブは異種材質であることを特徴とする請求項1から4のいずれかに記載の超音波接合の接合構造。 Junction structure of ultrasonic bonding according to any one of claims 1 to 4, wherein the electrode tabs extending from each of the two unit cells forming the pair are different materials.
JP2006056760A 2006-03-02 2006-03-02 Bonding structure of ultrasonic bonding Active JP4946098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056760A JP4946098B2 (en) 2006-03-02 2006-03-02 Bonding structure of ultrasonic bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056760A JP4946098B2 (en) 2006-03-02 2006-03-02 Bonding structure of ultrasonic bonding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011277719A Division JP5510439B2 (en) 2011-12-19 2011-12-19 Bonding structure of ultrasonic bonding

Publications (2)

Publication Number Publication Date
JP2007229788A JP2007229788A (en) 2007-09-13
JP4946098B2 true JP4946098B2 (en) 2012-06-06

Family

ID=38550902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056760A Active JP4946098B2 (en) 2006-03-02 2006-03-02 Bonding structure of ultrasonic bonding

Country Status (1)

Country Link
JP (1) JP4946098B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377257B2 (en) * 2009-12-02 2013-12-25 日立ビークルエナジー株式会社 Secondary battery and ultrasonic welding method for metal sheet
KR101731329B1 (en) * 2010-07-27 2017-04-28 에스케이이노베이션 주식회사 Battery module and tab welding method
JP5625899B2 (en) * 2010-12-28 2014-11-19 株式会社豊田自動織機 battery
KR101765769B1 (en) * 2010-12-29 2017-08-07 에스케이이노베이션 주식회사 Battery module and tab ultrasonic wave welding method
KR101765780B1 (en) * 2011-01-07 2017-08-07 에스케이이노베이션 주식회사 Battery having Cell Tab Connecting Structure using Ultrasonic Welding
KR101991798B1 (en) * 2012-04-20 2019-06-24 에스케이이노베이션 주식회사 Battery Module
WO2016020999A1 (en) * 2014-08-06 2016-02-11 日産自動車株式会社 Battery pack and tab-joining method
JP2019133741A (en) * 2016-05-26 2019-08-08 ヤマハ発動機株式会社 Power storage module
KR102415150B1 (en) * 2018-02-05 2022-06-29 주식회사 엘지에너지솔루션 Battery module and battery pack and vehicle comprising the same
KR102320342B1 (en) * 2018-05-29 2021-11-03 주식회사 엘지에너지솔루션 Battery module
JP6867349B2 (en) * 2018-11-08 2021-04-28 積水化学工業株式会社 Storage battery module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071178A (en) * 1998-08-28 2000-03-07 Nikkuu:Kk Adapter
JP2000215877A (en) * 1999-01-20 2000-08-04 Matsushita Electric Ind Co Ltd Flat battery
JP2004087300A (en) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd Cell
JP4239780B2 (en) * 2003-10-10 2009-03-18 日産自動車株式会社 Battery pack and manufacturing method thereof
JP4876374B2 (en) * 2004-06-04 2012-02-15 日産自動車株式会社 Flat battery

Also Published As

Publication number Publication date
JP2007229788A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4946098B2 (en) Bonding structure of ultrasonic bonding
JP5272629B2 (en) Method for producing assembled battery structure
JP6103731B2 (en) Newly structured bus bar and battery module including the same
WO2013105630A1 (en) Secondary battery fabrication method, secondary battery, and deposition device
KR101136800B1 (en) Process for Preparation of Battery Module and Middle- or Large-sized Battery Pack Using the Same
CN103314468A (en) Battery module and electrode tab ultrasonic wave welding method
WO2014024802A1 (en) Method for manufacturing electricity storage device, auxiliary board for ultrasonic welding, and electricity storage device
KR102323041B1 (en) Electrode Assembly Comprising Different Pressure Welded Part on Weld Surface of Electrode Tab and Ultrasonic Welding Device for Manufacturing the Same
KR20170095067A (en) Battery Cell Having Electrode Tabs and Electrode Lead Laser-welded to Each Other
CN106356493B (en) Method for manufacturing secondary battery
JP5510439B2 (en) Bonding structure of ultrasonic bonding
JP2013073913A (en) Battery and method of manufacturing the same
WO2017203731A1 (en) Power storage module
JP6414478B2 (en) Assembled battery and method of manufacturing the assembled battery
JP4239780B2 (en) Battery pack and manufacturing method thereof
CN109108455A (en) Ultrasonic connection method, ultrasonic bonding fixture and connected structure
JP6181057B2 (en) Power storage device manufacturing method and power storage device
KR101483425B1 (en) Secondary Battery Having Novel Electrode Tap-Lead Joint Portion
KR20130108688A (en) Battery cell of improved connection reliability and battery pack comprising the same
JP4876374B2 (en) Flat battery
JP3963165B2 (en) Assembled battery
KR101301138B1 (en) Laser Welding Device of Electrode Terminals and Welding Process Using the Same
JP7305367B2 (en) Electric storage element manufacturing method, electric storage element, joining method, and joined body
JP5002984B2 (en) Manufacturing method and manufacturing apparatus of assembled battery
JP4442183B2 (en) Ultrasonic welding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110913

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4946098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250