JP4945884B2 - Method for producing porous carbon material - Google Patents
Method for producing porous carbon material Download PDFInfo
- Publication number
- JP4945884B2 JP4945884B2 JP2004073698A JP2004073698A JP4945884B2 JP 4945884 B2 JP4945884 B2 JP 4945884B2 JP 2004073698 A JP2004073698 A JP 2004073698A JP 2004073698 A JP2004073698 A JP 2004073698A JP 4945884 B2 JP4945884 B2 JP 4945884B2
- Authority
- JP
- Japan
- Prior art keywords
- colloidal
- carbon material
- porous carbon
- solution
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Inert Electrodes (AREA)
Description
本発明は、多孔質な炭素材料に関し、詳細には、多孔質を形成する空孔が3次元的に規則正しく配列している多孔質炭素材料に関する。 The present invention relates to a porous carbon material, and in particular, relates to a porous carbon material in which pores forming a porous structure are regularly arranged in three dimensions.
多孔質炭素材料としては、単分散のシリカコロイド水溶液から長時間かけて結晶化して得られた一部に長いロッド状の単結晶を含むが、大部分が多結晶体であるシリカオパールプレート存在下に、フェノール性樹脂を熱硬化させ、さらに、1000℃まで昇温して焼結させ、その後、フッ酸を用いてシリカオパールを溶解除去させることにより得られる多孔質炭素材料が知られている(非特許文献1を参照)。 The porous carbon material, including some long rod-shaped single crystal obtained by crystallization over a long time of monodispersed colloidal silica aqueous solution, silica opal plate presence predominantly polycrystal in the phenolic resin is thermally cured, further heated up to 1000 ° C. by sintering, then, that known porous carbon material obtained by dissolving and removing the silica opal with hydrofluoric acid ( (Refer nonpatent literature 1) .
第1の処理として多孔質材料の表面および空孔内部に有機物を導入し、これを加熱することによって該有機物を炭化し、その後、第2の処理としてさらに有機物を導入して炭化させた後に多孔質材料を除去することにより、0.5nmから100nmの範囲の長周期規則構造を有し、内部に空孔を有する多孔質炭素材料が形成されることが知られている(特許文献1を参照)。
また、本願発明者らは、無機粒子を含浸させて、高分子を得るための重合を行い、無機粒子を除去して、無機粒子に相当する空隙が規則正しく整列した高分子ゲルを開発している(特許文献2)。
As a first treatment, an organic substance is introduced into the surface of the porous material and inside the pores, and this is heated to carbonize the organic substance. Then, as a second treatment, the organic substance is further introduced into the carbon and carbonized. by removing the quality materials, has a long period ordered structure in the range of 0.5nm to 100 nm, that is known to a porous carbon material having pores therein are formed (see Patent Document 1 ).
Further , the inventors of the present application have developed a polymer gel in which voids corresponding to inorganic particles are regularly arranged by impregnating inorganic particles, performing polymerization to obtain a polymer, removing the inorganic particles, and removing the inorganic particles. (Patent Document 2).
しかしながら、上記多孔質炭素材料は、いずれも空孔の規則性が不十分であり、かつ大面積化や厚膜化が困難であり、さらに得られた材料の物性が必ずしも満足のいくものではないという問題があった。
本発明は、より満足のいく物性が得られるよう、マクロ的に空孔の配列が制御された多孔質材料を提供することを目的とする。
However, all of the porous carbon materials have insufficient regularity of pores, and it is difficult to increase the area and thickness, and the physical properties of the obtained material are not always satisfactory. There was a problem.
An object of the present invention is to provide a porous material in which the arrangement of pores is controlled macroscopically so that more satisfactory physical properties can be obtained.
本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の方法で製造されたナノスケールで構造制御されたコロイド結晶体を鋳型として用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a nanoscale structure-controlled colloidal crystal produced by a specific method as a template. The invention has been completed.
すなわち、本発明は、
(1)空孔が3次元的規則性を有する多孔質炭素材料において、空孔がマクロ的に結晶構造を構成する配置で配列していることを特徴とする多孔質炭素材料に関し、
(2)空孔が3次元的規則性を有する多孔質炭素材料において、空孔がマクロ的に材料表面に面心立方格子の(1,1,1)面配向で配列していることを特徴とする多孔質炭素材料に関し、
(3)空孔が、結晶構造を形成していることを特徴とする(2)に記載の多孔質炭素材料、
(4)空孔が、連続的に配列していることを特徴とする(1)〜(3)のいずれかに記載の多孔質炭素材料、
(5)空孔が、面心立方構造で配列していることを特徴とする(1)〜(4)のいずれかに記載の多孔質炭素材料、
(6)空孔の最大長さ方向の大きさが、1〜1000nmの範囲であることを特徴とする(1)〜(5)のいずれかに記載の多孔質炭素材料、
(7)空孔の最大長さ方向の大きさが、100〜500nmの範囲であることを特徴とする(1)〜(5)のいずれかに記載の多孔質炭素材料、
(8)空孔の形状が、球状または略球状であることを特徴とする(1)〜(7)のいずれかに記載の多孔質炭素材料、
(9)多孔質炭素材料が、難黒鉛化炭素材料または黒鉛化炭素材料であることを特徴とする(1)〜(8)のいずれかに記載の多孔質炭素材料、
(10)多孔質炭素材料が、ガラス状または結晶状であることを特徴とする(1)〜(9)のいずれかに記載の多孔質炭素材料に関する。
That is, the present invention
(1) In a porous carbon material in which pores have three-dimensional regularity, the pores are arranged in an arrangement that constitutes a crystal structure macroscopically,
(2) In a porous carbon material having three-dimensional regularity of vacancies, the vacancies are macroscopically arranged on the material surface in a (1,1,1) plane orientation of a face-centered cubic lattice. With respect to the porous carbon material
(3) The porous carbon material according to (2), wherein the pores form a crystal structure,
(4) The porous carbon material according to any one of (1) to (3), wherein the pores are continuously arranged,
(5) The porous carbon material according to any one of (1) to (4), wherein the pores are arranged in a face-centered cubic structure,
(6) The porous carbon material according to any one of (1) to (5), wherein the size of the pores in the maximum length direction is in the range of 1 to 1000 nm,
(7) The porous carbon material according to any one of (1) to (5), wherein the size of the pores in the maximum length direction is in the range of 100 to 500 nm,
(8) the shape of the pores, the porous carbon material according to any of you being a spherical or substantially spherical (1) to (7),
(9) The porous carbon material according to any one of (1) to (8), wherein the porous carbon material is a non-graphitizable carbon material or a graphitized carbon material,
(10) The porous carbon material according to any one of (1) to (9), wherein the porous carbon material is glassy or crystalline.
(11)重合性単量体またはそれを含む組成物を、前記単量体または組成物には不溶であるコロイド結晶体中に含浸させた配合組成物を用い重合体を得る工程、不活性ガス雰囲気下、800〜3000℃で焼成する工程、前記コロイド結晶体が可溶な溶媒に浸漬してコロイド結晶体を溶解除去する工程を含むことを特徴とする多孔質炭素材料の製造方法において、コロイド結晶体が、基板上に滴下されたコロイド溶液から、該溶液に用いられている溶媒を留去して得られるコロイド結晶体、コロイド溶液を吸引濾過して溶媒を除去しコロイド結晶を堆積させて得られたコロイド結晶体、または、コロイド溶液に基板を浸積させ、これを引き上げるまたは該溶液に用いられている溶媒を蒸発させることにより得られるコロイド結晶体であることを特徴とする多孔質炭素材料の製造方法に関する。 (11) The compositions containing it was or polymerizable monomer, to obtain the monomer or polymer with a formulation composition impregnated in the composition in the colloidal crystal body in which insoluble step, not In a method for producing a porous carbon material, comprising a step of baking at 800 to 3000 ° C. in an active gas atmosphere, and a step of immersing the colloidal crystal in a soluble solvent to dissolve and remove the colloidal crystal. The colloidal crystal is deposited from the colloidal solution dropped on the substrate. The colloidal crystal is obtained by distilling off the solvent used in the solution. The colloidal solution is suction filtered to remove the solvent and deposit the colloidal crystal. A colloidal crystal obtained by immersing a substrate in a colloidal solution and pulling it up or evaporating the solvent used in the solution. The method for producing a porous carbon material characterized.
以上述べたように、本発明の方法を用いることにより、ナノスケールでより構造の制御された多孔質炭素材料を、マクロスケールで得ることが可能となった。ナノレベルの構造規則性と多孔性を備えた多孔質炭素材料は、キャパシタや、リチウムイオン電池、燃料電池等の電極材料として、種々の導電性材料として、特定の波長を選択反射する光学材料として有用であり、産業上の利用価値は高いといえる。 As described above, by using the method of the present invention, it has become possible to obtain a porous carbon material with a more controlled structure at the nanoscale on a macroscale. Porous carbon materials with nano-level structural regularity and porosity are used as electrode materials for capacitors, lithium ion batteries, fuel cells, etc., as various conductive materials, and as optical materials that selectively reflect specific wavelengths. It is useful and has high industrial utility value.
本発明の多孔質炭素材料は、空孔がマクロ的に結晶構造を構成する配置で配列している構造を有する多孔質であることを特徴とする。本発明の多孔質炭素材料は、例えばナノスケールの無機粒子を単量体または単量体を含む溶液に含浸させた状態で重合、焼成させ、その後、無機粒子を取り除くことによって製造されるが、空孔とは、取り除かれた個々の無機粒子に相当する空隙を表すことになる。 The porous carbon material of the present invention is characterized by being porous having a structure in which pores are arranged in a macroscopic crystal structure. The porous carbon material of the present invention is produced, for example, by polymerizing and firing nanoscale inorganic particles impregnated with a monomer or a solution containing a monomer, and then removing the inorganic particles. A void | hole represents the space | gap corresponding to each removed inorganic particle.
空孔は、上記規則性を有すれば多孔質炭素材料で閉鎖された空隙であっても構わないが、連続的に配列している方が、表面積を拡大し、光学的特性を発現する上で好ましい。空孔が連続して配列している場合に、空孔は周囲を多孔質炭素材料で閉鎖された空隙でも、また、隣接する空孔と貫通する部分を有する空隙であってもよい。 The pores may be voids closed with a porous carbon material as long as they have the above-mentioned regularity, but the continuous arrangement increases the surface area and expresses optical characteristics. Is preferable. If the holes are arranged to continue communicating, pores in the air gap was closed around a porous carbon material, or may be a void having a portion extending through an adjacent vacancy.
空孔の配列における規則性は、結晶構造を構成する配置であれば特に限定されないが、例えば、面心立方、体心立方、単純立方等を例示することができるが、特に面心立方構造、すなわち最密充填構造が、材料表面積が大きく、緻密に空孔が配列しているころから、光学的特性等の点で好ましい。特に、結晶構造が単結晶構造であるのが好ましい。 Regularity in arrangement of voids is not particularly limited as long as an arrangement constituting a crystal structure, for example, face-centered cubic, body-centered cubic, can be exemplified a simple cubic or the like, especially a face-centered cubic structure, That is, the close-packed structure is preferable from the viewpoint of optical characteristics and the like since the material has a large surface area and the pores are densely arranged. In particular, the crystal structure is preferably a single crystal structure.
また、異なる大きさの空孔を含む場合には、更に、複雑なパターンを形成させることも可能である。先に述べた製造方法においては、無機粒子の充填配列により空孔の配列が決定されることになり、無機粒子の配列が可能な構造は空孔の配列の規則性に反映されることになる。 Further, in the case of including holes of different sizes, it is possible to form a more complicated pattern. In the production method described above, will be sequences by Risora holes packing arrangement of the inorganic particles is determined, the structure capable sequences of the inorganic particles to be reflected in the regularity of the arrangement of voids become.
マクロ的にとは、微少な領域でのみにその構造を発現している材料を除外する意味であり、例えば、後述する反射スペクトルが、得られた材料のどの部分をとってもほぼ単一波長の吸収を示し、材料全体が単色である場合等を意味する。 Macro means to exclude a material that expresses its structure only in a very small area. For example, the reflection spectrum described below absorbs almost a single wavelength in any part of the obtained material. Means that the entire material is monochromatic.
本発明の多孔質炭素材料は、炭素材料表面において、空孔がマクロ的に面心立方格子の(1,1,1)面配向を有して配列する構造であることを特徴とする。このことは、例えば、多孔質炭素材料を任意の面で切断した場合であっても、その表面が常に上記配向性を有する場合等を意味している。 The porous carbon material of the present invention is characterized by having a structure in which vacancies are arranged macroscopically in a (1,1,1) plane orientation of a face-centered cubic lattice on the surface of the carbon material. This means that, for example, even when the porous carbon material is cut on an arbitrary surface, the surface always has the above orientation.
空孔の形状は特に限定されず、例えば、先に述べた製造方法においては、用いる無機粒子の形状によってその形状がある程度決定されるが、多孔質炭素材料の機械的強度、ナノスケールで無機粒子の形状を制御することを考慮すると、球状または略球状であるのが好ましい。 The shape of the pores is not particularly limited. For example, in the manufacturing method described above, the shape is determined to some extent by the shape of the inorganic particles used, but the mechanical strength of the porous carbon material, the inorganic particles on the nanoscale considering that control the shape, preferably a spherical or substantially spherical.
また、空孔の最大長さ方向の大きさは、特に限定されるものではないが、1〜1000nmの範囲であるのが好ましい。1nm以下では、空隙が小さすぎてバルク炭素材料と顕著な差が見られず、1000nm以上では、空隙が全体的に大きすぎて、機械的強度を低下させるおそれがある。光学的特性、高分子の表面積等を考慮すると、空孔の最大長さ方向の大きさが100〜500nmの範囲であるのが好ましい。 The size of the pores in the maximum length direction is not particularly limited, but is preferably in the range of 1 to 1000 nm. If it is 1 nm or less, the void is too small to show a significant difference from the bulk carbon material, and if it is 1000 nm or more, the void is too large as a whole, which may reduce the mechanical strength. In consideration of optical characteristics, the surface area of the polymer, etc., the size of the pores in the maximum length direction is preferably in the range of 100 to 500 nm.
本発明の多孔質炭素材料の製造方法は、特に限定されるものではないが、製造方法の容易さ、微細構造の制御のしやすさ等を考慮すると、特開平9−67405号公報、または特開2001−213992号公報に記載されている方法を応用し、重合可能な単量体またはそれを含む組成物を、前記単量体または組成物に不溶で他の溶媒に可溶な粒子状物質としてコロイド結晶を混合した配合組成物を用い、まず単量体を重合させ、さらに800〜3000℃程度まで昇温して焼成し、次に、コロイド結晶が可溶な溶液に浸漬させてコロイド結晶を溶解除去することによって製造するのが好ましい。この場合、コロイド結晶とは、コロイド粒子が集合して結晶構造を形成している状態を表す。 The method for producing the porous carbon material of the present invention is not particularly limited, but considering the ease of the production method, the ease of control of the fine structure, etc., JP-A-9-67405 or Applying the method described in Japanese Patent Application Laid-Open No. 2001-2131992, a polymerizable monomer or a composition containing the same is used as a particulate material insoluble in the monomer or composition and soluble in other solvents the blend composition obtained by mixing colloidal crystal used as, first, the monomer is polymerized, further calcined by raising the temperature to about 800 to 3000 ° C., then the colloidal crystal is immersed in a soluble solution colloidal crystals It is preferable to manufacture by dissolving and removing. In this case , the colloidal crystal represents a state in which colloidal particles gather to form a crystal structure.
コロイド結晶体を得る方法として、具体的には、(i)コロイド溶液に電場をかけ、その後、溶媒を除去する方法、(ii)固形分濃度が1〜5重量%の比較的希薄な溶液に、平滑な基板2枚を数十μmの間隔を開けて対峙させて基板下部を浸漬させ、毛細管現象によりコロイド溶液が基板間を上昇すると共に、溶媒を蒸発除去させることにより、基板間にコロイド結晶を析出させる方法、(iii)分散したコロイド溶液を静置し、コロイド粒子を自然沈降させて堆積させた後、溶媒を除去する方法、(iv)移流集積法等の公知の方法を例示することができる。 As a method for obtaining a colloidal crystal, specifically, (i) a method in which an electric field is applied to a colloidal solution and then the solvent is removed; (ii) a relatively dilute solution having a solid content concentration of 1 to 5% by weight , two flat substrates with an interval of several tens of mu m by opposed to dipping the substrate lower, the colloidal solution is increased to between the substrates by capillarity, by the solvent is evaporated off, colloidal between substrates Examples include a method for precipitating crystals, (iii) a method in which a dispersed colloidal solution is allowed to stand, a colloidal particle is naturally precipitated and deposited, and then a solvent is removed, and (iv) a known method such as an advection accumulation method. be able to.
また、別のコロイド結晶体の製造方法として、コロイド溶液を、基板上に滴下し、コロイド溶液に用いられている溶媒を留去する方法を好ましく例示することができる。溶媒の留去は、室温においても行うことができるが、用いられる溶媒の沸点と同等またはそれ以上の温度に加熱、乾燥するのが好ましい。また、本方法は、基板上にコロイド溶液を滴下し、その後、基板を加熱し溶媒を留去する方法、あらかじめ加熱した基板上にコロイド溶液を滴下し溶媒を留去する方法等いずれの方法でも行うことができる。さらに、コロイド溶液を滴下する際、または滴下後、基板を回転させてもよい。 As another method for producing a colloidal crystal, a method in which a colloidal solution is dropped on a substrate and the solvent used in the colloidal solution is distilled off can be preferably exemplified. Although the solvent can be distilled off at room temperature, it is preferably heated and dried at a temperature equal to or higher than the boiling point of the solvent used. In addition, this method may be any method such as dropping a colloidal solution onto a substrate and then heating the substrate to distill off the solvent, or dropping the colloidal solution onto a preheated substrate and distilling off the solvent. It can be carried out. Further, the substrate may be rotated when or after the colloidal solution is dropped.
コロイド溶液の滴下、溶媒留去の操作を繰り返すことにより、コロイド溶液の濃度を調整することにより、滴下するコロイド溶液の量を調整することにより、また、以上を任意に組み合わせることにより、得られるコロイド結晶体の膜厚、面積を自由に制御することができる。特に、規則性を保持したまま、大面積化、または大容積化が容易に可能であることから、本発明の多孔質炭素材料を、それに合わせて大面積化、大容積化することができる。 Colloids obtained by repeating colloidal solution dripping and solvent evaporation operations, adjusting the concentration of colloidal solution, adjusting the amount of colloidal solution to be dripped, and any combination of the above. The film thickness and area of the crystal can be freely controlled. In particular, since it is possible to easily increase the area or volume while maintaining regularity, the porous carbon material of the present invention can be increased in area and volume in accordance with it.
例えば、本方法によれば、固形分濃度とし10重量%以上のコロイド溶液を用いることができることから、一度の滴下でかなりの膜厚のコロイド結晶体を基板上に形成することができ、滴下、乾燥を繰り返すことにより、膜厚を自由に制御することができる。さらに本方法は、例えば、単分散コロイド溶液を用いることにより、得られるコロイド結晶体を単結晶構造のコロイド結晶とすることができる。コロイド単結晶を用いて得られてくる多孔質炭素材料は、マクロに空孔の配列に規則性及び連続性があり、反射光の波長に全体でばらつきがなく、全体として選択反射光波長を統一することができる。 For example, according to the present method, since a colloidal solution having a solid content concentration of 10% by weight or more can be used, a colloidal crystal having a considerable film thickness can be formed on the substrate by a single dropping, By repeating the drying, the film thickness can be freely controlled. Furthermore, in this method, for example, by using a monodispersed colloid solution, the obtained colloidal crystal can be made into a colloidal crystal having a single crystal structure. Porous carbon materials obtained using colloidal single crystals have regularity and continuity in the arrangement of pores in the macro, there is no variation in the wavelength of reflected light, and the wavelength of selective reflected light is unified as a whole. can do.
また、別な方法として、コロイド粒子を含む溶液を吸引ロートを用いて減圧吸引等により、溶液を吸引除去することにより、吸引ロート上の濾紙、または濾布上にコロイド粒子を堆積させる方法を好ましく例示することができる。上記方法においても、例えば、単分散コロイド溶液を用いることでコロイド単結晶体を得ることができる。 Further, as another method, by vacuum suction or the like solution using a suction funnel containing colloidal particles, the solution more to the suction removal filter paper on the suction funnel, or a method of depositing colloidal particles on the filter cloth It can be illustrated preferably. Also in the above method, for example, a colloidal single crystal can be obtained by using a monodispersed colloidal solution.
吸引濾過に用いる溶液の濃度は、一度の操作で得ようとするコロイド結晶体の容積により自由に選択することができる。また、一度すべての溶媒を吸引除去した後、再度溶液を追加して同様の操作を繰返すことにより、任意の容積のコロイド結晶体を得ることができる。本方法を用いることにより、先と同様に、規則性を保持したまま、大面積化、大容積化が可能である。 The concentration of the solution used for suction filtration can be freely selected depending on the volume of the colloidal crystal to be obtained in one operation. Further, once all the solvent is removed by suction, a solution is added again and the same operation is repeated to obtain a colloidal crystal having an arbitrary volume. By using this method, it is possible to increase the area and increase the volume while maintaining regularity as before.
溶媒を吸引する方法は特に限定されないが、アスピレータまたはポンプ等により吸引する方法等を例示することができる。吸引する速度は特に限定されないが、具体的には、40mmHg程度の減圧度でロート内の溶液界面が一定に降下する速度を好ましく例示することができる。 The method of sucking the solvent is not particularly limited, and examples thereof include a method of sucking with aspirator or pump. The speed of suction is not particularly limited, but specifically, a speed at which the solution interface in the funnel is constantly lowered at a reduced pressure of about 40 mmHg can be preferably exemplified.
また、別な方法として、コロイド溶液に基板を浸積させ、これを引き上げるまたは該溶液に用いられている溶媒を蒸発させる方法を好ましく例示することができる。この方法も、用いるコロイド溶液の濃度の調整、または同様の操作を繰り返し行なうことにより、任意の面積、容積のコロイド結晶体を得ることができる。引き上げる速度は特に限定されないが、溶液の大気との界面において結晶が成長するため、遅い速度で引き上げるのが好ましい。また、溶液を蒸発させる速度も特に限定されないが、同様の理由で遅い方が好ましい。また、単分散コロイド溶液を用いることにより、コロイド単結晶体を得ることができる。 As another method, a method of immersing a substrate in a colloidal solution and pulling it up or evaporating a solvent used in the solution can be preferably exemplified. Also in this method, a colloidal crystal having an arbitrary area and volume can be obtained by adjusting the concentration of the colloid solution to be used or repeating the same operation. The pulling speed is not particularly limited, but it is preferably pulled at a slow speed because crystals grow at the interface of the solution with the atmosphere. Also, the speed of evaporating the solution is not particularly limited, but it is preferably slower for the same reason. Moreover, a colloidal single crystal can be obtained by using a monodispersed colloidal solution.
用いる基板表面の性状は特に限定されないが、コロイド結晶体を用いて得られてくる多孔質炭素材料の光学特性を考慮すると、表面が平滑である基板が好ましい。 Although the property of the substrate surface to be used is not particularly limited, a substrate having a smooth surface is preferable in consideration of the optical characteristics of the porous carbon material obtained using the colloidal crystal.
また、本発明の多孔質炭素材料の製造に用いられる粒状物質であるコロイド粒子は、その形状は真球等の球状または略球形であるのが好ましく、例えば弗化水素酸等の弗素化合物溶液、アルカリ性溶液、酸性溶液に溶解する無機化合物粒子を好ましく用いることができる。 The colloidal particles, which are particulate materials used in the production of the porous carbon material of the present invention, preferably have a spherical or substantially spherical shape such as a true sphere. For example, a fluorine compound solution such as hydrofluoric acid, Inorganic compound particles that can be dissolved in an alkaline solution or an acidic solution can be preferably used.
上記無機化合物として、具体的には、アルカリ土類金属の炭酸塩、珪酸塩、金属酸化物、金属水酸化物、その他の金属珪酸塩、あるいはその他の金属炭酸塩等が例示でき、さらに具体的には、アルカリ土類金属の炭酸塩としては、炭酸カルシウム、炭酸バリウム、炭酸マグネウム等が、アルカリ土類金属の珪酸塩としては、珪酸カルシウム、珪酸バリウム、珪酸マグネシウム等が、またアルカリ土類金属の燐酸塩としては、燐酸カルシウム、燐酸バリウム、燐酸マグネシウム等が例示できる。さらに、金属酸化物としては、シリカ、酸化チタン、酸化鉄、酸化コバルト、酸化亜鉛、酸化ニッケル、酸化マンガン、酸化アルミニウム等が、金属水酸化物としては、水酸化鉄、水酸化ニッケル、水酸化アルミニウム、水酸化カルシウム、水酸化クロム等がそれぞれ例示できる。そして、その他の金属珪酸塩としては、珪酸亜鉛、珪酸アルミニウム等が、その他の金属炭酸塩としては、炭酸亜鉛、塩基性炭酸銅等がそれぞれ例示できる。天然物ではシラスバルーン、パーライト等を例示できる。 Specific examples of the inorganic compound include alkaline earth metal carbonates, silicates, metal oxides, metal hydroxides, other metal silicates, and other metal carbonates. the Examples of the alkaline earth metal carbonate, calcium carbonate, barium carbonate, or the like carbonate Maguneumu is, as the alkaline earth metal silicate, calcium silicate, barium silicate, magnesium silicate and the like, also alkaline earth metal the salt of phosphoric acid, calcium phosphate, barium phosphate, magnesium phosphate and the like. Further, as the metal oxide, silica, titanium oxide, iron oxide, cobalt oxide, zinc oxide, nickel oxide, manganese oxide, aluminum oxide and the like, metal hydroxides, iron hydroxide, nickel hydroxide, hydroxide Aluminum, calcium hydroxide, chromium hydroxide and the like can be exemplified. Then, as the other metal silicates, zinc silicate, aluminum silicate and the like. Examples of the other metal carbonates, zinc carbonate, basic copper carbonate and the like can be exemplified, respectively. Examples of natural products include shirasu balloon and pearlite.
これらコロイド粒子の最大長さ方向の大きさは、1〜1000nmの範囲が好ましく、さらには、100〜500nmの範囲が好ましい。 The size in the maximum length direction of these colloidal particles is preferably in the range of 1 to 1000 nm, and more preferably in the range of 100 to 500 nm.
本発明の多孔質炭素材料に変換し得る高分子としては、高温焼成により炭素材料に変換し得る高分子であれば、特に限定されないが、具体的には、フルフリルアルコール樹脂、フェノール−アルデヒド樹脂、スチレン−ジビニルベンゼン共重合体、フルフリルアルコール−フェノール樹脂等を例示することができる。焼成温度を選択することにより炭素材料がガラス状の難黒鉛化炭素あるいは黒鉛化炭素になる、高分子が好ましい。 The polymer that can be converted into the porous carbon material of the present invention is not particularly limited as long as it is a polymer that can be converted into a carbon material by high-temperature firing, and specifically, a furfuryl alcohol resin, a phenol-aldehyde resin. And styrene-divinylbenzene copolymer, furfuryl alcohol-phenol resin, and the like. Becomes I Risumi material cost Gaga lath-shaped non-graphitizable carbon or graphitized carbon to selecting the sintering temperature, the polymer is preferable.
規則正しく配列したコロイド単結晶体等の粒状物質の存在下で焼成前の高分子を製造するには、単量体の濃度は0.1重量%〜99.9重量%、必要に応じて加える架橋剤濃度は0.001重量%〜50重量%であればよい。また、開始剤濃度や重合方法等の反応条件は、単量体にあったものを選べばよく、例えば、触媒、重合開始剤、単量体、架橋剤等を窒素置換した有機溶媒に溶解して溶液とし、規則正しく配列させたコロイド結晶体に該溶液を含浸させ、その後、適当な温度に加熱する、または、光照射する等で重合を行うことができる。 In order to produce a polymer before firing in the presence of a regularly arranged colloidal single crystal or other particulate material, the monomer concentration is 0.1% to 99.9% by weight, and crosslinking is added as necessary. The agent concentration may be 0.001 wt% to 50 wt%. The reaction conditions such as the initiator concentration and the polymerization method may be selected according to the monomer. For example, the catalyst, the polymerization initiator, the monomer, the crosslinking agent, etc. are dissolved in an organic solvent substituted with nitrogen. The solution can be impregnated with a colloidal crystal that is regularly arranged and then impregnated with the solution, and then polymerized by heating to an appropriate temperature or irradiating with light.
上記各種ポリマーは、ラジカル重合法、酸による重縮合法等の公知の溶液、塊状、乳化、逆相懸濁重合等で、重合温度0〜100℃、重合時間10分〜48時間で得ることができる。 The above-mentioned various polymers can be obtained by a known solution such as radical polymerization, acid polycondensation, etc., bulk, emulsion, reverse phase suspension polymerization, etc., at a polymerization temperature of 0 to 100 ° C. and a polymerization time of 10 minutes to 48 hours. it can.
コロイド結晶体と高分子の複合化物からコロイド結晶体を溶解除去するには、例えば、コロイド結晶体が無機化合物の場合、弗素化合物の酸性溶液、アルカリ性溶液、酸性溶液等を用いることができる。例えば、コロイド結晶体がシリカ、シラスバルーンまたは珪酸塩の場合は、弗化水素酸水溶液、弗化アンモニウム、弗化カルシウム、弗化ナトリウム等の酸性溶液或いは水酸化ナトリウム等のアルカリ性溶液に複合化物を浸けるだけでよい。溶液は複合化物の珪素元素に対して弗素元素が4倍量以上であればよいが、濃度は10重量%以上であることが好ましい。また、アルカリ性溶液はpH11以上であれば特に限定はしない。粒子状化合物が金属酸化物、金属水酸化物の場合は、塩酸等の酸性溶液に複合化物を浸けるだけでよい。酸性溶液はpH3以下であれば特に限定されない。 In order to dissolve and remove the colloidal crystal from the composite of the colloidal crystal and the polymer, for example, when the colloidal crystal is an inorganic compound, an acidic solution, an alkaline solution, an acidic solution, or the like of a fluorine compound can be used. For example, silica colloidal crystal body, in the case of shirasu balloon or silicate, aqueous hydrofluoric acid, ammonium fluoride, calcium fluoride, a complex compound in an alkaline solution such as an acid solution or sodium hydroxide, etc. sodium fluoride Just immerse it. The solution may be at least 4 times the amount of fluorine element relative to the silicon element of the composite, but the concentration is preferably at least 10% by weight. The alkaline solution is not particularly limited as long as it has a pH of 11 or more. Particulate compound metal oxides, if the metal hydroxide, it is only immersing the composite compound in an acidic solution such as hydrochloric acid. The acidic solution is not particularly limited as long as it has a pH of 3 or less.
コロイド結晶体の溶解除去は、得られた高分子の焼結前でも後でもかまわず、不活性雰囲気下、800〜3000℃の範囲の温度で行うことができる。焼成する温度までの昇温速度は、局部的な加熱により炭素構造が崩壊しない範囲であれば、特に限定されない。 The dissolution and removal of the colloidal crystal may be performed before or after the obtained polymer is sintered, and can be performed in an inert atmosphere at a temperature in the range of 800 to 3000 ° C. The temperature increase rate up to the firing temperature is not particularly limited as long as the carbon structure is not collapsed by local heating.
以下に実施例により、本発明をさらに詳細に説明するが、本発明の範囲は実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the examples.
単分散シリカコロイド懸濁水溶液(日本触媒社製単分散シリカ球状微粒子KE−P30を用いて固形分濃度3%である水溶液を調製、コロイド粒子径:280nm)を、濾布(Whatman社製ポリカーボネートメンブレンフィルター、フィルター孔径:100nm)を敷いた径30mmのSPCフィルターホルダー(柴田科学製)入れ、アスピレータを用いて減圧吸引(約40mmHg)することにより、濾布上にシリカ薄膜を得た。濾布を剥がした後、空気中にて1000℃で2時間焼結し、シリカコロイド単結晶体膜を得た。
フルフリルアルコール10.0g、シュウ酸六水和物0.0500g(いずれも和光純薬製)の混合物を、テフロン(登録商標)シート上にてシリカコロイド単結晶体膜上に滴下し、シリカコロイド結晶上にあふれ出た余分な混合物を軽く拭き取り、空気中にて、80℃で48時間重合させた。得られたシリカ−ポリマー樹脂複合体を、管状炉にてアルゴン雰囲気下、200度で1時間、水分の除去・ポリマーの再硬化過程を経た後、5℃/分で1000℃まで昇温して、1000℃で1時間焼成させ自然冷却することでシリカ−炭素複合体を得た。
A monodispersed silica colloid suspension aqueous solution ( prepared aqueous solution having a solid content concentration of 3% using monodispersed silica spherical fine particles KE-P30 manufactured by Nippon Shokubai Co., Ltd., colloidal particle diameter: 280 nm) was filtered through a filter cloth (a polycarbonate membrane manufactured by Whatman). A SPC filter holder (manufactured by Shibata Kagaku) with a diameter of 30 mm with a filter and filter pore size: 100 nm) was put in, and suctioned under reduced pressure (about 40 mmHg) using an aspirator to obtain a silica thin film on the filter cloth. After the filter cloth was peeled off, it was sintered in air at 1000 ° C. for 2 hours to obtain a silica colloid single crystal film.
A mixture of 10.0 g of furfuryl alcohol and 0.0500 g of oxalic acid hexahydrate (both manufactured by Wako Pure Chemical Industries, Ltd.) was dropped onto a silica colloid single crystal film on a Teflon (registered trademark) sheet, and silica colloid The excess mixture overflowing on the crystals was gently wiped off and polymerized in air at 80 ° C. for 48 hours. The obtained silica-polymer resin composite was subjected to moisture removal and polymer re-curing process at 200 ° C. for 1 hour in an argon atmosphere in a tubular furnace, and then heated to 1000 ° C. at 5 ° C./min. The silica-carbon composite was obtained by firing at 1000 ° C. for 1 hour and naturally cooling.
さらに、48%弗化水素酸溶液に、室温で1週間浸漬させ、シリカコロイド結晶を溶解させた。尚、弗化水素酸溶液は、1日おきに交換した。その後、中性になるまで純水で洗浄を繰り返し、多孔質炭素材料1を得た。 Further, it was immersed in a 48% hydrofluoric acid solution at room temperature for 1 week to dissolve the silica colloidal crystals. The hydrofluoric acid solution was changed every other day. Thereafter , washing with pure water was repeated until neutrality, and a porous carbon material 1 was obtained.
以上のようにして得られた多孔質炭素材料表面の走査型電子顕微鏡(SEM)写真を図1に示す。図1(b)より、空孔は、直径280nmの球形であり、隣接する空孔とは、ほぼ40nmの貫通孔をもって連結しており、さらに、空孔は、面心立方構造で配列し、材料表面において、(1,1,1)面配向で配列していることがわかった。 A scanning electron microscope (SEM) photograph of the surface of the porous carbon material obtained as described above is shown in FIG. As shown in FIG. 1B, the holes are spherical with a diameter of 280 nm, and the adjacent holes are connected with through holes of about 40 nm, and the holes are arranged in a face-centered cubic structure. It was found that the surface of the material was arranged with (1,1,1) plane orientation.
多孔質炭素材料を暗所におき、視斜角0°で白色光の光を照射し、反射光の波長を測定した。その結果を図2に示す。得られた反射スペクトルは、450nm付近のみに単峰性の吸収を示すことから、材料内部においても、空孔が規則正しく配列していることがわかった。 The porous carbon material was placed in a dark place, irradiated with white light at a viewing angle of 0 °, and the wavelength of reflected light was measured. The result is shown in FIG. The obtained reflection spectrum shows unimodal absorption only in the vicinity of 450 nm, indicating that the pores are regularly arranged even inside the material.
単分散シリカコロイド懸濁水溶液(日本触媒社製単分散シリカコロイド縣濁液KE−W30、固形分濃度15wt%、コロイド粒子径:280nm)を、テフロン(登録商標)製3cm×3cm×0.5cmの容積を有する容器に注入し100℃にて溶媒を蒸発し、シリカコロイド結晶を得た。 A monodispersed silica colloid suspension aqueous solution (manufactured by Nippon Shokubai Co., Ltd., monodispersed silica colloid suspension KE-W30, solid content concentration 15 wt%, colloid particle size: 280 nm) was made from Teflon (registered trademark) 3 cm × 3 cm × 0.5 cm. the solvent was evaporated at poured into a container having a volume 100 ° C., to obtain a silica colloid crystals.
フルフリルアルコール10.0g、シュウ酸六水和物0.0500g(いずれも和光純薬製)の混合物を、容器内のシリカコロイド結晶内に注入し、結晶上にあふれ出た余分な混合物を軽く拭き取り、空気中にて、80℃で48時間重合させた。得られたシリカ−ポリマー樹脂複合体をテフロン(登録商標)板から剥ぎ取り、管状炉にて実施例1と同様の過程で焼成し、48%弗化水素酸溶液にてシリカを除去、洗浄することにより多孔質炭素材料2を得た。多孔質炭素材料2も、実施例1と同様にしてSEM観察、反射光スペクトル測定を行なったところ、多孔質炭素材料1とほほ同じ構造のものであることがわかった。 A mixture of 10.0 g of furfuryl alcohol and 0.0500 g of oxalic acid hexahydrate (both manufactured by Wako Pure Chemical Industries, Ltd.) is injected into the silica colloidal crystal in the container, and the excess mixture overflowing on the crystal is lightly removed. It was wiped off and polymerized in the air at 80 ° C. for 48 hours. The obtained silica-polymer resin composite is peeled off from the Teflon (registered trademark) plate, fired in a tube furnace in the same manner as in Example 1, and the silica is removed and washed with a 48% hydrofluoric acid solution. Thus, a porous carbon material 2 was obtained. The porous carbon material 2 was also subjected to SEM observation and reflected light spectrum measurement in the same manner as in Example 1. As a result, it was found that the porous carbon material 2 had almost the same structure as the porous carbon material 1.
シリカ−ポリマー樹脂複合体を得た後、弗化水素酸溶液を用いてシリカコロイド結晶を溶解させた後、焼成させる以外、実施例1と同様に行い、多孔質炭素材3を得た。得られた多孔質炭素材3のSEM観察、反射光スペクトル測定を実施例1と同様に行ったところ、多孔質炭素材料1と同様の構造のものであることがわかった。 After obtaining the silica-polymer resin composite, the porous carbon material 3 was obtained in the same manner as in Example 1 except that the silica colloid crystal was dissolved using a hydrofluoric acid solution and then fired. When SEM observation and reflected light spectrum measurement of the obtained porous carbon material 3 were performed in the same manner as in Example 1, it was found that the porous carbon material 3 had the same structure as the porous carbon material 1.
粒径が異なる単分散シリカコロイド懸濁水溶液(日本触媒社製単分散シリカ球状微粒子KE−P100を用いて固形分濃度3%である水溶液を調製、コロイド粒子径:1000nm)を用いる以外、実施例1と同様に行い、多孔質炭素材料4を得た。
多孔質炭素材料1及び多孔質炭素材料4において、BET法によりその表面積を測定した。比較のためシリカコロイド結晶を用いないで同様の条件で作製した粉末状炭素も測定した。同時に得られる細孔径分布から細孔容積も求めた。その結果を表1にまとめて示す。
Examples other than using monodispersed aqueous silica colloid suspensions with different particle sizes ( preparing an aqueous solution having a solid content concentration of 3% using monodispersed silica spherical fine particles KE-P100 manufactured by Nippon Shokubai Co., Ltd., colloid particle size: 1000 nm) 1 was performed to obtain a porous carbon material 4.
The surface areas of the porous carbon material 1 and the porous carbon material 4 were measured by the BET method. For comparison, powdered carbon produced under the same conditions without using silica colloidal crystals was also measured. The pore volume was also determined from the pore size distribution obtained at the same time. The results are summarized in Table 1.
Claims (2)
コロイド粒子を含む溶液を吸引ロートを用いて減圧吸引して溶液を吸引除去することにより吸引ロートの濾紙又は濾布の上にコロイド粒子を堆積させ、以て、コロイド結晶体の薄膜を得る多孔質炭素材料の製造方法。 A step of impregnating a polymerizable monomer or a composition containing the same into a colloidal crystal, followed by polymerization to obtain a polymer, a step of baking at 800 to 3000 ° C. in an inert gas atmosphere, and the colloidal crystal body consists step of dissolving and removing the colloidal crystal body was immersed in soluble solvents, however, the step of dissolving and removing the colloidal crystal body is rather good before or after step that forms shrink the resulting polymer ,
Porous to obtain a thin film of colloidal crystals by depositing colloidal particles on the filter paper or filter cloth of the suction funnel by sucking and removing the solution containing the colloidal particles under reduced pressure using a suction funnel A method for producing a carbon material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004073698A JP4945884B2 (en) | 2004-03-16 | 2004-03-16 | Method for producing porous carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004073698A JP4945884B2 (en) | 2004-03-16 | 2004-03-16 | Method for producing porous carbon material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011287768A Division JP2012101355A (en) | 2011-12-28 | 2011-12-28 | Method for producing porous carbon material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005262324A JP2005262324A (en) | 2005-09-29 |
JP4945884B2 true JP4945884B2 (en) | 2012-06-06 |
Family
ID=35087396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004073698A Expired - Fee Related JP4945884B2 (en) | 2004-03-16 | 2004-03-16 | Method for producing porous carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4945884B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014148283A1 (en) * | 2013-03-18 | 2014-09-25 | ソニー株式会社 | Air-metal secondary battery |
WO2014156582A1 (en) * | 2013-03-28 | 2014-10-02 | ソニー株式会社 | Metal-air secondary battery |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4618308B2 (en) | 2007-04-04 | 2011-01-26 | ソニー株式会社 | Porous carbon material and method for producing the same, adsorbent, mask, adsorbing sheet, and carrier |
JP5152275B2 (en) * | 2007-04-04 | 2013-02-27 | ソニー株式会社 | Porous carbon material, adsorbent, filler, mask, adsorbent sheet and carrier |
JP2010106007A (en) * | 2008-08-14 | 2010-05-13 | Sony Corp | Drug sustained-release agent, adsorbent, functional food, mask and adhesive sheet |
JP5471142B2 (en) | 2008-09-29 | 2014-04-16 | ソニー株式会社 | POROUS CARBON MATERIAL COMPOSITE AND PROCESS FOR PRODUCING THE SAME, AND ADSORBENT, COSMETIC, PURIFIER, AND PHOTOCATALYST COMPOSITE MATERIAL |
US20120094173A1 (en) * | 2009-06-25 | 2012-04-19 | Nagasaki University | Macro-porous graphite electrode material, process for production thereof, and lithium ion secondary battery |
JP5751582B2 (en) * | 2011-06-03 | 2015-07-22 | 国立研究開発法人物質・材料研究機構 | Method for producing porous carbon membrane |
WO2014141769A1 (en) * | 2013-03-13 | 2014-09-18 | ソニー株式会社 | Lithium-sulfur secondary battery and electrode material |
DE102013106114B4 (en) | 2013-06-12 | 2019-05-09 | Heraeus Quarzglas Gmbh & Co. Kg | Lithium-ion cell for a secondary battery |
EP3965186A4 (en) | 2019-09-24 | 2022-06-22 | LG Energy Solution, Ltd. | Positive electrode for lithium-sulfur secondary battery having pattern, manufacturing method therefor, and lithium-sulfur secondary battery including same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6261469B1 (en) * | 1998-10-13 | 2001-07-17 | Honeywell International Inc. | Three dimensionally periodic structural assemblies on nanometer and longer scales |
JP3940546B2 (en) * | 1999-06-07 | 2007-07-04 | 株式会社東芝 | Pattern forming method and pattern forming material |
JP4284642B2 (en) * | 2002-05-09 | 2009-06-24 | よこはまティーエルオー株式会社 | Stimulus-responsive porous polymer gel |
-
2004
- 2004-03-16 JP JP2004073698A patent/JP4945884B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014148283A1 (en) * | 2013-03-18 | 2014-09-25 | ソニー株式会社 | Air-metal secondary battery |
JPWO2014148283A1 (en) * | 2013-03-18 | 2017-02-16 | ソニー株式会社 | Air-metal secondary battery |
US11539055B2 (en) | 2013-03-18 | 2022-12-27 | Murata Manufacturing Co., Ltd. | Air-metal secondary battery |
WO2014156582A1 (en) * | 2013-03-28 | 2014-10-02 | ソニー株式会社 | Metal-air secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2005262324A (en) | 2005-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4151884B2 (en) | Method for producing a material in which a composite metal oxide nanomaterial is formed on a solid surface | |
JP4945884B2 (en) | Method for producing porous carbon material | |
Jiang et al. | Preparation of macroporous metal films from colloidal crystals | |
US6680013B1 (en) | Synthesis of macroporous structures | |
JP6451340B2 (en) | Composite and production method thereof | |
KR20140125416A (en) | Ordered porious nanofibers, methods, and applications | |
DE102005044522B4 (en) | Method for applying a porous glass layer, and composite material and its use | |
US20040219348A1 (en) | Substrate coated with a composite film, method for making same and uses thereof | |
WO2021118459A1 (en) | Porous composites, scaffolds, foams, methods of fabrication and uses thereof | |
CN108699684B (en) | Chemical vapor deposition process for building three-dimensional foam-like structures | |
KR20140012517A (en) | Metal oxide nanofiber with nanopore, fabrication method for preparing the same and apparatus comprising the same | |
CN111082147B (en) | Preparation method of photonic crystal lithium sulfur battery based on large-area thick film controllable texture | |
WO2010019221A1 (en) | Ordered mesoporous free-standing carbon films and form factors | |
Caruso | Nanocasting and nanocoating | |
KR101415531B1 (en) | Manufacturing method of photocatalytic membrane | |
WO2012050966A2 (en) | Carbon and carbon/silicon composite nanostructed materials and casting formation method | |
WO2014141769A1 (en) | Lithium-sulfur secondary battery and electrode material | |
Lei et al. | Two-step templating route to macroporous or hollow sphere oxides | |
CN105051970A (en) | Air-metal secondary battery | |
JP2012101355A (en) | Method for producing porous carbon material | |
Schroden et al. | 3D ordered macroporous materials | |
KR101311708B1 (en) | Bulky nanoporous oxide materials and manufacturing method of the same | |
JP4051432B2 (en) | Porous ceramic membrane in which porosity and film thickness are controlled simultaneously and method for producing the same | |
JP4320452B2 (en) | Porous conductive polymer | |
JPH055041A (en) | Production of thin film of metal oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101018 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20101215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101216 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101216 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111228 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120220 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |