JP4945427B2 - Negative ion generating material and method for producing the same - Google Patents

Negative ion generating material and method for producing the same Download PDF

Info

Publication number
JP4945427B2
JP4945427B2 JP2007332063A JP2007332063A JP4945427B2 JP 4945427 B2 JP4945427 B2 JP 4945427B2 JP 2007332063 A JP2007332063 A JP 2007332063A JP 2007332063 A JP2007332063 A JP 2007332063A JP 4945427 B2 JP4945427 B2 JP 4945427B2
Authority
JP
Japan
Prior art keywords
fiber
silk
glutamic acid
generating material
negative ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007332063A
Other languages
Japanese (ja)
Other versions
JP2009155738A (en
Inventor
隆 山崎
道世 古宮
哲次 国司
マルコス 古宮
三男 鈴木
Original Assignee
株式会社エムエムエーム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エムエムエーム filed Critical 株式会社エムエムエーム
Priority to JP2007332063A priority Critical patent/JP4945427B2/en
Publication of JP2009155738A publication Critical patent/JP2009155738A/en
Application granted granted Critical
Publication of JP4945427B2 publication Critical patent/JP4945427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Description

本発明は、マイナスイオン発生材料、さらに詳しくいえば2種の帯電系列の異なる繊維の一方に負の電荷を帯電させ、両者を接触させてマイナスイオンを発生し得る状態とした混合繊維からなる新規なマイナスイオン発生材料及びその製造方法に関するものである。   The present invention relates to a negative ion generating material, more specifically, a novel fiber comprising a mixed fiber in which one of two different types of charged fibers is charged with a negative charge and brought into contact with each other to generate negative ions. The present invention relates to a negative ion generating material and a manufacturing method thereof.

マイナスの荷電をもつ空気イオン、いわゆるマイナスイオンは、人間の健康を維持する上で、重要な役割を果し、癒しの効果を奏することから以前より注目され、これまでにも人工的にこれを発生するための多くの材料や方法が提案されている。特に、近年活性電子を用いる治療医学の急速な進展により、マイナスイオンの人体への作用機序が解明された結果、健康阻害の原因となる人体内の活性酸素の消去にマイナスイオンの発生源である電子が有効であることが明らかになり、マイナスイオンについての関心は益々高まりつつある。   Negatively charged air ions, so-called negative ions, have played an important role in maintaining human health and have a healing effect. Many materials and methods for generating have been proposed. In particular, due to the rapid progress of therapeutic medicine using active electrons in recent years, the mechanism of action of negative ions on the human body has been elucidated. The interest in negative ions is increasing as a result of the effectiveness of certain electrons.

このマイナスイオンの利用方法の1つとして、マイナスイオンを発生する機能をもつ繊維で、衣料品や布団カバーを作製する方法が知られており、このような繊維として、これまでに超微粒状トルマリンをアルカリセルロースに混練し、紡糸して製造した帯電性レーヨン繊維(特許文献1参照)、トルマリン微粉末を混入した合繊糸とシルク糸との混紡糸(特許文献2参照)、マイナスイオンを発生する無機物微粒子及びケラチン化した羊毛溶解物質を分散した水溶液と羊毛繊維製品とを接触させたのち、熱処理して得られるマイナスイオンを発生する羊毛繊維製品(特許文献3参照)、ポリアミド合成繊維又は羊毛或いは両者の混紡繊維からなる表地とポリ塩化ビニル繊維からなる裏地との二重構造編成物からなる保温サポータ用マイナスイオン発生布地(特許文献4参照)、溶融粘度の異なる2種のポリエステルが偏心的に複合され、潜在捲縮能をもつポリエステル複合繊維からなる医療用貼付剤基布(特許文献5参照)、導電性成分例えば導電性粉末状金属酸化物を芯部に含有する芯鞘型アクリル系複合導電性繊維と他の繊維との混紡糸からなるマイナスイオンを発生する繊維製品(特許文献6参照)、竹を原料とするセルロース系繊維と2種以上のポリエステル系重合体のサイドバイサイド型又は偏心芯鞘型複合繊維からなるマイナスイオンを発生する複合編成物(特許文献7参照)などが提案されている。   As one of the methods of utilizing these negative ions, there is known a method for producing clothing and a futon cover with a fiber having a function of generating negative ions. Kneaded with alkali cellulose and spun to produce charged rayon fiber (see Patent Document 1), synthetic yarn mixed with tourmaline fine powder and silk yarn (see Patent Document 2), and generates negative ions A wool fiber product (see Patent Document 3) that generates negative ions obtained by heat treatment after contacting an aqueous solution in which inorganic fine particles and a keratinized wool-dissolving substance are dispersed with a wool fiber product, or polyamide synthetic fiber or wool or Minus for heat insulation supporter made of double structure knitted fabric with outer surface made of both blended fibers and lining made of polyvinyl chloride fiber ON-generated fabric (see Patent Document 4), two types of polyesters with different melt viscosities are eccentrically combined, and a medical patch base fabric (see Patent Document 5) made of polyester composite fiber having latent crimping ability, conductive A fiber product that generates negative ions made of a blended yarn of a core-sheath acrylic composite conductive fiber containing a conductive component such as a conductive powdered metal oxide in the core and other fibers (see Patent Document 6), bamboo A composite knitted fabric (see Patent Document 7) that generates negative ions composed of a side-by-side type or an eccentric core-sheath type composite fiber of a cellulose-based fiber and two or more polyester-based polymers is proposed.

しかしながら、トルマリンのようなマイナスイオンを発生する無機物微粒子を繊維原料中に練り込んで紡糸するには、0.8μm以下の粒径にまで微粉化しなければならないが、これには乾式粉砕と湿式粉砕とを併用するなどの特殊な技術を必要とする上に、微粒子を混入した原料を紡糸すると紡糸ノズルが損傷しやすいなどの不都合を生じる。また、マイナスイオンを発生する無機質微粒子をケラチン化した羊毛溶解物質に分散させる場合、羊毛溶解物質をケラチン化するためには煩雑な処理を必要とする上に、この分散物を羊毛繊維表面に付着させてマイナスイオン発生能力を付与させても安定性が低く、長期間その能力を保持することが困難であるという欠点がある。   However, in order to knead inorganic fine particles that generate negative ions such as tourmaline into a fiber raw material and spin it, it must be pulverized to a particle size of 0.8 μm or less, which includes dry pulverization and wet pulverization. In addition, a special technique such as a combination of the above and the like is required, and when a raw material mixed with fine particles is spun, the spinning nozzle is easily damaged. In addition, when inorganic fine particles that generate negative ions are dispersed in a keratinized wool-dissolving substance, complicated treatment is required to keratinize the wool-dissolving substance, and this dispersion is attached to the surface of the wool fiber. However, even if the negative ion generation ability is given, the stability is low, and it is difficult to maintain the ability for a long time.

さらに、異なった生地からなる表地と裏地で二重構造編成物を形成させたり、偏心的に複合させた複合繊維を形成させるには、特殊な編成技術を使用しなければならないので、コスト高になるのを免れないし、芯部に導電性粉末を含有する芯鞘型アクリル系複合導電性繊維を製造するにも特殊な装置を用いる煩雑な操作を必要とするなどの欠点がある。   Furthermore, a special knitting technique must be used to form a double structure knitted fabric with an outer fabric and a lining made of different fabrics, or to form a composite fiber that is eccentrically compounded. In addition, there are drawbacks in that a complicated operation using a special apparatus is required to manufacture a core-sheath acrylic composite conductive fiber containing conductive powder in the core.

そのほか、マイナス静電気を帯びやすい素材を8質量%以上含む材料を、マイナス静電気を帯びにくい材料で摩擦することによりマイナスイオンを発生する方法において、マイナス静電気を帯びやすい素材としてポリ塩化ビニリデンを用いることも知られているが(特許文献8参照)、ポリ塩化ビニリデンは、成形性が低く、摩擦帯電性が大きいため、これを繊維状に成形し、他の繊維と混合して布帛とするのは、非常に困難であった。   In addition, in the method of generating negative ions by rubbing a material containing 8% by mass or more of materials that are easily charged with negative static electricity with materials that are not easily charged with negative static electricity, polyvinylidene chloride may be used as a material that is easily charged with negative static electricity. Although known (see Patent Document 8), polyvinylidene chloride has a low moldability and a large triboelectric chargeability, so that it is formed into a fiber and mixed with other fibers to form a fabric. It was very difficult.

本発明者らは、先に、トルマリンのような圧電性物質を混入することなく、素材自体のもつ特性を利用してマイナスイオンを発生させ、かつこの能力を長期間にわたって持続させることのできる新規な繊維材料として、天然タンパク繊維とポリ塩化ビニリデン系繊維からなり、上記ポリ塩化ビニリデン系繊維に負電荷を帯電させたマイナスイオン発生可能な繊維布を提案した(特許文献9参照)。
しかしながら、この繊維布に用いるタンパク質繊維例えば絹繊維は、耐摩耗性を欠く上に、紫外線により変質し黄変するという欠点を有する。
The present inventors have previously developed a novel that can generate negative ions by utilizing the characteristics of the material itself and can maintain this ability for a long period of time without mixing a piezoelectric substance such as tourmaline. As a suitable fiber material, a fiber cloth composed of natural protein fibers and polyvinylidene chloride fibers and capable of generating negative ions, in which the polyvinylidene chloride fibers are charged with a negative charge has been proposed (see Patent Document 9).
However, protein fibers, such as silk fibers, used for this fiber cloth lack the wear resistance and have the disadvantages that they are altered and yellowed by ultraviolet rays.

他方、上記のような絹繊維の欠点を克服するために、ポリエチレングリコール水溶液による処理後、エポキシ系樹脂加工する方法(特許文献10参照)、繊維表面にフィブロイン水溶液と高親水性樹脂との混合物を塗布した布帛を乾燥し、湿熱処理する方法(特許文献11参照)、絹繊維製品を、ポリエチレングリコール類、クラウンエーテル類などの水溶液で浸漬処理し、乾燥後、エポキシ樹脂で処理し、さらに熱処理する方法(特許文献12参照)などが提案されているが、これらの処理を行うと、耐摩耗性、耐紫外線性は改善されるが、ポリ塩化ビニリデン繊維との摩擦に基づくマイナスイオン発生能力や親水性が低下するのを免れない。   On the other hand, in order to overcome the drawbacks of silk fibers as described above, a method of processing an epoxy resin after treatment with an aqueous polyethylene glycol solution (see Patent Document 10), a mixture of an aqueous fibroin solution and a highly hydrophilic resin is applied to the fiber surface. The applied fabric is dried and wet-heat treated (see Patent Document 11). The silk fiber product is dipped in an aqueous solution such as polyethylene glycols and crown ethers, dried, treated with an epoxy resin, and further heat-treated. A method (see Patent Document 12) and the like have been proposed. However, when these treatments are carried out, the wear resistance and UV resistance are improved, but the ability to generate negative ions based on friction with polyvinylidene chloride fibers and hydrophilicity are improved. It is inevitable that the sex will decline.

特開平4−327207号公報(特許請求の範囲その他)JP-A-4-327207 (Claims and others) 特開平10−331042号公報(特許請求の範囲その他)JP-A-10-331042 (Claims and others) 特開2001−355182号公報(特許請求の範囲その他)JP 2001-355182 A (Claims and others) 特開2003−247151号公報(特許請求の範囲その他)JP 2003-247151 A (Claims and others) 特開2004−43988号公報(特許請求の範囲その他)JP 2004-43988 A (Claims and others) 特開2004−91984号公報(特許請求の範囲その他)JP 2004-91984 (Claims and others) 特開2004−124348号公報(特許請求の範囲その他)JP 2004-124348 A (Claims and others) 特開2002−95960号公報(特許請求の範囲その他)JP 2002-95960 A (Claims and others) 特開2007−191834号公報(特許請求の範囲その他)JP 2007-191834 A (Claims and others) 特開平11−323735号公報(特許請求の範囲その他)JP-A-11-323735 (Claims and others) 特開平5−71073号公報(特許請求の範囲その他)JP-A-5-71073 (Claims and others) 特開平5−71072号公報(特許請求の範囲その他)JP-A-5-71072 (Claims and others)

本発明は、トルマリン、半導体物質、放射性物質などの異質物質を混入することなく、素材のもつ特性を利用してマイナスイオンを発生し、しかも従来のものに比べマイナスイオン発生能力が高く、長期間にわたってその能力が低下することなく持続するマイナスイオン発生材料を提供することを目的としてなされたものである。   The present invention generates negative ions by utilizing the characteristics of the material without mixing foreign substances such as tourmaline, semiconductor materials, radioactive materials, etc., and has a higher negative ion generation capability than conventional ones, and has a long period of time. The purpose of the present invention is to provide a negative ion generating material that lasts without a decrease in its ability.

本発明者らは、絹繊維とポリ塩化ビニリデン系繊維を含む混合繊維布からなるマイナスイオン発生材料において、絹繊維を超高分子量ポリ‐γ‐グルタミン酸により被覆処理すればマイナスイオン発生能力、親水性などの本来絹繊維がもつ好ましい物性をそこなうことなく、耐摩擦性、耐紫外線性が改善されることを見出し、本発明をなすに至った。   In the negative ion generating material composed of a mixed fiber cloth containing silk fiber and polyvinylidene chloride fiber, the present inventors have the ability to generate negative ions and hydrophilicity if the silk fiber is coated with ultrahigh molecular weight poly-γ-glutamic acid. Thus, the present inventors have found that the friction resistance and ultraviolet resistance can be improved without deteriorating the preferable physical properties inherently possessed by silk fibers.

すなわち、本発明は、質量平均分子量60万〜300万の超高分子量ポリ‐γ‐グルタミン酸により被覆処理された絹繊維と、ポリ塩化ビニリデン系繊維とを含む混合繊維布からなり、該ポリ塩化ビニリデン系繊維が負に帯電されていることを特徴とするマイナスイオン発生材料、及びポリ‐γ‐グルタミン酸水溶液中に絹繊維を浸漬したのち、乾燥後、カルボジイミド基をもつ化合物の水性懸濁液又は二官能性エポキシ化合物水溶液中に浸漬し、架橋反応させたのち、乾燥して質量平均分子量60〜300万の超高分子量ポリ‐γ‐グルタミン酸により被覆された絹繊維を形成させ、次いでこの絹繊維とポリ塩化ビニリデン繊維とを混紡し、布状に形成することを特徴とするマイナスイオン発生材料の製造方法を提供するものである。   That is, the present invention comprises a mixed fiber cloth comprising a silk fiber coated with an ultrahigh molecular weight poly-γ-glutamic acid having a mass average molecular weight of 600,000 to 3 million, and a polyvinylidene chloride fiber, and the polyvinylidene chloride After immersing silk fibers in a negative ion generating material characterized by negatively charged fibers and a poly-γ-glutamic acid aqueous solution, and drying, an aqueous suspension or compound of a compound having a carbodiimide group After immersing in an aqueous functional epoxy compound solution and crosslinking reaction, it is dried to form silk fibers coated with ultra-high molecular weight poly-γ-glutamic acid having a mass average molecular weight of 6 to 3 million, The present invention provides a method for producing a negative ion generating material characterized in that it is blended with polyvinylidene chloride fiber and formed into a cloth shape.

本発明のマイナスイオン発生材料は、ポリ‐γ‐グルタミン酸により被覆処理された絹繊維と、ポリ塩化ビニリデン系繊維との2種類の繊維から構成されている。このように、帯電列の上位にある親水性の絹繊維と、帯電列の最下位にあるポリ塩化ビニリデン系繊維との組み合せにより、効果的にマイナスイオンが発生される。また、ポリ‐γ‐グルタミン酸は高分子中で最高値を示す3000質量倍の水の保持率を有し、これを薄膜状に絹繊維に被覆すると、絹の優れた特性を損なうことなく、ポリ塩化ビニリデン系繊維との摩擦による高いマイナスイオン発生能力を示す。   The negative ion generating material of the present invention is composed of two types of fibers, that is, silk fibers coated with poly-γ-glutamic acid and polyvinylidene chloride fibers. In this way, negative ions are effectively generated by the combination of the hydrophilic silk fiber at the upper part of the charged column and the polyvinylidene chloride fiber at the lowest level of the charged column. In addition, poly-γ-glutamic acid has a water retention rate of 3000 mass times, which is the highest value in the polymer, and when this is coated on silk fibers in a thin film form, poly (γ-glutamic acid) can be obtained without impairing the excellent properties of silk. High negative ion generation ability by friction with vinylidene chloride fiber.

本発明で用いる絹繊維としては、家蚕の作出に係る生糸を用いることもできるが、繊度の大きいサク蚕が作出したサク蚕糸が好ましい。この絹繊維の繊維径としては、ポリ塩化ビニリデンとの複合状態よりみて、20〜40μmの範囲が適当である。   As the silk fiber used in the present invention, raw silk for producing silkworms can be used, but silkworm silk produced by silkworm having a high fineness is preferable. As the fiber diameter of the silk fiber, a range of 20 to 40 μm is appropriate in view of a composite state with polyvinylidene chloride.

絹繊維表面を被覆するポリ‐γ‐グルタミン酸としては、納豆の粘性物質中より分離されたバチルス(Bacillus)属の菌を使用し、グルタミン酸を重合して得られる質量平均分子量60万〜300万の超高分子量のものを用いることが必要である。絹の表面に高強度の被覆を施すためには、質量平均分子量が200万以上のものを用いるのが好ましい。   The poly-γ-glutamic acid covering the silk fiber surface has a mass average molecular weight of 600,000 to 3,000,000 obtained by polymerizing glutamic acid using a bacterium belonging to the genus Bacillus separated from the viscous material of natto It is necessary to use an ultra-high molecular weight one. In order to apply a high-strength coating on the surface of silk, it is preferable to use one having a mass average molecular weight of 2 million or more.

また、工業的に製造する場合には、小麦、大豆などを原料として用いて製造する豆腐、納豆、醤油などの製造工程で生じる廃棄物を原料として用いるのが好ましい。
絹繊維にポリ‐γ‐グルタミン酸を均一かつ強固な薄膜状に被覆するには、架橋剤としてカルボジイミド基をもつ化合物又は二官能性エポキシ化合物を用いる。
カルボジイミド基をもつ化合物としては、例えば分子間架橋反応を行わせるためのカルボジイミド基を2個以上有する化合物、すなわち多価カルボジライトを挙げることができる。このものは、例えば多官能性の有機イソシアネートを脱炭酸縮合して得ることができる。
また、二官能性エポキシ化合物としては、ジグリシジルベンゼン、ジグリシジルシクロヘキサン、ジグリシジル尿素などがある。
Moreover, when manufacturing industrially, it is preferable to use as a raw material the waste produced in manufacturing processes, such as tofu, natto, and soy sauce manufactured using wheat, soybeans, etc. as a raw material.
In order to coat silk fiber with poly-γ-glutamic acid in a uniform and strong thin film, a compound having a carbodiimide group or a bifunctional epoxy compound is used as a crosslinking agent.
Examples of the compound having a carbodiimide group include a compound having two or more carbodiimide groups for causing an intermolecular crosslinking reaction, that is, a polyvalent carbodilite. This can be obtained, for example, by decarboxylating polyfunctional organic isocyanate.
Examples of the bifunctional epoxy compound include diglycidylbenzene, diglycidylcyclohexane, diglycidylurea and the like.

このカルボジイミド基をもつ化合物又は二官能性エポキシ化合物の使用量は、絹繊維の質量に基づき0.001〜0.1質量%の範囲内で選ばれる。
また、絹繊維とポリ‐γ‐グルタミン酸の使用割合は、絹繊維100質量部当り、0.001〜0.5質量部、好ましくは0.003〜0.1質量部の範囲で選ばれる。
The amount of the compound having a carbodiimide group or the bifunctional epoxy compound is selected in the range of 0.001 to 0.1% by mass based on the mass of the silk fiber.
The ratio of the silk fiber and poly-γ-glutamic acid used is selected in the range of 0.001 to 0.5 parts by mass, preferably 0.003 to 0.1 parts by mass, per 100 parts by mass of the silk fiber.

本発明のマイナスイオン発生材料を製造するには、所定量のポリ‐γ‐グルタミン酸を含む水溶液に絹繊維を浸漬し、ポリ‐γ‐グルタミン酸を絹繊維に十分に吸着させたのち、遠心分離又はろ過により水を除去し、乾燥する。
次いで、このポリ‐γ‐グルタミン酸を吸着した絹繊維を、例えばプラスチックパイプに巻き付けて、架橋剤を含む弱酸性に調整した液中に浸漬し、20〜50℃に保持したのち、80℃まで昇温して架橋反応を行わせる。この反応時間は、通常0.5〜3時間程度である。この際の液性の調整は、例えば、酢酸、プロピオン酸のような有機酸、塩酸、硫酸、リン酸などの無機酸によりpH5〜6に調節することにより行われる。架橋反応終了後、絹繊維を取り出し、水洗したのち、80〜100℃で乾燥する。
このようにして、質量平均分子量60〜300万の超高分子量ポリ‐γ‐グルタミン酸により被覆された絹繊維が形成される。
In order to produce the negative ion generating material of the present invention, the silk fiber is immersed in an aqueous solution containing a predetermined amount of poly-γ-glutamic acid, and the poly-γ-glutamic acid is sufficiently adsorbed to the silk fiber, followed by centrifugation or Remove the water by filtration and dry.
Next, this poly-γ-glutamic acid adsorbed silk fiber is wound around, for example, a plastic pipe, immersed in a weakly acidified solution containing a crosslinking agent, kept at 20-50 ° C., and then raised to 80 ° C. Allow the crosslinking reaction to occur. This reaction time is usually about 0.5 to 3 hours. The liquidity at this time is adjusted by adjusting the pH to 5 to 6 with an organic acid such as acetic acid or propionic acid, or an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid. After completion of the crosslinking reaction, the silk fiber is taken out, washed with water, and dried at 80 to 100 ° C.
In this way, silk fibers coated with ultra-high molecular weight poly-γ-glutamic acid having a mass average molecular weight of 6 to 3 million are formed.

上記架橋反応において、カルボジイミド基をもつ化合物の場合は、絹フィブロイン分子中の活性基であるセリンのヒドロキシル基との間でイソ尿素のアルキルエーテル結合が、またポリ‐γ‐グルタミン酸の活性基のカルボキシル基との間でアシル尿素結合がそれぞれ形成される。   In the above cross-linking reaction, in the case of a compound having a carbodiimide group, an alkyl ether bond of isourea is formed between the hydroxyl group of serine which is an active group in the silk fibroin molecule, and a carboxyl group of the active group of poly-γ-glutamic acid. An acylurea bond is formed with each group.

他方、二官能性エポキシ化合物の場合は、絹フィブロイン分子中の活性基であるセリンのヒドロキシル基との間でヒドロキシエーテル結合が、またポリ‐γ‐グルタミン酸のカルボキシル基との間でβ‐ヒドロキシエステル結合が形成される。
本発明のマイナスイオン発生材料は、上記のようにして得たポリ‐γ‐グルタミン酸被覆絹繊維とポリ塩化ビニリデン繊維とを混合することにより製造される。そして、これらの繊維成分を接触させ機械的に摩擦を加えると、混合繊維中のポリ塩化ビニリデン系繊維に負電荷が帯電し、マイナスイオンが発生する。
本発明のマイナスイオン発生材料におけるポリ‐γ‐グルタミン酸被覆絹繊維とポリ塩化ビニリデン系繊維との混合割合は、質量比で20:80ないし80:20の範囲である。
On the other hand, in the case of a bifunctional epoxy compound, a hydroxy ether bond is formed between the hydroxyl group of serine which is an active group in the silk fibroin molecule, and a β-hydroxy ester is formed between the carboxyl group of poly-γ-glutamic acid. A bond is formed.
The negative ion generating material of the present invention is produced by mixing the poly-γ-glutamic acid-coated silk fiber obtained as described above and polyvinylidene chloride fiber. When these fiber components are brought into contact with each other and mechanically subjected to friction, a negative charge is charged on the polyvinylidene chloride fiber in the mixed fiber, and negative ions are generated.
The mixing ratio of the poly-γ-glutamic acid-coated silk fiber and the polyvinylidene chloride fiber in the negative ion generating material of the present invention is in the range of 20:80 to 80:20 by mass ratio.

そして、本発明の材料において効果的にマイナスイオンを発生させるためには、使用時において人体の動きを効率的に繊維の動きによる繊維間の摩擦に同調できるように、材料中の繊維の自由度の大きな構造をとらせることが望ましい。材料の構造設計がマイナスイオンの発生に重要であり、例えば平面状の繊維構造体では織布、編布、ニードルパンチの密度の少ない不織布、ニードルパンチ密度の大なる不織布、ウォータージェットでウェブを固定した不織布、編布、織布の順に繊維の動きの自由度が低下し、マイナスイオンの発生も減少する。   In order to effectively generate negative ions in the material of the present invention, the degree of freedom of the fibers in the material can be adjusted so that the movement of the human body can be efficiently synchronized with the friction between the fibers due to the movement of the fibers during use. It is desirable to have a large structure. Material structure design is important for the generation of negative ions. For example, in a flat fiber structure, woven fabric, knitted fabric, nonwoven fabric with low needle punch density, nonwoven fabric with high needle punch density, and web fixing with water jet The degree of freedom of movement of the fibers decreases in the order of non-woven fabric, knitted fabric, and woven fabric, and the generation of negative ions also decreases.

本発明のマイナスイオン発生材料より発生するマイナスイオンは、例えばゲルディエン法原理に基づいて製作された空気イオン測定装置を用いることにより容易に測定することができる。
図1は、この測定装置の説明図であって、これはたがいに電気的に絶縁された外筒(印加電圧筒)1と内筒(集電極円筒)2から構成されている。そして、この外筒1は直流電源4に、内筒2はエレクトロメーター3にそれぞれ接続している。この外筒1と内筒2の間隙に、軸方向に空気イオンを含む空気を一定流速で通しながら、外筒1に負電流を印加すると、円筒間を通過する空気中のマイナスイオンは内筒2に捕捉され、外筒1への印加電圧を高めていくと、内筒2に流れる電流は次第に増大する。そして、P点を通過するイオンがすべてT点で捕捉可能な印加電圧下では、内筒間に入ってくるイオンはすべて内筒2に捕捉され、印加電圧がこれ以上になると内筒2に流れる電流は一定値となる。
Negative ions generated from the negative ion generating material of the present invention can be easily measured, for example, by using an air ion measuring device manufactured based on the principle of the Gel Diene method.
FIG. 1 is an explanatory view of this measuring apparatus, which is composed of an outer cylinder (applied voltage cylinder) 1 and an inner cylinder (collecting electrode cylinder) 2 which are electrically insulated. The outer cylinder 1 is connected to a DC power source 4 and the inner cylinder 2 is connected to an electrometer 3. When negative current is applied to the outer cylinder 1 while air containing air ions is passed through the gap between the outer cylinder 1 and the inner cylinder 2 at a constant flow rate in the axial direction, negative ions in the air passing between the cylinders are When the voltage applied to the outer cylinder 1 is increased and the voltage applied to the outer cylinder 1 is increased, the current flowing through the inner cylinder 2 gradually increases. Then, under an applied voltage at which all ions passing through the point P can be captured at the T point, all ions entering between the inner cylinders are captured by the inner cylinder 2 and flow to the inner cylinder 2 when the applied voltage exceeds this value. The current becomes a constant value.

図2は、外筒1への印加電圧と内筒2に流れる電流との関係を示すグラフである。この図2において印加電圧とともに増大する内筒2に流れる電流(オーム電流)は、ある時点で印加電圧を上げても内筒2に流れる電流が一定値を示し飽和する(飽和電流)。
また、すべてのマイナスイオンが捕捉されるイオンの移動度すなわち臨界移動度をkcとすると、このkcは次の式(1)で示される。
kc=[F/(4π・aV)] (1)
ただし、F:空気流の流量(cm3/sec)
V:印加電圧(ボルト)
a:装置定数
FIG. 2 is a graph showing the relationship between the voltage applied to the outer cylinder 1 and the current flowing through the inner cylinder 2. In FIG. 2, the current (ohmic current) flowing through the inner cylinder 2 that increases with the applied voltage is saturated even if the applied voltage is increased at a certain point in time and becomes saturated (saturated current).
Further, assuming that the mobility of ions in which all negative ions are trapped, that is, the critical mobility is kc, this kc is expressed by the following equation (1).
kc = [F / (4π · aV)] (1)
F: Air flow rate (cm 3 / sec)
V: Applied voltage (volt)
a: Device constant

また、飽和電流において一定時間に流れた平均電流から、マイナスイオン数密度[D]は次式(2)で与えられる。
[D]=I/(e・F) (2)
上式において、I:飽和電流量域において、一定時間に流れた平均電流(アンペア/秒)
[D]:マイナスイオン数密度(個/cm3
ただし、e:1個の電子の荷電量(1.6×10-17クローン/秒)
Further, the negative ion number density [D] is given by the following equation (2) from the average current flowing for a certain time in the saturation current.
[D] = I / (e · F) (2)
In the above formula, I: average current (ampere / second) flowing in a certain time in the saturation current amount region
[D]: Negative ion number density (pieces / cm 3 )
However, e: charge amount of one electron (1.6 × 10 −17 clones / second)

式(2)のIの値は、一定時間t秒に内筒2に蓄積される荷電量Q(クーロン)より次式(3)に従って求めることができる。
I=(Q/t) (3)
The value of I in equation (2) can be obtained according to the following equation (3) from the charge amount Q (coulomb) accumulated in the inner cylinder 2 for a fixed time t seconds.
I = (Q / t) (3)

そして、ゲルディエン法空気イオン測定装置から得られる測定値を代入することにより、上記の式に基づいてマイナスイオン数密度を求めることができる。この測定に際しては、マイナスイオンを測定しようとする試料を40℃で2時間乾燥したのち、12時間デシケーターに保管する。   And the negative ion number density can be calculated | required based on said formula by substituting the measured value obtained from a gel diene method air ion measuring apparatus. In this measurement, a sample to be measured for negative ions is dried at 40 ° C. for 2 hours and then stored in a desiccator for 12 hours.

図3は、マイナスイオン測定装置の全体構造を示す側面略解図であり、これを用いてマイナスイオンを測定する場合には、上記の試料を試料筒6に装入し、吸引機9を作動させ、一定量の空気を装置内に流し、試料上を通過させる。試料上を通過した空気は、外筒1と内筒2の間を通り、排気口10より排出される。空気量が定常状態に達したならば、外筒1に以下に示すサイクルで電圧をt秒間印加する。なお、5は絶縁板、7は空気流入口、8は流量計を示す。3はエレクトロメーター、4は直流電源である。
0→40V→0→60V→0→80V→0→100V→0→120V→0→140V→0→160V
FIG. 3 is a schematic side view showing the overall structure of the negative ion measuring apparatus. When negative ions are measured using this apparatus, the sample is loaded into the sample tube 6 and the aspirator 9 is operated. A constant amount of air is passed through the apparatus and passed over the sample. The air that has passed over the sample passes between the outer cylinder 1 and the inner cylinder 2 and is discharged from the exhaust port 10. When the air amount reaches a steady state, a voltage is applied to the outer cylinder 1 in the following cycle for t seconds. Reference numeral 5 denotes an insulating plate, 7 denotes an air inlet, and 8 denotes a flow meter. 3 is an electrometer, and 4 is a DC power source.
0 → 40V → 0 → 60V → 0 → 80V → 0 → 100V → 0 → 120V → 0 → 140V → 0 → 160V

このようにして繰り返し電圧を印加し、このt秒間に蓄積された荷電量Q(クーロン)を測定する。
そして、式(3)により内筒2に流れる電流Iを計算し、あらかじめ作成された電流Iと加電圧との関係グラフより飽和電流値Isを求め、式(2)に従い、マイナスイオン数密度[D]を計算する。
In this way, a voltage is repeatedly applied, and the charge amount Q (coulomb) accumulated for t seconds is measured.
Then, the current I flowing through the inner cylinder 2 is calculated by the equation (3), the saturation current value Is is obtained from the relationship graph between the current I and the applied voltage prepared in advance, and the negative ion number density [ D] is calculated.

本発明は、このようにして計算されたマイナスイオン数が、従来知られているマイナスイオン発生材料例えばトルマリンを練り込んだビスコース繊維からなる繊維布のマイナスイオン発生量に比べ、著しく大きい発生量を示す上に、長期間にわたって持続するという利点がある。   In the present invention, the amount of negative ions calculated in this way is significantly larger than the amount of negative ions generated in a fiber cloth made of viscose fibers kneaded with conventionally known negative ion generating materials such as tourmaline. In addition, it has the advantage of lasting for a long time.

次に実施例により本発明を実施するための最良の形態を説明するが本発明はこれらの例によってなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described with reference to examples, but the present invention is not limited to these examples.

参考例1
中国産サク蚕糸(繊度21デニール以上)100gを、質量平均分子量300万のポリ‐γ‐グルタミン酸(福岡醸造協同組合製)をサク蚕糸の質量に基づき0.0034質量%の割合で含有する水溶液1.5リットル中に40℃において1時間浸漬し、サク蚕糸にポリ‐γ‐グルタミン酸を吸着させたのち、遠心分離して水分を除き、次いで風乾した。
このようにして得たポリ‐γ‐グルタミン酸を吸着したサク蚕糸を外径10mmのプラスチックパイプに巻き付ける。次いで有機ジイソシアネートの脱炭酸縮合により得られたカルボジイミド当量(高分子の分子量/高分子中のカルボジイミド基の数)355〜380のカルボジイミド基をもつ高分子化合物(日清紡製)を濃度40質量%の水懸濁状とし、これによりpH5.5、0.2質量%水溶液3リットルを調製し、この中に上記の試料を巻き付けたプラスチックパイプを浸漬し、温度を80℃に保ち、1時間反応させたのち取り出し、水洗後、90℃で乾操し、51mmにカットしてポリ‐γ‐グルタミン酸0.0034質量%により均一に被覆されたクリンプ付き絹繊維を製造した。
次に、ポリ‐γ‐グルタミン酸のサク蚕糸に対する量を変えて、同様に処理することにより、それぞれ0.03質量%、0.06質量%及び0.09質量%のポリ‐γ‐グルタミン酸で被覆された絹繊維のサンプルを製造した。
Reference example 1
An aqueous solution 1 containing 100 g of Chinese sak silk thread (fineness of 21 denier or more) and 0.0034% by mass of poly-γ-glutamic acid (manufactured by Fukuoka Brewing Cooperative Association) having a mass average molecular weight of 3 million based on the weight of the sak silk thread After immersing in 5 liters at 40 ° C. for 1 hour to adsorb poly-γ-glutamic acid to the cocoon silk thread, it was centrifuged to remove moisture, and then air-dried.
The sachet yarn adsorbed with poly-γ-glutamic acid thus obtained is wound around a plastic pipe having an outer diameter of 10 mm. Subsequently, a polymer compound having a carbodiimide group (made by Nisshinbo Co., Ltd.) having a carbodiimide equivalent of 355 to 380 (molecular weight of polymer / number of carbodiimide groups in the polymer) obtained by decarboxylation condensation of organic diisocyanate is 40% by weight of water. A suspension was prepared to prepare 3 liters of a pH 5.5, 0.2% by weight aqueous solution, and a plastic pipe around which the above sample was wound was immersed therein, and the temperature was kept at 80 ° C. and reacted for 1 hour. Thereafter, it was taken out, washed with water, dried at 90 ° C., cut into 51 mm, and uniformly coated with 0.0034% by mass of poly-γ-glutamic acid to produce crimped silk fibers.
Next, by changing the amount of poly-γ-glutamic acid relative to the cocoon silk thread and treating in the same manner, it was coated with 0.03% by mass, 0.06% by mass and 0.09% by mass of poly-γ-glutamic acid, respectively. Silk fiber samples were produced.

参考例2
参考例1と同じ中国産サク蚕糸100gを、このサク蚕糸の質量に基づき0.0034質量%の割合で含有する水溶液1.5リットル中に、40℃において1時間浸漬し、サク蚕糸にポリ‐γ‐グルタミン酸を吸着し、風乾した。このようにして、ポリ‐γ‐グルタミン酸を被覆させたサク蚕糸を外径10mmのプラスチックパイプに巻いて、酢酸によりpH4.5に調節したエチレングリコールジグリシジルエーテル(東京化成工業社製特級試薬)の1質量%水溶液3リットル中に浸漬し、1時間、40℃に加熱したのち、80℃に昇温して2時間反応させた。次いで、処理した絹繊維を取り出し、水洗後、乾燥し、51mmにカットして、ポリ‐γ‐グルタミン酸0.0034質量%で均一に被覆されたクリンプ付き絹繊維のサンプルを製造した。
次に、ポリ‐γ‐グルタミン酸のサク蚕糸に対する量を変えて、同様に処理することにより、それぞれ0.03質量%、0.06質量%及び0.09質量%のポリ‐γ‐グルタミン酸で被覆された絹繊維のサンプルを製造した。
Reference example 2
100 g of the same Chinese sak silk thread as in Reference Example 1 was immersed in 1.5 liter of an aqueous solution containing 0.0034% by mass based on the mass of this sak silk thread at 40 ° C. for 1 hour. γ-glutamic acid was adsorbed and air-dried. In this way, a cocoon yarn coated with poly-γ-glutamic acid is wound on a plastic pipe having an outer diameter of 10 mm, and ethylene glycol diglycidyl ether (special grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.) adjusted to pH 4.5 with acetic acid is used. After being immersed in 3 liters of a 1% by weight aqueous solution and heated to 40 ° C. for 1 hour, the temperature was raised to 80 ° C. and reacted for 2 hours. Next, the treated silk fiber was taken out, washed with water, dried, cut into 51 mm, and a crimped silk fiber sample uniformly coated with 0.0034% by mass of poly-γ-glutamic acid was produced.
Next, by changing the amount of poly-γ-glutamic acid relative to the cocoon silk thread and treating in the same manner, it was coated with 0.03% by mass, 0.06% by mass and 0.09% by mass of poly-γ-glutamic acid, respectively. Silk fiber samples were produced.

塩化ビニリデンと塩化ビニルとの等モル共重合体からなるポリ塩化ビニリデン系繊維(旭化成社製、軟化点150〜165℃)を溶融紡糸して得た繊度7デニールのフィラメントを長さ51mmにカットしたステープルファイバー2.1kgと、参考例1で得たポリ‐γ‐グルタミン酸で被覆された絹繊維0.9kgとを混合し、解繊機により空気中に飛散解繊して、均一な混合状態のわた状物を形成した。次いで、このわた状物を移動する金網状ベルトコンベア上に捕集して層状体としたのち、回転シリンダー上に鋸歯ワイヤーを付したカード機に挿入し、移動方向に櫛削り、目付300g/m2のウェブを形成させた。次いで、これにニードルパンチングを施し、不織布を製造した。
このようにして得た不織布について、測定用の空気流により、繊維相互の摩擦荷電を発生させ、マイナスイオンの数密度を次のように測定した。
不織布より15cm×15cmの方形片を切り取り、40℃で2時間乾操後、12時間デシケーター中に保存する。
次いで試料をゲルディエン法測定装置の試料筒に入れ、外部より試料に2.01リットル/分の空気を流す。この空気は測定装置の二重円筒の間を通過するとき外筒への印加電圧(V)に対応して内筒に流れる電流値(I)を求め、飽和電流値より(1)、(2)式によりマイナスイオン数密度[−D]を得る。
なお、測定値は流過する空気の25℃、関係湿度30%で求めた標準試料を同一日の温度、湿度が近い時刻帯に測定し、この値より補正を行う。
このようにして得た結果を表1に示す。
A filament having a denier of 7 denier obtained by melt-spinning a polyvinylidene chloride fiber (made by Asahi Kasei Co., Ltd., softening point 150 to 165 ° C.) made of an equimolar copolymer of vinylidene chloride and vinyl chloride was cut to a length of 51 mm. A mixture of 2.1 kg of staple fibers and 0.9 kg of silk fibers coated with poly-γ-glutamic acid obtained in Reference Example 1 was scattered and defibrated in the air by a defibrating machine, and the cotton was mixed in a uniform state. A product was formed. Next, after collecting the cotton-like material on a moving wire mesh belt conveyor to form a layered body, it is inserted into a card machine with a sawtooth wire on a rotating cylinder, combed in the moving direction, and has a basis weight of 300 g / m 2. The web was formed. Subsequently, needle punching was given to this and the nonwoven fabric was manufactured.
About the nonwoven fabric obtained in this way, the triboelectric charge between fibers was generated by a measurement air flow, and the number density of negative ions was measured as follows.
A 15 cm × 15 cm square piece is cut from the nonwoven fabric, dried at 40 ° C. for 2 hours, and stored in a desiccator for 12 hours.
Next, the sample is put into a sample tube of a gel diene method measuring apparatus, and air of 2.01 liter / min is flowed from the outside to the sample. When this air passes between the double cylinders of the measuring device, the current value (I) flowing through the inner cylinder corresponding to the applied voltage (V) to the outer cylinder is obtained, and (1), (2 ) To obtain the negative ion number density [-D].
The measured value is measured at a time zone where the temperature and humidity are close to the same day on a standard sample obtained at 25 ° C. and 30% relative humidity of flowing air, and correction is made based on this value.
The results thus obtained are shown in Table 1.

Figure 0004945427
Figure 0004945427

また、この際のサク蚕糸に対するポリ‐γ‐グルタミン酸の割合[P]とマイナスイオン数密度[−D]との関係をプロットしたグラフとして図4に示す。   In addition, FIG. 4 shows a graph plotting the relationship between the ratio [P] of poly-γ-glutamic acid to the crushed silk thread and the negative ion number density [−D].

実施例1で用いたものと同じポリ塩化ビニリデン系繊維2.1kgと参考例2で得たポリ‐γ‐グルタミン酸で被覆された絹繊維0.9kgとを混合し、解繊機により空気中に飛散解繊して、均一な混合状態のわた状物を形成した。次いで、このわた状物を移動する金網状ベルトコンベア上に捕集して層状体としたのち、回転シリンダー上に鋸歯ワイヤーを付したカード機に挿入し、移動方向に櫛削り、目付300g/m2のウェブを形成させた。次いで、これにニードルパンチングを施し、不織布を製造した。
このようにして得た不織布について、測定用の空気流により、繊維相互の摩擦荷電を発生させ、マイナスイオンの数密度を実施例1と同じ方法で測定した。この結果を表2に示す。
なお、表2には、比較のためにポリ‐γ‐グルタミン酸被覆を行わない試料No.5の測定結果を併記した。
2.1 kg of the same polyvinylidene chloride fiber as used in Example 1 and 0.9 kg of the silk fiber coated with poly-γ-glutamic acid obtained in Reference Example 2 were mixed and scattered in the air by a defibrator. The fiber was defibrated to form a uniform mixture. Next, after collecting the cotton-like material on a moving wire mesh belt conveyor to form a layered body, it is inserted into a card machine with a sawtooth wire on a rotating cylinder, combed in the moving direction, and has a basis weight of 300 g / m 2. The web was formed. Subsequently, needle punching was given to this and the nonwoven fabric was manufactured.
About the nonwoven fabric obtained in this way, the triboelectric charge between fibers was generated by an air flow for measurement, and the number density of negative ions was measured by the same method as in Example 1. The results are shown in Table 2.
In Table 2, for comparison, Sample No. which is not coated with poly-γ-glutamic acid is shown. The measurement results of 5 are also shown.

Figure 0004945427
Figure 0004945427

また、この際のサク蚕糸に対するポリ‐γ‐グルタミン酸の割合[P]とマイナスイオン数密度[−D]との関係をプロットしたグラフとして図4に示す。   In addition, FIG. 4 shows a graph plotting the relationship between the ratio [P] of poly-γ-glutamic acid to the crushed silk thread and the negative ion number density [−D].

表1及び表2から分るように、超高分子量のポリ‐γ‐グルタミン酸を架橋反応剤として、カルボジイミド基をもつ高分子又はエチレングリコールジグリシジルエーテルを用い、絹に被覆加工した繊維とポリ塩化ビニリデン系繊維との混合繊維からなる不織布は、ポリ‐γ‐グルタミン酸を全く使用しない絹繊維とポリビニリデンクロライド繊維との混合繊維からなる不織布に比べて、著しく多くのマイナスイオンを発生する。そして、絹に加工するポリ‐γ‐グルタミン酸の割合が0.0034〜0.03と極めて少ない量でこの効果が発現するのはポリ‐γ‐グルタミン酸の薄膜が絹の表面を覆うことにより、絹の水に対する親和性の増大及び帯電系列の変化からポリ塩化ビニリデン系繊維との摩擦帯電性の増加方向への変化によるものと考えられる。   As can be seen from Table 1 and Table 2, fibers coated with silk using poly-γ-glutamic acid with ultra-high molecular weight as a cross-linking agent or a polymer having carbodiimide group or ethylene glycol diglycidyl ether and polychlorinated A non-woven fabric made of a mixed fiber with vinylidene fiber generates significantly more negative ions than a non-woven fabric made of a mixed fiber of silk fiber and polyvinylidene chloride fiber that does not use poly-γ-glutamic acid at all. This effect is manifested in a very small amount of poly-γ-glutamic acid processed into silk of 0.0034 to 0.03, because the thin film of poly-γ-glutamic acid covers the silk surface. This is considered to be due to the increase in the triboelectric charging property with the polyvinylidene chloride fiber from the increase in the affinity of water for water and the change in the charge series.

実施例3〜7
ポリ‐γ‐グルタミン酸0.06質量%で被覆したサク蚕糸と、実施例1で用いたものと同じポリ塩化ビニリデン系繊維とを、質量比20:80(実施例3)、30:70(実施例4)、40:60(実施例5)、60:40(実施例6)、80:20(実施例7)の割合で混合した混合繊維を用い、実施例1と同様にして目付300g/m2のウェブを形成し、これに回転シリンドルパンチング処理を施して、不織布を製造した。
これらの不織布のマイナスイオン数密度を実施例1と同様にして測定し、その結果を表3に示す。
なお、比較のためにポリ‐γ‐グルタミン酸被覆サク蚕糸単独(比較例1)、ポリ塩化ビニリデン系繊維単独(比較例2)及び市販の粉末トルマリンを混練したビスコース繊維単独(比較例3)についての測定結果も併記した。
Examples 3-7
Sac silk yarn coated with 0.06% by mass of poly-γ-glutamic acid and the same polyvinylidene chloride fiber as used in Example 1 were in a mass ratio of 20:80 (Example 3), 30:70 (implementation) Example 4), 40:60 (Example 5), 60:40 (Example 6), 80:20 (Example 7) were used in the same manner as in Example 1 using mixed fibers, and the basis weight was 300 g / A web of m 2 was formed and subjected to a rotating cylinder punching process to produce a nonwoven fabric.
The negative ion number density of these nonwoven fabrics was measured in the same manner as in Example 1, and the results are shown in Table 3.
For comparison, a poly-γ-glutamic acid-coated sac silk thread alone (Comparative Example 1), a polyvinylidene chloride fiber alone (Comparative Example 2), and a viscose fiber alone (Comparative Example 3) kneaded with a commercially available powdered tourmaline. The measurement results were also shown.

Figure 0004945427
Figure 0004945427

この表から分かるように、ポリ‐γ‐グルタミン酸被覆サク蚕糸とポリ塩化ビニリデン系繊維との混合繊維からなる不織布は、それぞれの繊維単独からなる不織布及び市販品よりも多くのマイナスイオンを発生する。また、ポリ‐γ‐グルタミン酸被覆サク蚕糸とポリ塩化ビニリデン系繊維との混合比が広い範囲(20:80ないし80:20)に及んで同等でかつ高いマイナスイオンを発生する特色を有している。このことは最終製品の軽さ、保温性、弾力性などの設計に好都合である。   As can be seen from this table, the nonwoven fabric composed of mixed fibers of poly-γ-glutamic acid-coated sachet yarn and polyvinylidene chloride fiber generates more negative ions than the nonwoven fabric composed of each fiber alone and commercially available products. In addition, the mixture ratio of poly-γ-glutamic acid-coated sachet yarn and polyvinylidene chloride fiber has the characteristic of generating an equal and high negative ion over a wide range (20:80 to 80:20). . This is advantageous for designing the final product such as lightness, heat retention and elasticity.

また、この際の加工サク蚕糸とポリ塩化ビニリデン繊維との割合とマイナスイオン数密度[−D]との関係をプロットしたグラフとして図5に示す。   Moreover, it shows in FIG. 5 as a graph which plotted the relationship between the ratio of the processed silk thread and the polyvinylidene chloride fiber in this case, and negative ion number density [-D].

本発明はサク蚕糸の表面を超高分子量のポリ‐γ‐グルタミン酸で被覆することにより、持続性が向上したポリ塩化ビニリデン系繊維とからなるマイナスイオン発生材料が提供され、人間の健康に重要な働きをするマイナスイオンを通常のサク蚕糸とポリ塩化ビニリデン系繊維とのブレンド繊維より一段と多量に発生する繊維が得られ、健康に役立つ衣料、寝具、インナーとして広く利用することができる。   The present invention provides a negative ion generating material comprising a polyvinylidene chloride fiber having improved durability by coating the surface of a sak silk thread with an ultra-high molecular weight poly-γ-glutamic acid, which is important for human health. Fibers that generate a larger amount of negative ions that work than conventional blended yarns of sac silk yarn and polyvinylidene chloride fiber can be obtained, and can be widely used as clothing, bedding, and innerwear useful for health.

マイナスイオンを定量するために用いられるケルディエン法に基づく空気イオンの測定装置の原理を説明するための説明図。Explanatory drawing for demonstrating the principle of the measuring apparatus of the air ion based on the Keldieen method used in order to quantitate a negative ion. 図1における外筒1への印加電圧と内筒2に流れる電流との関係を示すグラフ。The graph which shows the relationship between the applied voltage to the outer cylinder 1 in FIG. 1, and the electric current which flows into the inner cylinder 2. FIG. 測定装置の全体構造を示す側面略解図。Side surface schematic solution figure which shows the whole structure of a measuring apparatus. ポリ‐γ‐グルタミン酸の割合を変えたサク蚕糸とポリ塩化ビニリデン系繊維とブレンドで得られた不織布のポリ‐γ‐グルタミン酸の割合とマイナスイオンの発生量の関係を示すグラフ。The graph which shows the relationship between the ratio of poly- (gamma) -glutamic acid of the nonwoven fabric obtained by the blend with the sac silk thread and the polyvinylidene chloride fiber which changed the ratio of poly- (gamma) -glutamic acid, and the generation amount of anion. ポリ‐γ‐グルタミン酸被覆サク蚕糸とポリ塩化ビニリデン系繊維とのブレンド不織布における両繊維のブレンド比とマイナスイオンの発生量の関係を示すグラフ。The graph which shows the relationship between the blend ratio of both fibers and the generation amount of negative ions in a blend nonwoven fabric of poly-γ-glutamic acid-coated sachet yarn and polyvinylidene chloride fiber.

符号の説明Explanation of symbols

1 外筒
2 内筒
3 エレクトロメーター
4 直流電源
5 絶縁板
6 試料筒
7 空気流入口
8 流量計
9 吸引機
10 空気排気口
DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Inner cylinder 3 Electrometer 4 DC power supply 5 Insulation board 6 Sample cylinder 7 Air inlet 8 Flowmeter 9 Suction machine 10 Air exhaust port

Claims (6)

質量平均分子量60万〜300万の超高分子量ポリ‐γ‐グルタミン酸により被覆処理された絹繊維と、ポリ塩化ビニリデン系繊維とを含む混合繊維布からなり、該ポリ塩化ビニリデン系繊維が負に帯電されていることを特徴とするマイナスイオン発生材料。   It consists of a mixed fiber cloth containing a silk fiber coated with ultra high molecular weight poly-γ-glutamic acid having a mass average molecular weight of 600,000 to 3 million and a polyvinylidene chloride fiber, and the polyvinylidene chloride fiber is negatively charged. An anion generating material characterized by being made. 超高分子量ポリ‐γ‐グルタミン酸による絹繊維の被覆処理がカルボジイミド基をもつ化合物又は二官能性エポキシ化合物を架橋剤として用いて行われている請求項1記載のマイナスイオン発生材料。   The negative ion generating material according to claim 1, wherein the coating treatment of the silk fiber with the ultrahigh molecular weight poly-γ-glutamic acid is carried out using a compound having a carbodiimide group or a bifunctional epoxy compound as a crosslinking agent. 超高分子量ポリ‐γ‐グルタミン酸被覆の絹繊維100質量部に対する含有割合が0.001〜0.5質量部の範囲にある請求項1又は2記載のマイナスイオン発生材料。   The negative ion generating material according to claim 1 or 2, wherein a content ratio of the ultrahigh molecular weight poly-γ-glutamic acid coating to 100 parts by mass of silk fibers is in the range of 0.001 to 0.5 parts by mass. 混合繊維における絹繊維とポリ塩化ビニリデン系繊維の割合が質量比で80:20ないし20:80の範囲にある請求項1、2又は3記載のマイナスイオン発生材料。   The negative ion generating material according to claim 1, 2 or 3, wherein the ratio of the silk fiber to the polyvinylidene chloride fiber in the mixed fiber is in the range of 80:20 to 20:80 by mass ratio. ポリ‐γ‐グルタミン酸水溶液中に絹繊維を浸漬したのち、乾燥後、カルボジイミド基をもつ化合物の水性懸濁液又は二官能性エポキシ化合物水溶液中に浸漬し、架橋反応させたのち、乾燥して質量平均分子量60〜300万の超高分子量ポリ‐γ‐グルタミン酸により被覆された絹繊維を形成させ、次いでこの絹繊維とポリ塩化ビニリデン繊維とを混紡し、布状に形成することを特徴とするマイナスイオン発生材料の製造方法。   After immersing silk fiber in poly-γ-glutamic acid aqueous solution, after drying, immerse in aqueous suspension of compound having carbodiimide group or bifunctional epoxy compound aqueous solution, crosslink reaction, dry and mass Minus characterized by forming silk fibers coated with ultra-high molecular weight poly-γ-glutamic acid having an average molecular weight of 6 to 3 million, and then blending the silk fibers and polyvinylidene chloride fibers to form a cloth. A method for producing an ion generating material. 織布状、編布状又は不織布状に形成する請求項5記載のマイナスイオン発生材料の製造方法。   6. The method for producing a negative ion generating material according to claim 5, wherein the negative ion generating material is formed in a woven, knitted or non-woven shape.
JP2007332063A 2007-12-25 2007-12-25 Negative ion generating material and method for producing the same Expired - Fee Related JP4945427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332063A JP4945427B2 (en) 2007-12-25 2007-12-25 Negative ion generating material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332063A JP4945427B2 (en) 2007-12-25 2007-12-25 Negative ion generating material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009155738A JP2009155738A (en) 2009-07-16
JP4945427B2 true JP4945427B2 (en) 2012-06-06

Family

ID=40960042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332063A Expired - Fee Related JP4945427B2 (en) 2007-12-25 2007-12-25 Negative ion generating material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4945427B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339191B2 (en) * 2009-03-23 2013-11-13 株式会社エムエムエーム Negative ion generating material and method for producing the same
JP4824125B1 (en) * 2010-12-27 2011-11-30 宏和実業株式会社 Negative ion generating polyester fiber and manufacturing method of negative ion generating product using the same
JP6450237B2 (en) * 2014-05-02 2019-01-09 出光興産株式会社 Cross-linked body, cross-linking agent composition, fibrous cross-linked body, manufacturing method of fibrous cross-linked body, cell culture bed, cell culturing method using cell culture bed, and manufacturing method of cell sheet for transplantation using cell culture bed

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291275A (en) * 1988-09-09 1990-03-30 Unitika Ltd Production of synthetic fiber yarn having antibacterial property and modified feeling
JPH0742651B2 (en) * 1989-12-06 1995-05-10 神奈川県 Silk interior material with excellent durability
JPH11343339A (en) * 1997-09-30 1999-12-14 Toshio Hara Biodegradable water-absorbing resin
JP4605634B2 (en) * 2004-06-21 2011-01-05 三菱鉛筆株式会社 Poly-γ-amino acid crosslinked product-containing composition, poly-γ-amino acid crosslinked product-containing sheet-like molded article, poly-γ-amino acid crosslinked product-containing gel-like composition, poly-γ-amino acid crosslinked product-containing colored composition and poly -Gamma-amino acid crosslinked product-containing fabric products
JP2007191834A (en) * 2006-01-20 2007-08-02 Vigor Kk Fiber cloth capable of generating negative ion

Also Published As

Publication number Publication date
JP2009155738A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5339191B2 (en) Negative ion generating material and method for producing the same
CN109312500B (en) Charge-generating yarn for coping with bacteria, cloth, clothing, medical member, bioaffecting charge-generating yarn for coping with bacteria, and charge-generating yarn for substance adsorption
Zoccola et al. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends
Gholami et al. Production of fibroin nanopowder through electrospraying
CN110709544B (en) Charge-generating yarn for coping with bacteria, method for producing charge-generating yarn for coping with bacteria, and antibacterial fabric
Zhuo et al. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials
Su et al. Dual-drug encapsulation and release from core–shell nanofibers
KR20070099926A (en) Crosslinked polyvinyl alcohol nanofiber web using eletrospinning and process for preparing the same
JP4945427B2 (en) Negative ion generating material and method for producing the same
Abd El-Hady Electrospun gelatin nanofibers: effect of gelatin concentration on morphology and fiber diameters
CN110088366A (en) Anti-bacterial fibre
KR101964165B1 (en) Non-woven fabric manufacturing method with blood circulation and antibacterial properties
CN110257951A (en) A kind of preparation method of the hygroscopic, perspiratory and antibacterial fiber of nano functionalization
Dhandayuthapani et al. Fabrication and characterization of nanofibrous scaffold developed by electrospinning
Lee et al. Poly (vinyl alcohol)/chitosan oligosaccharide blend submicrometer fibers prepared from aqueous solutions by the electrospinning method
Andiappan et al. Comparison of eri and tasar silk fibroin scaffolds for biomedical applications
CN112979779A (en) Method for processing silk fibroin by aromatic alcohol and application of silk fibroin-containing material
Zohoori et al. Vibration electrospinning of polyamide-66/multiwall carbon nanotube nanocomposite: Introducing electrically conductive, ultraviolet blocking and antibacterial properties
Yang et al. Nanopatterning of beaded poly (lactic acid) nanofibers for highly electroactive, breathable, UV-shielding and antibacterial protective membranes
Kamireddi et al. Electrospun nanoyarns: A comprehensive review of manufacturing methods and applications
CN1122733C (en) Negative-ion fibre product
Hang et al. Preparation and characterization of electrospun silk fibroin/sericin blend fibers
CN117107416B (en) Fabric containing polyamide hollow fibers and preparation method thereof
JP2008308780A (en) Electrospun chitosan and cellulose extra fine fibers
Chai et al. Progress in Research and Application of Modified Silk Fibroin Fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees