JP4944851B2 - Method for producing hydraulic composition - Google Patents
Method for producing hydraulic composition Download PDFInfo
- Publication number
- JP4944851B2 JP4944851B2 JP2008207110A JP2008207110A JP4944851B2 JP 4944851 B2 JP4944851 B2 JP 4944851B2 JP 2008207110 A JP2008207110 A JP 2008207110A JP 2008207110 A JP2008207110 A JP 2008207110A JP 4944851 B2 JP4944851 B2 JP 4944851B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- ppm
- hydraulic composition
- hexavalent chromium
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、六価クロム固定能力に優れた水硬性組成物及びその製造方法に関するものである。 The present invention relates to a hydraulic composition excellent in hexavalent chromium fixing ability and a method for producing the same.
有害物質を含んだ廃棄物の処理の際には、何らかの手段による無害化が義務づけられている。セメントは、重金属等の有害物質を固定する能力があるため、有害廃棄物の固化処理に利用されているが、一般の重金属は99.99%以上固定できるのに対して、六価クロムについては若干固定率が低いといわれている。 When processing waste containing hazardous substances, it is obliged to detoxify it by some means. Cement has the ability to fix toxic substances such as heavy metals, so it is used for the solidification of hazardous waste, but more than 99.99% of general heavy metals can be fixed, while hexavalent chromium is fixed a little. The rate is said to be low.
六価クロムの固定率向上のためには、高炉スラグの添加などが有効であるが、セメントの水和初期には効果が低く、また、六価クロム固定率も99.0%程度であり、更なる固定率の向上が望まれていた。また、セメントに硫酸第一鉄(FeSO4)等の還元剤を添加することにより、六価クロムを難溶性の三価クロムへ還元するという技術もあるが、セメントの貯蔵期間が長いと硫酸第一鉄の効果が低下すること、セメントが硬化した後は効果が落ちることなどの問題があり、また添加量が多いとセメントの凝結が遅延するなど、セメントの物性にも悪影響があった。このようなことから、より少量の添加剤の使用で長期間効果を発揮し得る、かつセメントの物性に影響を及ぼすことのない、セメント中の六価クロムを固定する技術の開発が望まれていた。 Addition of blast furnace slag is effective for improving the fixation rate of hexavalent chromium, but the effect is low at the initial stage of cement hydration, and the hexavalent chromium fixation rate is about 99.0%. Improvement of the fixation rate was desired. In addition, there is a technology to reduce hexavalent chromium to poorly soluble trivalent chromium by adding a reducing agent such as ferrous sulfate (FeSO 4 ) to the cement. There was a problem that the effect of ferrous iron was lowered, the effect was lowered after the cement was hardened, and when the addition amount was large, the setting of the cement was delayed, and the physical properties of the cement were also adversely affected. For this reason, it is desired to develop a technology for fixing hexavalent chromium in cement, which can be effective for a long time with the use of a smaller amount of additive and does not affect the physical properties of the cement. It was.
従って本発明の目的は、セメントの物性を変化させないごく少量の添加剤の使用により、六価クロムの固定能力が著しく向上した水硬性組成物を提供することにある。 Accordingly, an object of the present invention is to provide a hydraulic composition in which the fixing ability of hexavalent chromium is remarkably improved by using a very small amount of an additive which does not change the physical properties of cement.
かかる実情に鑑み本発明者らは、六価クロムの固定能力に優れた水硬性組成物を開発すべく鋭意研究を行った結果、単体硫黄を水硬性材料に配合すれば、上記欠点がなく、六価クロムの固定能力に優れた水硬性組成物が得られることを見出し、本発明を完成した。 The present inventors view of such circumstances, the result of extensive studies to develop a superior hydraulic composition to a fixed capacity of the hexavalent chromium, elemental sulfur be blended into a hydraulic material, without the drawbacks, The inventors found that a hydraulic composition excellent in hexavalent chromium fixing ability was obtained, and completed the present invention.
本発明は、水硬性組成物の製造工程中、水硬性材料の粉砕前から粉砕までのいずれかの段階において、単体硫黄を、水硬性組成物中の結合性成分の乾燥重量に対し10ppm以上配合する六価クロム固定化用水硬性組成物の製造方法であって、粉砕時の水硬性材料の温度を35〜110℃とすることを特徴とする六価クロム固定化用水硬性組成物の製造方法を提供するものである。 The present invention is formulated in the manufacturing process of the hydraulic composition, at any stage to grinding before milling hydraulic materials, elemental sulfur, 10 ppm or more with respect to the dry weight of the binding components of the hydraulic composition A method for producing a hydraulic composition for immobilizing hexavalent chromium, the method comprising producing a hydraulic composition for immobilizing hexavalent chromium, wherein the temperature of the hydraulic material during pulverization is 35 to 110 ° C. It is to provide.
本発明により製造される水硬性組成物は、添加剤の量がわずかでも六価クロムを固定する能力が高い。また、この効果は、水硬性材料が硬化する前から発現し、硬化後も持続する。 The hydraulic composition produced according to the present invention has a high ability to fix hexavalent chromium even if the amount of the additive is small. In addition, this effect is exhibited before the hydraulic material is cured, and continues even after the curing.
本発明における六価クロムの固定の作用機構は、単体硫黄により六価クロムが還元され三価クロムへ転換することによるものと考えられる。六価クロムは水溶性が高いことが知られており、水硬性組成物に含まれる場合には、その硬化前はもちろん、組織が緻密化した硬化後もわずかではあるが溶出する。一方、三価クロムは難溶性であり、特にセメントのような高pHの状態では容易に沈殿し、硬化前であっても系外へ溶出することはほとんどない。 The mechanism of fixation of hexavalent chromium in the present invention is considered to be due to reduction of hexavalent chromium by elemental sulfur and conversion to trivalent chromium. Hexavalent chromium is known to be highly water-soluble, and when it is contained in a hydraulic composition, it elutes not only before its hardening but also slightly after hardening when its structure is densified. On the other hand, trivalent chromium is hardly soluble, and precipitates easily in a high pH state such as cement, and hardly leaches out of the system even before curing.
単体硫黄による還元効果が発現する時期は、その粉末度に依存しており、早期に六価クロムを還元する必要がある場合には、単体硫黄の粉末度を高くすることが望ましい。好ましい粉末度はブレーン比表面積3000〜15000cm2/g、特に好ましくは9000〜15000cm2/gである。 The time when the reduction effect due to elemental sulfur is expressed depends on its fineness, and when it is necessary to reduce hexavalent chromium at an early stage, it is desirable to increase the degree of fineness of elemental sulfur . A preferable fineness is a Blaine specific surface area of 3000 to 15000 cm 2 / g, particularly preferably 9000 to 15000 cm 2 / g.
単体硫黄を配合する対象である水硬性材料としては、セメントが挙げられ、より具体的には、ポルトランドセメント、ジェットセメント、アルミナセメント、白色セメント、混合セメント、ビーライトセメント、エコセメント等が挙げられる。ここで、ポルトランドセメントには、普通ポルトランドセメントを始めとして、早強、中庸熱、白色、超早強、耐硫酸塩セメント等が包含され、ジェットセメントには、カルシウムフルオロアルミネートを含有する超速硬セメント、混合セメントには、スラグセメント、フライアッシュセメント、シリカセメント、高炉スラグセメント、石灰石微粉末含有セメント等が包含される。ビーライトセメントは、低発熱性を有する特殊セメントであり、エコセメントは、都市ゴミ焼却灰、下水汚泥焼却灰等の廃棄物焼却灰の一種以上を原料としてなる焼成物であって、カルシウムクロロアルミネート、カルシウムフルオロアルミネート、カルシウムアルミネートの一種以上及びカルシウムシリケートを含む焼成物からなるセメントである。 Cement is mentioned as a hydraulic material which is the object of blending elemental sulfur , and more specifically, Portland cement, jet cement, alumina cement, white cement, mixed cement, belite cement, eco-cement, etc. . Here, Portland cement includes normal Portland cement, early strength, moderate heat, white color, ultra-early strength, sulfate-resistant cement, etc., and jet cement contains super-fast hardening containing calcium fluoroaluminate. Cement and mixed cement include slag cement, fly ash cement, silica cement, blast furnace slag cement, cement containing fine limestone powder, and the like. Belite cement is a special cement with low heat build-up, and ecocement is a calcined product made from one or more types of waste incineration ash such as municipal waste incineration ash and sewage sludge incineration ash. A cement made of a fired product containing one or more of calcium carbonate, calcium fluoroaluminate, calcium aluminate, and calcium silicate.
本発明の水硬性組成物中の単体硫黄の含有量は、水硬性組成物中の結合性成分の乾燥重量に対し10ppm以上とすることが、六価クロムを効果的に固定するために好ましく、更に100ppm以上、特に1000ppm以上とすることが好ましい。なお、ここでいう結合性成分とは、水硬性組成物中のセメント成分、高炉スラグ、潜在水硬性物質等の水との共存下で結合機能を有する成分をいう。 The content of elemental sulfur in the hydraulic composition of the present invention, the dry weight of the binding components of the hydraulic composition to be more 10 ppm, preferably in order to effectively secure the hexavalent chromium, Further, it is preferably 100 ppm or more, particularly 1000 ppm or more. The term “binding component” as used herein refers to a component having a binding function in the presence of water such as a cement component, a blast furnace slag, and a latent hydraulic substance in the hydraulic composition.
本発明の水硬性組成物は、上記結合性成分のほか、非結合性成分を含有するものであってもよく、非結合性成分としては、砂、砂利、又はその代替として使用される石炭灰、溶融スラグ等の各種細骨材、粗骨材を挙げることができる。また、硫酸第一鉄等の還元剤を非結合性成分として添加してもよい。特に硫酸第一鉄は、まだ固まらない本発明の水硬性組成物と廃棄物との混合物中のクロムの還元増強効果がある。 The hydraulic composition of the present invention may contain a non-binding component in addition to the above-described binding component. Examples of the non-binding component include sand, gravel, or coal ash used as an alternative to the sand. And various fine aggregates such as molten slag and coarse aggregates. Further, a reducing agent such as ferrous sulfate may be added as a non-binding component. In particular, ferrous sulfate has an effect of enhancing the reduction of chromium in the mixture of the hydraulic composition of the present invention and the waste that has not yet solidified.
本発明の水硬性組成物には、更に、レオロジー特性の向上、防錆、その他の目的のために、通常用いられるAE剤、AE減水剤、減水剤、高性能減水剤、凝結調整剤、防錆剤等の各種混和剤を併用してもよい。 The hydraulic composition of the present invention further includes an AE agent, an AE water reducing agent, a water reducing agent, a high performance water reducing agent, a coagulation adjusting agent, an anti-proofing agent, which are usually used for the purpose of improving rheological properties, rust prevention and other purposes. Various admixtures such as a rusting agent may be used in combination.
また、単体硫黄の配合による六価クロムの還元効果は、その配合時又は配合後の水硬性材料の温度にも依存し、当該温度を35〜110℃とするのが好ましい。添加温度が35℃未満では六価クロム還元効果が低く、添加温度が110℃を超えると、水硬性材料中の硫酸アルカリが脱水し、物性に悪影響を与える。 Moreover, the reduction effect of hexavalent chromium by the blending of simple sulfur depends on the temperature of the hydraulic material at the time of blending or after blending, and the temperature is preferably 35 to 110 ° C. When the addition temperature is less than 35 ° C., the hexavalent chromium reducing effect is low, and when the addition temperature exceeds 110 ° C., the alkali sulfate in the hydraulic material is dehydrated and adversely affects the physical properties.
単体硫黄の水硬性材料への添加時期は、特に限定されず、水硬性材料の粉砕前から水との混練までのいずれかの段階でよいが、水硬性材料がセメントの場合、粉砕時のセメントミル内の温度は通常90〜110℃程度に制御されており、上述した六価クロムの還元効果と温度との関係の点からも、水硬性材料の粉砕前に又はこれと同時に添加すれば、その後の粉砕時に上記温度に加熱されるため、別途熱源を必要とせず、好ましい。 The timing of adding the elemental sulfur to the hydraulic material is not particularly limited, and may be any stage from before the hydraulic material is pulverized to kneading with water. However, when the hydraulic material is cement, the cement at the time of pulverization is used. The temperature in the mill is usually controlled at about 90 to 110 ° C., and from the viewpoint of the relationship between the reduction effect of hexavalent chromium and the temperature described above, if added before or simultaneously with the grinding of the hydraulic material, Since it heats to the said temperature at the time of subsequent grinding | pulverization, a separate heat source is not required and it is preferable.
本発明が適用可能な、六価クロムを含む有害廃棄物としては特に限定されないが、ゴミ焼却灰等から発生する各種粉塵、汚泥や都市ゴミの焼却で発生する各種焼却灰、金属やプラスチック、廃水処理や下水処理で発生する各種汚泥、各種廃液等が挙げられる。 Hazardous waste containing hexavalent chromium to which the present invention is applicable is not particularly limited, but various dust generated from incineration ash, etc., various incineration ash generated from incineration of sludge and municipal waste, metal and plastic, waste water Examples include various sludges and various waste liquids generated during treatment and sewage treatment.
本発明の水硬性組成物を用いて有害物質を固定化するには、本発明の水硬性組成物中の結合性成分と有害廃棄物をあらかじめ混合しておき、そこへ混練水を加えて混練し、必要に応じて非結合性成分を添加するのが代表的な方法である。有害廃棄物の性状等により上記手順では十分な混合ができないときは、本発明の水硬性組成物、有害廃棄物及び混練水を同時に混合することも可能である。また、有害廃棄物と水を予め混合しておき、これに本発明の水硬性組成物を添加してもよい。すなわち、最終的に、本発明の水硬性組成物中の結合性成分、必要に応じて添加する非結合性成分、有害廃棄物及び混練水が十分混合されるのであれば、混合の順番は、特に問わない。 In order to immobilize harmful substances using the hydraulic composition of the present invention, the binding component and the hazardous waste in the hydraulic composition of the present invention are mixed in advance, and kneaded water is added thereto for kneading. A typical method is to add a non-binding component as necessary. When sufficient mixing cannot be performed by the above procedure due to the properties of hazardous waste, etc., the hydraulic composition of the present invention, hazardous waste and kneaded water can be mixed simultaneously. Further, a hazardous waste and water may be mixed in advance, and the hydraulic composition of the present invention may be added thereto. That is, finally, if the binding component in the hydraulic composition of the present invention, the non-binding component added as necessary, hazardous waste and kneaded water are sufficiently mixed, the order of mixing is It doesn't matter.
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated still in detail, this invention is not limited to this.
参考例1
表1に示す化学組成の普通ポルトランドセメントに、硫黄純薬を0、10、100、1000若しくは10000ppm、硫化鉄(FeS)若しくは亜硫酸ナトリウム(Na2SO3)を硫黄として1000ppm、又は表2に示す化学組成の都市ゴミ溶融スラグを2%(硫黄として100ppm)を配合して本発明の水硬性組成物を調製した。本組成物と表3に示す化学組成の汚泥とを10:90の重量比で混合した。更にこの混合物と水とを2:1の重量比で混練した。練り混ぜはホバートミキサーで行い、混練後、20℃で材齢28日まで密封養生した。
Reference example 1
Ordinary Portland cement with chemical composition shown in Table 1, sulfur pure drug 0, 10, 100, 1000 or 10000 ppm, iron sulfide (FeS) or sodium sulfite (Na 2 SO 3 ) 1000 ppm as sulfur, or Table 2 A hydraulic composition of the present invention was prepared by blending 2% (100 ppm as sulfur) of municipal waste molten slag having a chemical composition. This composition was mixed with sludge having the chemical composition shown in Table 3 at a weight ratio of 10:90. Further, this mixture and water were kneaded at a weight ratio of 2: 1. The kneading was performed with a Hobart mixer, and after kneading, it was sealed and cured at 20 ° C. until the age of 28 days.
養生終了後の硬化体は、環境庁告示第13号に従って、溶出試験を行った。すなわちセメント硬化体を0.5〜5.0mmに粒度調整し、セメント硬化体の10倍の水と混合し、20℃で6時間振盪した。振盪後の濾液をICP分光分析により分析し、六価クロムの溶出量とした。この結果を表4に示す。 The cured body after curing was subjected to a dissolution test according to Environmental Agency Notification No. 13. That is, the particle size of the hardened cement was adjusted to 0.5 to 5.0 mm, mixed with 10 times as much water as the hardened cement, and shaken at 20 ° C. for 6 hours. The filtrate after shaking was analyzed by ICP spectroscopic analysis to determine the elution amount of hexavalent chromium. The results are shown in Table 4.
酸化数4以下の硫黄原子を有する硫黄物質を添加していない普通セメントでは、汚泥に含まれていた1200ppmの六価クロムのうち、20.5ppmが溶出した。これに対して、硫黄を10ppm添加したセメントでは、六価クロムの溶出量が15.0ppm、100ppm添加で1.3ppmへ減少した。また、1000ppm及び10000ppm添加では、0.12及び0.11ppmとなり、1000ppm以上添加した場合には、大きな差は生じなかった。また、硫化鉄を硫黄として1000ppm添加した場合の六価クロム溶出量は0.14ppmとなり、硫黄純薬の場合とほぼ同等の効果が得られた。亜硫酸ナトリウムとして硫黄を1000ppm添加した場合の六価クロム溶出量は0.21ppmとなり、硫黄純薬の場合よりやや溶出量が増えた。また、都市ゴミ溶融スラグとして硫黄を100ppm添加した場合、六価クロムの溶出量は1.5ppmとなり、硫黄純薬の場合よりわずかに溶出量が増えた。 In ordinary cement to which no sulfur substance having a sulfur atom with an oxidation number of 4 or less was added, 20.5 ppm out of 1200 ppm hexavalent chromium contained in the sludge. On the other hand, in the cement added with 10 ppm of sulfur, the elution amount of hexavalent chromium decreased to 15.0 ppm and to 1.3 ppm when added 100 ppm. Moreover, when 1000 ppm and 10000 ppm were added, they were 0.12 and 0.11 ppm, and when 1000 ppm or more was added, there was no significant difference. When 1000 ppm of iron sulfide was added as sulfur, the elution amount of hexavalent chromium was 0.14 ppm, which was almost the same as that obtained with sulfur pure drug. When 1000 ppm of sulfur was added as sodium sulfite, the elution amount of hexavalent chromium was 0.21 ppm, and the elution amount increased slightly compared with the case of sulfur pure drug. In addition, when 100 ppm of sulfur was added as municipal waste molten slag, the elution amount of hexavalent chromium was 1.5 ppm, and the elution amount increased slightly compared to the case of sulfur pure drug.
実施例1
表1に示す化学組成の普通ポルトランドセメントの粉砕前のクリンカーに、硫黄純薬を1000若しくは10000ppm、又は亜硫酸ナトリウム(Na2SO3)を硫黄として1000ppm添加し、更に二水石膏をSO3として2重量%加え、実験用ミルで粉砕し、本発明の水硬性組成物を調製した。この粉砕時の温度は40℃であった。本組成物と表3に示す化学組成の汚泥とを10:90の重量比で混合した。更にこの混合物と水とを2:1の重量比で混練した。練り混ぜはホバートミキサーで行い、混練後、20℃で材齢28日まで密封養生した。
Example 1
Ordinary portland cement clinker prior to grinding of the chemical compositions shown in Table 1, the sulfur Junyaku was 1000ppm added 1000 or 10000 ppm, or sodium sulfite (Na2 SO3) as a sulfur was added further 2% by weight of gypsum as a SO 3 The hydraulic composition of the present invention was prepared by pulverizing with an experimental mill. The temperature during this pulverization was 40 ° C. This composition was mixed with sludge having the chemical composition shown in Table 3 at a weight ratio of 10:90. Further, this mixture and water were kneaded at a weight ratio of 2: 1. The kneading was performed with a Hobart mixer, and after kneading, it was sealed and cured at 20 ° C. until the age of 28 days.
養生終了後の硬化体は、環境庁告示第13号に従って、溶出試験を行った。すなわちセメント硬化体を0.5〜5.0mmに粒度調整し、セメント硬化体の10倍の水と混合し、20℃で6時間振盪した。振盪後の濾液をICP分光分析により分析し、六価クロムの溶出量とした。この結果を表5に示す。 The cured body after curing was subjected to a dissolution test according to Environmental Agency Notification No. 13. That is, the particle size of the hardened cement was adjusted to 0.5 to 5.0 mm, mixed with 10 times as much water as the hardened cement, and shaken at 20 ° C. for 6 hours. The filtrate after shaking was analyzed by ICP spectroscopic analysis to determine the elution amount of hexavalent chromium. The results are shown in Table 5.
硫黄純薬を1000ppm添加した水硬性組成物では、六価クロムの溶出量が0.03ppmと、表4における同じ硫黄添加量の場合と比較して4分の1程度となった。また、硫黄純薬を10000ppm添加した場合でも、六価クロムの溶出量は0.02ppmであり、大きな差は生じなかった。亜硫酸ナトリウムとして硫黄を1000ppm添加した場合の六価クロム溶出量は0.04ppmとなり、硫黄純薬の場合よりやや溶出量が増加したが、表4の結果と比較すると温度制御による更なる効果の向上が確認できた。 In the hydraulic composition to which 1000 ppm of sulfur pure drug was added, the elution amount of hexavalent chromium was 0.03 ppm, which was about a quarter of that in the case of the same sulfur addition amount in Table 4. Moreover, even when 10000 ppm of sulfur pure drug was added, the elution amount of hexavalent chromium was 0.02 ppm, and there was no significant difference. When 1000 ppm of sulfur was added as sodium sulfite, the elution amount of hexavalent chromium was 0.04 ppm, and the elution amount increased slightly compared to the case of sulfur pure drug. It could be confirmed.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008207110A JP4944851B2 (en) | 1998-03-30 | 2008-08-11 | Method for producing hydraulic composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1998083577 | 1998-03-30 | ||
JP8357798 | 1998-03-30 | ||
JP2008207110A JP4944851B2 (en) | 1998-03-30 | 2008-08-11 | Method for producing hydraulic composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11010260A Division JPH11343162A (en) | 1998-03-30 | 1999-01-19 | Hydraulic composition and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009001487A JP2009001487A (en) | 2009-01-08 |
JP4944851B2 true JP4944851B2 (en) | 2012-06-06 |
Family
ID=40318301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008207110A Expired - Lifetime JP4944851B2 (en) | 1998-03-30 | 2008-08-11 | Method for producing hydraulic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4944851B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51148667A (en) * | 1975-06-16 | 1976-12-21 | Toa Doro Kogyo Kk | A process for solidification treatment of sludge containing chromium |
-
2008
- 2008-08-11 JP JP2008207110A patent/JP4944851B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2009001487A (en) | 2009-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Minocha et al. | Effect of inorganic materials on the solidification of heavy metal sludge | |
JP4775045B2 (en) | Reducing gypsum composition, method for producing the same, cement-based solidifying material, and solidifying method | |
JP2005146275A (en) | Agent for improving, solidifying, and stabilizing soil and its quality | |
JP2001348571A (en) | Ground-modifying material | |
JPH11171628A (en) | Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition | |
JPH11343162A (en) | Hydraulic composition and its production | |
JPH11246256A (en) | Concrete composition | |
JP4944851B2 (en) | Method for producing hydraulic composition | |
JPH11244815A (en) | Contaminated metal fixing and stabilizing agent and its treatment | |
JP2007331976A (en) | Cement admixture and cement composition | |
KR20010025183A (en) | method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same | |
JP4358400B2 (en) | Cement additive | |
JP4473385B2 (en) | Hydraulic composition | |
JP2003334568A (en) | Method for treating drain containing heavy metal | |
JP3877583B2 (en) | Hexavalent chromium reducing material | |
JPH08299935A (en) | Special cement based solidifying agent composition for waste treatment | |
JP3786872B2 (en) | Concrete composition and concrete using the same | |
JP5274739B2 (en) | Method for reducing hexavalent chromium by adjusting the particle size of silicon | |
KR100724340B1 (en) | Low price special cement for solidofication of wastes | |
JPH11221543A (en) | Hazardous material immobilizing material and immobilization treatment thereof | |
JP3774135B2 (en) | Method for reducing hexavalent chromium using calcium silicide | |
JPH0910727A (en) | Treatment agent and method for solidifying collected incineration ash of waste | |
JP2004315662A (en) | Soil conditioner and soil conditioning method | |
JP4318418B2 (en) | Cement composition | |
JP3841738B2 (en) | Hazardous heavy metal reducing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120302 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |