JP4943526B2 - Sample separation adsorption device - Google Patents

Sample separation adsorption device Download PDF

Info

Publication number
JP4943526B2
JP4943526B2 JP2010065962A JP2010065962A JP4943526B2 JP 4943526 B2 JP4943526 B2 JP 4943526B2 JP 2010065962 A JP2010065962 A JP 2010065962A JP 2010065962 A JP2010065962 A JP 2010065962A JP 4943526 B2 JP4943526 B2 JP 4943526B2
Authority
JP
Japan
Prior art keywords
sample
slit
separation
opening
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010065962A
Other languages
Japanese (ja)
Other versions
JP2011196914A (en
Inventor
晃司 楠本
豊 鵜沼
英樹 木下
真一 後藤
毅 田中
祐二 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010065962A priority Critical patent/JP4943526B2/en
Publication of JP2011196914A publication Critical patent/JP2011196914A/en
Application granted granted Critical
Publication of JP4943526B2 publication Critical patent/JP4943526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、分離媒体中のサンプルを分離し、かつ分離されたサンプルを引き続きサンプル吸着部材に吸着させるサンプル分離吸着器具に関する。   The present invention relates to a sample separation / adsorption apparatus for separating a sample in a separation medium and subsequently adsorbing the separated sample on a sample adsorption member.

ポストゲノム研究の中心的位置を担っているプロテオーム解析において、二次元電気泳動法(2DE)およびウエスタンブロッティング法の組み合わせは、優れた分離分析手法として知られている。2DEは、タンパク質に固有の独立した2つの物理的性質(電荷および分子量)に基づいて、種々の分離媒体を用いて、プロテオームを複数の成分(タンパク質)に高分解能に分離することができる。2DEによる分離結果を利用してタンパク質をさらに分析する場合、分離媒体に含まれる複数のタンパク質を、ウエスタンブロッティング法によって転写膜に固定化することが好ましい。これは、転写膜に固定化されたタンパク質が、長期間にわたって安定して保存され得る上に、分析が容易だからである。特に、発現量の増減および翻訳後修飾の有無といった複数のタンパク質の生物学的特徴を、2DEによる分離結果を利用して網羅的に比較検討する場合、ウエスタンブロッティング法は必須の工程と言える。   In proteome analysis, which plays a central role in post-genomic research, the combination of two-dimensional electrophoresis (2DE) and Western blotting is known as an excellent separation analysis technique. 2DE can separate a proteome into a plurality of components (proteins) with high resolution using various separation media based on two independent physical properties (charge and molecular weight) inherent to proteins. When the protein is further analyzed using the result of separation by 2DE, it is preferable to immobilize a plurality of proteins contained in the separation medium on the transfer membrane by Western blotting. This is because the protein immobilized on the transfer membrane can be stored stably over a long period of time and is easy to analyze. In particular, the western blotting method can be said to be an essential process when biological characteristics of a plurality of proteins such as increase / decrease in expression level and presence / absence of post-translational modification are comprehensively examined using the results of separation by 2DE.

従来では、2DEおよびウエスタンブロッティング法のそれぞれを独立した装置を用いて行っている。このため、電気泳動の後には、分離媒体を電気泳動装置から取り出して転写装置に移し、これに転写膜をセットして転写を行う操作が必要になる。このように、電気泳動と転写との間に研究者の手作業が介入すると、得られる結果の再現性が低くなるという問題が存在する。また、分離媒体として非常に軟らかくて破れやすいゲルを扱うため、ウエスタンブロッティング法は熟練を要する手法になる。   Conventionally, each of 2DE and Western blotting is performed using independent devices. For this reason, after electrophoresis, it is necessary to take out the separation medium from the electrophoresis apparatus, transfer it to the transfer apparatus, set a transfer film on the transfer medium, and perform transfer. Thus, when a researcher's manual intervention intervenes between electrophoresis and transcription, there is a problem that the reproducibility of the obtained result becomes low. In addition, the western blotting method is a technique that requires skill because a gel that is very soft and easily broken is used as a separation medium.

一方、特許文献1には、毛細管を用いた毛細電気泳動(CE)において、電気泳動と転写とを1台の装置で行う技術が提案されている。具体的には、毛細管(内部はゲルまたは溶液)を通って排出されるサンプルを、そのまま転写膜に吸着させ回収まで1台の装置で行うことができるというものである。本技術によれば、電気泳動および転写を連続的に行うことが可能である。   On the other hand, Patent Document 1 proposes a technique for performing electrophoresis and transfer with a single device in capillary electrophoresis (CE) using a capillary tube. Specifically, a sample discharged through a capillary tube (the inside is a gel or a solution) is directly adsorbed on a transfer film and can be recovered with one apparatus. According to the present technology, electrophoresis and transfer can be performed continuously.

特開平4−264253号公報(1992年9月21日公開)JP-A-4-264253 (published September 21, 1992)

しかしながら、特許文献1に開示されている技術では、電気泳動で分離されたサンプルが転写膜へ吸着したとき、その解像度の最小値は理論上、毛細管の末端径となってしまい、それ以上の分解能を得ることはできない。また、実際の転写の場面において、毛細管から排出されたサンプルは転写膜に吸着されるまでの間に拡散し、転写膜に対するサンプルの吸着パターンが不明瞭になってしまう場合がある。さらに、特許文献1に開示されている技術は、毛細電気泳動により泳動されたサンプルをそのまま転写する技術であるため、二次元方向への分離展開が原理的に不可能である。   However, in the technique disclosed in Patent Document 1, when the sample separated by electrophoresis is adsorbed to the transfer film, the minimum value of the resolution is theoretically the end diameter of the capillary tube, and the resolution higher than that. Can't get. In an actual transfer scene, the sample discharged from the capillary tube diffuses before being adsorbed to the transfer film, and the sample adsorption pattern with respect to the transfer film may become unclear. Furthermore, since the technique disclosed in Patent Document 1 is a technique for directly transferring a sample migrated by capillary electrophoresis, separation and development in a two-dimensional direction is impossible in principle.

本発明の目的は、上記課題を解決するために、2次元目の電気泳動から転写を連続的に行うことが可能なサンプル分離吸着器具において、高分解能なサンプル吸着を実現することである。   In order to solve the above-described problems, an object of the present invention is to realize high-resolution sample adsorption in a sample separation / adsorption instrument capable of continuously performing transfer from electrophoresis in the second dimension.

本発明者らは、電気泳動および転写を連続的に行うにあたり、電気泳動に用いた電極対を利用して電気泳動媒体の端面から転写膜へ分離分子を転写するブロッティング方式に想到し、本方式において高分解能なサンプル吸着を実現させた。   The present inventors have conceived a blotting method for transferring separated molecules from the end face of an electrophoresis medium to a transfer film by using an electrode pair used for electrophoresis in continuous electrophoresis and transfer. Realized high-resolution sample adsorption.

すなわち、本発明に係るサンプル分離吸着器具は、上記課題を解決するために、分離媒体に緩衝液を介して電流を流すことによって、上記分離媒体中のサンプルを分離し、かつ、分離されたサンプルを上記分離媒体からサンプル吸着部材へ吸着させるサンプル分離吸着器具であって、第1電極と、第2電極と、上記第1電極に対向する側に開口する第1開口および上記第2電極に対向する側に開口する第2開口を有し、かつ、上記分離媒体を格納するサンプル分離部と、上記第2開口に対向する位置にスリットを有するスリット構造体とを備え、上記サンプル吸着部材は、上記第2開口と上記スリットとの間に配置されることを特徴とする。   That is, in order to solve the above problems, the sample separation / adsorption device according to the present invention separates the sample in the separation medium by passing an electric current through the buffer to the separation medium, and the separated sample. Is a sample separation / adsorption device that adsorbs the separation medium from the separation medium to the sample adsorption member, and is opposed to the first electrode, the second electrode, the first opening that faces the first electrode, and the second electrode. A sample separation unit that stores the separation medium and a slit structure that has a slit at a position facing the second opening, and the sample adsorption member includes: It is arranged between the second opening and the slit.

上記構成では、分離媒体を格納するサンプル分離部が第1開口および第2開口を有するため、第1電極と第2電極との間に電圧を印加することによって、第1電極と第2電極とが、緩衝液、分離媒体、およびサンプル吸着部材を介して電気的に接続される。また、第2開口に対向する位置に配置されたスリットは、第1電極から第2電極へ向かう電気力線を収束する。   In the above configuration, since the sample separation unit for storing the separation medium has the first opening and the second opening, the first electrode and the second electrode are applied by applying a voltage between the first electrode and the second electrode. Are electrically connected through the buffer, the separation medium, and the sample adsorbing member. Moreover, the slit arrange | positioned in the position facing 2nd opening converges the electric-power line which goes to a 2nd electrode from a 1st electrode.

第1電極と第2電極との間に電圧が印加されると、サンプルは分離媒体中を泳動して複数の成分に分離される。分離されたサンプルは、第2開口から排出された後も電気力線に沿って流れ、サンプル吸着部材に吸着される。   When a voltage is applied between the first electrode and the second electrode, the sample migrates in the separation medium and is separated into a plurality of components. The separated sample flows along the lines of electric force even after being discharged from the second opening, and is adsorbed by the sample adsorbing member.

ここで、サンプル吸着部材は第2開口とスリットの間に配置されているため、電気力線は第2開口からスリットに向かって収束されながらサンプル吸着部材を通過する。つまり、電気力線に沿って流れるサンプルは、第2開口から排出され、サンプル吸着部材に吸着する過程において収束される。   Here, since the sample adsorption member is disposed between the second opening and the slit, the electric lines of force pass through the sample adsorption member while being converged from the second opening toward the slit. That is, the sample flowing along the lines of electric force is discharged from the second opening and converged in the process of being adsorbed by the sample adsorbing member.

したがって、上記構成によれば、サンプル吸着部材に対するサンプル吸着の広がりを抑制することができ、分解能の高いサンプル吸着を実現することができる。   Therefore, according to the said structure, the spread of the sample adsorption | suction with respect to a sample adsorption | suction member can be suppressed, and sample adsorption | suction with high resolution is realizable.

なお、分離されたサンプルを分離媒体からサンプル吸着部材へ吸着させる際には、第1電極および第2電極により規定される第1方向に対して垂直な第2方向にサンプル吸着部材を移動させることによって、サンプル分離パターンを得ることが可能である。   When the separated sample is adsorbed from the separation medium to the sample adsorption member, the sample adsorption member is moved in a second direction perpendicular to the first direction defined by the first electrode and the second electrode. Thus, it is possible to obtain a sample separation pattern.

また、上記構成によれば、一次元目の電気泳動が行われた媒体をサンプルとしてセットすることによって、2次元目の電気泳動と転写とを連続的に行うことが可能である。   Moreover, according to the said structure, it is possible to perform 2nd-dimensional electrophoresis and transcription | transfer continuously by setting as a sample the medium in which 1st-dimensional electrophoresis was performed.

また、本発明に係るサンプル分離吸着器具では、上記第1電極および上記第2電極により規定される第1方向に対して垂直な第2方向において、上記スリットの幅は、上記第2開口の幅よりも狭いことが好ましい。   In the sample separation / adsorption device according to the present invention, in the second direction perpendicular to the first direction defined by the first electrode and the second electrode, the width of the slit is the width of the second opening. Narrower than that.

上記構成によれば、スリットは上記電気力線を第2開口よりも狭い幅にまで収束することが可能である。これによって、第2開口から排出されたサンプルを当該第2開口の幅よりも狭い範囲に収束することができるため、より分解能の高いサンプル吸着を実現することができる。   According to the above configuration, the slit can converge the electric lines of force to a width narrower than that of the second opening. Accordingly, since the sample discharged from the second opening can be converged in a range narrower than the width of the second opening, sample adsorption with higher resolution can be realized.

また、本発明に係るサンプル分離吸着器具において、上記スリット構造体は、絶縁性の材料から構成されていることが好ましい。   In the sample separation / adsorption appliance according to the present invention, the slit structure is preferably made of an insulating material.

さらに、本発明に係るサンプル分離吸着器具において、上記スリットは、誘電率5.0以下の材料から構成されていることが好ましい。   Furthermore, in the sample separation / adsorption appliance according to the present invention, the slit is preferably made of a material having a dielectric constant of 5.0 or less.

上記材料からなるスリット構造体がスリットを形成することによって、当該スリットは上記電気力線を効果的に収束することができる。これによって、より分解能の高いサンプル吸着を実現することができる。   When the slit structure made of the material forms a slit, the slit can effectively converge the lines of electric force. As a result, it is possible to realize sample adsorption with higher resolution.

また、本発明に係るサンプル分離吸着器具において、上記サンプル吸着部材は上記スリットに接して配置され、上記第2開口と上記スリットとの間の上記第1方向における距離は、300μm以上4000μm以下であることが好ましい。   In the sample separation / adsorption instrument according to the present invention, the sample adsorption member is disposed in contact with the slit, and a distance in the first direction between the second opening and the slit is 300 μm or more and 4000 μm or less. It is preferable.

上記構成によれば、上記第2開口と上記スリットとの間に、サンプルが収束するための距離が適切に確保される。仮に上記距離が300μm未満であれば、サンプルが十分に収束する前にサンプル吸着部材に到達してしまう。一方、上記距離が4000μmよりも長ければ、スリットによる収束力が第2開口付近までに十分に伝わらず、第2開口から排出されたサンプルには、拡散の力がより強く働いてしまう。   According to the said structure, the distance for a sample to converge is appropriately ensured between the said 2nd opening and the said slit. If the distance is less than 300 μm, the sample reaches the sample adsorbing member before the sample sufficiently converges. On the other hand, if the distance is longer than 4000 μm, the convergence force by the slit is not sufficiently transmitted to the vicinity of the second opening, and the diffusion force acts more strongly on the sample discharged from the second opening.

また、上記構成によれば、サンプル吸着部材はスリットに接して配置されるため、サンプルが最も収束された位置において吸着が行われる。したがって、より分解能の高いサンプル吸着を実現することができる。   Further, according to the above configuration, the sample adsorbing member is disposed in contact with the slit, so that the adsorption is performed at the position where the sample is most converged. Therefore, sample adsorption with higher resolution can be realized.

また、本発明に係るサンプル分離吸着器具において、上記第2開口と上記サンプル吸着部材が接していない場合には、それらの間には、サンプル透過可能な導電性媒体が介在することが好ましい。   Further, in the sample separation / adsorption device according to the present invention, when the second opening and the sample adsorption member are not in contact with each other, it is preferable that a conductive medium capable of transmitting the sample is interposed therebetween.

上記構成によれば、サンプルが緩衝液中に拡散することなく、サンプル吸着部材に確実に吸着することができる。   According to the said structure, a sample can be reliably adsorb | sucked to a sample adsorption | suction member, without diffusing in a buffer solution.

また、本発明に係るサンプル分離吸着器具において、上記スリット構造体は、上記第2開口側に突起する突起形状の間に上記スリットを形成する突起部を有しており、上記突起部の少なくとも一部は、上記サンプル吸着部材と共に、上記第2開口を介して上記サンプル分離部内に入り込み、上記分離媒体に接していることが好ましい。   Further, in the sample separation / adsorption device according to the present invention, the slit structure has a protruding portion that forms the slit between the protruding shapes protruding toward the second opening, and at least one of the protruding portions. It is preferable that the part enters the sample separation part through the second opening together with the sample adsorption member and is in contact with the separation medium.

上記構成によれば、上記第2方向において、スリットの中央位置と第2開口の中央位置とを一致させることが容易になる。これらの位置が一致することによって、スリットによる収束力を偏らせることなくサンプル吸着の精度をより向上し得る。また、分離媒体とサンプル吸着部材とが密着するため、サンプルを確実に吸着させることができる。   According to the above configuration, it becomes easy to match the center position of the slit and the center position of the second opening in the second direction. By matching these positions, the accuracy of sample adsorption can be further improved without biasing the convergence force by the slit. Moreover, since the separation medium and the sample adsorbing member are in close contact with each other, the sample can be adsorbed reliably.

また、本発明に係るサンプル分離吸着器具において、上記スリット構造体は、
上記スリットの周囲から上記第2開口側に突起する形状であって、上記第2開口を介して上記サンプル分離部内に入り込む突起部と、
上記突起部と上記スリットとの間において上記サンプル吸着部材を保持する保持部とを有することが好ましい。
Moreover, in the sample separation and adsorption device according to the present invention, the slit structure is
A shape that protrudes from the periphery of the slit toward the second opening, and a protrusion that enters the sample separation portion through the second opening;
It is preferable to have a holding part for holding the sample adsorbing member between the protrusion and the slit.

上記構成によれば、突起部とサンプル吸着部材とに囲まれた空間に分離媒体を存在させ、分離媒体とサンプル吸着部材との密着性を高めることによって、サンプルをより確実に吸着させることができる。また、上記第2方向において、スリットの中央位置と第2開口の中央位置とを一致させることが容易になるため、スリットによる収束力を偏らせることなくサンプル吸着の精度をより向上し得る。   According to the above configuration, the sample can be adsorbed more reliably by allowing the separation medium to exist in the space surrounded by the protrusion and the sample adsorbing member and improving the adhesion between the separation medium and the sample adsorbing member. . In addition, in the second direction, it becomes easy to match the center position of the slit and the center position of the second opening, so that the accuracy of sample adsorption can be further improved without biasing the convergence force by the slit.

また、上記構成によれば、保持部がサンプル吸着部材を保持するため、サンプル吸着時にサンプル吸着部材を移動させる際、分離媒体とサンプル吸着部材との密着性を高めつつ、サンプル吸着部材を直線的に引き上げることが可能になる。これによって、より正確なサンプル分離パターンを得ることが可能になる。   According to the above configuration, since the holding unit holds the sample adsorption member, when moving the sample adsorption member during sample adsorption, the sample adsorption member is linearly improved while improving the adhesion between the separation medium and the sample adsorption member. It becomes possible to pull up. This makes it possible to obtain a more accurate sample separation pattern.

また、本発明に係るサンプル分離吸着器具は、上記第1電極が内部に配置された第1緩衝液槽と、上記第2電極が内部に配置された第2緩衝液槽とをさらに備え、上記スリット構造体は、上記第2緩衝液槽と一体的に構成されており、上記スリット構造体を含む上記第2緩衝液槽の少なくとも一部は、上記第2方向における上記スリットの中心を通る、当該第2方向に垂直な平面に対して対称に構成されていることが好ましい。   The sample separation / adsorption device according to the present invention further includes a first buffer solution tank in which the first electrode is disposed, and a second buffer solution tank in which the second electrode is disposed, The slit structure is configured integrally with the second buffer solution tank, and at least a part of the second buffer solution tank including the slit structure passes through the center of the slit in the second direction. It is preferable that they are configured symmetrically with respect to a plane perpendicular to the second direction.

上記構成によれば、スリット構造体と第2緩衝液槽とが一体的であるため、サンプル分離吸着器具を容易に準備することができる。また、第2緩衝液槽の少なくとも一部が対称であることにより、サンプルの流れに異方性を与える僅かな要因も排除され、サンプル吸着の精度をより向上し得る。   According to the said structure, since a slit structure and a 2nd buffer solution tank are integrated, a sample separation adsorption instrument can be prepared easily. Further, since at least a part of the second buffer solution tank is symmetric, a slight factor that gives anisotropy to the flow of the sample can be eliminated, and the accuracy of sample adsorption can be further improved.

また、本発明に係るサンプル分離吸着器具において、上記スリット構造体は、上記サンプル分離部の上記第2開口側において、当該サンプル分離部と一体的に構成されていることが好ましい。   In the sample separation / adsorption device according to the present invention, it is preferable that the slit structure is integrally formed with the sample separation part on the second opening side of the sample separation part.

上記構成によれば、第2開口に対するスリットの位置を合わせるための微調整等を必要とせず、サンプル分離吸着器具を容易に準備することができる。   According to the said structure, the fine separation etc. for adjusting the position of the slit with respect to 2nd opening are not required, but a sample separation adsorption instrument can be prepared easily.

また、本発明に係るサンプル分離吸着器具において、上記第1電極、上記第1開口、上記第2開口、および上記第2電極が、一直線上に配置されていることが好ましい。   In the sample separation / adsorption device according to the present invention, it is preferable that the first electrode, the first opening, the second opening, and the second electrode are arranged in a straight line.

上記構成によれば、第2開口付近の電気力線の流れがサンプル吸着部材に対して垂直になるため、第2開口から排出されたサンプルはサンプル吸着部材に対して垂直方向な方向から吸着される。これによってサンプル吸着の精度をより向上し得る。   According to the above configuration, the flow of electric lines of force in the vicinity of the second opening is perpendicular to the sample adsorption member, so that the sample discharged from the second opening is adsorbed from the direction perpendicular to the sample adsorption member. The This can improve the accuracy of sample adsorption.

また、本発明に係るサンプル分離吸着器具は、上記サンプル吸着部材が移動する経路を規定するガイドをさらに備えていることが好ましい。   Moreover, it is preferable that the sample separation / adsorption instrument according to the present invention further includes a guide for defining a path along which the sample adsorption member moves.

上記構成によれば、サンプル吸着部材は定められた経路を移動することによって、他の部材等に干渉することなく、滑らかに移動することができる。   According to the above configuration, the sample adsorbing member can move smoothly without interfering with other members and the like by moving along a predetermined path.

また、本発明に係るサンプル分離吸着器具は、上記第2開口に対向する位置において、上記サンプル吸着部材を上記第2方向に移動させる移動手段をさらに備えていることが好ましい。   Moreover, it is preferable that the sample separation / adsorption instrument according to the present invention further includes moving means for moving the sample adsorption member in the second direction at a position facing the second opening.

上記構成によれば、サンプル吸着部材を第2方向に自動的に移動させることができるため、より正確なサンプル分離パターンを得ることが可能でさる。   According to the above configuration, since the sample adsorption member can be automatically moved in the second direction, a more accurate sample separation pattern can be obtained.

また、本発明に係るサンプル分離吸着器具は、上記第1電極と上記第2電極との間の電圧を測定する電圧検出手段をさらに備えており、上記移動手段は、上記電圧検出手段によって検出された電圧に基づき、サンプル吸着部材の移動を開始させることが好ましい。   The sample separation / adsorption device according to the present invention further includes voltage detection means for measuring a voltage between the first electrode and the second electrode, and the moving means is detected by the voltage detection means. It is preferable to start the movement of the sample adsorbing member based on the measured voltage.

上記構成によれば、吸着開始と同時にサンプル吸着部材を移動させることができるため、再現の良い結果を獲得出来ると同時に、サンプル吸着部材の無駄な使用も省くことができる。   According to the above configuration, the sample adsorbing member can be moved simultaneously with the start of adsorption, so that a reproducible result can be obtained, and at the same time unnecessary use of the sample adsorbing member can be omitted.

本発明に係るサンプル分離吸着器具は、分離媒体に緩衝液を介して電流を流すことによって、上記分離媒体中のサンプルを分離し、かつ、分離されたサンプルを上記分離媒体からサンプル吸着部材へ吸着させるサンプル分離吸着器具であって、第1電極と、第2電極と、上記第1電極に対向する側に開口する第1開口および上記第2電極に対向する側に開口する第2開口を有し、かつ、上記分離媒体を格納するサンプル分離部と、上記第2開口に対向する位置にスリットを有するスリット構造体とを備え、上記サンプル吸着部材は、上記第2開口と上記スリットとの間に配置されるため、2次元目の電気泳動から転写を連続的に行うことが可能なサンプル分離吸着器具において、高分解能なサンプル吸着を実現することができる。   The sample separation and adsorption device according to the present invention separates a sample in the separation medium by passing an electric current through the buffer to the separation medium, and adsorbs the separated sample from the separation medium to the sample adsorption member. A sample separation / adsorption device having a first electrode, a second electrode, a first opening that opens on a side facing the first electrode, and a second opening that opens on a side facing the second electrode. And a sample separation part for storing the separation medium, and a slit structure having a slit at a position facing the second opening, and the sample adsorbing member is disposed between the second opening and the slit. Therefore, high-resolution sample adsorption can be realized in a sample separation / adsorption instrument that can continuously perform transfer from electrophoresis in the second dimension.

本発明の一実施形態に係るサンプル分離吸着器具の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the sample separation adsorption instrument which concerns on one Embodiment of this invention. (a)(b)は、上記サンプル分離吸着器具におけるスリット構造体の変形例を示す断面図である。(A) (b) is sectional drawing which shows the modification of the slit structure in the said sample separation adsorption | suction instrument. 上記サンプル分離吸着器具におけるスリット構造体の変形例を示す断面図である。It is sectional drawing which shows the modification of the slit structure in the said sample separation adsorption instrument. 上記サンプル分離吸着器具における移動アームの変形例を示す断面図である。It is sectional drawing which shows the modification of the movement arm in the said sample separation adsorption instrument. 上記サンプル分離吸着器具におけるスリット構造体の変形例を示す断面図である。It is sectional drawing which shows the modification of the slit structure in the said sample separation adsorption instrument. (a)(b)は、上記サンプル分離吸着器具におけるスリット構造体の変形例を示す断面図である。(A) (b) is sectional drawing which shows the modification of the slit structure in the said sample separation adsorption | suction instrument. 粒子軌道シミュレーションに用いるサンプル分離吸着器具のモデル構成を示す図である。It is a figure which shows the model structure of the sample separation adsorption instrument used for particle | grain trajectory simulation. スリットの幅を変化させたときの、サンプル吸着部材中央における電気力線の広がりをプロットしたグラフである。It is the graph which plotted the spread of the electric force line in the center of a sample adsorption member when changing the width of a slit. (a)〜(d)は、スリットの幅を変化させたときの電気力線の広がりを表わす図である。(A)-(d) is a figure showing the breadth of a line of electric force when changing the width | variety of a slit. (a)〜(c)は、スリット構造体の材料を変更したときの、電気力線の広がりを表わす図である。(A)-(c) is a figure showing the breadth of a line of electric force when the material of a slit structure is changed. 第2開口とスリットとの間の距離を変化させたときの、サンプル吸着部材中央における電気力線の広がりをプロットしたグラフである。It is the graph which plotted the spread of the electric force line in the center of a sample adsorption member when changing the distance between the 2nd opening and a slit. (a)〜(c)は、第2開口とスリットとの間の距離を変化させたときの、電気力線の広がりを表わす図である。(A)-(c) is a figure showing the breadth of a line of electric force when changing the distance between 2nd opening and a slit. 粒子軌道シミュレーションに用いるサンプル分離吸着器具のモデル構成を示す図である。It is a figure which shows the model structure of the sample separation adsorption instrument used for particle | grain trajectory simulation. (a)は、粒子軌道シミュレーション結果について第2開口付近を拡大して示す図であって、スリットを第2開口へ押し込んだ構成における結果を示す図であり、(b)は、スリットを第2開口へ押し込まない構成における結果を示す図である。(A) is a figure which expands and shows the 2nd opening vicinity about a particle orbital simulation result, Comprising: It is a figure which shows the result in the structure which pushed the slit into the 2nd opening, (b) is a figure which shows a 2nd slit. It is a figure which shows the result in the structure which does not push in to opening. 本発明の他の一実施形態に係るサンプル分離吸着器具の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the sample separation adsorption instrument which concerns on other one Embodiment of this invention. 上記サンプル分離吸着器具におけるスリットの変形例を示す断面図である。It is sectional drawing which shows the modification of the slit in the said sample separation adsorption instrument. (a)は、比較例に係るサンプル分離吸着器具のモデル構成を示す図であり、(b)は、粒子軌道シミュレーション結果について、(a)に示す装置における第2開口付近を拡大して示す図である。(A) is a figure which shows the model structure of the sample separation adsorption instrument which concerns on a comparative example, (b) is a figure which expands and shows the 2nd opening vicinity in the apparatus shown to (a) about a particle orbit simulation result. It is.

本発明の一実施形態について、図面に基づいて説明すれば以下のとおりである。   An embodiment of the present invention will be described below with reference to the drawings.

(サンプル分離吸着器具100)
まず、本実施形態に係るサンプル分離吸着器具100の概略的な構成について、図1を参照して説明する。図1は、サンプル分離吸着器具100を概略的に示す断面図である。なお、サンプル分離吸着器具100は、サンプル分離を略水平方向に行う横置きの装置であるが、本発明はこれに限られず、縦置きの装置であってもよい。
(Sample separation / adsorption device 100)
First, a schematic configuration of the sample separation / adsorption device 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing a sample separation / adsorption device 100. In addition, although the sample separation adsorption instrument 100 is a horizontal apparatus that performs sample separation in a substantially horizontal direction, the present invention is not limited thereto, and may be a vertical apparatus.

図1に示すように、サンプル分離吸着器具100は、陰電極(第1電極)2、陽電極(第2電極)3、第1緩衝液槽4、第2緩衝液槽5、分離ゲル(分離媒体)7を収納するサンプル分離部6、スリット1を形成するスリット構造体8、2つの移動アーム10および16を備えている。また、サンプル分離部6とスリット1との間には転写膜(サンプル吸着部材)9が配置されている。   As shown in FIG. 1, a sample separation / adsorption device 100 includes a negative electrode (first electrode) 2, a positive electrode (second electrode) 3, a first buffer solution tank 4, a second buffer solution tank 5, a separation gel (separation). Medium) 7, a sample separation unit 6 that houses 7, a slit structure 8 that forms slit 1, and two moving arms 10 and 16. A transfer film (sample adsorbing member) 9 is disposed between the sample separation unit 6 and the slit 1.

サンプル分離部6は、第1緩衝液槽4に向かって開口する第1開口17、および第2緩衝液槽5に向かって開口する第2開口18を有している。このため、サンプル分離吸着器具100では、第1緩衝液槽4および第2緩衝液槽5に緩衝液を満たすことによって、第1緩衝液槽4内の陰電極2と第2緩衝液槽5内の陽電極3とが、2つの槽における緩衝液、分離ゲル7、および転写膜9を介して電気的に接続される。すなわち、サンプル分離吸着器具100は、陰電極2と陽電極3との間に電圧を印加することによって、第1開口17から導入されたサンプルを分離ゲル7によって分離し、分離された各成分を第2開口18から排出させて転写膜9に吸着させる器具である。   The sample separation unit 6 has a first opening 17 that opens toward the first buffer solution tank 4 and a second opening 18 that opens toward the second buffer solution tank 5. For this reason, in the sample separation adsorption instrument 100, the first buffer solution tank 4 and the second buffer solution tank 5 are filled with the buffer solution, whereby the negative electrode 2 in the first buffer solution tank 4 and the second buffer solution tank 5 are filled. The positive electrode 3 is electrically connected through the buffer solution, the separation gel 7 and the transfer film 9 in the two tanks. That is, the sample separation / adsorption device 100 separates the sample introduced from the first opening 17 by the separation gel 7 by applying a voltage between the negative electrode 2 and the positive electrode 3, and separates the separated components. It is an instrument that is discharged from the second opening 18 and adsorbed to the transfer film 9.

以下に、主要な各部材について図1を参照して詳細に説明する。   Below, each main member is demonstrated in detail with reference to FIG.

なお、以下の説明では、サンプル分離吸着器具100において、陰電極2および陽電極3に定義されるサンプルの分離方向をx軸方向とし、転写膜9の移動方向をy軸方向とし、x軸およびy軸のいずれにも垂直な方向をz軸方向とする。   In the following description, in the sample separation / adsorption device 100, the sample separation direction defined by the negative electrode 2 and the positive electrode 3 is the x-axis direction, the moving direction of the transfer film 9 is the y-axis direction, A direction perpendicular to any y-axis is defined as a z-axis direction.

(陰電極2および陽電極3)
陰電極2は第1緩衝液槽4内に配置されており、陽電極3は第2緩衝液槽5内に配置されている。陰電極2および陽電極3は、金属などの導電性を有する材料から形成される。陰電極2および陽電極3を形成する材料としては、例えば電極のイオン化を抑制する観点から白金が好ましい。
(Negative electrode 2 and positive electrode 3)
The negative electrode 2 is arranged in the first buffer solution tank 4, and the positive electrode 3 is arranged in the second buffer solution tank 5. The negative electrode 2 and the positive electrode 3 are formed of a conductive material such as metal. As a material for forming the negative electrode 2 and the positive electrode 3, for example, platinum is preferable from the viewpoint of suppressing ionization of the electrode.

これらの電極配置に関しては、陰電極2、第2開口18、および陽電極3が、略一直線上に配置されていることが好ましい。このような配置において図1に示すように転写膜9が配置されれば、第2開口18を通る電気力線は転写膜9に対して略垂直になるため、サンプルの吸着の精度を向上し得る。   Regarding these electrode arrangements, it is preferable that the negative electrode 2, the second opening 18, and the positive electrode 3 are arranged substantially in a straight line. In such an arrangement, if the transfer film 9 is arranged as shown in FIG. 1, the electric lines of force passing through the second opening 18 are substantially perpendicular to the transfer film 9, thereby improving the accuracy of sample adsorption. obtain.

また、陽電極3を転写膜9から離して配置することが好ましい。これによって、陽電極3から発生する気泡が、転写膜9に対する分離成分の吸着に悪影響を及ぼすことを抑制することができる。   The positive electrode 3 is preferably arranged away from the transfer film 9. Thereby, it is possible to suppress the bubbles generated from the positive electrode 3 from adversely affecting the adsorption of the separation component to the transfer film 9.

(第1緩衝液槽4および第2緩衝液槽5)
第1緩衝液槽4および第2緩衝液槽5は、容器状のステージ13内にサンプル分離部6を取り付けて、ステージ13を2つの槽に分けることによって形成されている。
(First buffer solution tank 4 and second buffer solution tank 5)
The first buffer tank 4 and the second buffer tank 5 are formed by attaching the sample separation unit 6 in a container-like stage 13 and dividing the stage 13 into two tanks.

第1緩衝液槽4および第2緩衝液槽5に入れる緩衝液は、導電性を有するあらゆる緩衝液であり得る。ただし、強酸性および強塩基性に緩衝域を有する緩衝液は、分離ゲル7および転写膜9に対して悪影響を及ぼすおそれがある。   The buffer solution put into the first buffer solution tank 4 and the second buffer solution tank 5 can be any buffer solution having conductivity. However, a buffer solution having strong acidic and strongly basic buffer regions may adversely affect the separation gel 7 and the transfer film 9.

(サンプル分離部6)
サンプル分離部6は、上述したように第1緩衝液槽4に向かって開口する第1開口(サンプル供給媒体接続部)17、および第2緩衝液槽5に向かって開口する第2開口(サンプル成分排出口)18を有している。サンプル分離部6はその内部に分離ゲル7を収納し、この分離ゲル7は、第1開口17を介して第1緩衝液槽4内に面し、第2開口18を介して第2緩衝液槽5内に面する。
(Sample separation unit 6)
As described above, the sample separation unit 6 includes the first opening (sample supply medium connecting portion) 17 that opens toward the first buffer solution tank 4 and the second opening (sample) that opens toward the second buffer solution tank 5. Component discharge port) 18. The sample separation unit 6 accommodates a separation gel 7 therein, and the separation gel 7 faces the first buffer solution tank 4 through the first opening 17 and the second buffer solution through the second opening 18. Facing inside the tank 5.

サンプル分離部6は、ガラスまたはアクリルなどの絶縁体から形成された2枚の板から構成され得る。この2枚の板のうち、上側に配置される板は、第1開口17側において欠けていることが好ましい。これによって、分離ゲル7の第1開口17側が上面に露出し、この露出部分からサンプルを導入することができる。   The sample separation unit 6 can be composed of two plates formed of an insulator such as glass or acrylic. Of the two plates, the plate disposed on the upper side is preferably missing on the first opening 17 side. As a result, the first opening 17 side of the separation gel 7 is exposed on the upper surface, and the sample can be introduced from this exposed portion.

分離ゲル7は、第1開口17から導入されたサンプル成分を分子量にしたがって分離するためのゲルである。分離ゲル7は、サンプル分離部6をステージ13に対する取り付け前、または取り付けた後に、サンプル分離部6内に充填される。分離ゲル7の例としては、アクリルアミドゲルおよびアガロースゲルなどが挙げられる。   The separation gel 7 is a gel for separating the sample components introduced from the first opening 17 according to the molecular weight. The separation gel 7 is filled in the sample separation unit 6 before or after the sample separation unit 6 is attached to the stage 13. Examples of the separation gel 7 include acrylamide gel and agarose gel.

なお、本実施形態においては、サンプル分離部6内に分離ゲル7を充填する構成を採用しているが、サンプル分離部6を構成する2枚の対向する板の間にナノピラーと呼ばれる多数の超微細柱を設ける構成も採用し得る。   In the present embodiment, the configuration in which the sample separation unit 6 is filled with the separation gel 7 is adopted. However, a number of ultrafine columns called nanopillars are provided between two opposing plates constituting the sample separation unit 6. It is also possible to adopt a configuration in which

また、サンプル分離部6の第2開口18は、その周囲を含めて、多孔質材料によって形成された被覆部(導電性媒体:図示しない)によって覆われていてもよい。これによって、第2開口18に転写膜9が接するあるいは押付けられている場合(第2開口18と転写膜9の間に距離を設けない場合)において、転写膜9が搬送される時に転写膜9がサンプル分離部6および分離ゲル7から受ける摩擦抵抗および損傷を低減することができる。   Moreover, the 2nd opening 18 of the sample separation part 6 may be covered with the coating | coated part (conductive medium: not shown) formed of the porous material including the circumference | surroundings. Accordingly, when the transfer film 9 is in contact with or pressed against the second opening 18 (when no distance is provided between the second opening 18 and the transfer film 9), the transfer film 9 is transferred when the transfer film 9 is conveyed. Can reduce the frictional resistance and damage received from the sample separation part 6 and the separation gel 7.

上記被覆部を形成する多孔質材料は、貫通している細孔を有する材料であり、かつ、親水性、低いサンプル吸着能、および高い強度を有する材料であることが好ましい。これによって、分離された成分が通過する経路に位置する被覆部が、分離された成分を好適に通過させ得る。   The porous material forming the covering portion is preferably a material having through-holes, and a material having hydrophilicity, low sample adsorption ability, and high strength. Thereby, the coating | coated part located in the path | route through which the isolate | separated component passes can pass the isolate | separated component suitably.

例えば、貫通している細孔を有する多孔質材料が親水性を有していれば、分離ゲル7の充填時、第2開口18に対して十分に分離ゲル7が充填され、かつ当該細孔に分離ゲル7が充填される。これによって、転写膜9と分離ゲル7とを密着させることができる。したがって、分離された成分が緩衝液に拡散することを確実に抑制し、かつ安定した通電状態を維持し得る。   For example, if the porous material having penetrating pores is hydrophilic, the separation gel 7 is sufficiently filled into the second opening 18 when the separation gel 7 is filled, and the pores The separation gel 7 is filled. As a result, the transfer film 9 and the separation gel 7 can be brought into close contact with each other. Accordingly, it is possible to reliably suppress the separated component from diffusing into the buffer solution and to maintain a stable energized state.

被覆部を形成する材料の例としては、親水性PVDF(Polyvinylidene difluoride)膜、および親水性PTFE(Polytetra fluoro ethylene)膜などの膜状の材料が挙げられる。サンプル分離部6に対する被覆部の取り付け方法としては、粘着テープまたは接着剤を用いる方法、ならびにクリップなどを用いてサンプル分離部6と被覆部とを挟んで固定する方法などが挙げられる。   Examples of the material forming the covering include film-like materials such as a hydrophilic PVDF (Polyvinylidene difluoride) film and a hydrophilic PTFE (Polytetrafluoroethylene) film. Examples of the method of attaching the covering portion to the sample separation portion 6 include a method using an adhesive tape or an adhesive, and a method of fixing the sample separation portion 6 and the covering portion with a clip or the like.

被覆部内部に分離ゲル7を含ませる方法としては、第2開口18およびその周囲に被覆部を取り付けた後、分離ゲル7をサンプル分離部6に充填する方法が挙げられる。例えば、ポリアクリルアミドゲルを分離ゲル7として用いる場合、被覆部を取り付けたサンプル分離部6の第1開口17側から、ゲル重合前のアクリルアミド溶液を注ぎ込んだ後、ゲル重合させればよい。   As a method of including the separation gel 7 inside the coating portion, there is a method of filling the sample separation portion 6 with the separation gel 7 after attaching the coating portion to the second opening 18 and the periphery thereof. For example, when polyacrylamide gel is used as the separation gel 7, the acrylamide solution before gel polymerization may be poured from the side of the first opening 17 of the sample separation unit 6 to which the covering portion is attached, and then gel polymerization may be performed.

従来法では、サンプル成分排出口を被覆部で覆ってしまうと、電気力線が被覆部を通る間に余分に広がり、その結果、転写膜に到達するまでにサンプルがさらに広がってしまうため好ましくない。しかし、本発明のサンプル分離吸着器具100を用いた場合は、第2開口18が被覆部で覆われていても、後述するようにスリット1により収束を受けるため問題ない。   In the conventional method, if the sample component discharge port is covered with the coating part, the electric lines of force are excessively spread while passing through the coating part, and as a result, the sample further spreads before reaching the transfer film. . However, when the sample separation / adsorption instrument 100 of the present invention is used, there is no problem because the slit 1 is converged as described later even if the second opening 18 is covered with the covering portion.

加えて、後述するように第2開口18と転写膜9間に距離を設ける場合には、上記被覆部を設けることによって適切な距離を確保することができるため、より好ましいといえる。   In addition, when providing a distance between the second opening 18 and the transfer film 9 as described later, it can be said that it is more preferable because an appropriate distance can be secured by providing the covering portion.

(スリット構造体8)
スリット構造体8は、サンプル分離部6の第2開口18に対向する位置にスリット1を形成している。陰電極2から陽電極3に発生する電気力線はスリット1の中央位置を収束点として収束される。
(Slit structure 8)
The slit structure 8 forms the slit 1 at a position facing the second opening 18 of the sample separation unit 6. The lines of electric force generated from the negative electrode 2 to the positive electrode 3 are converged with the central position of the slit 1 as the convergence point.

ここで、スリット1は、転写膜9の裏面側(陽電極3側)に位置するため、電気力線を分離ゲル7からスリット1にかけて絞ることができる。その結果、スリット1の前面側(第2開口18側)に位置する転写膜9上へは、絞りの効果を受けた電気力線が通ることになる。サンプルは電気力線に沿って流れるため、上記収束の影響を受けることにより、転写膜9に濃縮された状態で吸着保持される。つまり、サンプルを転写膜9へ高分解能で転写することができる。   Here, since the slit 1 is located on the back surface side (positive electrode 3 side) of the transfer film 9, the electric lines of force can be narrowed from the separation gel 7 to the slit 1. As a result, the lines of electric force that have received the effect of the diaphragm pass through the transfer film 9 positioned on the front surface side (second opening 18 side) of the slit 1. Since the sample flows along the lines of electric force, the sample is attracted and held in a concentrated state by the transfer film 9 due to the influence of the convergence. That is, the sample can be transferred to the transfer film 9 with high resolution.

サンプルをより高分解能で吸着させるためには、スリット1における電気力線の収束点に近い位置に転写膜9を配置する、すなわち、スリット1を転写膜9の裏面近傍に配置することが好ましく、転写膜9に接した状態(転写膜9の裏面直下)に配置することが最も好ましい。   In order to adsorb the sample with higher resolution, it is preferable to arrange the transfer film 9 at a position near the convergence point of the electric force lines in the slit 1, that is, to arrange the slit 1 in the vicinity of the back surface of the transfer film 9, Most preferably, it is disposed in contact with the transfer film 9 (just below the back surface of the transfer film 9).

また、電気力線を収束させる効果をより強めるためには、スリット1のy方向の幅が第2開口18のy方向の幅よりも狭いことが望ましい。これによって、収束点への電場ベクトルの傾きを大きくすることができるため、転写膜9へ吸着するサンプルの濃縮効果を向上させることができる。なお、各点での電場ベクトルを結んだ線が電気力線である。   In order to further enhance the effect of converging the lines of electric force, it is desirable that the width of the slit 1 in the y direction is narrower than the width of the second opening 18 in the y direction. Thereby, since the gradient of the electric field vector to the convergence point can be increased, the concentration effect of the sample adsorbed on the transfer film 9 can be improved. A line connecting electric field vectors at each point is an electric force line.

さらに、電気力線を収束させる効果をより強めるために、スリット構造体8は、誘電率が低い材料から構成されることが好ましく、絶縁性の材料から構成されることがより好ましい。   Furthermore, in order to further strengthen the effect of converging the lines of electric force, the slit structure 8 is preferably made of a material having a low dielectric constant, and more preferably made of an insulating material.

スリット1の内部に関しては、第2緩衝液で満たされていてもよいが、アクリルアミドやアガロースなどの導電性のゲルまたは多孔質膜などが充填されていてもよい。   The interior of the slit 1 may be filled with the second buffer solution, but may be filled with a conductive gel such as acrylamide or agarose, a porous film, or the like.

なお、本実施形態において、スリット構造体8を設置する場合、例えば図1に示すように、ステージ13の定位置に設けられた穴にスリット構造体8の端部を差し込むことによって固定することができる。   In this embodiment, when the slit structure 8 is installed, for example, as shown in FIG. 1, the slit structure 8 may be fixed by inserting the end of the slit structure 8 into a hole provided at a fixed position of the stage 13. it can.

(転写膜9)
転写膜9は、分離ゲル7によって分離されたサンプルを長期間にわたって安定に保存可能にし、さらに、その後の分析を容易にするサンプルの吸着・保持体であることが好ましい。転写膜9の材質としては、高い強度を有し、かつサンプル結合能(単位面積当たりに吸着可能な重量)が高いものが好ましい。転写膜9としては、サンプルがタンパク質である場合にはPVDF(Polyvinylidene difluoride)膜などが適している。なお、PVDF膜は予めメタノールなどを用いて親水化処理を行っておくことが好ましい。これ以外には、ニトロセルロース膜またはナイロン膜など、従来からタンパク質、DNAおよび核酸の吸着に利用されている膜も使用可能である。
(Transfer film 9)
The transfer film 9 is preferably a sample adsorbing / holding body that enables the sample separated by the separation gel 7 to be stably stored for a long period of time and further facilitates subsequent analysis. The material of the transfer film 9 is preferably a material having high strength and high sample binding ability (weight that can be adsorbed per unit area). As the transfer film 9, a PVDF (Polyvinylidene difluoride) film or the like is suitable when the sample is a protein. Note that the PVDF membrane is preferably hydrophilized in advance using methanol or the like. In addition to this, it is also possible to use a membrane conventionally used for adsorption of protein, DNA and nucleic acid, such as a nitrocellulose membrane or a nylon membrane.

なお、サンプル分離吸着器具100において分離および吸着され得るサンプルとしては、これらに限定されないが、生物材料(例えば、生物個体、体液、細胞株、組織培養物、もしくは組織断片)からの調製物、または、市販の試薬などが挙げられる。例えば、ポリペプチドまたはポリヌクレオチドが挙げられる。   The sample that can be separated and adsorbed in the sample separation / adsorption device 100 is not limited to these, but is a preparation from a biological material (for example, an individual organism, a body fluid, a cell line, a tissue culture, or a tissue fragment), or And commercially available reagents. For example, a polypeptide or polynucleotide is mentioned.

また、転写膜9は、第2開口18とスリット1との間を経由して、その一端が緩衝液槽内の転写膜収納ロール11に保持され、他端が移動アーム(移動手段)10に保持される。転写膜収納ロール11から引き出された転写膜9は、サンプルの分離吸着時、移動アーム10の駆動により図1の矢印方向に向かって搬送される。   In addition, the transfer film 9 is held between the second opening 18 and the slit 1, one end thereof is held by the transfer film storage roll 11 in the buffer solution tank, and the other end is connected to the moving arm (moving means) 10. Retained. The transfer film 9 drawn out from the transfer film storage roll 11 is conveyed in the direction of the arrow in FIG.

なお、転写膜9の搬送時、転写膜9を定まった経路に導くために、ガイド12を適宜設けてもよい。ガイド12としては、例えば、回転式の軸を用いることができる。   When the transfer film 9 is transported, a guide 12 may be provided as appropriate in order to guide the transfer film 9 to a predetermined path. As the guide 12, for example, a rotary shaft can be used.

転写膜収納ロール11は、サンプル分離吸着器具100本体の内壁に対して回転可能に取り付けられている。サンプルの分離吸着時、転写膜収納ロール11は、巻きつけられた転写膜9とともにその全体が、緩衝液中にあるような高さに配置されることが好ましい。これは、サンプルの分離吸着時における転写膜9の乾燥を防ぐためである。また、転写膜収納ロール11は、各電極から離した位置に配置されることが好ましい。これは、各電極から生じる気泡が転写膜9に付着することを抑制するためである。また、転写膜収納ロール11は、金属などの電気によって化学反応を生じる材料以外の材料から構成されることが好ましい。例えば、転写膜収納ロール11の材料としては、種々のプラスティックおよびガラスなどが挙げられる。   The transfer film storage roll 11 is rotatably attached to the inner wall of the sample separation / adsorption instrument 100 main body. At the time of separating and adsorbing the sample, the transfer film storage roll 11 is preferably disposed at such a height that the entire transfer film 9 and the wound transfer film 9 are in the buffer solution. This is to prevent the transfer film 9 from drying during the separation and adsorption of the sample. Moreover, it is preferable that the transfer film storage roll 11 is disposed at a position separated from each electrode. This is to prevent bubbles generated from the electrodes from adhering to the transfer film 9. The transfer film storage roll 11 is preferably made of a material other than a material that causes a chemical reaction by electricity such as metal. For example, examples of the material of the transfer film storage roll 11 include various plastics and glass.

なお、サンプル分離吸着器具100は、転写膜9が取り付けられた状態、または使用者によって転写膜9が後から取り付けられる状態で提供されてもよく、いずれの場合も転写膜9は緩衝液に浸された状態となる。   The sample separation / adsorption device 100 may be provided in a state in which the transfer film 9 is attached or in a state in which the transfer film 9 is attached later by the user. In any case, the transfer film 9 is immersed in a buffer solution. It will be in the state.

(移動アーム10および16)
移動アーム16は、サンプル分離部6の第1開口17に対してサンプルを導入するために用いられ、支持板15に支持されたゲルストリップ14を保持する。ゲルストリップ14は、一般的に薄く、かつ軟らかいので、移動アーム16によって直接に保持されるのではなく、アクリル板などからなる支持板15にゲルストリップ14を固定して移動アーム16に保持される。
(Transfer arms 10 and 16)
The moving arm 16 is used to introduce a sample into the first opening 17 of the sample separation unit 6 and holds the gel strip 14 supported by the support plate 15. Since the gel strip 14 is generally thin and soft, it is not directly held by the moving arm 16 but is held by the moving arm 16 by fixing the gel strip 14 to a support plate 15 made of an acrylic plate or the like. .

移動アーム10は、図1に示すように、転写膜9を+y方向に引き上げる構成を有する。なお、移動アーム10は、これに限られず、図4に示すように、回転動作によって転写膜9を巻き取る転写膜回収ロール10aであってもよい。転写膜回収ロール10aを用いれば、移動アーム10のように広い駆動範囲を確保する必要がなく、サンプル分離吸着器具100を小型化し得る。   As shown in FIG. 1, the moving arm 10 has a configuration in which the transfer film 9 is pulled up in the + y direction. The moving arm 10 is not limited to this, and may be a transfer film collection roll 10a that winds the transfer film 9 by a rotating operation as shown in FIG. If the transfer film recovery roll 10a is used, it is not necessary to ensure a wide driving range as in the case of the moving arm 10, and the sample separation / adsorption device 100 can be miniaturized.

なお、本実施形態では、移動アーム10および16という2つのアームを用いているが、本発明はこれに限られず、一方を省いて、1つの移動アームのみを備える構成であってもよい。このとき、1つの移動アーム(10または16)は、ゲルストリップ14を第1開口17に導入した後、サンプルの分離および転写の際には転写膜9を保持して搬送すればよい。   In the present embodiment, the two arms of the moving arms 10 and 16 are used. However, the present invention is not limited to this, and a configuration in which only one moving arm is provided may be omitted. At this time, one moving arm (10 or 16) may hold and transfer the transfer film 9 when the sample is separated and transferred after the gel strip 14 is introduced into the first opening 17.

(サンプルの分離および吸着)
次に、サンプル分離吸着器具100におけるサンプルの分離および吸着の流れについて、図1を参照して説明する。
(Sample separation and adsorption)
Next, the flow of sample separation and adsorption in the sample separation / adsorption device 100 will be described with reference to FIG.

まず、移動アーム16が、支持板15に支持されたゲルストリップ14を保持し、ゲルストリップ14が第1開口17内に挿入または接触するまで、図1の移動アーム16に付されている矢印の方向に移動する。ここで、ゲルストリップ14は、等電点電気泳動によってサンプルを1次元に分離した各成分を含有している。   First, the moving arm 16 holds the gel strip 14 supported by the support plate 15, and the arrows attached to the moving arm 16 in FIG. 1 until the gel strip 14 is inserted into or contacts the first opening 17. Move in the direction. Here, the gel strip 14 contains components obtained by separating the sample in one dimension by isoelectric focusing.

ゲルストリップ14が第1開口17内に挿入または接触した状態において、陰電極2と陽電極3との間に電圧を印加する。これによって、ゲルストリップ14に含まれる各成分が分離ゲル7において、さらにそれらの分子量に応じて分離される。   A voltage is applied between the negative electrode 2 and the positive electrode 3 in a state where the gel strip 14 is inserted or brought into contact with the first opening 17. Thereby, each component contained in the gel strip 14 is further separated in the separation gel 7 according to their molecular weight.

なお、1次元目の電気泳動分離部は、本実施形態に係るサンプル分離吸着器具100に組み込まれていてもよい。これによって、1次元目の等電点電気泳動分離から2次元目の電気泳動分離および転写までを自動化することができる。   Note that the first-dimensional electrophoresis separation unit may be incorporated in the sample separation / adsorption device 100 according to the present embodiment. Accordingly, it is possible to automate from the first-dimensional isoelectric focusing separation to the second-dimensional electrophoresis separation and transfer.

また、1次元目の電気泳動を行わない場合は、分離ゲル7にサンプルを充填するためのウェル(凹み)を形成すればよい。当該ウェルにサンプルを導入後、アガロースゲルなどを用いてサンプルを固定して、第1緩衝液槽4へのサンプルの流出を防止する。このとき、サンプルをアガロースゲルと混合して導入して、ウェルにおいて凝固させてもよい。   When the first-dimensional electrophoresis is not performed, a well (dent) for filling the separation gel 7 with a sample may be formed. After introducing the sample into the well, the sample is fixed using agarose gel or the like to prevent the sample from flowing into the first buffer solution tank 4. At this time, the sample may be introduced by mixing with an agarose gel and allowed to solidify in the well.

上記ウェルは、通常のSDS−PAGEと同様の方法によって形成される。つまり、ゲルモノマー溶液(重合してゲル化する前の溶液)を第1開口17に流し込んだ後、ゲルモノマーが重合する前にコーム(通常、5mm程度の高さ(深さ)を有する複数の凹凸が形成されたくし状の板)を第1開口17に差込んでからゲル化させる。ゲル化した後に、コームを取り外すことによって上記ウェルが形成される。   The well is formed by a method similar to that of normal SDS-PAGE. That is, after pouring the gel monomer solution (the solution before polymerization and gelation) into the first opening 17 and before the gel monomer is polymerized, a plurality of combs (usually having a height (depth) of about 5 mm). A comb-like plate on which irregularities are formed is inserted into the first opening 17 and then gelled. After gelling, the well is formed by removing the comb.

サンプル導入後、陰電極2と陽電極3との間に電流を流すことによってサンプルの電気泳動による分離を行う。電極間に流す電流値としては、50mA以下であることが好ましく、20mA以上、30mA以下であることがより好ましい。上記範囲であれば、十分な速さにおいて電気泳動を行いつつ、発熱を抑制することができる。より大きい電流を流せば、より短時間において電気泳動を終了し得るが、過剰に発熱してゲル、サンプル、または電気泳動分離の分解能に悪影響を及ぼすおそれがある。ただし、サンプル分離吸着器具100の適当な箇所にペルチェ素子などを用いた強力な冷却装置を取り付ければ、過剰な発熱を防ぐことができるので、電流値を100mA以下にまで上昇させてもよい。   After introducing the sample, the sample is separated by electrophoresis by passing a current between the negative electrode 2 and the positive electrode 3. The value of current flowing between the electrodes is preferably 50 mA or less, and more preferably 20 mA or more and 30 mA or less. If it is the said range, heat_generation | fever can be suppressed, performing electrophoresis in sufficient speed | rate. If a larger current is applied, electrophoresis can be completed in a shorter time, but excessive heat may be generated, which may adversely affect the resolution of the gel, sample, or electrophoresis separation. However, if a powerful cooling device using a Peltier element or the like is attached to an appropriate location of the sample separation / adsorption device 100, excessive heat generation can be prevented, and the current value may be increased to 100 mA or less.

転写膜9は、サンプル分離部6における電気泳動の進行に合わせて、移動アーム10の駆動により図1の矢印方向に向かって徐々に搬送される。   The transfer film 9 is gradually conveyed in the direction of the arrow in FIG. 1 by driving the moving arm 10 in accordance with the progress of electrophoresis in the sample separation unit 6.

分離された成分が第2開口18に到達したか否かは、サンプルに染色されたマーカーを予め混合して、泳動状態をマーカーの位置によって確認するか、または電圧値をモニターによって計測することによって判断すればよい。染色されたマーカーとしては、泳動の先頭を確認するために通常に用いられるBPB(Bromophenol Blue)が好ましい。また、電圧値を計測するモニターとしては、例えば、陰電極2と陽電極3との間の電圧をモニターする電圧モニター(電圧検出手段:図示せず)が挙げられる。   Whether or not the separated component has reached the second opening 18 is determined by mixing the marker stained in the sample in advance and confirming the migration state according to the position of the marker, or measuring the voltage value with a monitor. Just judge. As the stained marker, BPB (Bromophenol Blue) which is usually used for confirming the beginning of electrophoresis is preferable. Moreover, as a monitor which measures a voltage value, the voltage monitor (voltage detection means: not shown) which monitors the voltage between the negative electrode 2 and the positive electrode 3 is mentioned, for example.

ここで、電圧モニターを用いる場合の動作について説明する。第2開口18にサンプルが到達すると、分離ゲル7と転写膜9との接触位置において、導電率が低下して電極間の抵抗値が上昇し、電圧値は大きく上昇する。この電圧値の上昇をモニターすることによって、分離された成分が分離ゲル7から排出されて転写膜9に転写されたことを検出することができる。また、サンプル分離吸着器具100は、電圧値をモニターするプログラムが組み込まれることによって、分離ゲル7からの成分の排出を自動的に感知し、移動アーム10による転写膜9の引上げを開始することができる。また、同様に、成分の吸着開始後における転写膜9の引き上げ速度についても、電圧値または電流値によって制御することができる。なお、転写膜9の引き上げ速度は、十分な分解能をもってサンプルが転写膜9に吸着され得る速度であればよく、このような速度は当業者によって適宜設定され得る。これらの制御によれば、転写結果を再現性あるものとし、無駄な転写膜9の使用(成分を吸着していない部分の発生)を回避可能であり、サンプル分離吸着器具を小型化することが可能である。   Here, the operation when the voltage monitor is used will be described. When the sample reaches the second opening 18, at the contact position between the separation gel 7 and the transfer film 9, the conductivity decreases, the resistance value between the electrodes increases, and the voltage value increases greatly. By monitoring the increase in the voltage value, it can be detected that the separated component is discharged from the separation gel 7 and transferred to the transfer film 9. In addition, the sample separation / adsorption device 100 can automatically sense the discharge of the component from the separation gel 7 and start pulling up the transfer film 9 by the moving arm 10 by incorporating a program for monitoring the voltage value. it can. Similarly, the pulling speed of the transfer film 9 after the start of component adsorption can also be controlled by the voltage value or the current value. The pulling speed of the transfer film 9 may be a speed at which the sample can be adsorbed to the transfer film 9 with sufficient resolution, and such a speed can be appropriately set by those skilled in the art. According to these controls, it is possible to make the transfer result reproducible, avoid useless use of the transfer film 9 (occurrence of a portion not adsorbing the component), and downsize the sample separation / adsorption device. Is possible.

以上の工程によれば、1次元目または2次元目の電気泳動から転写までを1台の装置において連続的に行うことができる。   According to the above steps, the first to second dimensional electrophoresis to the transfer can be continuously performed in one apparatus.

サンプル成分吸着の終了後、転写膜9は移動アーム10によって回収され、染色または免疫反応などに供される。その後、蛍光検出器などによって、転写膜9に吸着された成分の分離パターンが検出される。このような蛍光検出器は、サンプル分離吸着器具100に組み込まれていてもよく、これによって電気泳動、転写、および検出の全工程を自動化することができる。   After the sample component adsorption is completed, the transfer film 9 is recovered by the transfer arm 10 and used for staining or immune reaction. Thereafter, a separation pattern of components adsorbed on the transfer film 9 is detected by a fluorescence detector or the like. Such a fluorescence detector may be incorporated in the sample separation / adsorption instrument 100, whereby the entire steps of electrophoresis, transfer, and detection can be automated.

(スリット構造体8の他の構成)
次に、スリット構造体8が他に採り得る構成例について、図2〜図6を参照して以下に説明する。
(Other configuration of slit structure 8)
Next, the structural example which the slit structure 8 can take otherwise is demonstrated below with reference to FIGS.

図2(a)(b)は、スリット構造体8aを有するサンプル分離吸着器具110を示す断面図である。   2 (a) and 2 (b) are cross-sectional views showing a sample separation / adsorption instrument 110 having a slit structure 8a.

図2(a)(b)に示すように、スリット構造体8aは、サンプル分離部6と一体的に構成されてもよい。スリット構造体8aはスリット1を形成し、さらに、図2(a)中の点線で示すように、転写膜9のための差込口を有する。図2(b)に示すように、この差込口に対して転写膜9を差し込むことによって、転写膜9の設置が完了する。   As shown in FIGS. 2 (a) and 2 (b), the slit structure 8 a may be configured integrally with the sample separation unit 6. The slit structure 8a forms the slit 1, and further has an insertion port for the transfer film 9, as indicated by a dotted line in FIG. As shown in FIG. 2B, the transfer film 9 is installed by inserting the transfer film 9 into the insertion port.

なお、サンプル分離部6におけるスリット構造体8aの部分をx方向に開閉可能にすることにより、転写膜9を差し込みし易くするなど、適宜変更が可能である。   In addition, by making the slit structure 8a portion in the sample separation unit 6 openable and closable in the x direction, it is possible to make appropriate changes such as making the transfer film 9 easy to insert.

図2(a)(b)に示す構成例の利点としては、第2開口18に対するスリット1の位置の微調整がまったく必要ないこと、および、サンプル分離吸着器具110の準備に要する組み立て工程が少ないことが挙げられる。   Advantages of the configuration example shown in FIGS. 2A and 2B are that fine adjustment of the position of the slit 1 with respect to the second opening 18 is not necessary, and there are few assembly steps required for preparation of the sample separation / adsorption instrument 110. Can be mentioned.

図3および図4は、スリット構造体8bを有するサンプル分離吸着器具120を示す断面図である。   3 and 4 are cross-sectional views showing a sample separation / adsorption device 120 having a slit structure 8b.

図3および図4に示すように、スリット構造体8bは、その一部が第2緩衝液槽5の底面付近を介して側面まで延伸し、第2緩衝液槽5の二重底を構成している延伸部12aを有する。この延伸部12aに対してプランジャー19等の治具をセットすることによって、スリット構造体8bを第2開口18側へ押付けてもよい。これによって、スリット1と転写膜9とが良好に接することができる。   As shown in FIGS. 3 and 4, a part of the slit structure 8 b extends to the side surface through the vicinity of the bottom surface of the second buffer solution tank 5 to form a double bottom of the second buffer solution tank 5. The extending portion 12a. The slit structure 8b may be pressed to the second opening 18 side by setting a jig such as a plunger 19 to the extending portion 12a. Thereby, the slit 1 and the transfer film 9 can be in good contact with each other.

なお、二重底を構成している延伸部12aとステージ13との間に、転写膜9を経由させてもよい。   Note that the transfer film 9 may be passed between the extending portion 12 a constituting the double bottom and the stage 13.

また、スリット構造体8bの第2開口18側は、スリット1を中心としてy方向の両側へと傾斜をつけて対称に広がっている。この構成によれば、高誘電体の緩衝液がスリット1の後方(陽電極3側)に確保されるため、低誘電体のスリット構造体8bに囲まれたスリット空間へ電気力線を導く(収束させる)上でかかる抵抗を抑えることができる。   Also, the second opening 18 side of the slit structure 8b spreads symmetrically with an inclination toward both sides in the y direction with the slit 1 as the center. According to this configuration, since the high-dielectric buffer solution is ensured behind the slit 1 (on the positive electrode 3 side), the electric lines of force are guided to the slit space surrounded by the low-dielectric slit structure 8b ( It is possible to suppress such resistance.

なお、図4に示すサンプル分離吸着器具120は、上述したように、移動アーム10の代わりに転写膜回収ロール10aを備えている。   The sample separation / adsorption instrument 120 shown in FIG. 4 includes the transfer film collection roll 10a instead of the moving arm 10 as described above.

図5は、スリット構造体8cを有するサンプル分離吸着器具130を示す断面図である。   FIG. 5 is a cross-sectional view showing a sample separation / adsorption device 130 having a slit structure 8c.

図5に示すように、スリット構造体8cは、その一部が第2開口18側に向かって口ばし状に突起する2つの突起部20を有しており、これら突起部20の間にスリット1を形成している。突起部20はその先端が第2開口18を介してサンプル分離部6の内側に入り込む構成を有している。この構成によれば、スリット1の中央位置と第2開口18の中央位置とが、より厳密に同一平面に一致しやすく、かつ、分離ゲル7とスリット構造体8c、言い換えると分離ゲル7と転写膜9の密着性を高めることができる。   As shown in FIG. 5, the slit structure 8 c has two protrusions 20, part of which protrudes toward the second opening 18, and between these protrusions 20. A slit 1 is formed. The protrusion 20 has a configuration in which the tip thereof enters the inside of the sample separation unit 6 through the second opening 18. According to this configuration, the central position of the slit 1 and the central position of the second opening 18 are more easily coincident with the same plane, and the separation gel 7 and the slit structure 8c, in other words, the separation gel 7 and the transfer. The adhesion of the film 9 can be improved.

ここで、スリット構造体8cの突起部20は、少なくとも転写膜9を介して分離ゲル7に接する、好ましくは転写膜9と共に分離ゲル7中に押し込まれる。このため、サンプル分離吸着器具130は、スリット構造体8cを第2緩衝液槽5側からサンプル分離部6側へ移動させる手段を備えていることが好ましい。例えば、図5に示すように、スリット構造体8cの一部が第2緩衝液槽5の二重底を構成し、これをプランジャー19等で第2開口18側に押付ける構成や、バネやリベット等でスリット構造体8cを一定位置まで押し込んで固定する構成などが挙げられる。   Here, the protrusion 20 of the slit structure 8 c is in contact with the separation gel 7 through at least the transfer film 9, and is preferably pushed into the separation gel 7 together with the transfer film 9. For this reason, it is preferable that the sample separation / adsorption instrument 130 includes means for moving the slit structure 8c from the second buffer solution tank 5 side to the sample separation unit 6 side. For example, as shown in FIG. 5, a part of the slit structure 8c constitutes the double bottom of the second buffer solution tank 5, and this is pressed against the second opening 18 side by a plunger 19 or the like, For example, the slit structure 8c may be pushed and fixed to a certain position with a rivet or the like.

図6(a)(b)は、スリット構造体8dを有するサンプル分離吸着器具140を示す断面図である。   6 (a) and 6 (b) are cross-sectional views showing a sample separation / adsorption instrument 140 having a slit structure 8d.

図6(a)(b)に示すように、スリット構造体8dは、スリット1の周囲から突起し、かつ、第2開口18を介してサンプル分離部6内に入り込む突起部21と、転写膜9を保持する保持部22とを有する。なお、図6(a)は突起部21の挿入前を示し、図6(b)は挿入後を示す。   As shown in FIGS. 6A and 6B, the slit structure 8d projects from the periphery of the slit 1 and enters the sample separation unit 6 through the second opening 18, and the transfer film. 9 and holding part 22 that holds 9. 6A shows the state before the protrusion 21 is inserted, and FIG. 6B shows the state after the insertion.

図6(b)に示すように、突起部21は、サンプル分離部6内の分離ゲル7を押し込むことによって、分離ゲル7を、転写膜9の前面側(第2開口18側)と突起部21とに囲まれた空間へ移動させ、当該空間に密着良く埋め合わせる。また、保持部22は、例えば突起部21とスリット1との間におけるスリット構造体8dの内部に転写膜9を通す空間を形成している。なお、保持部22は、図2(b)と同様に、x方向に開閉して転写膜9を固定するものであってもよい。   As shown in FIG. 6 (b), the protrusion 21 pushes the separation gel 7 in the sample separation part 6, thereby separating the separation gel 7 from the front side (second opening 18 side) of the transfer film 9 and the protrusion. 21 to move to a space surrounded by 21 and make up the space with good adhesion. The holding portion 22 forms a space through which the transfer film 9 is passed, for example, inside the slit structure 8d between the protrusion 21 and the slit 1. The holding unit 22 may be one that opens and closes in the x direction and fixes the transfer film 9 as in FIG. 2B.

つまり、スリット構造体8dによれば、スリット構造体8cを有する構成よりも、分離ゲル7と転写膜9の密着性を高めつつ、転写膜9の直線引上げを可能とする。さらに、スリット構造体8cを有する構成と同様、スリット1の中央位置と第2開口18の中央位置とがより厳密に同一平面に一致しやすくなる。   That is, according to the slit structure 8d, it is possible to pull up the transfer film 9 while improving the adhesion between the separation gel 7 and the transfer film 9 as compared with the configuration having the slit structure 8c. Furthermore, like the configuration having the slit structure 8c, the center position of the slit 1 and the center position of the second opening 18 are more likely to coincide with each other more strictly on the same plane.

なお、サンプル分離吸着器具140においても、バネやリベット等でスリット構造体8dを押し込み固定し得る手段を備えていることが好ましい。   In addition, it is preferable that the sample separation / adsorption instrument 140 also includes a means capable of pressing and fixing the slit structure 8d with a spring, a rivet, or the like.

〔実施形態2〕
本発明の第2の実施形態について図15に基づいて説明すると以下の通りである。図15は、サンプル分離吸着器具150を示す断面図である。
[Embodiment 2]
The second embodiment of the present invention will be described with reference to FIG. FIG. 15 is a cross-sectional view showing the sample separation / adsorption device 150.

上述した実施形態1に対する本実施形態の主な相違点は、サンプル分離吸着器具150が縦置き型の装置である点にある。   The main difference of this embodiment with respect to Embodiment 1 described above is that the sample separation / adsorption instrument 150 is a vertically installed device.

したがって、以下では、上記相違点を中心に説明する。なお、実施形態1における構成要素と対応する機能を有する構成要素には、同一符号を用いることとする。   Therefore, the following description will focus on the above differences. In addition, the same code | symbol shall be used for the component which has a function corresponding to the component in Embodiment 1. FIG.

図15に示すように、サンプル分離吸着器具150では、ステージ13内にサンプル分離部6とスリット構造体8eとを取り付けることによりステージ13が2つの槽に分けて構成され、これによって第1緩衝液槽4および第2緩衝液槽5が形成されている。なお、スリット構造体8eは、ステージ本体と一体的に構成されていてもよい。   As shown in FIG. 15, in the sample separation / adsorption instrument 150, the stage 13 is divided into two tanks by attaching the sample separation unit 6 and the slit structure 8 e in the stage 13, thereby the first buffer solution. A tank 4 and a second buffer tank 5 are formed. The slit structure 8e may be configured integrally with the stage main body.

また、転写膜収納ロール11は、第1緩衝液槽4内に配置され、転写膜9は、第1緩衝液槽4の上方へと引き出される。   Further, the transfer film storage roll 11 is disposed in the first buffer solution tank 4, and the transfer film 9 is pulled out above the first buffer solution tank 4.

本実施形態によれば、上述した第1の実施形態と同様に、2次元目の電気泳動から転写までを連続的に行う様式において、高分解能のサンプル吸着を実現できる。   According to the present embodiment, high-resolution sample adsorption can be realized in a manner in which the process from the second-dimensional electrophoresis to the transfer is continuously performed as in the first embodiment described above.

また、図16は、変形例に係るサンプル分離吸着器具160を示す断面図である。ここで、スリット構造体8fは、ステージ13と一体的に構成され、かつ、スリット1の中央面(xz面)に対し対称形であるように構成されている。このように構成することによって、スリット1内に電気力線を収束するためにかかる抵抗を抑制することができる。   FIG. 16 is a cross-sectional view showing a sample separation / adsorption device 160 according to a modification. Here, the slit structure 8f is configured integrally with the stage 13 and is configured to be symmetrical with respect to the center surface (xz plane) of the slit 1. By configuring in this way, it is possible to suppress the resistance applied to converge the lines of electric force in the slit 1.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example.

(サンプル分離吸着器具120を用いた粒子軌道シミュレーション)
スリット1に関する詳細な検討について、粒子軌道シミュレーション結果に基づいて説明する。
(Particle trajectory simulation using sample separation and adsorption device 120)
Detailed examination on the slit 1 will be described based on the particle trajectory simulation result.

サンプル分離吸着器具のモデルとしては、図7に示すサンプル分離吸着器具120を用いた。サンプル分離吸着器具120はスリット構造体8bを有しており、その設定についてはサンプル分離部6をガラスとし、スリット構造体8bおよびステージ13をアクリル板とした。また、第2開口18のy方向の幅は1.2mm(=1200μm)に固定した。また、電極は白金とし、電極間には200Vの電圧を印加させる設定とした。   As a model of the sample separation / adsorption device, a sample separation / adsorption device 120 shown in FIG. 7 was used. The sample separation / adsorption instrument 120 has a slit structure 8b. Regarding the setting, the sample separation unit 6 is made of glass, and the slit structure 8b and the stage 13 are made of an acrylic plate. The width of the second opening 18 in the y direction was fixed to 1.2 mm (= 1200 μm). The electrodes were platinum, and a voltage of 200 V was applied between the electrodes.

以上の設定を基本とした上で、スリット1に関する条件を変更し、第1開口17を出発点とする、モデルサンプルのリゾチームタンパク質(分子量14307Da、等電点11.1)が示す泳動挙動を観察した。   Based on the above settings, the conditions relating to the slit 1 were changed, and the migration behavior exhibited by the model sample lysozyme protein (molecular weight 14307 Da, isoelectric point 11.1) starting from the first opening 17 was observed. did.

<スリット1の幅について>
まず、スリット1の条件について、スリット1のy方向幅を1.2mmから徐々に小さくなるよう変更して、粒子軌道シミュレーションを行った。その結果を図8および図9(a)〜(d)に示す。
<About the width of the slit 1>
First, the particle orbit simulation was performed by changing the slit 1 conditions so that the y-direction width of the slit 1 gradually decreased from 1.2 mm. The results are shown in FIG. 8 and FIGS. 9 (a) to (d).

図8は、転写膜9中央(x方向厚さの中点)における電気力線の広がり(y方向の範囲(dm))を、粒子軌道シミュレーションに基づいてプロットした結果を示すグラフである。また、図9(a)〜(d)は、第2開口18近傍におけるシミュレーション結果を示す図である。なお、スリットのy方向幅について、図9(a)では0.1mmであり、図9(b)では0.2mm、図9(c)では0.5mm、図9(d)では1.0mmである。   FIG. 8 is a graph showing the result of plotting the spread of electric lines of force (range in the y direction (dm)) at the center of the transfer film 9 (the middle point in the x direction thickness) based on particle trajectory simulation. 9A to 9D are diagrams illustrating simulation results in the vicinity of the second opening 18. The y-direction width of the slit is 0.1 mm in FIG. 9A, 0.2 mm in FIG. 9B, 0.5 mm in FIG. 9C, and 1.0 mm in FIG. 9D. It is.

図8および図9に示すように、スリット1のy方向の幅が狭いほどdmは小さくなった。すなわち、スリット1のy方向の幅が狭いほど、転写膜9へのサンプル吸着が高分解能なものとなることが確認できる。したがって、スリット1のy方向の幅を規定することにより、目的とする分解能を獲得することが可能となる。   As shown in FIG. 8 and FIG. 9, the smaller the width of the slit 1 in the y direction, the smaller the dm. That is, it can be confirmed that the smaller the width of the slit 1 in the y direction, the higher the resolution of sample adsorption onto the transfer film 9. Therefore, by defining the width of the slit 1 in the y direction, it is possible to obtain a target resolution.

なお、スリット1のx方向の幅に関しては、スリット1の強度が保てる程度において、より短い方が好ましい。これは、スリット1のx方向の幅が短いほど、電気が狭い空間を流れる上でかかる抵抗をより抑えることができるからである。   Note that the width of the slit 1 in the x direction is preferably shorter as long as the strength of the slit 1 can be maintained. This is because, as the width of the slit 1 in the x direction is shorter, the resistance applied when electricity flows in a narrow space can be further suppressed.

<スリット構造体8bの材料の誘電率について>
次に、スリット1の条件について、スリット構造体8bの材料の誘電率を変更して、粒子軌道シミュレーションを行った。その結果を図10(a)〜(c)に示す。
<Dielectric constant of material of slit structure 8b>
Next, for the conditions of the slit 1, the particle orbit simulation was performed by changing the dielectric constant of the material of the slit structure 8b. The results are shown in FIGS.

図10は、第2開口18近傍におけるシミュレーション結果を示す図である。なお、スリット構造体8bの材料について、図10(a)では誘電率が10であり、図10(b)では誘電率が5であり、図10(c)では絶縁性材料である。   FIG. 10 is a diagram illustrating a simulation result in the vicinity of the second opening 18. In addition, about the material of the slit structure 8b, a dielectric constant is 10 in Fig.10 (a), a dielectric constant is 5 in FIG.10 (b), and it is an insulating material in FIG.10 (c).

図10(a)〜(c)に示すように、誘電率がより低い材料からスリット構造体8bを構成した方が、スリット1に電気力線を収束しやすく、絶縁性材料からスリット構造体8bを構成することが最も電気力線を収束することが分かった。また、誘電率がより低い材料からスリット構造体8bを構成した方が、スリット1の隙間を形成する以外のスリット構造体8bの壁部や転写膜9上などを電気力線が走ることがなくなった。具体的には、誘電率10のときdm値は443.1μmであり(図10(a))、誘電率5のときdm値は267.1μmであり(図10(b))、絶縁性材料のときdm値は96.7μmであった(図10(c))。   As shown in FIGS. 10A to 10C, when the slit structure 8b is made of a material having a lower dielectric constant, the electric lines of force are more easily converged on the slit 1, and the slit structure 8b is made of an insulating material. It is found that constructing the most converges the electric field lines. In addition, when the slit structure 8b is made of a material having a lower dielectric constant, the lines of electric force do not run on the wall of the slit structure 8b or the transfer film 9 other than forming the gap of the slit 1. It was. Specifically, when the dielectric constant is 10, the dm value is 443.1 μm (FIG. 10A), and when the dielectric constant is 5, the dm value is 267.1 μm (FIG. 10B). In this case, the dm value was 96.7 μm (FIG. 10C).

したがって、誘電率がより低い材料(好ましくは5.0以下)、より好ましくは絶縁性材料からスリット構造体8bを構成することによって、転写膜9へのサンプルの吸着をより高分解能なものにすることができることが分かった。   Therefore, by forming the slit structure 8b from a material having a lower dielectric constant (preferably 5.0 or less), more preferably an insulating material, the sample can be adsorbed onto the transfer film 9 with higher resolution. I found out that I could do it.

以上のことから、スリット構造体8bの材料について、スリット1を可能な限り薄く加工できる材料であって、かつ、絶縁体(あるいは低誘電体)の材料で形成されることが望ましい。このような材料として、例えば、アクリル(誘電率2.7〜4.5)、もしくはポリカーボネイト(誘電率2.9〜3.0)、または、4−フッ化エチレン(PTFE)(誘電率2)、パーフルオロアルコキシアルカン(PFA)(誘電率2.1)、ポリクロロトリフルオロエチレン(PCTFE)(誘電率2.3〜2.8)などのフッ素樹脂などが挙げられる。   From the above, it is desirable that the material of the slit structure 8b is a material that can process the slit 1 as thin as possible and is made of an insulator (or low dielectric) material. As such a material, for example, acrylic (dielectric constant 2.7 to 4.5), polycarbonate (dielectric constant 2.9 to 3.0), or 4-fluoroethylene (PTFE) (dielectric constant 2) And fluororesins such as perfluoroalkoxyalkane (PFA) (dielectric constant 2.1) and polychlorotrifluoroethylene (PCTFE) (dielectric constant 2.3 to 2.8).

<スリット1と第2開口18との間の距離について>
次に、スリット1の条件について、スリット1と第2開口18との間の距離を変更して、粒子軌道シミュレーションを行った。その結果を図11および図12に示す。なお、上記距離を変更する際、転写膜9とスリット1とは常に接した状態になるようにしたため、上記変更に従って第2開口18と転写膜9との距離も変更された。
<Distance between slit 1 and second opening 18>
Next, for the conditions of the slit 1, the particle trajectory simulation was performed by changing the distance between the slit 1 and the second opening 18. The results are shown in FIG. 11 and FIG. Since the transfer film 9 and the slit 1 are always in contact with each other when the distance is changed, the distance between the second opening 18 and the transfer film 9 is also changed according to the change.

図11は、第2開口18とスリット1との間の距離がdm値に与える影響をシミュレーションし、その結果をプロットしたグラフである。なお、図11に示すグラフでは横軸として第2開口18と転写膜9との間の距離を示している。図12(a)〜(c)は、上記距離を変更したときのシミュレーション結果を示す図である。なお、上記距離は、図12(a)では140μmであり、図12(b)では1000μmであり、図12(c)では5000μmである。   FIG. 11 is a graph in which the influence of the distance between the second opening 18 and the slit 1 on the dm value is simulated and the result is plotted. In the graph shown in FIG. 11, the distance between the second opening 18 and the transfer film 9 is shown on the horizontal axis. 12A to 12C are diagrams showing simulation results when the distance is changed. The distance is 140 μm in FIG. 12A, 1000 μm in FIG. 12B, and 5000 μm in FIG. 12C.

以下、図11および12を参照しながら説明する。図11に示すように、第2開口18と転写膜9との間の距離が0μm(両者が接した状態)から700μmまで離れるにつれて、dm値がより低くなり、高分解能な結果となることが分かった。これは、図12(a)に示すように、第2開口18とスリット1との間に、サンプルが収束するための距離が確保されることによって、スリット1の収束力が効果に加わるためである。   Hereinafter, a description will be given with reference to FIGS. As shown in FIG. 11, as the distance between the second opening 18 and the transfer film 9 increases from 0 μm (the state in which both are in contact) to 700 μm, the dm value becomes lower, resulting in a higher resolution result. I understood. This is because the convergence force of the slit 1 is added to the effect by securing a distance for the sample to converge between the second opening 18 and the slit 1 as shown in FIG. is there.

一方、第2開口18と転写膜9との間の距離が700μm以上に離れていくと、第2開口18から排出された直後のサンプルに対して伝わるスリット1の収束効果は弱くなり、排出直後のサンプルは拡散しようとする力が強くなる。   On the other hand, when the distance between the second opening 18 and the transfer film 9 is increased to 700 μm or more, the convergence effect of the slit 1 transmitted to the sample immediately after being discharged from the second opening 18 becomes weak, and immediately after discharging. This sample has a stronger force to diffuse.

上記距離が700μm以上3000μm未満の範囲にある場合、この拡散しようとする力と、上記距離の寄与分が加わるスリット1の収束力との兼ね合いにより、dm値が最低値に落ち着く平衡状態が続く。この範囲では、図12(b)に示すように、第2開口18から排出された直後のサンプルは一度広がる傾向を示し、その後、スリット1に近づくにつれスリット1の収束力が強く効いてきて絞られるようになる。   When the distance is in the range of 700 μm or more and less than 3000 μm, an equilibrium state in which the dm value settles to the minimum value continues due to the balance between the force to diffuse and the convergence force of the slit 1 to which the contribution of the distance is added. In this range, as shown in FIG. 12B, the sample immediately after being discharged from the second opening 18 has a tendency to spread once, and then as the slit 1 is approached, the convergence force of the slit 1 becomes stronger and narrows down. Be able to.

第2開口18と転写膜9との間の距離が3000μm以上になると、図12(c)に示すように、第2開口18から排出されたサンプルが受ける拡散力が大きくなっていき、サンプルの拡散が広範囲に及ぶため、dm値が上昇していくことになる。   When the distance between the second opening 18 and the transfer film 9 is 3000 μm or more, as shown in FIG. 12C, the diffusion force received by the sample discharged from the second opening 18 increases, Since diffusion spreads over a wide range, the dm value increases.

以上のことをまとめて、図11を参照すると、第2開口18と転写膜9との間の距離が300μm以上4000μm以下である場合、両者が接している場合と比較して、dm値が低い、すなわちより高い分解能を示すことが分かる。   In summary, referring to FIG. 11, when the distance between the second opening 18 and the transfer film 9 is not less than 300 μm and not more than 4000 μm, the dm value is lower than when both are in contact with each other. That is, it can be seen that a higher resolution is exhibited.

ただし、第2開口18とスリット1間に存在する媒体が緩衝液であると、サンプルが拡散してしまうため、第2開口18とスリット1間には、ゲルなどのサンプル透過可能な導電性媒体が挿入されることが好ましい。この導電性媒体としては、例えば上述のサンプル分離部6の項目で説明した被覆部も該当する。   However, if the medium existing between the second opening 18 and the slit 1 is a buffer solution, the sample diffuses. Therefore, a conductive medium that can transmit the sample, such as a gel, is interposed between the second opening 18 and the slit 1. Is preferably inserted. As the conductive medium, for example, the covering portion described in the item of the sample separation portion 6 also corresponds.

なお、上述したスリット構造体8bに関する好ましい条件等は、全て、他のスリット構造体に対しても適用することができる。   It should be noted that all of the above-mentioned preferred conditions and the like regarding the slit structure 8b can be applied to other slit structures.

(サンプル分離吸着器具130を用いた粒子軌道シミュレーション)
次に、スリット構造体8cに関して、スリット1をサンプル分離部6内に押し込む構成の詳細を、粒子軌道シミュレーション結果に基づいて説明する。
(Particle trajectory simulation using sample separation and adsorption device 130)
Next, regarding the slit structure 8c, the details of the configuration in which the slit 1 is pushed into the sample separation unit 6 will be described based on the particle trajectory simulation result.

なお、サンプル分離吸着器具のモデルとして、図13に示すサンプル分離吸着器具130を用いた。その他の基本設定については、上述のシミュレーションと同様である。また、比較対照のモデルとして、スリット1が押し込まれない構成であるサンプル分離吸着器具120を用いた。   In addition, the sample separation adsorption instrument 130 shown in FIG. 13 was used as a model of a sample separation adsorption instrument. Other basic settings are the same as in the above simulation. Further, as a comparative model, a sample separation / adsorption device 120 having a configuration in which the slit 1 is not pushed in was used.

図14(a)は、サンプル分離吸着器具130の第2開口18近傍におけるシミュレーション結果を示す図である。また、図14(b)は、比較対照であるサンプル分離吸着器具120の第2開口18近傍におけるシミュレーション結果を示す図である。   FIG. 14A is a diagram illustrating a simulation result in the vicinity of the second opening 18 of the sample separation / adsorption device 130. FIG. 14B is a diagram showing a simulation result in the vicinity of the second opening 18 of the sample separation / adsorption device 120 which is a comparative control.

図14(a)において、dm値は114.2μmであり、図14(b)において、dm値は96.7μmであった。すなわち、スリット1を押し込んだ構成の方が、スリット1の上下(y方向)に分離ゲルが位置しているため、電気力線が僅かにその方向に発散する力を受け、分解能が少し悪くなる(dm値が少し大きくなる)。   In FIG. 14A, the dm value was 114.2 μm, and in FIG. 14B, the dm value was 96.7 μm. That is, in the configuration in which the slit 1 is pushed in, the separation gel is located above and below the slit 1 (y direction), so that the electric lines of force are slightly diverged in that direction, and the resolution is slightly worse. (The dm value is slightly increased).

ただし、押し込む構成におけるdm値の上昇は、スリット1の幅やスリット構造体8cの材料を変更することにより十分補える程度の値であり、スリット構造体8cの上述した利点を考慮すると大きな問題にはならない。   However, the increase in the dm value in the push-in configuration is a value that can be sufficiently compensated by changing the width of the slit 1 or the material of the slit structure 8c. Considering the above-described advantages of the slit structure 8c, there is a big problem. Don't be.

(比較例における粒子軌道シミュレーション)
比較例として、スリット構造体を備えないサンプル分離吸着器具200を用いて、粒子軌道シミュレーションを行った。
(Particle orbit simulation in comparative example)
As a comparative example, particle trajectory simulation was performed using a sample separation / adsorption device 200 that does not include a slit structure.

サンプル分離吸着器具200の設定は、スリット構造体を備えない点以外は、上述のシミュレーションと同様にした。具体的には、図17(a)に示すように、サンプル分離吸着器具200は、第1電極201が配置された第1緩衝液槽202、第2電極203が配置された第2緩衝液槽204、分離媒体205が格納されたサンプル分離部206を備えている。また、第2緩衝液槽204には、分離媒体205の一端に接する多孔質層(転写膜)207、および、多孔質層207を支える液体吸収媒体層208を配置した。   The setting of the sample separation / adsorption device 200 was the same as that of the above-mentioned simulation except that the slit structure was not provided. Specifically, as shown in FIG. 17A, the sample separation / adsorption device 200 includes a first buffer tank 202 in which the first electrode 201 is disposed and a second buffer tank in which the second electrode 203 is disposed. 204, a sample separation unit 206 in which a separation medium 205 is stored. In addition, in the second buffer solution tank 204, a porous layer (transfer film) 207 in contact with one end of the separation medium 205 and a liquid absorbing medium layer 208 that supports the porous layer 207 are disposed.

なお、図17(a)は、比較例に係るサンプル分離吸着器具200のモデル構成を示す図であり、(b)は、粒子軌道シミュレーション結果について、(a)に示す装置における第2開口付近を拡大して示す図である。   FIG. 17A is a diagram showing a model configuration of the sample separation / adsorption device 200 according to the comparative example, and FIG. 17B shows the vicinity of the second opening in the apparatus shown in FIG. FIG.

図17(b)に示すように、電気力線のy方向の幅(dm)が、多孔質層206において第2開口210に接する側(位置A)で476.2μm、厚みの真ん中(位置B)で505.6μm、液体吸収媒体層207側(位置C)で535.1μmと広がった。すなわち、スリットが存在しないサンプル分離吸着器具200では、電気力線はy方向幅において拡散しており、第2開口210から排出されたサンプルは、電気力線に応じて広がりながら多孔質層206へ転写されてしまうことが分かった。   As shown in FIG. 17B, the width (dm) of the electric field lines in the y direction is 476.2 μm on the side (position A) in contact with the second opening 210 in the porous layer 206, and the middle of the thickness (position B). ) Spread to 505.6 μm and 535.1 μm on the liquid absorbing medium layer 207 side (position C). That is, in the sample separation / adsorption device 200 having no slit, the electric lines of force are diffused in the width in the y direction, and the sample discharged from the second opening 210 spreads to the porous layer 206 in accordance with the electric lines of force. I found out that it was transcribed.

したがって、本実施形態に係るサンプル分離吸着器具100〜160によれば、高分解能なサンプル吸着を実現することができることが明らかとなった。   Therefore, according to the sample separation / adsorption appliances 100 to 160 according to the present embodiment, it has become clear that high-resolution sample adsorption can be realized.

(サンプル分離吸着器具120の作製)
次に、図3に示すサンプル分離吸着器具120を以下のように作製し、電気泳動および転写を連続的に行った。
(Preparation of sample separation and adsorption device 120)
Next, the sample separation / adsorption device 120 shown in FIG. 3 was produced as follows, and electrophoresis and transfer were performed continuously.

まず、サンプル分離部6を幅70mm×長さ30mm×厚さ5mmの寸法でガラスから形成し、その内部には、分離ゲル7としてpH6.4のBis−Tris/HClバッファーを用いた13%ポリアクリルアミド(幅60mm×長さ30mm×厚さ1.2mm)を充填した。このとき、コーム(4mm×6mm×1mmの凸部を有する)を、第1開口17側に挿入し、サンプルアプライ用のウェル(4mm×6mm×1mmの凹み)を設けた。なお、第2開口18は、厚さ125μmを有する親水性のDurapore膜(millipore社製のポリビニリデンフロライド膜)によって覆っておき、分離ゲル7が第2開口18の先端にまで充填されるようにしておいた。このDurapore膜は、ナイロン膜、ニトロセルロース膜およびPTFE(Polytetra fluoro ethylene)膜などと比べて、非常に低いタンパク質吸着能(4μg/cm2)を有している。そのため、サンプルの分離および吸着の際にサンプル成分の通り道(第2開口18)に存在していても、サンプルの分離および吸着に悪影響を与えないと判断した。   First, the sample separation unit 6 is formed of glass with dimensions of 70 mm width × 30 mm length × 5 mm thickness, and 13% polysalt containing Bis-Tris / HCl buffer having a pH of 6.4 is used as the separation gel 7 therein. Acrylamide (width 60 mm × length 30 mm × thickness 1.2 mm) was filled. At this time, a comb (having a convex portion of 4 mm × 6 mm × 1 mm) was inserted into the first opening 17 side, and a well for sample application (a recess of 4 mm × 6 mm × 1 mm) was provided. The second opening 18 is covered with a hydrophilic Durapore membrane (polyvinylidene fluoride membrane manufactured by Millipore) having a thickness of 125 μm so that the separation gel 7 is filled up to the tip of the second opening 18. I left it. This Durapore membrane has a very low protein adsorption capacity (4 μg / cm 2) as compared with nylon membranes, nitrocellulose membranes, PTFE (Polytetra fluoroethylene) membranes, and the like. For this reason, it was determined that the separation and adsorption of the sample were not adversely affected even if the sample components were present in the path (second opening 18) during the separation and adsorption of the sample.

ポリアクリルアミドがゲル化した後、コームを抜き取り、サンプルをウェルへ導入した。このとき、サンプルが第1緩衝液槽4内の緩衝液中に流出しないように、ウェルを封するため、1%アガロースを注入し、その後、アガロースがゲル化することでサンプルを固定化した。   After the polyacrylamide gelled, the comb was removed and the sample was introduced into the well. At this time, 1% agarose was injected to seal the well so that the sample did not flow out into the buffer solution in the first buffer solution tank 4, and then the sample was immobilized by gelling of the agarose.

サンプルとしては、市販の分子量マーカー(SeeBlue Plus2 Pre−stained Standard、Invitrogen)を用いた。   As a sample, a commercially available molecular weight marker (SeeBlue Plus2 Pre-stained Standard, Invitrogen) was used.

サンプル分離部6を、アクリル製のステージ13上に固定した。また、電圧印加時の発熱防止のために、ペルチェ素子を用いた冷却装置(図示せず)を、予めステージ13下部に取り付けておいた。サンプル分離部6を取り付けることによって、第1開口17側に第1緩衝液槽4および第2開口18側に第2緩衝液槽が形成された。第1緩衝液槽4に市販のpH7.3のMOPSバッファー(Invitrogen)を注いで、第1緩衝液槽4を満たした。そして、白金線からなる陰電極2を、第1緩衝液槽4の第1開口17とは反対側に挿入した。   The sample separation unit 6 was fixed on an acrylic stage 13. In addition, a cooling device (not shown) using a Peltier element is attached to the lower portion of the stage 13 in advance to prevent heat generation during voltage application. By attaching the sample separation unit 6, the first buffer solution tank 4 was formed on the first opening 17 side and the second buffer solution tank was formed on the second opening 18 side. A commercially available MOPS buffer (Invitrogen) having a pH of 7.3 was poured into the first buffer tank 4 to fill the first buffer tank 4. Then, the negative electrode 2 made of platinum wire was inserted on the opposite side of the first buffer solution tank 4 from the first opening 17.

次に、予め親水化処理した転写膜9(Millipore社製のPVDF膜(Immobiron PSQ))を第2緩衝液槽5に挿入した。転写膜9の一端は、移動アーム10に保持させ、かつ転写膜9の他端は、アクリル製の転写膜収納ロール11に巻きつけられている。続いて、x方向幅50μm、y方向幅100μm、z方向幅60mmに開いたスリット1を有するアクリルで形成された凹型の槽(スリット構造体8b)を第2緩衝液槽へはめ込んだ。なお、スリット構造体8bの底面が転写膜9上へ直接載らないように、第2緩衝液槽5の底面両側部(側壁から各5mm幅)は中央部(60mm幅)より3mm底上げされており、盛り上がったレール状の上記底面両側部にスリット構造体8bが載り、第2緩衝液槽5の底面両側部と上記中央部、そして、スリット構造体8bの底面に囲まれた空間に転写膜9を位置させた。   Next, the transfer membrane 9 (PVDF membrane (Immobilon PSQ) manufactured by Millipore) previously hydrophilized was inserted into the second buffer solution tank 5. One end of the transfer film 9 is held by the moving arm 10, and the other end of the transfer film 9 is wound around an acrylic transfer film storage roll 11. Subsequently, a concave tank (slit structure 8b) formed of acrylic having slits 1 opened in an x-direction width of 50 μm, a y-direction width of 100 μm, and a z-direction width of 60 mm was fitted into the second buffer solution tank. It should be noted that both sides of the bottom surface of the second buffer solution tank 5 (5 mm width from the side wall) are raised 3 mm from the central portion (60 mm width) so that the bottom surface of the slit structure 8 b does not directly rest on the transfer film 9. The slit structure 8b is placed on both sides of the raised rail-shaped bottom surface, and the transfer film 9 is placed in a space surrounded by the both sides of the bottom surface of the second buffer solution tank 5, the central portion, and the bottom surface of the slit structure 8b. Was positioned.

その後、スリット1および転写膜9を第2開口18へ押付けて固定させるために、スリット構造体8bと、第2緩衝液槽5の第2開口18に対向した壁面との間にプランジャー19を挿入した。続いて、第2緩衝液槽5に市販のpH7.2のNuPAGE転写バッファー(Invitrogen)に20%メタノールを混合した緩衝液を注いで満たし、白金線からなる陽電極3を挿入した。   Thereafter, in order to press and fix the slit 1 and the transfer film 9 to the second opening 18, a plunger 19 is placed between the slit structure 8 b and the wall surface facing the second opening 18 of the second buffer solution tank 5. Inserted. Subsequently, a buffer solution in which 20% methanol was mixed with a commercially available NuPAGE transfer buffer (Invitrogen) having a pH of 7.2 was poured into the second buffer solution tank 5, and the positive electrode 3 made of a platinum wire was inserted.

以上の準備を行った後、陰電極2と陽電極3との間に電圧を印加して、電気泳動分離を行った(25mAの定電流、25分間)。上記サンプルのSeeBlue Plus2 Pre−stained Standard(Invitrogen)は、染色されたタンパク質の混合物であるので、サンプルが電気泳動されている状態を目視によって確認することができた。移動アーム10の動作は、泳動の先端が第2開口18に達したときに生じる電圧上昇点において引き上げを開始するように予めプログラミングされており、サンプル成分の排出と同時に、自動的にかつ多変速において引き上げが開始された。なお、2極間の電圧は、各電極に接続された電圧測定器によって検出された。   After the above preparation, a voltage was applied between the negative electrode 2 and the positive electrode 3 to perform electrophoretic separation (25 mA constant current, 25 minutes). Since SeeBlue Plus2 Pre-stained Standard (Invitrogen) of the sample is a mixture of stained proteins, it was possible to visually confirm the state of electrophoresis of the sample. The movement of the moving arm 10 is pre-programmed to start pulling up at the voltage rise point that occurs when the migration tip reaches the second opening 18, and automatically and multi-shifts simultaneously with the discharge of the sample components. The lift has begun. The voltage between the two electrodes was detected by a voltage measuring device connected to each electrode.

第2開口18から排出されたサンプルの成分は、連続的に転写膜9に吸着(転写)され、転写の終了後に転写膜9は移動アーム16によって回収された。回収した転写膜9を目視によって確認したところ、サンプルが良好に分離および転写されていることを確認した。   The sample components discharged from the second opening 18 were continuously adsorbed (transferred) to the transfer film 9, and the transfer film 9 was collected by the moving arm 16 after the transfer was completed. When the collected transfer film 9 was visually confirmed, it was confirmed that the sample was well separated and transferred.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られるような実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.

本発明は、生体試料および化学的試料などの解析およびその解析器具の製造に対して好適に使用され得る。   The present invention can be suitably used for the analysis of biological samples and chemical samples and the production of the analysis instrument.

1 スリット
2 陰電極
3 陽電極
4 第1緩衝液槽
5 第2緩衝液槽
6 サンプル分離部
7 分離ゲル
8 スリット構造体
9 転写膜
10 移動アーム
12 ガイド
13 ステージ
17 第1開口
18 第2開口
20 突起部
21 突起部
100〜160 サンプル分離吸着器具
DESCRIPTION OF SYMBOLS 1 Slit 2 Negative electrode 3 Positive electrode 4 1st buffer solution tank 5 2nd buffer solution tank 6 Sample separation part 7 Separation gel 8 Slit structure 9 Transfer film 10 Moving arm 12 Guide 13 Stage 17 1st opening 18 2nd opening 20 Protrusion 21 Protrusion 100-160 Sample separation and adsorption device

Claims (15)

分離媒体に緩衝液を介して電流を流すことによって、上記分離媒体中のサンプルを分離し、かつ、分離されたサンプルを上記分離媒体からサンプル吸着部材へ吸着させるサンプル分離吸着器具であって、
第1電極と、
第2電極と、
上記第1電極に対向する側に開口する第1開口および上記第2電極に対向する側に開口する第2開口を有し、かつ、上記分離媒体を格納するサンプル分離部と、
上記第2開口に対向する位置にスリットを有するスリット構造体とを備え、
上記サンプル吸着部材は、上記第2開口と上記スリットとの間に配置され
上記第1電極および上記第2電極により規定される第1方向に対して垂直な第2方向において、
上記スリットの幅は、上記第2開口の幅よりも狭いことを特徴とするサンプル分離吸着器具。
A sample separation / adsorption instrument for separating a sample in the separation medium by passing an electric current through the buffer to the separation medium and adsorbing the separated sample from the separation medium to a sample adsorption member,
A first electrode;
A second electrode;
A sample separation unit that has a first opening that opens on the side facing the first electrode and a second opening that opens on the side facing the second electrode, and stores the separation medium;
A slit structure having a slit at a position facing the second opening,
The sample adsorbing member is disposed between the second opening and the slit ,
In a second direction perpendicular to the first direction defined by the first electrode and the second electrode,
The sample separation / adsorption instrument , wherein the slit has a width narrower than that of the second opening .
上記第2方向が、上記スリットの長手方向に垂直な方向であることを特徴とする請求項1に記載のサンプル分離吸着器具。The sample separation / adsorption device according to claim 1, wherein the second direction is a direction perpendicular to a longitudinal direction of the slit. 上記スリット構造体は、絶縁性の材料から構成されていることを特徴とする請求項1または2に記載のサンプル分離吸着器具。   The sample separation / adsorption device according to claim 1, wherein the slit structure is made of an insulating material. 上記スリットは、誘電率5.0以下の材料から構成されていることを特徴とする請求項3に記載のサンプル分離吸着器具。   The sample separation / adsorption device according to claim 3, wherein the slit is made of a material having a dielectric constant of 5.0 or less. 上記サンプル吸着部材は上記スリットに接して配置され、
上記第2開口と上記スリットとの間の距離は、300μm以上4000μm以下であることを特徴とする請求項1から4のいずれか1に記載のサンプル分離吸着器具。
The sample adsorption member is disposed in contact with the slit,
5. The sample separation / adsorption device according to claim 1, wherein a distance between the second opening and the slit is 300 μm or more and 4000 μm or less.
上記第2開口と上記サンプル吸着部材との間には、サンプル透過可能な導電性媒体が介在することを特徴とする請求項5に記載のサンプル分離吸着器具。   The sample separation / adsorption device according to claim 5, wherein a conductive medium that allows sample penetration is interposed between the second opening and the sample adsorption member. 上記スリット構造体は、上記第2開口側に突起した2つの突起形状の間に上記スリットを形成している突起部を有しており、
上記突起部の少なくとも一部は、上記サンプル吸着部材と共に、上記第2開口を介して上記サンプル分離部内に入り込み、かつ、上記サンプル吸着部材を介して上記分離媒体に接していることを特徴とする請求項1から4のいずれか1項に記載のサンプル分離吸着器具。
The slit structure has a protrusion that forms the slit between two protrusion shapes protruding toward the second opening,
At least a part of the protruding part enters the sample separation part through the second opening together with the sample adsorption member, and is in contact with the separation medium via the sample adsorption member. The sample separation adsorption device according to any one of claims 1 to 4.
上記スリット構造体は、
上記スリットの周囲から上記第2開口側に突起する形状であって、上記第2開口を介して上記サンプル分離部内に入り込む突起部と、
上記突起部と上記スリットとの間において上記サンプル吸着部材を保持する保持部とを有することを特徴とする請求項1から6のいずれか1項に記載のサンプル分離吸着器具。
The slit structure is
A shape that protrudes from the periphery of the slit toward the second opening, and a protrusion that enters the sample separation portion through the second opening;
The sample separation / adsorption device according to any one of claims 1 to 6, further comprising: a holding portion that holds the sample adsorption member between the protrusion and the slit.
上記第1電極が内部に配置された第1緩衝液槽と、
上記第2電極が内部に配置された第2緩衝液槽とをさらに備え、
上記スリット構造体は、上記第2緩衝液槽と一体的に構成されており、
上記スリット構造体を含む上記第2緩衝液槽の少なくとも一部は、上記第1電極および上記第2電極により規定される第1方向に対して垂直な第2方向における上記スリットの
中心を通る、当該第2方向に垂直な平面に対して対称に構成されていることを特徴とする請求項1から8のいずれか1項に記載のサンプル分離吸着器具。
A first buffer tank in which the first electrode is disposed;
A second buffer tank in which the second electrode is disposed;
The slit structure is configured integrally with the second buffer solution tank,
At least a part of the second buffer solution tank including the slit structure passes through the center of the slit in a second direction perpendicular to the first direction defined by the first electrode and the second electrode. The sample separation / adsorption device according to claim 1, wherein the sample separation / adsorption device is configured to be symmetrical with respect to a plane perpendicular to the second direction.
上記スリット構造体は、上記サンプル分離部の上記第2開口側において、当該サンプル分離部と一体的に構成されていることを特徴とする請求項1から6のいずれか1項に記載のサンプル分離吸着器具。   The sample separation according to any one of claims 1 to 6, wherein the slit structure is configured integrally with the sample separation part on the second opening side of the sample separation part. Suction equipment. 上記第1電極、上記第1開口、上記第2開口、および上記第2電極が、略一直線上に配置されていることを特徴とする請求項1から10のいずれか1項に記載のサンプル分離吸着器具。   The sample separation according to any one of claims 1 to 10, wherein the first electrode, the first opening, the second opening, and the second electrode are arranged in a substantially straight line. Suction equipment. 上記サンプル吸着部材が移動する経路を規定するガイドをさらに備えていることを特徴とする請求項1から11のいずれか1項に記載のサンプル分離吸着器具。   The sample separation / adsorption device according to any one of claims 1 to 11, further comprising a guide for defining a path along which the sample adsorption member moves. 上記第2開口に対向する位置において、上記サンプル吸着部材を、上記第1電極および上記第2電極により規定される第1方向に対して垂直な第2方向に移動させる移動手段をさらに備えていることを特徴とする請求項1から12のいずれか1項に記載のサンプル分離吸着器具。   The apparatus further includes moving means for moving the sample adsorption member in a second direction perpendicular to the first direction defined by the first electrode and the second electrode at a position facing the second opening. The sample separation / adsorption device according to any one of claims 1 to 12, 上記第1電極と上記第2電極との間の電圧を測定する電圧検出手段をさらに備えており、
上記移動手段は、上記電圧検出手段によって検出された電圧に基づき、サンプル吸着部材の移動を開始させることを特徴とする請求項13に記載のサンプル分離吸着器具。
Voltage detection means for measuring a voltage between the first electrode and the second electrode;
14. The sample separation / adsorption device according to claim 13, wherein the moving means starts the movement of the sample adsorbing member based on the voltage detected by the voltage detecting means.
分離媒体に緩衝液を介して電流を流すことによって、上記分離媒体中のサンプルを分離し、かつ、分離されたサンプルを上記分離媒体からサンプル吸着部材へ吸着させるサンプル分離吸着器具であって、A sample separation / adsorption instrument for separating a sample in the separation medium by passing an electric current through the buffer to the separation medium and adsorbing the separated sample from the separation medium to a sample adsorption member,
第1電極と、A first electrode;
第2電極と、A second electrode;
上記第1電極に対向する側に開口する第1開口および上記第2電極に対向する側に開口する第2開口を有し、かつ、上記分離媒体を格納するサンプル分離部と、A sample separation unit that has a first opening that opens on the side facing the first electrode and a second opening that opens on the side facing the second electrode, and stores the separation medium;
上記第2開口に対向する位置にスリットを有するスリット構造体とを備え、A slit structure having a slit at a position facing the second opening,
上記サンプル吸着部材は、上記第2開口と上記スリットとの間に配置される(ただし、上記サンプル吸着用部材において上記第2開口と対向する部位を上記サンプルの分離方向における前後から間に挟む位置に、上記スリット構造体とともに、スリットを形成する第2のスリット構造体を備える場合を除く)ことを特徴とするサンプル分離吸着器具。The sample adsorbing member is disposed between the second opening and the slit (however, a position where the portion facing the second opening in the sample adsorbing member is sandwiched between front and rear in the sample separation direction) And a second slit structure that forms a slit together with the slit structure).
JP2010065962A 2010-03-23 2010-03-23 Sample separation adsorption device Expired - Fee Related JP4943526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065962A JP4943526B2 (en) 2010-03-23 2010-03-23 Sample separation adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065962A JP4943526B2 (en) 2010-03-23 2010-03-23 Sample separation adsorption device

Publications (2)

Publication Number Publication Date
JP2011196914A JP2011196914A (en) 2011-10-06
JP4943526B2 true JP4943526B2 (en) 2012-05-30

Family

ID=44875316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065962A Expired - Fee Related JP4943526B2 (en) 2010-03-23 2010-03-23 Sample separation adsorption device

Country Status (1)

Country Link
JP (1) JP4943526B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103781B2 (en) 2011-09-12 2015-08-11 Sharp Kabushiki Kaisha Sample separation and adsorption appliance
JP6914243B2 (en) * 2016-03-04 2021-08-04 メルク株式会社 Sample separator and sample analyzer
JP6461046B2 (en) * 2016-06-07 2019-01-30 シャープライフサイエンス株式会社 Transfer membrane holding device and separation transfer device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431838B2 (en) * 2008-06-30 2010-03-17 シャープ株式会社 Sample separation adsorption device
JP5271615B2 (en) * 2008-06-30 2013-08-21 パナソニック株式会社 Ultrasonic diagnostic equipment
JP5236609B2 (en) * 2009-10-06 2013-07-17 シャープ株式会社 Sample separation adsorption device
JP5231374B2 (en) * 2009-10-16 2013-07-10 シャープ株式会社 Sample separation adsorption device
JP5254184B2 (en) * 2009-11-10 2013-08-07 シャープ株式会社 Sample separation adsorption device
JP5284292B2 (en) * 2010-01-13 2013-09-11 シャープ株式会社 Sample separation adsorption device

Also Published As

Publication number Publication date
JP2011196914A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP4431838B2 (en) Sample separation adsorption device
US7611614B2 (en) Method of cell capture
JP5233187B2 (en) Cell electrophysiological sensor
JP5236609B2 (en) Sample separation adsorption device
WO2013038474A1 (en) Sample separation/adsorption appliance
US20080067079A1 (en) Method of Analyzing Sample and Analyzing Apparatus
JP4943526B2 (en) Sample separation adsorption device
JP2009063454A (en) Electrophoretic transfer device
JP5231374B2 (en) Sample separation adsorption device
JP5254184B2 (en) Sample separation adsorption device
JP5284292B2 (en) Sample separation adsorption device
WO2015093282A1 (en) Biomolecule analysis device
CN106233132B (en) Biomolecule analysis device
EP3264075A1 (en) Transfer membrane holder, and separation transfer device
US20170038335A1 (en) Frame member-equipped transfer film, biomolecule analysis device, reagent tank, and shaking device
JP4113945B2 (en) Capillary electrophoretic adsorption / desorption chromatography and apparatus therefor
JP6030681B2 (en) Biomolecule analyzer
KR102556346B1 (en) Sample Solution Concentration Separation Device for Detecting Biomarker
JP6353869B2 (en) Biomolecule analyzer
JP2015219218A (en) Biomolecule analyzing device
JP5952379B2 (en) Biomolecule analyzer
JP3520340B2 (en) A method for determining the interaction force between microparticles and a wall using electrophoresis
AU2002329815A1 (en) Manipulation of analytes using electric fields

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees