JP4941501B2 - Polishing liquid for glass substrate, method for producing the same, polishing method for glass substrate using the polishing liquid, and glass substrate obtained by the polishing method - Google Patents

Polishing liquid for glass substrate, method for producing the same, polishing method for glass substrate using the polishing liquid, and glass substrate obtained by the polishing method Download PDF

Info

Publication number
JP4941501B2
JP4941501B2 JP2009102059A JP2009102059A JP4941501B2 JP 4941501 B2 JP4941501 B2 JP 4941501B2 JP 2009102059 A JP2009102059 A JP 2009102059A JP 2009102059 A JP2009102059 A JP 2009102059A JP 4941501 B2 JP4941501 B2 JP 4941501B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
liquid
colloidal silica
polishing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009102059A
Other languages
Japanese (ja)
Other versions
JP2010250915A (en
Inventor
啓 中西
智弘 酒井
浩之 朝長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009102059A priority Critical patent/JP4941501B2/en
Publication of JP2010250915A publication Critical patent/JP2010250915A/en
Application granted granted Critical
Publication of JP4941501B2 publication Critical patent/JP4941501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガラス基板用研磨液及びその製造方法に関する。また、本発明は、前記研磨液を用いたガラス基板の研磨方法及び前記研磨方法により得られたガラス基板に関する。   The present invention relates to a glass substrate polishing liquid and a method for producing the same. The present invention also relates to a glass substrate polishing method using the polishing liquid and a glass substrate obtained by the polishing method.

ハードディスクドライブ等の情報処理機器に搭載される磁気ディスクに対する高記録密度化の要請は近年強くなっており、このような状況の下、従来のアルミニウム基板に替わってガラス基板が広く用いられるようになってきている。   In recent years, the demand for higher recording density for magnetic disks mounted on information processing equipment such as hard disk drives has been increasing. Under these circumstances, glass substrates have been widely used in place of conventional aluminum substrates. It is coming.

磁気ディスクの記録容量を高めるには、ガラス基板の主表面がより平坦であることが必要であり、高精度の研磨が要求される。磁気ディスク用ガラス基板は、例えば、ガラス板からドーナツ状円形ガラス板(中央に円孔を有する円形ガラス板)を切り取り、内周面及び外周面をダイヤモンド砥石を用いて切削加工し、その後、主表面ラッピング、端面鏡面研磨を順次行い、円形ガラス板の主表面に研磨液を作用させながら研磨パッドにより研磨して製造される。このとき、ガラス基板の主表面を高精度研磨するには、10nm程度の極めて小さな研磨粒子を用いることによりある程度可能であるが、一方で研磨速度が遅く、生産性を著しく低下させてしまう。   In order to increase the recording capacity of the magnetic disk, the main surface of the glass substrate needs to be flatter, and high-precision polishing is required. For example, a glass substrate for a magnetic disk is obtained by cutting a donut-shaped circular glass plate (a circular glass plate having a circular hole in the center) from a glass plate, cutting the inner peripheral surface and the outer peripheral surface with a diamond grindstone, Surface lapping and end mirror polishing are sequentially performed, and polishing is performed with a polishing pad while applying a polishing liquid to the main surface of the circular glass plate. At this time, high precision polishing of the main surface of the glass substrate is possible to some extent by using extremely small abrasive particles of about 10 nm, but on the other hand, the polishing rate is slow and the productivity is significantly reduced.

そのため、研磨速度も併せて重要になっており、例えば特許文献1には、球状コロイダルシリカ粒子が一平面内のみにつながった数珠状コロイダルシリカ粒子が水中に分散した安定なシリカゾルを含有する研磨液を、アルミニウムディスク、ガラスハードディスク、石英ガラス、水晶、半導体デバイスのSiO酸化膜、珪素単体半導体ウェハ、化合物半導体ウェハの研磨に使用すると、研磨速度が向上することが開示されている。 Therefore, the polishing rate is also important. For example, Patent Document 1 discloses a polishing liquid containing a stable silica sol in which beaded colloidal silica particles in which spherical colloidal silica particles are connected only in one plane are dispersed in water. Is used for polishing aluminum disks, glass hard disks, quartz glass, quartz crystals, SiO 2 oxide films of semiconductor devices, single silicon semiconductor wafers, and compound semiconductor wafers, it is disclosed that the polishing rate is improved.

また、特許文献2には、表面に突起を有する凹凸状コロイダルシリカ粒子を含有する研磨液をInPウエハの研磨に使用すると、研磨速度が著しく向上することが開示されている。   Patent Document 2 discloses that when a polishing liquid containing uneven colloidal silica particles having protrusions on the surface is used for polishing an InP wafer, the polishing rate is remarkably improved.

また、特許文献3には、石英ガラス、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、アルミノボロシリケートガラス、無アルカリガラス、結晶化ガラスの研磨材として、粒子の最大内接円半径の1/5〜1/2の曲率半径を持った凸部を平均2個以上有するコロイダルシリカ粒子を用いると、表面粗さの平滑性と研磨速度の両立が満足できることが開示している。 In addition, Patent Document 3 discloses a polishing material for quartz glass, soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, alkali-free glass, and crystallized glass. with Turkey Roidarushirika particles Yusuke 5-1 / 2 of the convex portion having a curvature radius average of two or more, both the smoothness of the polishing rate of the surface roughness that is satisfactory disclose.

特開2001―11433号公報JP 2001-11433 A 特開2004―207417号公報Japanese Patent Laid-Open No. 2004-207417 特開2008―13655号公報JP 2008-13655 A

しかしながら、従来の研磨液では、研磨速度と表面平坦性の両立が満足できるレベルではない。また、特許文献1に記載の数珠状コロイダルシリカ粒子の合成に30分から3000分という膨大な時間を要し、製造に時間がかかり、コストも高くなってしまう。   However, the conventional polishing liquid is not at a level that satisfies both the polishing rate and the surface flatness. Further, the synthesis of the beaded colloidal silica particles described in Patent Document 1 requires an enormous amount of time of 30 to 3000 minutes, takes time for production, and increases the cost.

そこで本発明は、磁気ディスク等のガラス基板の研磨において、高速研磨と基板表面の高平坦性とを両立させることを目的とする。   Accordingly, an object of the present invention is to achieve both high-speed polishing and high flatness of the substrate surface in polishing a glass substrate such as a magnetic disk.

上記目的を達成するために本発明は、下記を提供する。
(1)平均粒子径が10〜50nmで表面に突起を持つ凹凸状コロイダルシリカ粒子が連結してなり、かつ、動的光散乱法によるメディアン径(D1)が30〜150nmで、透過型電子顕微鏡により測定した平均粒子径(D2)との比(D1/D2)が2〜5であるコロイダルシリカ粒子凝集体が水中に分散しており、さらに、研磨速度/表面粗さ(Ra)が1.8μm/(min・nm)以上であることを特徴とするガラス基板用研磨液。
(2)コロイダルシリカ粒子凝集体の濃度が、SiO換算で0.5〜30質量%であることを特徴とする上記(1)記載のガラス基板用研磨液。
(3)上記(1)記載のガラス基板用研磨液の製造方法であって、珪酸含有水溶液に、凝集剤と平均粒子径が10〜50nmで表面に突起を持つ凹凸状コロイダルシリカ粒子とを加え、液のpHを8〜10に調整した後、マイクロ波を用いて加熱することを特徴とするガラス基板用研磨液の製造方法。
(4)上記(1)記載のガラス基板用研磨液の製造方法であって、珪珪酸含有水溶液をイオン交換してpHを4以下にし、水酸化リチウム、水酸化カリウムおよび水酸化ナトリウムからなる群から選ばれる1種以上を用いてpHを9〜14にした後、マイクロ波を用いて加熱することを特徴とするガラス基板用研磨液の製造方法。
(5)上記(1)または(2)に記載のガラス基板用研磨液を用いてガラス基板を研磨することを特徴とするガラス基板の研磨方法。
(6)上記(1)または(2)に記載のガラス基板用研磨液を用いてガラス基板を研磨することを特徴とするガラス基板の製造方法。
(7)ガラス基板が、磁気ディスク用ガラス基板である上記(6)記載のガラス基板の製造方法。
In order to achieve the above object, the present invention provides the following.
(1) Average particle diameter becomes linked uneven colloidal silica particles having a projection on the front surface with 10 to 50 nm, and a median diameter (D1) is in 30~150nm by a dynamic light scattering method, transmission electron Colloidal silica particle aggregates having a ratio (D1 / D2) to the average particle diameter (D2) measured by a microscope of 2 to 5 are dispersed in water , and the polishing rate / surface roughness (Ra) is 1. A polishing liquid for glass substrate, wherein the polishing liquid is 8 μm / (min · nm) or more .
(2) The glass substrate polishing liquid according to (1) above, wherein the concentration of the colloidal silica particle aggregate is 0.5 to 30% by mass in terms of SiO 2 .
(3) A method for producing a polishing liquid for a glass substrate as described in (1) above, wherein a flocculant and irregular colloidal silica particles having an average particle diameter of 10 to 50 nm and having protrusions on the surface are added to a silicic acid-containing aqueous solution. A method for producing a polishing liquid for a glass substrate, comprising adjusting the pH of the liquid to 8 to 10 and then heating using a microwave.
(4) The method for producing a polishing liquid for a glass substrate according to the above (1), wherein the siliceous acid-containing aqueous solution is ion-exchanged so as to have a pH of 4 or less, and consists of lithium hydroxide, potassium hydroxide and sodium hydroxide. A method for producing a polishing liquid for a glass substrate, wherein the pH is adjusted to 9 to 14 using one or more selected from the following, followed by heating using microwaves.
(5) A method for polishing a glass substrate, comprising polishing the glass substrate using the glass substrate polishing liquid according to (1) or (2) above.
(6) A method for producing a glass substrate, comprising polishing the glass substrate using the glass substrate polishing liquid according to (1) or (2) above.
(7) The method for producing a glass substrate according to (6), wherein the glass substrate is a glass substrate for a magnetic disk.

本発明のガラス基板用研磨液を用いることにより、従来よりも高い研磨速度と高い表面平坦性とを実現でき、得られるガラス基板も表面の平坦性に優れたものとなる。また、このガラス基板用研磨液を短時間で製造することもできる。   By using the glass substrate polishing liquid of the present invention, it is possible to realize a higher polishing rate and higher surface flatness than before, and the resulting glass substrate also has excellent surface flatness. Moreover, this glass substrate polishing liquid can be produced in a short time.

本発明で使用する連続式マイクロ波加熱装置を示す図であり、(1−1)は長手方向の断面図、(1−2)は長手方向と直交する方向の断面図を示す。It is a figure which shows the continuous microwave heating apparatus used by this invention, (1-1) is sectional drawing of a longitudinal direction, (1-2) shows sectional drawing of the direction orthogonal to a longitudinal direction. 比較例4で得られた研磨材を透過型電子顕微鏡で撮影した写真である。It is the photograph which image | photographed the abrasive | polishing material obtained by the comparative example 4 with the transmission electron microscope. 実施例4で得られた研磨材を透過型電子顕微鏡で撮影した写真である。It is the photograph which image | photographed the abrasive | polishing material obtained in Example 4 with the transmission electron microscope.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明では、ガラス基板用研磨液の研磨材として、表面に突起を持つ凹凸状コロイダルシリカ粒子が連結したコロイダルシリカ粒子凝集体(図2B参照)を用いる。本発明では粒子同士が珪酸等により架橋した状態を連結と言う。凹凸状コロイダルシリカ粒子とは、表面に1nm以上の突起を有するコロイダルシリカ粒子であり、その平均粒子径は10〜50nmであり、好ましくは15〜40nmである。また、この凹凸状コロイダルシリカ粒子同士が一次元的、二次元的または三次元的に連結してコロイダルシリカ粒子凝集体を形成するが、その大きさは、動的光散乱法によるメディアン径(D1)で30〜150nm、好ましくは(50〜130)nmであり、かつ、透過型電子顕微鏡により測定した平均粒子径(D2)との比(D1/D2;会合比)で2〜5、好ましくは3〜5であり、より好ましくは3〜4.5である。凹凸状コロイダルシリカ粒子及びコロイダルシリカ粒子凝集体とも、前記の寸法よりも小さくなると研磨速度が遅くなり、大きくなると平坦性が得られない。また、会合比も同様であり、2より小さいと研磨速度が遅くなり、5より大きいと平坦性が得られない。   In the present invention, a colloidal silica particle aggregate (see FIG. 2B) in which concavo-convex colloidal silica particles having protrusions on the surface are connected is used as an abrasive for the glass substrate polishing liquid. In the present invention, the state in which the particles are cross-linked with silicic acid or the like is referred to as connection. The uneven colloidal silica particles are colloidal silica particles having protrusions of 1 nm or more on the surface, and the average particle diameter is 10 to 50 nm, preferably 15 to 40 nm. The concavo-convex colloidal silica particles are connected one-dimensionally, two-dimensionally or three-dimensionally to form a colloidal silica particle aggregate, and the size thereof is determined by the median diameter (D1 ) In the range of 30 to 150 nm, preferably (50 to 130) nm, and a ratio (D1 / D2; association ratio) to the average particle diameter (D2) measured by a transmission electron microscope of 2 to 5, preferably It is 3-5, More preferably, it is 3-4.5. When both the concave and convex colloidal silica particles and the colloidal silica particle aggregate are smaller than the above dimensions, the polishing rate is slow, and when it is large, flatness cannot be obtained. The association ratio is also the same. When it is smaller than 2, the polishing rate is slow, and when it is larger than 5, flatness cannot be obtained.

尚、凹凸状コロイダルシリカ粒子は、シリカドール30、シリカドール30B、シリカドール40、シリカドール30LL、シリカドール40KL(日本化学工業株式会社製)、PL2L、PL2(扶桑化学工業株式会社製)、カタロイドPPS−45PKH、カタロイドPPS−50(日揮触媒化成株式会社)、ルドックスAS40、ルドックスHS40、ルドックスTM50(グレースジャパン株式会社製)等の市販品を用いることもできるが、例えば下記に示すような工程(a)〜(d)に従い製造することもできる。   Concave and convex colloidal silica particles are silica doll 30, silica doll 30B, silica doll 40, silica doll 30LL, silica doll 40KL (manufactured by Nippon Chemical Industry Co., Ltd.), PL2L, PL2 (manufactured by Fuso Chemical Industry Co., Ltd.), cataloid. Commercial products such as PPS-45PKH, Cataloid PPS-50 (JGC Catalysts & Chemicals Co., Ltd.), Ludox AS40, Ludox HS40, Ludox TM50 (produced by Grace Japan Co., Ltd.) can be used. It can also be produced according to a) to (d).

工程(a):
先ず、表面に突起の無いコロイダルシリカ粒子を水に分散させ、分散液をpH10以上に調整する。pH調整に使用するアルカリとしては水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、アンモニア、炭酸水素ナトリウム等が挙げられる。その他、陰イオン交換樹脂を用いても良い。液のpHが10未満では、コロイダルシリカ粒子における珪酸の溶解量が足りないため、凹凸状コロイダルシリカ粒子を製造するのが困難になる。
Step (a):
First, colloidal silica particles having no protrusions on the surface are dispersed in water, and the dispersion is adjusted to pH 10 or higher. Examples of the alkali used for pH adjustment include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, ammonia, sodium hydrogen carbonate and the like. In addition, an anion exchange resin may be used. If the pH of the liquid is less than 10, the amount of silicic acid dissolved in the colloidal silica particles is insufficient, and thus it becomes difficult to produce uneven colloidal silica particles.

工程(b):
上記工程(a)の分散液に、珪酸を添加する。珪酸源としては水ガラスが適当であり、JIS K1408規定の珪酸ソーダ(xNaO・ySiO)相当品、すなわち、JIS1号、2号、3号水ガラスが挙げられる。珪酸の濃度は、SiOとして水100質量部に対して0.015〜0.09質量部、好ましくは(0.02〜0.07)質量部とする。珪酸の濃度が水100質量部に対して0.015質量部未満であると表面に突起が形成できない可能性がり、珪酸の濃度が水100質量部に対して0.09質量部超であると、凹凸状コロイダルシリカ粒子と共にゲル状のシリカが生成される。
Step (b):
Silicic acid is added to the dispersion in the step (a). As the silicic acid source, water glass is suitable, and examples thereof include sodium silicate (xNa 2 O · ySiO 2 ) equivalent to JIS K1408, that is, JIS No. 1, No. 2, No. 3 water glass. The concentration of silicic acid is 0.015 to 0.09 parts by mass, preferably (0.02 to 0.07) parts by mass with respect to 100 parts by mass of water as SiO 2 . When the concentration of silicic acid is less than 0.015 parts by mass with respect to 100 parts by mass of water, projections may not be formed on the surface, and the concentration of silicic acid is more than 0.09 parts by mass with respect to 100 parts by mass of water. Then, gel-like silica is produced together with the uneven colloidal silica particles.

工程(c):
上記工程(b)の分散液をpH9以下に調整し、所定時間保持する。pH調整に使用する酸としては塩酸、硫酸、硝酸、炭酸、酢酸、クエン酸等が挙げられる。その他、陽イオン交換樹脂を用いても良い。液のpHが9超では、珪酸の溶解量が多く、珪酸が析出しないため、凹凸状コロイダルシリカ粒子を製造するのが困難になる。生成する凹凸状コロイダルシリカ粒子の安定性を考えると、pH8〜9、もしくはpH1.5〜2.5が好ましい。このpHの範囲外では安定性が悪く、長期保存するとゲル化が進行する可能性が高い。保持時間は、凹凸状コロイダルシリカ粒子の突起の大きさに応じて設定する。
Step (c):
The dispersion liquid in the step (b) is adjusted to pH 9 or less and held for a predetermined time. Examples of the acid used for pH adjustment include hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, acetic acid, and citric acid. In addition, a cation exchange resin may be used. If the pH of the liquid is more than 9, the amount of silicic acid dissolved is large and silicic acid does not precipitate, making it difficult to produce uneven colloidal silica particles. In view of the stability of the formed uneven colloidal silica particles, pH 8 to 9, or pH 1.5 to 2.5 is preferable. Outside this pH range, the stability is poor, and the gelation is likely to proceed if stored for a long time. The holding time is set according to the size of the projections of the concavo-convex colloidal silica particles.

工程(d):
上記工程(c)の分散液から、生成した凹凸状コロイダルシリカ粒子を回収する。尚、突起形成の確認は、透過型電子顕微鏡により確認することができる。
Step (d):
The produced concavo-convex colloidal silica particles are recovered from the dispersion liquid in the step (c). In addition, confirmation of protrusion formation can be confirmed with a transmission electron microscope.

凹凸状コロイダルシリカ粒子同士を連結させて凝集体とするには、例えば、下記工程(A)〜(E)を行なう。   In order to connect the uneven colloidal silica particles to form an aggregate, for example, the following steps (A) to (E) are performed.

工程(A):
珪酸含有水溶液を調製し、液のpHを4以下に調整する。珪酸源としては上記で用いた水ガラスが適当であり、水溶液中の水ガラスの濃度はSiOとして0.5〜15質量%が好ましい。この水ガラスの濃度が0.5質量%以上であれば水の量が抑えられ、水ガラスからの珪酸の生産効率が良好となるが、15質量%超では珪酸合成時にゲル化が起こるようになる。液のpH調整には、陽イオン交換樹脂を加えることが好ましい。陽イオン交換樹脂としては、ダイヤイオンSK104、SK1B、SK1BH、SK110、SK112、PK212、PK216、PK228(三菱化学株式会社製)が挙げられる。液のpHが4超では、珪酸のゲル化が進行する。
Step (A):
A silicic acid-containing aqueous solution is prepared, and the pH of the solution is adjusted to 4 or less. The water glass used above is suitable as the silicic acid source, and the concentration of the water glass in the aqueous solution is preferably 0.5 to 15% by mass as SiO 2 . If the concentration of the water glass is 0.5% by mass or more, the amount of water is suppressed and the production efficiency of silicic acid from the water glass is improved, but if it exceeds 15% by mass, gelation occurs during the synthesis of silicic acid. Become. For pH adjustment of the liquid, it is preferable to add a cation exchange resin. Examples of the cation exchange resin include Diaion SK104, SK1B, SK1BH, SK110, SK112, PK212, PK216, and PK228 (manufactured by Mitsubishi Chemical Corporation). When the pH of the liquid exceeds 4, gelation of silicic acid proceeds.

工程(B):
上記工程(A)の珪酸含有水溶液に、凹凸状コロイダルシリカ粒子の凝集剤として金属塩を加える。金属塩としてはマグネシウム、カルシウム、バリウム、チタン、マンガン、鉄、コバルト、ニッケル、アルミニウムの塩が挙げられる。金属塩の量は酸化物で換算し、珪酸(SiOとする)100質量部に対して1〜10質量部である。この金属塩量が1質量部以上であれば凝集効果を発揮できるが、10質量部超ではゲル化が起こる。
Step (B):
A metal salt is added to the silicic acid-containing aqueous solution in the above step (A) as an aggregating agent for uneven colloidal silica particles. Examples of the metal salt include magnesium, calcium, barium, titanium, manganese, iron, cobalt, nickel, and aluminum salts. The amount of the metal salt is converted into an oxide and is 1 to 10 parts by mass with respect to 100 parts by mass of silicic acid (referred to as SiO 2 ). If the amount of the metal salt is 1 part by mass or more, an aggregating effect can be exhibited, but if it exceeds 10 parts by mass, gelation occurs.

工程(C):
凹凸状コロイダルシリカ粒子を水に分散させ、液のpHを2〜4に調整する。凹凸状コロイダルシリカ粒子の濃度は、SiO換算で20〜50質量%であることが好ましい。この凹凸状コロイダルシリカ粒子濃度が20質量%以上であれば、効率よくコロイダルシリカ粒子凝集体を調製できるが、50質量%超ではゲル化する。pH調整には、液が酸性の場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、アンモニア水、炭酸水素ナトリウム水溶液等を用いる。また、陰イオン交換樹脂を用いても良い。一方、液がアルカリ性の場合、塩酸、硫酸、硝酸、炭酸、酢酸、クエン酸等を用いる。また、陽イオン交換樹脂を用いても良い。
Step (C):
The uneven colloidal silica particles are dispersed in water, and the pH of the liquid is adjusted to 2-4. The concentration of the uneven colloidal silica particles is preferably 20 to 50% by mass in terms of SiO 2 . If the uneven colloidal silica particle concentration is 20% by mass or more, a colloidal silica particle aggregate can be efficiently prepared, but if it exceeds 50% by mass, gelation occurs. For pH adjustment, when the liquid is acidic, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous calcium hydroxide solution, an aqueous sodium carbonate solution, aqueous ammonia, an aqueous sodium hydrogen carbonate solution, or the like is used. An anion exchange resin may also be used. On the other hand, when the liquid is alkaline, hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, acetic acid, citric acid and the like are used. Moreover, you may use a cation exchange resin.

工程(D):
上記工程(C)の凹凸状コロイダルシリカ粒子分散液と、上記工程(B)の凝集剤を添加した珪酸含有水溶液とを十分に混合し、液のpHを8〜10に調整する。液のpH調整には水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、アンモニア水、炭酸水素ナトリウム水溶液等のアルカリ水溶液を滴下するが、その際の滴下速度は混合液1リットルに対して1質量%の水酸化ナトリウム水溶液換算で5〜20g/minとすることが望ましい。この滴下速度が5g/min未満では凝集に時間がかかり効率が悪く、20g/min超では添加時にゲル化を起こすことがある。その他、陰イオン交換樹脂を用いても良い。
Step (D):
The concavo-convex colloidal silica particle dispersion liquid in the step (C) and the silicic acid-containing aqueous solution to which the flocculant in the step (B) is added are sufficiently mixed, and the pH of the liquid is adjusted to 8-10. To adjust the pH of the solution, an alkaline aqueous solution such as an aqueous solution of sodium hydroxide, aqueous solution of potassium hydroxide, aqueous solution of calcium hydroxide, aqueous solution of sodium carbonate, aqueous ammonia or aqueous solution of sodium hydrogen carbonate is added dropwise. It is desirable to set it as 5-20 g / min in conversion of 1 mass% sodium hydroxide aqueous solution with respect to liter. If the dropping speed is less than 5 g / min, it takes time for aggregation and the efficiency is poor, and if it exceeds 20 g / min, gelation may occur at the time of addition. In addition, an anion exchange resin may be used.

工程(E):
上記工程(D)の液を加熱して、凹凸状コロイダルシリカ粒子同士を、珪酸を介して連結させて凝集体とする。加熱温度は150℃〜250℃が好ましく、180℃〜230℃が特に好ましい。加熱温度が150℃未満では凹凸状コロイダルシリカ粒子同士が連結しない可能性があり、加熱温度が250℃超では昇温時にゲル化する可能性がある。加熱には、マイクロ波加熱装置またはオートクレーブ装置を用いることができるが、加熱時間をより短縮するためにマイクロ波加熱装置を用いることが好ましい。マイクロ波加熱装置を用いることにより、0.5〜5分間程度の加熱時間でも十分に連結可能となる。尚、マイクロ波加熱装置として、下記構成の連続式マイクロ波加熱装置が好ましい。
Step (E):
The liquid of the said process (D) is heated, and uneven | corrugated colloidal silica particles are connected through a silicic acid, and it is set as an aggregate. The heating temperature is preferably 150 ° C to 250 ° C, particularly preferably 180 ° C to 230 ° C. If the heating temperature is less than 150 ° C., the uneven colloidal silica particles may not be connected to each other, and if the heating temperature exceeds 250 ° C., gelation may occur when the temperature is raised. A microwave heating device or an autoclave device can be used for heating, but it is preferable to use a microwave heating device in order to shorten the heating time. By using the microwave heating device, it is possible to sufficiently connect even with a heating time of about 0.5 to 5 minutes. In addition, as a microwave heating apparatus, the continuous microwave heating apparatus of the following structure is preferable.

図1(1−1)は、連続式マイクロ波加熱装置1の長手方向の断面図であり、図1(1−2)は連続式マイクロ波加熱装置1の長手方向に直交する方向の断面図である。図示されるように、マイクロ波が透過する窓4(開口部)を有する金属製容器5と、容器5の窓4にマイクロ波を放射するマイクロ波発振器2と、容器5内に貫通配設された反応液流路6と、容器5と反応液流路6との間に充填されたマイクロ波透過性固体物質からなる充填層7とを有し、容器5の窓4を介して透過したマイクロ波3が反応液流路6内を流れる上記工程(D)の液8を加熱し、液中の凹凸状コロイダルシリカ粒子同士を珪酸で連結させるように構成されている。   FIG. 1 (1-1) is a cross-sectional view in the longitudinal direction of the continuous microwave heating apparatus 1, and FIG. 1 (1-2) is a cross-sectional view in the direction orthogonal to the longitudinal direction of the continuous microwave heating apparatus 1. It is. As shown in the drawing, a metal container 5 having a window 4 (opening) through which microwaves are transmitted, a microwave oscillator 2 that radiates microwaves to the window 4 of the container 5, and a through-hole disposed in the container 5. The reaction liquid flow path 6 and the filled layer 7 made of a microwave permeable solid substance filled between the container 5 and the reaction liquid flow path 6 are transmitted through the window 4 of the container 5. The liquid 8 of the said process (D) which the wave 3 flows through the inside of the reaction liquid flow path 6 is heated, and the uneven | corrugated colloidal silica particles in a liquid are connected with silicic acid.

ここで、マイクロ波とは、波長0.1〜1000mm、周波数300MHz〜3THzの電磁波をいう。尚、汎用されるのは周波数915MHz、2.45GHz、5.8GHzの電磁波である。   Here, the microwave refers to an electromagnetic wave having a wavelength of 0.1 to 1000 mm and a frequency of 300 MHz to 3 THz. Note that electromagnetic waves having a frequency of 915 MHz, 2.45 GHz, and 5.8 GHz are widely used.

マイクロ波発振器2としては、クライストロン、ジャイロトロン等を用いることが可能であり、マイクロ波出力は反応液流路6を流通する液8の種類や、反応圧力、反応設定温度、流量、速度等によるが、概ね100〜5000W程度である。   As the microwave oscillator 2, a klystron, a gyrotron, or the like can be used, and the microwave output depends on the type of the liquid 8 flowing through the reaction liquid flow path 6, the reaction pressure, the reaction set temperature, the flow rate, the speed, and the like. However, it is about 100-5000W.

マイクロ波発振器2は、金属製容器5の窓4に、マイクロ波発振器2から発振されたマイクロ波3が直接照射されるように、直に取り付けられる構成としてもよいが、図示されるように、マイクロ波伝播のための金属製の矩形導波管や円形導波管等の導波路9を介して金属製容器5の窓4に連結される構成をとる。   The microwave oscillator 2 may be configured to be directly attached to the window 4 of the metal container 5 so that the microwave 3 oscillated from the microwave oscillator 2 is directly irradiated, but as illustrated, It is configured to be connected to the window 4 of the metal container 5 through a waveguide 9 such as a metal rectangular waveguide or a circular waveguide for microwave propagation.

マイクロ波発振器2から発振されたマイクロ波3は、導波路9を伝播し、窓4に照射され、窓4を介して金属製容器5内を伝播し、更に充填層7を透過して、反応液流路6内の液8に照射される。マイクロ波3は、導波路9を伝播している間は進行方向が制御されているが、窓4を介して伝播する際に拡散する。拡散して進行したことにより反応液流路6に到達せず液8に吸収されなかったマイクロ波3は、充填層7を透過し、金属製容器5の内壁面で反射し、再度充填層7を透過して液8に吸収される。これを繰り返すことによって液8中での凹凸状コロイダルシリカ粒子同士の連結が促進される。   The microwave 3 oscillated from the microwave oscillator 2 propagates through the waveguide 9, is irradiated onto the window 4, propagates through the metal container 5 through the window 4, and further passes through the filling layer 7 to react. The liquid 8 in the liquid flow path 6 is irradiated. While the traveling direction of the microwave 3 is controlled while propagating through the waveguide 9, the microwave 3 diffuses when propagating through the window 4. The microwave 3 which has not reached the reaction liquid flow path 6 and has not been absorbed by the liquid 8 due to progressing by diffusion passes through the packed bed 7 and is reflected by the inner wall surface of the metal container 5. And is absorbed by the liquid 8. By repeating this, the connection between the uneven colloidal silica particles in the liquid 8 is promoted.

尚、金属製容器5に設けられた窓4の数は一つに限らず、複数設けることも可能である。ただし、安全性の観点からは窓の個数は1〜5個であることが好ましい。窓5を複数設ける場合は、反応液流路6を流れる液8の流れに沿って、あるいは反応液流路6を流れる液8の流れ方向に対して反応液流路6の周囲を囲むように配置する。そして、それぞれの窓4に導波路9、マイクロ波発振器2を配置し、反応液流路6を流通する液8を連続的に加熱できるようにする。   The number of windows 4 provided in the metal container 5 is not limited to one, and a plurality of windows can be provided. However, the number of windows is preferably 1 to 5 from the viewpoint of safety. When a plurality of windows 5 are provided, the periphery of the reaction liquid flow path 6 is surrounded along the flow of the liquid 8 flowing through the reaction liquid flow path 6 or with respect to the flow direction of the liquid 8 flowing through the reaction liquid flow path 6. Deploy. And the waveguide 9 and the microwave oscillator 2 are arrange | positioned in each window 4, and the liquid 8 which distribute | circulates the reaction liquid flow path 6 can be heated continuously.

また、マイクロ波の照射効率を高めるために、金属製容器5の断面積(Sa)と、反応液流路6の断面積(Sb)との比(Sa)/(Sb)が4以上であることが好ましく、60以上であることが特に好ましく、80以上100以下であることがとりわけ好ましい。金属製容器5及び反応液流路6の各断面形状は円形、方形等が挙げられ、同種の形状であってもよく、異なる形状であってもよいが、耐圧性に優れることから金属製容器5及び反応液流路6の各断面とも円形であることが好ましく、これらが同心円状に配置されていることが特に好ましい。更に、このような構成の金属製容器5の円形断面直径(a)は、4mm以上であることが、マイクロ波を金属製容器内に伝播させる観点から好ましく、反応液流路6の円形断面直径(b)との比(a)/(b)は2以上であることがより好ましい。尚、金属製容器5の円形断面直径(a)の上限値は1000mm程度であり、反応液流路6の円形断面直径(b)の上限値は500mm程度である。   Further, in order to increase the efficiency of microwave irradiation, the ratio (Sa) / (Sb) between the cross-sectional area (Sa) of the metal container 5 and the cross-sectional area (Sb) of the reaction liquid channel 6 is 4 or more. Is preferably 60 or more, particularly preferably 80 or more and 100 or less. Each cross-sectional shape of the metal container 5 and the reaction liquid channel 6 may be a circle, a square, or the like, and may be of the same type or a different shape. 5 and the reaction liquid channel 6 are preferably circular in cross section, and it is particularly preferable that they are arranged concentrically. Further, the circular cross-sectional diameter (a) of the metal container 5 having such a configuration is preferably 4 mm or more from the viewpoint of propagating the microwave into the metal container, and the circular cross-sectional diameter of the reaction liquid channel 6 The ratio (a) / (b) to (b) is more preferably 2 or more. In addition, the upper limit of the circular cross-sectional diameter (a) of the metal container 5 is about 1000 mm, and the upper limit of the circular cross-sectional diameter (b) of the reaction liquid channel 6 is about 500 mm.

また、金属製容器5の断面形状が方形であり、反応液流路6の断面形状が円形であり、金属製容器5内に反応液流路6が同軸に配設されたものも好ましい。この場合は、方形を構成する短辺の長さ(c)が4mm以上であることが好ましい。この理由は、マイクロ波を金属製容器5内に良好に伝播させることができるからである。また、短辺の長さ(c)と、反応液流路6の円形断面直径(b)との比(c)/(b)は2以上であることが好ましい。これは、マイクロ波をより均一に液8に照射できるからである。尚、容器断面が正方形である場合は、各辺を上記短辺として規定してもよい。また、長方形の場合の、短辺の長さが上記好ましい範囲であれば、長辺の長さ(d)については、特に制限されるものではない。   Further, it is also preferable that the cross section of the metal container 5 is square, the cross section of the reaction liquid channel 6 is circular, and the reaction liquid channel 6 is coaxially disposed in the metal container 5. In this case, it is preferable that the length (c) of the short side constituting the square is 4 mm or more. This is because the microwave can be propagated well into the metal container 5. Further, the ratio (c) / (b) between the short side length (c) and the circular cross-sectional diameter (b) of the reaction liquid channel 6 is preferably 2 or more. This is because the liquid 8 can be more uniformly irradiated with the microwave. When the container cross section is a square, each side may be defined as the short side. Moreover, if the length of the short side in the case of a rectangle is the said preferable range, it will not restrict | limit in particular about the length (d) of a long side.

更に、反応液流路6を流れる液8の液圧は0.001〜10MPa、より好ましくは0.001〜3MPaである。   Furthermore, the liquid pressure of the liquid 8 flowing through the reaction liquid flow path 6 is 0.001 to 10 MPa, more preferably 0.001 to 3 MPa.

このようにして得られる凹凸状コロイダルシリカ粒子の凝集体は、凹凸状コロイダルシリカ粒子同士が珪酸により強固に連結したものであり、研磨液中で凝集体の状態を保って分散する。そして、ガラス基板の研磨に用いた場合、個々の凹凸状コロイダルシリカ粒子に分離することなく、凝集体の状態をほぼ保ちながらガラス基板の表面を水平移動する。そのため、研磨速度が速く、かつ、平坦性にも優れた研磨を行なうことができる。   The concavo-convex colloidal silica particle aggregates thus obtained are those in which the concavo-convex colloidal silica particles are firmly connected by silicic acid, and are dispersed in the polishing liquid while maintaining the state of the aggregates. And when it uses for grinding | polishing of a glass substrate, the surface of a glass substrate is horizontally moved, maintaining the state of an aggregate substantially, without isolate | separating into each uneven | corrugated colloidal silica particle. Therefore, polishing with a high polishing rate and excellent flatness can be performed.

また、凹凸状コロイダルシリカ粒子の凝集体を含む研磨液を下記工程(F)〜(H)のようにして調製することもできる。   Moreover, the polishing liquid containing the aggregate of uneven colloidal silica particles can also be prepared as in the following steps (F) to (H).

工程(F):
先ず、上記工程(A)と同様にして、珪酸含有水溶液を調製し、pHを4以下に調整する。
Step (F):
First, in the same manner as in the above step (A), a silicic acid-containing aqueous solution is prepared, and the pH is adjusted to 4 or less.

工程(G):
上記工程(F)の液のpHを9〜14、好ましくは9〜12に調整する。pH調整には水酸化リチウム、水酸化カリウム、水酸化ナトリウムを用いるが、これら水酸化物は複数を混合して用いてもよい。
Process (G):
The pH of the liquid in the step (F) is adjusted to 9 to 14, preferably 9 to 12. Lithium hydroxide, potassium hydroxide, and sodium hydroxide are used for pH adjustment, but a plurality of these hydroxides may be used in combination.

工程(H):
上記工程(G)の液を、上記のマイクロ波加熱装置を用いて加熱する。
Step (H):
The liquid of the said process (G) is heated using said microwave heating apparatus.

研磨液としては、凹凸状コロイダルシリカ粒子の凝集体を含む限り制限はなく、界面活性剤、無機酸または有機酸を更に含む水性スラリーとすることができる。   There is no restriction | limiting as long as the polishing liquid contains the aggregate of uneven colloidal silica particles, and it can be set as the aqueous slurry which further contains surfactant, an inorganic acid, or an organic acid.

本発明はまた、上記の研磨液を用いてガラス基板を研磨する方法に関する。研磨対象となるガラス基板としては、石英ガラス、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、アルミノボロシリケートガラス、無アルカリガラス、結晶化ガラス、強化ガラス等が挙げられる。以下に、磁気ディスク用ガラス基板の研磨方法を例示する。   The present invention also relates to a method for polishing a glass substrate using the above polishing liquid. Examples of the glass substrate to be polished include quartz glass, soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, alkali-free glass, crystallized glass, and tempered glass. Below, the grinding | polishing method of the glass substrate for magnetic discs is illustrated.

先ず、例えばフロート法で成形したシリケートガラスから切り出した円形ガラス板の中央に円孔を開け、次いで面取り、主表面ラッピング、端面鏡面研磨を順次行う。また、主表面ラッピング工程を粗ラッピング工程と精ラッピング工程とに分け、それらの間に形状加工工程(円形ガラス板中央の孔開け、面取り、端面研磨)を設けてもよい。主表面研磨工程の後に化学強化工程を設けてもよい。   First, for example, a circular hole is formed in the center of a circular glass plate cut out from a silicate glass formed by a float process, and then chamfering, main surface lapping, and end mirror polishing are sequentially performed. Further, the main surface lapping step may be divided into a rough lapping step and a fine lapping step, and a shape processing step (drilling at the center of the circular glass plate, chamfering, end polishing) may be provided between them. A chemical strengthening step may be provided after the main surface polishing step.

次いで、主表面の研磨を行う。本発明においては、上記の凹凸状コロイダルシリカ粒子の凝集体を研磨材とする研磨液を用いる。主表面の研磨方法は従来と同様に行えばよく、例えば、2枚の研磨パッドで円形ガラス板を挟み、研磨液を研磨パッドと円形ガラス板との界面に供給しながら研磨パッドを回転させて行う。   Next, the main surface is polished. In the present invention, a polishing liquid using the above-mentioned aggregate of uneven colloidal silica particles as an abrasive is used. The main surface may be polished in the same manner as in the past, for example, by sandwiching a circular glass plate between two polishing pads and rotating the polishing pad while supplying polishing liquid to the interface between the polishing pad and the circular glass plate. Do.

研磨パッドとしては、ショアD硬度が45〜75、圧縮率が0.1〜10%かつ密度が0.5〜1.5g/cmである発泡ウレタン樹脂、ショアA硬度が30〜99、圧縮率が0.5〜10%かつ密度が0.2〜0.9g/cmである発泡ウレタン樹脂、または、ショアA硬度が5〜65、圧縮率が0.1〜60%かつ密度が0.05〜0.4g/cmである発泡ウレタン樹脂からなるものが典型的である。尚、研磨パッドのショアA硬度は20以上であることが好ましい。20未満では研磨速度が低下するおそれがある。 As a polishing pad, a urethane foam resin having a Shore D hardness of 45 to 75, a compression ratio of 0.1 to 10% and a density of 0.5 to 1.5 g / cm 3 , a Shore A hardness of 30 to 99, and a compression A foamed urethane resin having a rate of 0.5 to 10% and a density of 0.2 to 0.9 g / cm 3 , or a Shore A hardness of 5 to 65, a compressibility of 0.1 to 60%, and a density of 0 What consists of foaming urethane resin which is 0.05-0.4 g / cm < 3 > is typical. The Shore A hardness of the polishing pad is preferably 20 or more. If it is less than 20, the polishing rate may decrease.

研磨圧力は、4kPa以上であることが好ましい。4kPa未満では研磨時のガラス基板の安定性が低下してばたつきやすくなり、その結果主表面のうねりが大きくなるおそれがある。   The polishing pressure is preferably 4 kPa or more. If it is less than 4 kPa, the stability of the glass substrate at the time of polishing is lowered and fluttering tends to occur, and as a result, the waviness of the main surface may increase.

主表面の研磨量は、0.3〜1.5μmが適当であり、研磨液の供給量や研磨時間、研磨液中のシリカ濃度、研磨圧力、回転数等を調整する。   The polishing amount of the main surface is suitably from 0.3 to 1.5 μm, and the supply amount and polishing time of the polishing liquid, the silica concentration in the polishing liquid, the polishing pressure, the rotational speed, etc. are adjusted.

尚、上記の主表面研磨の前に、予備的に主表面を研磨してもよい。この予備的主表面研磨は、例えば、円形ガラス板を研磨パッドで挟み、酸化セリウム砥粒スラリーを供給しながら研磨パッドを回転させて行うことができる。   The main surface may be preliminarily polished before the main surface polishing. This preliminary main surface polishing can be performed, for example, by sandwiching a circular glass plate with a polishing pad and rotating the polishing pad while supplying a cerium oxide abrasive slurry.

そして、上記の主表面研磨の後、洗浄、乾燥して磁気ディスク用ガラス基板が得られる。洗浄及び乾燥は公知の方法で行われるが、例えば、酸性洗剤溶液への浸漬、アルカリ性洗剤溶液への浸漬、ベルクリン及びアルカリ洗剤によるスクラブ洗浄、アルカリ性洗剤溶液への浸漬、ベルクリン及びアルカリ洗剤によるスクラブ洗浄、アルカリ性洗剤溶液への浸漬した状態での超音波洗浄、純水浸漬状態での超音波洗浄、純水浸漬状態での超音波洗浄を順次行った後、スピンドライ乾燥もしくはイソプロピルアルコール蒸気乾燥等の方法で乾燥を行う。   After the main surface polishing, the glass substrate for magnetic disk is obtained by washing and drying. Cleaning and drying are performed by a known method. For example, immersion in an acidic detergent solution, immersion in an alkaline detergent solution, scrub washing with veggulin and an alkaline detergent, immersion in an alkaline detergent solution, scrub washing with bergulin and an alkaline detergent After performing ultrasonic cleaning in an alkaline detergent solution, ultrasonic cleaning in pure water, ultrasonic cleaning in pure water, spin drying or isopropyl alcohol vapor drying, etc. Dry by the method.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。尚、研磨材のメディアン径(D1)、平均粒子径(D2)、会合比(D1/D2)、研磨試験方法、研磨速度及び表面粗さの測定方法は以下の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. The median diameter (D1), average particle diameter (D2), association ratio (D1 / D2), polishing test method, polishing rate, and surface roughness of the abrasive are as follows.

(平均粒子径(D2))
透過型電子顕微鏡(TEM)(日本電子社製、JEM−1230)にて得られたTEM像の中から無作為に選ばれた100個の粒子の粒子径を測定し、平均することにより算出した。尚、比較例4の電子顕微鏡写真を図2A、実施例4の電子顕微鏡写真を図2Bに示す。
(Average particle diameter (D2))
The particle diameter of 100 particles randomly selected from a TEM image obtained with a transmission electron microscope (TEM) (manufactured by JEOL Ltd., JEM-1230) was measured and calculated by averaging. . An electron micrograph of Comparative Example 4 is shown in FIG. 2A and an electron micrograph of Example 4 is shown in FIG. 2B.

(メディアン径(D1)及び会合比(D1/D2))
メディアン径(D1)をマイクロトラックUPA(日機装株式会社製)を用いて、動的光散乱法で測定し、上記平均粒子径(D2)との比を求めた。
(Median diameter (D1) and association ratio (D1 / D2))
The median diameter (D1) was measured by a dynamic light scattering method using Microtrac UPA (manufactured by Nikkiso Co., Ltd.), and the ratio with the average particle diameter (D2) was determined.

(研磨試験方法)
下記条件にてシリケートガラス円板を研磨した。
・研磨試験機:FAM−12B スピードファム株式会社製
・研磨パッド: KZBR−3N−101U フジボウ愛媛株式会社製
・盤回転数:40rpm
・研磨液供給速度:20cc /min
・研磨時間:10 m i n
・研磨荷重:12kPa
・研磨材濃度:15質量%(SiO換算)
・研磨液pH:2(1Mの硝酸にて調整)
(Polishing test method)
The silicate glass disk was polished under the following conditions.
・ Polishing tester: FAM-12B, manufactured by Speed Fam Co., Ltd. ・ Polishing pad: KZBR-3N-101U, manufactured by Fujibo Atago Co., Ltd.
・ Polishing liquid supply speed: 20cc / min
・ Polishing time: 10 min
・ Polishing load: 12 kPa
・ Abrasive concentration: 15% by mass (SiO 2 equivalent)
・ Polishing solution pH: 2 (adjusted with 1M nitric acid)

(研磨速度)
研磨前後の質量の差から研磨量を求めた。
(Polishing speed)
The polishing amount was determined from the difference in mass before and after polishing.

(表面粗さ)
研磨後の研磨面の表面粗さは、Veeco社製AFMを用いて測定した。
(Surface roughness)
The surface roughness of the polished surface after polishing was measured using an AFM manufactured by Veeco.

(実施例1)
ガラス容器内に、水ガラス3号(日本化学工業株式会社製、29質量%)14.3gと水100gを入れ、15分攪拌し、その後、陽イオン交換樹脂(三菱化学株式会社製SK1BH)を添加し、15分攪拌した。この水溶液をろ過し、3.6質量%の珪酸水溶液114.3gを得た。pHは3.3であった。
Example 1
In a glass container, put 14.3 g of water glass No. 3 (Nippon Chemical Industry Co., Ltd., 29% by mass) and 100 g of water, stir for 15 minutes, and then add a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation). Added and stirred for 15 minutes. This aqueous solution was filtered to obtain 114.3 g of a 3.6% by mass silicic acid aqueous solution. The pH was 3.3.

この珪酸水溶液に、攪拌しながら10質量%の硝酸カルシウム水溶液を7.6g添加し、15分攪拌して水溶液1を得た。pHは4.1であった。   To this silicic acid aqueous solution, 7.6 g of a 10% by mass calcium nitrate aqueous solution was added while stirring, and stirred for 15 minutes to obtain an aqueous solution 1. The pH was 4.1.

シリカドール40(日本化学工業株式会社製 pH9.1)255gに陽イオン交換樹脂(三菱化学株式会社製SK1BH)を添加してpHを3.1とし、水溶液2を得た。   A cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) was added to 255 g of silica dol 40 (Nippon Chemical Industry Co., Ltd., pH 9.1) to obtain a pH of 3.1 to obtain an aqueous solution 2.

攪拌中の水溶液1に水溶液2を添加し、15分攪拌して水溶液3を得た。pHは4.1であった。   The aqueous solution 2 was added to the aqueous solution 1 being stirred and stirred for 15 minutes to obtain an aqueous solution 3. The pH was 4.1.

水溶液3に、攪拌しながら2質量%の水酸化ナトリウム水溶液40gを2g/minの滴下速度で添加し、30分攪拌して水溶液4を得た。pHは9.1であった。   While stirring, 40 g of a 2 mass% aqueous sodium hydroxide solution was added to the aqueous solution 3 at a dropping rate of 2 g / min, and the mixture was stirred for 30 minutes to obtain an aqueous solution 4. The pH was 9.1.

水溶液4をマイクロ波加熱装置に入れ、210℃で3分保持し、凹凸状コロイダルシリカ粒子凝集体が分散した分散液を得た。TEMで観察したところこのコロイダルシリカ粒子は連結しており、この連結は珪酸による架橋によってなされていると考えられる。平均粒子径(D2)は31nm、メディアン径(D1)は78.5nm、会合比(D1/D2)は2.5であった。   The aqueous solution 4 was put in a microwave heating apparatus and held at 210 ° C. for 3 minutes to obtain a dispersion liquid in which uneven colloidal silica particle aggregates were dispersed. When observed by TEM, the colloidal silica particles are connected, and this connection is considered to be made by crosslinking with silicic acid. The average particle diameter (D2) was 31 nm, the median diameter (D1) was 78.5 nm, and the association ratio (D1 / D2) was 2.5.

また、得られた凹凸状コロイダルシリカ粒子凝集体を15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。   Moreover, the polishing liquid containing 15 mass% of obtained uneven | corrugated colloidal silica particle aggregates was prepared, and the grinding | polishing test was done. Table 1 shows the results of the polishing rate and the polishing surface roughness.

(実施例2)
マイクロ波加熱装置で、210℃で5分保持した以外は、実施例1と同様にして凹凸状コロイダルシリカ粒子凝集体の分散液を得た。TEMで観察したところこのコロイダルシリカ粒子は連結しており、この連結は珪酸による架橋によってなされていると考えられる。平均粒子径(D2)は31nm、メディアン径(D1)は120nm、会合比(D1/D2)は4であった。また、得られた凹凸状コロイダルシリカ粒子凝集体を15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。
(Example 2)
A concavo-convex colloidal silica particle aggregate dispersion was obtained in the same manner as in Example 1 except that it was held at 210 ° C. for 5 minutes with a microwave heating apparatus. When observed by TEM, the colloidal silica particles are connected, and this connection is considered to be made by crosslinking with silicic acid. The average particle diameter (D2) was 31 nm, the median diameter (D1) was 120 nm, and the association ratio (D1 / D2) was 4. Moreover, the polishing liquid containing 15 mass% of obtained uneven | corrugated colloidal silica particle aggregates was prepared, and the grinding | polishing test was done. Table 1 shows the results of the polishing rate and the polishing surface roughness.

(実施例3)
シリカドール40(日本化学工業株式会社製 pH9.1)の代わりにシリカドール30(日本化学工業株式会社製 pH9.2)を用い、添加量を340gに変更した以外は実施例2と同様にして凹凸状コロイダルシリカ粒子凝集体の分散液を得た。TEMで観察したところこのコロイダルシリカ粒子は連結しており、この連結は珪酸による架橋によってなされていると考えられる。平均粒子径(D2)は13nm、メディアン径(D1)は51nm、会合比(D1/D2)は4.2であった。また、得られた凹凸状コロイダルシリカ粒子凝集体を15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。
(Example 3)
The same procedure as in Example 2 was performed except that silica doll 30 (manufactured by Nippon Chemical Industry Co., Ltd., pH 9.2) was used instead of silica doll 40 (manufactured by Nippon Chemical Industry Co., Ltd., pH 9.2), and the addition amount was changed to 340 g. A dispersion of concavo-convex colloidal silica particle aggregates was obtained. When observed by TEM, the colloidal silica particles are connected, and this connection is considered to be made by crosslinking with silicic acid. The average particle diameter (D2) was 13 nm, the median diameter (D1) was 51 nm, and the association ratio (D1 / D2) was 4.2. Moreover, the polishing liquid containing 15 mass% of obtained uneven | corrugated colloidal silica particle aggregates was prepared, and the grinding | polishing test was done. Table 1 shows the results of the polishing rate and the polishing surface roughness.

(実施例4)
ガラス容器内に、水ガラス4号(日本化学工業株式会社製、24質量%)28.4gと水108.1gを入れ、15分攪拌し、その後、陽イオン交換樹脂(三菱化学株式会社製SK1BH)を添加し、15分攪拌した。この水溶液をろ過し、5質量%の珪酸水溶液136.5gを得た。pHは3.0であった。
Example 4
In a glass container, 28.4 g of water glass No. 4 (manufactured by Nippon Chemical Industry Co., Ltd., 24% by mass) and 108.1 g of water are stirred for 15 minutes, and then a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation). ) Was added and stirred for 15 minutes. This aqueous solution was filtered to obtain 136.5 g of a 5 mass% silicic acid aqueous solution. The pH was 3.0.

この珪酸水溶液に、攪拌しながら2質量%の水酸化ナトリウム水溶液23.4gを2g/minの滴下速度で添加し、30分攪拌して水溶液を得た。pHは10.3であった。   To this silicic acid aqueous solution, 23.4 g of a 2 mass% sodium hydroxide aqueous solution was added at a dropping rate of 2 g / min while stirring, and stirred for 30 minutes to obtain an aqueous solution. The pH was 10.3.

この水溶液をマイクロ波加熱装置に入れ、180℃で15分保持し、凹凸状コロイダルシリカ粒子が連結した鎖状コロイダルシリカ粒子を含む水溶液を得た(図2B参照)。なお、この連結は珪酸による架橋によってなされていると考えられる。平均粒子径(D2)は10nm、メディアン径(D1)は41nm、会合比(D1/D2)は4.1であった。また、得られた凹凸状コロイダルシリカ粒子凝集体を15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。   This aqueous solution was put into a microwave heating apparatus and held at 180 ° C. for 15 minutes to obtain an aqueous solution containing chain colloidal silica particles connected with uneven colloidal silica particles (see FIG. 2B). This connection is considered to be made by cross-linking with silicic acid. The average particle diameter (D2) was 10 nm, the median diameter (D1) was 41 nm, and the association ratio (D1 / D2) was 4.1. Moreover, the polishing liquid containing 15 mass% of obtained uneven | corrugated colloidal silica particle aggregates was prepared, and the grinding | polishing test was done. Table 1 shows the results of the polishing rate and the polishing surface roughness.

(比較例1)
シリカドール40(日本化学工業株式会社製 pH9.1)を研磨材として15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。尚、平均粒子径(D2)は31nm、メディアン径(D1)は40nm、会合比(D1/D2)は1.2であった。
(Comparative Example 1)
A polishing liquid containing 15% by mass of silica doll 40 (manufactured by Nippon Chemical Industry Co., Ltd., pH 9.1) as an abrasive was prepared and subjected to a polishing test. Table 1 shows the results of the polishing rate and the polishing surface roughness. The average particle diameter (D2) was 31 nm, the median diameter (D1) was 40 nm, and the association ratio (D1 / D2) was 1.2.

(比較例2)
スノーテックスXL(日産化学工業株式会社製 pH9.2)を研磨材として15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。尚、平均粒子径(D2)は68nm、メディアン径(D1)は84nm、会合比(D1/D2)は1.2であった。
(Comparative Example 2)
A polishing liquid containing 15% by mass of Snowtex XL (manufactured by Nissan Chemical Industries, Ltd., pH 9.2) as an abrasive was prepared and subjected to a polishing test. Table 1 shows the results of the polishing rate and the polishing surface roughness. The average particle diameter (D2) was 68 nm, the median diameter (D1) was 84 nm, and the association ratio (D1 / D2) was 1.2.

(比較例3)
スノーテックスPS−MO(日産化学工業株式会社製 pH3.0)を研磨材として15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。尚、平均粒子径(D2)は31nm、メディアン径(D1)は62nm、会合比(D1/D2)は2.1であった。
(Comparative Example 3)
A polishing liquid containing 15% by mass of Snowtex PS-MO (manufactured by Nissan Chemical Industries, Ltd., pH 3.0) as an abrasive was prepared and subjected to a polishing test. Table 1 shows the results of the polishing rate and the polishing surface roughness. The average particle diameter (D2) was 31 nm, the median diameter (D1) was 62 nm, and the association ratio (D1 / D2) was 2.1.

(比較例4)
コンポール20(株式会社フジミコーポレーテッド社製 pH3.0)を研磨材として15質量%含有する研磨液を調製し、研磨試験を行った。研磨速度と研磨表面粗さの結果を表1に示す。尚、平均粒子径(D2)は21nm、メディアン径(D1)は22nm、会合比(D1/D2)は1.0であった。
(Comparative Example 4)
A polishing liquid containing 15% by mass of Compol 20 (Fujimi Corp., pH 3.0) as an abrasive was prepared, and a polishing test was performed. Table 1 shows the results of the polishing rate and the polishing surface roughness. The average particle diameter (D2) was 21 nm, the median diameter (D1) was 22 nm, and the association ratio (D1 / D2) was 1.0.

表1に示すように、本発明に従う凹凸状コロイダルシリカ粒子凝集体を研磨材とする研磨液を用いることにより、高速研磨と高平坦性とを両立できる。   As shown in Table 1, it is possible to achieve both high-speed polishing and high flatness by using a polishing liquid having an uneven colloidal silica particle aggregate according to the present invention as an abrasive.

1 連続式マイクロ波反応装置
2 マイクロ波発振器
3 マイクロ波
4 窓
5 金属製容器
6 反応液流路
7 充填層
8 液
9 導波路
DESCRIPTION OF SYMBOLS 1 Continuous microwave reactor 2 Microwave oscillator 3 Microwave 4 Window 5 Metal container 6 Reaction liquid flow path 7 Packing layer 8 Liquid 9 Waveguide

Claims (7)

平均粒子径が10〜50nmで表面に突起を持つ凹凸状コロイダルシリカ粒子が連結してなり、かつ、動的光散乱法によるメディアン径(D1)が30〜150nmで、透過型電子顕微鏡により測定した平均粒子径(D2)との比(D1/D2)が2〜5であるコロイダルシリカ粒子凝集体が水中に分散しており、さらに、研磨速度/表面粗さ(Ra)が1.8μm/(min・nm)以上であることを特徴とするガラス基板用研磨液。 Be linked uneven colloidal silica particles having an average particle diameter with a protrusion on the front surface at 10~50nm is, and the median diameter (D1) is in 30~150nm by dynamic light scattering method, measured by transmission electron microscopy Colloidal silica particle aggregates having a ratio (D1 / D2) to the average particle diameter (D2) of 2 to 5 are dispersed in water , and the polishing rate / surface roughness (Ra) is 1.8 μm / (Min · nm) or more, A polishing liquid for glass substrate, コロイダルシリカ粒子凝集体の濃度が、SiO換算で0.5〜30質量%であることを特徴とする請求項1記載のガラス基板用研磨液。 The polishing liquid for glass substrates according to claim 1, wherein the concentration of the colloidal silica particle aggregate is 0.5 to 30% by mass in terms of SiO 2 . 請求項1記載のガラス基板用研磨液の製造方法であって、珪酸含有水溶液に、凝集剤と平均粒子径が10〜50nmで表面に突起を持つ凹凸状コロイダルシリカ粒子とを加え、液のpHを8〜10に調整した後、マイクロ波を用いて加熱することを特徴とするガラス基板用研磨液の製造方法。   It is a manufacturing method of the polishing liquid for glass substrates of Claim 1, Comprising: A flocculant and the uneven | corrugated colloidal silica particle which has a processus | protrusion on the surface with an average particle diameter of 10-50 nm are added to silicic acid containing aqueous solution, and pH of a liquid After adjusting to 8-10, it heats using a microwave, The manufacturing method of the polishing liquid for glass substrates characterized by the above-mentioned. 請求項1記載のガラス基板用研磨液の製造方法であって、珪酸含有水溶液をイオン交換してpHを4以下にし、水酸化リチウム、水酸化カリウムおよび水酸化ナトリウムからなる群から選ばれる1種以上を用いてpHを9〜14にした後、マイクロ波を用いて加熱することを特徴とするガラス基板用研磨液の製造方法。   The method for producing a polishing liquid for a glass substrate according to claim 1, wherein the pH is adjusted to 4 or less by ion exchange of the silicic acid-containing aqueous solution and selected from the group consisting of lithium hydroxide, potassium hydroxide and sodium hydroxide. The manufacturing method of the polishing liquid for glass substrates characterized by heating after using pH above to 9-14 using a microwave. 請求項1または2に記載のガラス基板用研磨液を用いてガラス基板を研磨することを特徴とするガラス基板の研磨方法。   A glass substrate polishing method comprising polishing the glass substrate using the glass substrate polishing liquid according to claim 1. 請求項1または2に記載のガラス基板用研磨液を用いてガラス基板を研磨することを特徴とするガラス基板の製造方法。   A method for producing a glass substrate, comprising polishing a glass substrate using the glass substrate polishing liquid according to claim 1. ガラス基板が、磁気ディスク用ガラス基板である請求項6記載のガラス基板の製造方法。   The method for producing a glass substrate according to claim 6, wherein the glass substrate is a glass substrate for a magnetic disk.
JP2009102059A 2009-04-20 2009-04-20 Polishing liquid for glass substrate, method for producing the same, polishing method for glass substrate using the polishing liquid, and glass substrate obtained by the polishing method Expired - Fee Related JP4941501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102059A JP4941501B2 (en) 2009-04-20 2009-04-20 Polishing liquid for glass substrate, method for producing the same, polishing method for glass substrate using the polishing liquid, and glass substrate obtained by the polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102059A JP4941501B2 (en) 2009-04-20 2009-04-20 Polishing liquid for glass substrate, method for producing the same, polishing method for glass substrate using the polishing liquid, and glass substrate obtained by the polishing method

Publications (2)

Publication Number Publication Date
JP2010250915A JP2010250915A (en) 2010-11-04
JP4941501B2 true JP4941501B2 (en) 2012-05-30

Family

ID=43313071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102059A Expired - Fee Related JP4941501B2 (en) 2009-04-20 2009-04-20 Polishing liquid for glass substrate, method for producing the same, polishing method for glass substrate using the polishing liquid, and glass substrate obtained by the polishing method

Country Status (1)

Country Link
JP (1) JP4941501B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564461B2 (en) * 2010-10-12 2014-07-30 株式会社フジミインコーポレーテッド Polishing composition
JP6328502B2 (en) * 2013-07-04 2018-05-23 Hoya株式会社 Substrate manufacturing method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and substrate manufacturing apparatus
JP6482200B2 (en) * 2014-07-18 2019-03-13 株式会社フジミインコーポレーテッド Polishing composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132432B2 (en) * 1999-07-02 2008-08-13 日産化学工業株式会社 Polishing composition
WO2001085868A1 (en) * 2000-05-12 2001-11-15 Nissan Chemical Industries, Ltd. Polishing composition
JP2002312929A (en) * 2001-04-18 2002-10-25 Hitachi Ltd Method for manufacturing magnetic disk medium
JP2003002646A (en) * 2001-06-20 2003-01-08 Asahi Kasei Corp Dispersion liquid of composite titanium oxide
JP2004207417A (en) * 2002-12-25 2004-07-22 Sumitomo Electric Ind Ltd POLISHING SOLUTION AND POLISHING METHOD OF InP WAFER
JP2005175000A (en) * 2003-12-08 2005-06-30 Fuji Photo Film Co Ltd Extraction method of hard magnetic alloy nano particle and magnetic recording material
JP5008350B2 (en) * 2006-07-05 2012-08-22 花王株式会社 Polishing liquid composition for glass substrate

Also Published As

Publication number Publication date
JP2010250915A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
CN106044786B (en) Big partial size silica solution of polydispersion and preparation method thereof
TWI302717B (en) Etching liquid for controlling silicon wafer surface shape and method for manufacturing silicon wafer using the same
JP6376238B2 (en) Colloidal silica abrasive
JP5853117B1 (en) Polishing liquid composition for magnetic disk substrate
TWI398336B (en) Method for producing a semiconductor wafer
WO2009096294A1 (en) Process for producing glass substrate for magnetic disk
JP4941501B2 (en) Polishing liquid for glass substrate, method for producing the same, polishing method for glass substrate using the polishing liquid, and glass substrate obtained by the polishing method
JP3841873B2 (en) Polishing abrasive grains and polishing composition
JP6771484B2 (en) Abrasive liquid composition for magnetic disk substrate
JP5736681B2 (en) Polishing liquid and method for producing glass substrate for magnetic disk
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
JP2008307631A (en) Method of polishing glass substrate
JP6207345B2 (en) Method for producing silica particles
JP2004063062A (en) Method for manufacturing glass substrate for information recording medium, and glass substrate for information recording medium manufactured by the manufacturing method
WO2017038201A1 (en) Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium
JP2006080406A (en) Composition for polishing
US20030113251A1 (en) Method for preparing shape-changed nanosize colloidal silica
JP5339010B1 (en) Manufacturing method of glass substrate for HDD
JP2006315160A (en) Finish polishing method for glass substrate of magnetic disk
JP2010192904A (en) Composition for polishing
CN113773806A (en) Nano silicon dioxide abrasive material and preparation method and application thereof
JP6997083B2 (en) Manufacturing method of magnetic disk board
TWI819131B (en) Polishing particles for polishing synthetic quartz glass substrate, method for manufacturing the polishing particles, and method for polishing synthetic quartz glass substrate
JP6558771B2 (en) Manufacturing method of magnetic disk substrate
JP2003158101A (en) Cmp abrasive and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110112

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees