JP4941345B2 - Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same - Google Patents

Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same Download PDF

Info

Publication number
JP4941345B2
JP4941345B2 JP2008032696A JP2008032696A JP4941345B2 JP 4941345 B2 JP4941345 B2 JP 4941345B2 JP 2008032696 A JP2008032696 A JP 2008032696A JP 2008032696 A JP2008032696 A JP 2008032696A JP 4941345 B2 JP4941345 B2 JP 4941345B2
Authority
JP
Japan
Prior art keywords
titanyl phthalocyanine
phthalocyanine
chlorine content
titanyl
chlorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008032696A
Other languages
Japanese (ja)
Other versions
JP2008174753A (en
Inventor
豊史 大橋
ちよ子 佐藤
光幸 三森
護 臨
修司 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008032696A priority Critical patent/JP4941345B2/en
Publication of JP2008174753A publication Critical patent/JP2008174753A/en
Application granted granted Critical
Publication of JP4941345B2 publication Critical patent/JP4941345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、電子写真感光体に適したチタニルフタロシアニン(オキシチタニウムフタロシアニン)に関するものであり、特に、プリンター、ファクシミリ、複写機に用いることができ、半導体レーザー及びLEDに対し高い感度、低い残留電位を示す電子写真感光体を得るのに適したチタニルフタロシアニンに関するものである。   The present invention relates to titanyl phthalocyanine (oxytitanium phthalocyanine) suitable for an electrophotographic photosensitive member, and can be used in printers, facsimiles, and copiers in particular, and has high sensitivity and low residual potential for semiconductor lasers and LEDs. It relates to a titanyl phthalocyanine suitable for obtaining the electrophotographic photoreceptor shown.

従来から、フタロシアニン化合物は良好な光導電性を示し、例えば電子写真感光体などに使用されている。また、近年、従来の白色光のかわりにレーザー光を光源とし、高速化、高画質、ノンインパクト化をメリットとしたレーザープリンターが広く普及するに至り、その要求に耐えうる感光体の開発が盛んである。特にレーザー光の中でも近年進展が著しい半導体レーザーを光源とする方式が主流であり、その光源波長である780nm前後の長波長光に対して高感度な特性を有する感光体が強く望まれている。このような状況の中、フタロシアニン化合物は(1)比較的容易に合成できること、(2)600nm以上の長波長域に吸収ピークを有すること、(3)中心金属や結晶形により分光感度が変化し、半導体レーザーの波長域で高感度を示すものがいくつか発表されていることなどから、精力的に研究開発が行われてきている。   Conventionally, phthalocyanine compounds exhibit good photoconductivity and are used, for example, in electrophotographic photoreceptors. In recent years, laser printers that use laser light as the light source instead of conventional white light and have the advantages of high speed, high image quality, and non-impact have become widespread. It is. In particular, among the laser beams, a method using a semiconductor laser, which has made remarkable progress in recent years, as the light source is the mainstream, and a photoreceptor having high sensitivity to long wavelength light of about 780 nm which is the light source wavelength is strongly desired. Under such circumstances, phthalocyanine compounds (1) can be synthesized relatively easily, (2) have an absorption peak in a long wavelength region of 600 nm or more, and (3) spectral sensitivity varies depending on the central metal and crystal form. Research and development has been carried out energetically because of the announcement of several laser diodes that exhibit high sensitivity in the wavelength range.

その様な目的に対し、銅フタロシアニン、無金属フタロシアニン、クロロインジウムフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン等を用いた電子写真感光体が報告されているが、最も多く報告されているのがチタニルフタロシアニンであり、例えば以下に挙げるように現在まで多くの技術開示がなされている。
特開昭61−23248号公報 特開昭62−67094号公報 特開昭62−272272号公報
For such purposes, electrophotographic photoreceptors using copper phthalocyanine, metal-free phthalocyanine, chloroindium phthalocyanine, chlorogallium phthalocyanine, hydroxygallium phthalocyanine, etc. have been reported, but the most frequently reported is titanyl phthalocyanine. For example, as described below, many technical disclosures have been made so far.
Japanese Patent Laid-Open No. 61-23248 JP-A 62-67094 JP-A-62-272272

チタニルフタロシアニンは一般にフタロジニトリルや1,3−ジイミノイソインドリンと四塩化チタンを高沸点溶剤中、180℃以上の高温反応で得られる。フタロシアニンは高温度条件を必要とするために一部塩素化の反応を伴い、結果として塩素化チタニルフタロシアニンが含有される。例えば下記公開公報に開示されたチタニルフタロシアニンの製造例における塩素含有量の実測値を挙げると表1のようになる。   In general, titanyl phthalocyanine is obtained by a high-temperature reaction of phthalodinitrile, 1,3-diiminoisoindoline and titanium tetrachloride in a high boiling point solvent at 180 ° C. or higher. Since phthalocyanine requires a high temperature condition, it is partially accompanied by a chlorination reaction, and as a result, chlorinated titanyl phthalocyanine is contained. For example, Table 1 shows the measured chlorine content in the production example of titanyl phthalocyanine disclosed in the following publication.

Figure 0004941345
Figure 0004941345

しかしながら、これら塩素量は特に塩素化チタニルフタロシアニンに着目したものでなく、あくまでも元素分析によるトータル塩素量である。さらに、酸素が含有される理由としては、一部加水分解されなかったTiClPcが残存していると述べられている。また、反応溶剤は表1記載の全ての例でα−クロロナフタレンを用いられており、α−クロロナフタレンがフタロシアニン中に残存する可能性もあり、残存α−クロロナフタレンのClを含んだトータル塩素量の可能性も否定できない。これに対し、特開昭61−217050、特開昭61−239248では塩素化チタニルフタロシアニンをマススペクトルにより確認しているが、最適含有量あるいはその効果においては何も記載がない。 However, these chlorine amounts are not particularly focused on chlorinated titanyl phthalocyanine, but are only total chlorine amounts by elemental analysis. Furthermore, it is stated that TiCl 2 Pc that has not been partially hydrolyzed remains as the reason why oxygen is contained. Further, α-chloronaphthalene is used as a reaction solvent in all examples shown in Table 1, and α-chloronaphthalene may remain in phthalocyanine, and total chlorine containing Cl of residual α-chloronaphthalene. The possibility of quantity cannot be denied. On the other hand, JP-A-61-217050 and JP-A-61-239248 confirm chlorinated titanyl phthalocyanine by mass spectrum, but there is no description about the optimum content or the effect thereof.

一方、特開平3−11358では塩素化チタニルフタロシアニンの含有量と電子写真感
光体の特性との関係を述べているが、塩素化チタニルフタロシアニンが存在しないものが好ましいと述べており、存在しても塩素量0.2wt%以下が良好であると述べている。
On the other hand, Japanese Patent Laid-Open No. 3-11358 describes the relationship between the content of chlorinated titanyl phthalocyanine and the characteristics of the electrophotographic photosensitive member. It states that a chlorine content of 0.2 wt% or less is good.

本発明者らは塩素化チタニルフタロシアニンの含有率に着目し、鋭意検討を重ねた結果、塩素化チタニルフタロシアニンの含有は得られるチタニルフタロシアニンの粒径に深く関与するだけでなく、光電材料として用いた場合、特に光減衰曲線の裾切れの改良に効果を見いだすことが明らかとなった。
すなわち、本発明の目的は、光電材料として光感度、耐久性、環境特性に優れ、かつ光減衰曲線の裾切れが改良されたチタニルフタロシアニン化合物及びそれを含有する電子写真感光体を提供するものである。
The present inventors paid attention to the content of chlorinated titanyl phthalocyanine, and as a result of extensive studies, the content of chlorinated titanyl phthalocyanine was not only deeply related to the particle size of the resulting titanyl phthalocyanine but also used as a photoelectric material. In particular, it has been found that an effect is found in improving the tail of the light attenuation curve.
That is, an object of the present invention is to provide a titanyl phthalocyanine compound having excellent photosensitivity, durability, and environmental characteristics as an optoelectronic material, and having an improved tail of the light attenuation curve, and an electrophotographic photoreceptor containing the same. is there.

本発明者らは、塩素化チタニルフタロシアニンの割合が無置換チタニルフタロシアニンに対してマススペクトル強度比で0.015〜0.055のチタニルフタロシアニンを用いた電子写真感光が光感度、耐久性、環境特性、光減衰曲線の裾切れに優れていることを見いだし本発明に到達した。
すなわち、本発明は、塩素化チタニルフタロシアニンの割合が無置換チタニルフタロシアニンに対してマススペクトル強度比で0.015〜0.055であるチタニルフタロシアニン、及びそれを含有してなる電子写真感光体に係わるものである。
The present inventors have shown that electrophotographic photosensitivity using titanyl phthalocyanine in which the ratio of chlorinated titanyl phthalocyanine is 0.015 to 0.055 in terms of mass spectral intensity ratio relative to unsubstituted titanyl phthalocyanine is photosensitivity, durability, and environmental characteristics. As a result, the present inventors have found that the tail of the light attenuation curve is excellent and have reached the present invention.
That is, the present invention relates to a titanyl phthalocyanine in which the ratio of chlorinated titanyl phthalocyanine is 0.015 to 0.055 in terms of mass spectral intensity ratio to unsubstituted titanyl phthalocyanine, and an electrophotographic photoreceptor comprising the same. Is.

本発明のチタニルフタロシアニンは、感度特性、電荷保持性に優れており、特に光減衰曲線の裾切れが改良された感光体であり、プリンター、ファクシミリ、デジタル複写機に有効に用いることができる。   The titanyl phthalocyanine of the present invention is excellent in sensitivity characteristics and charge retention, and is a photoreceptor having particularly improved light attenuation curve tailings, and can be used effectively in printers, facsimiles, and digital copying machines.

以下、本発明を詳細に説明する。
本発明のチタニルフタロシアニンは、下記構造式(1)及び(2)で示されるチタニルフタロシアニンである。
Hereinafter, the present invention will be described in detail.
The titanyl phthalocyanine of the present invention is a titanyl phthalocyanine represented by the following structural formulas (1) and (2).

Figure 0004941345
Figure 0004941345

さらに本発明のチタニルフタロシアニンは、塩素化チタニルフタロシアニンの割合が無置換チタニルフタロシアニンに対してマススペクトル強度比で0.015〜0.055のチタニルフタロシアニンであり、更に好ましくはマススペクトル強度比で0.02〜0.055のチタニルフタロシアニンである。マススペクトル強度比が0.015未満ではチタニルフタロシアニンの粒径が1μm以上と大きくなり、感光体とした場合、感度、暗減衰、特に光減衰曲線の裾切れが悪くなる。またマススペクトル強度比が0.055を越えても感度、暗減衰、特に残留電位が悪くなる。
なお、マススペクトルでは塩素が二つ結合した2塩素化チタニルフタロシアニンの存在も確認される。
マススペクトルによる塩素化チタニルフタロシアニンのスペクトル強度比は以下の条件で測定した。
Furthermore, the titanyl phthalocyanine of the present invention is a titanyl phthalocyanine in which the ratio of chlorinated titanyl phthalocyanine is 0.015 to 0.055 in terms of mass spectral intensity ratio relative to unsubstituted titanyl phthalocyanine, and more preferably, the ratio of mass spectral intensity is 0. 02 to 0.055 titanyl phthalocyanine. When the mass spectral intensity ratio is less than 0.015, the particle size of titanyl phthalocyanine is as large as 1 μm or more, and when it is used as a photoreceptor, sensitivity, dark decay, and particularly the tail of the light decay curve are deteriorated. Even if the mass spectrum intensity ratio exceeds 0.055, the sensitivity, dark decay, and particularly the residual potential are deteriorated.
In the mass spectrum, the presence of dichlorinated titanyl phthalocyanine in which two chlorine atoms are bonded is also confirmed.
The spectral intensity ratio of chlorinated titanyl phthalocyanine by mass spectrum was measured under the following conditions.

<マススペクトル測定条件>
1.試料の調整
チタニルフタロシアニン0.50gをガラスビース(1.0〜1.4mmφ)30g、シクロヘキサノン10gとともに50mlガラス容器に入れ、ペイントシェーカーで3時間処理し、チタニルフタロシアニン分散液とした。この分散液を20mlサンプルビンに1μL採取し、クロロホルム5mlを加えた。次に1時間超音波により分散させ、測定用10ppm分散液を調整した。
<Mass spectrum measurement conditions>
1. Preparation of sample 0.50 g of titanyl phthalocyanine was placed in a 50 ml glass container together with 30 g of glass beads (1.0 to 1.4 mmφ) and 10 g of cyclohexanone, and treated with a paint shaker for 3 hours to obtain a titanyl phthalocyanine dispersion. 1 μL of this dispersion was collected in a 20 ml sample bottle, and 5 ml of chloroform was added. Next, it was dispersed by ultrasonic waves for 1 hour to prepare a 10 ppm dispersion for measurement.

2.測定装置:JEOL JMS−700
イオン化モード:DCI(−)
反応ガス:イソブタン(イオン化室圧力1×10−5Torr)
フィラメントレート:0→0.95A(1A/min)
加速電圧:8.0KV
質量分析能:2000
スキャン法:MF−Linear
スキャン質量範囲:500 to 600
全質量範囲スキャン時間:0.8秒
繰り返し時間:0.5秒(スキャン時間0.05秒、待ち時間0.45秒)
2. Measuring device: JEOL JMS-700
Ionization mode: DCI (-)
Reaction gas: isobutane (ionization chamber pressure 1 × 10 −5 Torr)
Filament rate: 0 → 0.95A (1A / min)
Acceleration voltage: 8.0KV
Mass spectrometry: 2000
Scanning method: MF-Linear
Scan mass range: 500 to 600
Total mass range scan time: 0.8 seconds Repeat time: 0.5 seconds (scan time 0.05 seconds, wait time 0.45 seconds)

測定用分散液1μLをDCIプローブのフィラメントに塗布し、マススペクトル測定を上記条件で実施した。得られたマススペクトルにおいて、塩素化チタニルフタロシアニンの分子イオンに相当するm/z:610及び無置換チタニルフタロシアニンの分子イオンに相当するm/z:576のイオンクロマトから得られるピーク面積の比(「610」ピーク面積/「576」ピーク面積)をスペクトル強度比として算出した。   1 μL of the measurement dispersion was applied to the filament of the DCI probe, and mass spectrum measurement was performed under the above conditions. In the obtained mass spectrum, the ratio of peak areas obtained from ion chromatography of m / z: 610 corresponding to the molecular ion of chlorinated titanyl phthalocyanine and m / z: 576 corresponding to the molecular ion of unsubstituted titanyl phthalocyanine (“ 610 "peak area /" 576 "peak area) was calculated as the spectral intensity ratio.

さらに本発明のチタニルフタロシアニンの塩素含有量は0.25%以上0.6%以下であり、更に好ましくは塩素含有量が0.3%以上0.5%以下のチタニルフタロシアニンである。塩素含有量が0.25%未満では粒径が1μm以上と大きくなり、感光体とした場合、感度、暗減衰、特に光減衰曲線の裾切れが悪くなる。塩素含有量が0.6%を越えても感度、暗減衰、特に残留電位が悪くなる。
塩素含有量は以下の条件で測定した。
Furthermore, the chlorine content of the titanyl phthalocyanine of the present invention is 0.25% or more and 0.6% or less, more preferably a titanyl phthalocyanine having a chlorine content of 0.3% or more and 0.5% or less. When the chlorine content is less than 0.25%, the particle size becomes as large as 1 μm or more. When the photosensitive member is used, the sensitivity, dark decay, and particularly the tail of the light decay curve are deteriorated. Even if the chlorine content exceeds 0.6%, the sensitivity, dark decay, and particularly the residual potential are deteriorated.
The chlorine content was measured under the following conditions.

<塩素含有量測定条件>
チタニルフタロシアニン約100mgを精秤、石英ボートにとり、三菱化学社製昇温型電気炉QF−02にて完全燃焼し、燃焼ガスを水15mlに定量吸収させた。その吸収液を50mlに希釈し、イオンクロマトグラフィー(Dionex社製、DX−120)でCl分析を行った。下記にイオンクロマトグラフィーの条件を示す。
カラム:Dionex IonPak AG12A+AS12A
溶離液:2.7mM NaCO/0.3mM NaHCO
流量:1.3ml/min
注入量:50μL
<Chlorine content measurement conditions>
About 100 mg of titanyl phthalocyanine was precisely weighed and placed in a quartz boat, and completely burned in a temperature rising type electric furnace QF-02 manufactured by Mitsubishi Chemical Corporation. The combustion gas was quantitatively absorbed in 15 ml of water. The absorbing solution was diluted to 50 ml, and Cl analysis was performed by ion chromatography (Dionex, DX-120). The ion chromatography conditions are shown below.
Column: Dionex IonPak AG12A + AS12A
Eluent: 2.7 mM Na 2 CO 3 /0.3 mM NaHCO 3
Flow rate: 1.3ml / min
Injection volume: 50 μL

本発明のチタニルフタロシアニンは、次のようにして製造することができる。フタロジニトリルと高沸点溶剤中に四塩化チタンを添加し、高温下で数時間反応を行う。その後、反応生成物をろ過、洗浄、精製し、ジクロロチタンフタロシアニンを得る。これを熱水処理あるいはアルカリ熱水処理等で加水分解し、さらにアセトン、THF、N−メチルピロリドン、トルエン等の有機溶剤で加熱することにより、本発明のチタニルフタロシアニンが生成する。あるいはジクロロチタンフタロシアニンをN−メチルピロリドン等の有機溶剤で直接処理することによっても本発明のチタニルフタロシアニンが生成する。   The titanyl phthalocyanine of the present invention can be produced as follows. Titanium tetrachloride is added to phthalodinitrile and a high boiling point solvent, and the reaction is carried out at high temperature for several hours. Thereafter, the reaction product is filtered, washed and purified to obtain dichlorotitanium phthalocyanine. This is hydrolyzed by hot water treatment or alkaline hot water treatment, and further heated with an organic solvent such as acetone, THF, N-methylpyrrolidone, toluene, etc. to produce the titanyl phthalocyanine of the present invention. Alternatively, the titanyl phthalocyanine of the present invention can also be produced by directly treating dichlorotitanium phthalocyanine with an organic solvent such as N-methylpyrrolidone.

ここで、高沸点溶剤としてはトリクロロベンゼン、クロロナフタレン、メチルナフタレン、メトキシナフタレン、ブロモナフタレン、ジフェニルエーテル、ジフェニルメタン、ジフェニルエタン、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、スルホラン等の溶剤があげられるが、塩素化チタニルフタロシアニンの含有量、あいはチタニルフタロシアニン中の塩素含有量を制御するために非ハロゲン化溶剤が好ましい。   Here, as the high boiling point solvent, solvents such as trichlorobenzene, chloronaphthalene, methylnaphthalene, methoxynaphthalene, bromonaphthalene, diphenyl ether, diphenylmethane, diphenylethane, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, sulfolane, etc. In order to control the content of chlorinated titanyl phthalocyanine, or the chlorine content in titanyl phthalocyanine, a non-halogenated solvent is preferred.

また、チタン源としては四塩化チタン、三塩化チタン、アルコキシチタン等が挙げられるが、塩素化チタニルフタロシアニンの含有量、あるいはチタニルフタロシアニン中の塩素含有量を制御するため、四塩化チタン、三塩化チタン等の塩素化チタンが好ましい。
また、四塩化チタン等のチタン源の添加は反応系内温度160℃以下で添加することが好ましく、120℃以下での添加がより好ましく、100℃以下での添加がさらに好ましい。180℃以上での添加では塩素化チタニルフタロシアニンの含有量が少なく、またチタニルフタロシアニン中の塩素含有量も少ない。四塩化チタン等は直接添加しても、高沸点溶剤と混合して添加しても良い。
Titanium sources include titanium tetrachloride, titanium trichloride, alkoxy titanium, etc. In order to control the content of chlorinated titanyl phthalocyanine or the chlorine content in titanyl phthalocyanine, titanium tetrachloride, titanium trichloride are used. A chlorinated titanium such as
The addition of a titanium source such as titanium tetrachloride is preferably added at a reaction system temperature of 160 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower. When added at 180 ° C. or higher, the content of chlorinated titanyl phthalocyanine is low, and the chlorine content in titanyl phthalocyanine is also low. Titanium tetrachloride or the like may be added directly or mixed with a high boiling point solvent.

反応温度は通常150〜300℃、好ましくは180〜250℃、さらにチタニルフタロシアニンの含有量、あるいはチタニルフタロシアニン中の塩素含有量を制御するために190〜230℃が好ましい。
反応温度に到達するための昇温時間は0.5〜4時間が好ましく、さらにチタニルフタロシアニンの含有量、あるいはチタニルフタロシアニン中の塩素含有量を制御するために0.5〜3時間が好ましい。
The reaction temperature is usually 150 to 300 ° C, preferably 180 to 250 ° C, and more preferably 190 to 230 ° C in order to control the content of titanyl phthalocyanine or the chlorine content in titanyl phthalocyanine.
The temperature raising time for reaching the reaction temperature is preferably 0.5 to 4 hours, and more preferably 0.5 to 3 hours for controlling the content of titanyl phthalocyanine or the chlorine content in titanyl phthalocyanine.

反応時間は、通常1〜10時間、好ましくは2〜8時間であり、さらに好ましくは、塩素化チタニルフタロシアニンの含有量、あるいはチタニルフタロシアニン中の塩素含有量を制御するために2〜6時間の範囲である。
このようにして処理されたチタニルフタロシアニンは、処理溶剤から単離、精製、乾燥することにより得られる。
得られた本発明のチタニルフタロシアニンの粒径は最適量な塩素化チタニルフタロシアニンを含有しているため1μm以下に制御されている。
The reaction time is usually 1 to 10 hours, preferably 2 to 8 hours, more preferably 2 to 6 hours in order to control the content of chlorinated titanyl phthalocyanine or the chlorine content in titanyl phthalocyanine. It is.
The titanyl phthalocyanine thus treated can be obtained by isolation, purification, and drying from the treatment solvent.
The particle size of the obtained titanyl phthalocyanine of the present invention is controlled to 1 μm or less because it contains the optimum amount of chlorinated titanyl phthalocyanine.

次に、本発明のチタニルフタロシアニンを光導電材料として使用した電子写真感光体について説明する。本発明の電子写真感光体において、導電性支持体上に被覆される感光層は、単層型構造からなるものであっても、あるいは電荷発生層及び電荷輸送層からなる積層型構造であっても良い。また、導電性支持体と感光層との間に下引き層を形成してもよく、単層型構造では感光層上に、積層型構造では電荷輸送層上に表面保護層を設けていても良い。   Next, an electrophotographic photoreceptor using the titanyl phthalocyanine of the present invention as a photoconductive material will be described. In the electrophotographic photoreceptor of the present invention, the photosensitive layer coated on the conductive support may have a single-layer structure or a laminated structure composed of a charge generation layer and a charge transport layer. Also good. Further, an undercoat layer may be formed between the conductive support and the photosensitive layer, and a surface protective layer may be provided on the photosensitive layer in the single layer structure, or on the charge transport layer in the laminated structure. good.

導電性支持体としては、電子写真感光体として使用することができるものならばいかなるものでも良い。具体的には例えば、アルミニウム、銅、ニッケル等の金属ドラム、シートあるいはこれら金属箔のラミネート物、蒸着物が挙げられる。さらに、金属粉末、カーボンブラック、ヨウ化銅、高分子電解質等の導電物質を適当なバインダーとともに塗布して導電処理したプラスティックフィルム、プラスティックドラム、紙等が挙げられる。また、金属粉末、カーボンブラック、炭素繊維等の導電性物質を含有し、導電性となったプラスティックシートやドラムあるいは酸化スズ、酸化インジウム等の導電性金属酸化物層を表面に有するプラスティックフィルムなどが挙げられる。   Any conductive support may be used as long as it can be used as an electrophotographic photosensitive member. Specific examples include metal drums such as aluminum, copper, and nickel, sheets, laminates of these metal foils, and vapor-deposited materials. Furthermore, a plastic film, a plastic drum, paper, and the like obtained by applying a conductive material such as metal powder, carbon black, copper iodide, and a polymer electrolyte together with a suitable binder to conduct a conductive treatment may be used. Also, there are plastic sheets and drums containing conductive materials such as metal powder, carbon black, and carbon fiber, and plastic films having conductive metal oxide layers such as tin oxide and indium oxide on the surface. Can be mentioned.

下引き層は、導電性支持体からの不必要な電荷の注入を阻止するために有効であり、感光層の帯電を高める作用がある。さらに、感光層と導電性支持体との密着性を高める作用もある。下引き層を構成する材料としては、アルミニウム陽極酸化皮膜、酸化アルミニウム、水酸化アルミニウム、酸化チタン、表面処理酸化チタン等の無機物、ポリビニルアルコール、カゼイン、ポリビニルピロリドン、ポリアクリル酸、セルロース類、ゼラチン、デンプン類、ポリウレタン、ポリイミド、ポリアミド等の有機層、その他、有機ジルコニウム化合物、チタニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等が挙げられる。下引き層の膜厚は0.1〜20μmの範囲が好ましく、0.1〜10μmの範囲で使用するのが最も効果的である。   The undercoat layer is effective for preventing unnecessary charge injection from the conductive support, and has the effect of increasing the charge of the photosensitive layer. Furthermore, it also has the effect of increasing the adhesion between the photosensitive layer and the conductive support. As the material constituting the undercoat layer, aluminum anodized film, aluminum oxide, aluminum hydroxide, titanium oxide, surface treated titanium oxide and other inorganic materials, polyvinyl alcohol, casein, polyvinylpyrrolidone, polyacrylic acid, celluloses, gelatin, Examples thereof include organic layers such as starches, polyurethanes, polyimides, polyamides, etc., organic zirconium compounds, titanium chelate compounds, titanium alkoxide compounds, organic titanium compounds, silane coupling agents, and the like. The thickness of the undercoat layer is preferably in the range of 0.1 to 20 μm, and most effectively used in the range of 0.1 to 10 μm.

電子写真感光体が積層型構造を有する場合、電荷発生層は前記チタニルフタロシアニン及び結着樹脂から構成される。本発明では前記チタニルフタロシアニンの他にさらに他の電荷発生物質を併用しても良い。併用できる電荷発生物質は、ガリウムフタロシアニン、インジウムフタロシアニン、シリコンフタロシアニン、無金属フタロシアニン等が挙げられる。また、上記以外のフタロシアニン系化合物、アゾ化合物、アントラキノン系化合物、ペリレン系化合物、多環キノン系化合物、スクアリック酸メチン系化合物等が挙げられるが、これらに制限されるものではない。   When the electrophotographic photosensitive member has a laminated structure, the charge generation layer is composed of the titanyl phthalocyanine and the binder resin. In the present invention, in addition to the titanyl phthalocyanine, another charge generating substance may be used in combination. Examples of the charge generating material that can be used in combination include gallium phthalocyanine, indium phthalocyanine, silicon phthalocyanine, and metal-free phthalocyanine. In addition, phthalocyanine compounds, azo compounds, anthraquinone compounds, perylene compounds, polycyclic quinone compounds, squalic acid methine compounds, and the like other than those described above are exemplified, but the invention is not limited thereto.

電荷発生層の結着樹脂は広範な絶縁性樹脂から選択することができる。好ましい結着樹脂としては、スチレン、酢酸ビニル、塩化ビニル、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、アクリルアミド、アクリロニトリル、ビニルアルコール、エチルビニルエーテル、ビニルピリジン等のビニル化合物の重合体及び共重合体、フェノキシ樹脂、ポリスルホン、ポリビニルアセタール、ポリビニルブチラール、ポリカーボネート、ポリエステル、ポリアミド、ポリウレタン、セルロースエステル、セルロースエーテル、エポキシ樹脂、ケイ素樹脂、アルキッド樹脂、ポリアリレート等が挙げられるが、これらに制限されるものではない。   The binder resin for the charge generation layer can be selected from a wide range of insulating resins. Preferred binder resins include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylic ester, methacrylic ester, acrylamide, acrylonitrile, vinyl alcohol, ethyl vinyl ether, vinyl pyridine, Examples include, but are not limited to, phenoxy resin, polysulfone, polyvinyl acetal, polyvinyl butyral, polycarbonate, polyester, polyamide, polyurethane, cellulose ester, cellulose ether, epoxy resin, silicon resin, alkyd resin, and polyarylate. .

電荷発生層は、上記結着樹脂を有機溶剤に溶解した溶液に前記チタニルフタロシアニンを分散(一部溶解しても良い)させて塗布液を調整し、それを導電性支持体上に塗布し、乾燥することによって形成することができる。分散処理する方法としては、公知の方法、例えば、ボールミル、サンドグラインドミル、遊星ミル、ロールミル、ペイントシェーカー等の方法を用いることができる。その場合、前記チタニルフタロシアニンと結着樹脂との割合は、特に制限されないが、前記チタニルフタロシアニン100重量部に対して結着樹脂1〜1000重量部、好ましくは10〜400重量部の範囲である。チタニルフタロシアニンの比率が高すぎる場合には、塗布液の安定性が低下し、低すぎる場合は、残留電位が高くなるので、組成比は上記範囲が適当である。使用する有機溶剤としては、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族炭化水素、モノクロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン等のハロゲン化脂肪族炭化水素、メタノール、エタノール、イソプロパノール等のアルコール類、酢酸メチル、酢酸エチル等のエステル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類等が挙げられる。塗布液は、ディップコーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、リングコーティング法等のコーティング法により塗布することができる。塗布後の乾燥は、25〜250℃の温度で5分〜3時間の範囲で静止または送風下で行うことができる。また、形成される電荷発生層の膜厚は、通常0.1〜5μmの範囲が適当である。   The charge generation layer is prepared by dispersing the titanyl phthalocyanine in a solution obtained by dissolving the binder resin in an organic solvent (partially dissolved) to prepare a coating solution, and coating the conductive solution on a conductive support. It can be formed by drying. As a method for the dispersion treatment, a known method such as a ball mill, a sand grind mill, a planetary mill, a roll mill, or a paint shaker can be used. In that case, the ratio of the titanyl phthalocyanine and the binder resin is not particularly limited, but is in the range of 1 to 1000 parts by weight, preferably 10 to 400 parts by weight of the binder resin with respect to 100 parts by weight of the titanyl phthalocyanine. When the ratio of titanyl phthalocyanine is too high, the stability of the coating solution is lowered, and when it is too low, the residual potential is increased, so that the composition ratio is in the above range. Organic solvents used include ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether, ketones such as acetone, methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, halogenated aromatics such as monochlorobenzene and dichlorobenzene. Group hydrocarbons, halogenated aliphatic hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane and trichloroethane, alcohols such as methanol, ethanol and isopropanol, esters such as methyl acetate and ethyl acetate, N, N-dimethyl Examples include amides such as formamide and N, N-dimethylacetamide, and sulfoxides such as dimethyl sulfoxide. The coating liquid can be applied by coating methods such as dip coating, spray coating, spinner coating, bead coating, wire bar coating, blade coating, roller coating, curtain coating, ring coating, etc. . Drying after the application can be performed at a temperature of 25 to 250 ° C. for 5 minutes to 3 hours in a static state or under air blowing. The film thickness of the charge generation layer to be formed is usually in the range of 0.1 to 5 μm.

電荷輸送層は電荷輸送材料及び結着樹脂、場合によって酸化防止剤等の添加物より構成される。電荷輸送材料は一般に電子輸送材料とホール輸送材料の2種に分類されるが、本発明の電子写真感光体はいずれも使用することができ、また、その混合物も使用できる。
電子輸送材料としては、ニトロ基、シアノ基、エステル基等の電子吸引性基を有する電子吸引性化合物、例えば、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロフルオレノン等のニトロ化フルオレノン、テトラシアノキノジメタン、あるいはジフェノキノン等のキノン類が挙げられる。
The charge transport layer is composed of a charge transport material, a binder resin, and optionally additives such as an antioxidant. The charge transport material is generally classified into two types, that is, an electron transport material and a hole transport material. Any of the electrophotographic photoreceptors of the present invention can be used, and a mixture thereof can also be used.
Examples of electron transport materials include electron-withdrawing compounds having an electron-withdrawing group such as a nitro group, a cyano group, and an ester group, such as 2,4,7-trinitrofluorenone and 2,4,5,7-tetranitrofluorenone. And quinones such as nitrated fluorenone, tetracyanoquinodimethane, and diphenoquinone.

また、ホール輸送材料としては、電子供与性の有機光電性化合物、例えば、カルバゾール系、インドール系、イミダゾール系、オキサゾール系、チアゾール系、オキサジアゾール系、ピラゾール系、ピラゾリン系、チアジアゾール系、ベンゾオキサゾール系、ベンゾチアゾール系、ナフトチアゾール系等の複素環化合物、ジフェニルメタンなどのジアリールアルカン誘導体、トリフェニルメタンなどのトリアリールアルカン誘導体、トリフェニルアミンなどのトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベンなどのジアリールエチレン誘導体、ヒドラゾン系誘導体、ジアルキルアミノ基、ジフェニルアミノ基のような置換アミノ基、あるいはアルコキシ基、アルキル基などのような電子供与基、あるいはこれらの電子供与基が置換した芳香族環基が置換した電子供与性の大きな化合物が挙げられる。また、ポリビニルカルバゾール、ポリグリシジルカルバゾール、ポリビニルピレン、ポリビニルフェニルアントラセン、ポリビニルアクリジン、ピレン−ホルムアルデヒド樹脂等、上記化合物からなる基を主鎖もしくは側鎖に有する重合体も挙げられる。   In addition, as a hole transport material, an electron-donating organic photoelectric compound, for example, carbazole, indole, imidazole, oxazole, thiazole, oxadiazole, pyrazole, pyrazoline, thiadiazole, benzoxazole Type, benzothiazole type, naphthothiazole type heterocyclic compounds, diarylalkane derivatives such as diphenylmethane, triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole Derivatives, diarylethylene derivatives such as stilbene, hydrazone derivatives, substituted amino groups such as dialkylamino groups and diphenylamino groups, or electrons such as alkoxy groups and alkyl groups Azukamoto, or these electron-donating group is an aromatic ring group substituted can be cited a compound having a large electron-donating substituted. Moreover, the polymer which has the group which consists of said compounds in a principal chain or a side chain, such as polyvinyl carbazole, polyglycidyl carbazole, polyvinyl pyrene, polyvinyl phenyl anthracene, polyvinyl acridine, pyrene-formaldehyde resin, is also mentioned.

また、結着樹脂としては、前記した電荷発生層に使用されるものと同様の絶縁性樹脂が使用できる。電荷輸送材料と結着樹脂との割合は、特に制限されないが、前記電荷輸送材料100重量部に対して結着樹脂20〜3000重量部、好ましくは50〜1000重量部の範囲である。電荷輸送層は、上記電荷輸送材料及び結着樹脂を前記した電荷発生層に使用されるものと同様の有機溶剤を用いて塗布液を調整した後、前記と同様の方法により塗布し、乾燥することによって形成することができる。また、電荷輸送層の膜厚は、通常5〜50μmの範囲が適当である。   Further, as the binder resin, the same insulating resin as that used for the charge generation layer described above can be used. The ratio of the charge transport material and the binder resin is not particularly limited, but is in the range of 20 to 3000 parts by weight, preferably 50 to 1000 parts by weight of the binder resin with respect to 100 parts by weight of the charge transport material. The charge transport layer is prepared by adjusting the coating liquid using the same organic solvent as that used for the charge generation layer, and then applying the charge transport material and the binder resin by the same method as described above and drying. Can be formed. The thickness of the charge transport layer is usually in the range of 5 to 50 μm.

電子写真感光体が単層型構造を有する場合は、感光層は前記チタニルフタロシアニン、電荷輸送材料、結着樹脂から構成され、電荷輸送材料及び結着樹脂は、前記と同様なものが使用される。感光層には必要に応じて酸化防止剤、増感剤等の各種添加物を含んでいても良い。チタニルフタロシアニン及び電荷輸送材料と結着樹脂との割合は、チタニルフタロシアニン及び電荷輸送材料10重量部に対して結着樹脂2〜300重量部、チタニルフタロシアニンと電荷輸送材料との割合は、チタニルフタロシアニン1重量部に対して電荷輸送材料0.01〜100重量部の範囲が適当である。そして、前記と同様に塗布液を調整した後、塗布、乾燥することによって感光層が得られる。   When the electrophotographic photoreceptor has a single-layer structure, the photosensitive layer is composed of the titanyl phthalocyanine, the charge transport material, and the binder resin, and the same charge transport material and binder resin as those described above are used. . The photosensitive layer may contain various additives such as an antioxidant and a sensitizer as necessary. The ratio of the titanyl phthalocyanine and the charge transport material to the binder resin is 2 to 300 parts by weight of the binder resin with respect to 10 parts by weight of the titanyl phthalocyanine and the charge transport material. The ratio of the titanyl phthalocyanine and the charge transport material is titanyl phthalocyanine 1 A range of 0.01 to 100 parts by weight of the charge transport material is appropriate with respect to parts by weight. And after adjusting a coating liquid like the above, a photosensitive layer is obtained by apply | coating and drying.

以下、実施例によって、本発明をさらに具体的に説明するが、本発明は、その要旨を越えない限り以下の実施例によって制限されるものではない。
「実施例1」
窒素雰囲気下、フタロジニトリル33.3gをジフェニルメタン208ml中に分散し、40℃で四塩化チタン12.5gを添加した。その後1時間かけて205〜210℃まで昇温し、205〜210℃で5時間反応させた。生成物を130℃で熱ろ過し、ジフェニルメタン、メタノールの順で洗浄した。次いで、N−メチルピロリドン(NMP)300ml中で140〜150℃加熱撹拌を2回繰り返し、熱水縣洗、メタノール縣洗後、乾燥してチタニルフタロシアニン26.9gを得た。マススペクトルを図1に示すが、マススペクトルではm/z:576に無置換チタニルフタロシアニンのピーク、m/z:610は塩素化チタニルフタロシアニンのピークが確認され、そのピーク強度比は3回測定し0.042〜0.054であり、さらに塩素含有量は0.40%であった。得られたチタニルフタロシアニンの粒径のSEM写真を図2に示すが、平均粒径は1μm以下である。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
"Example 1"
Under a nitrogen atmosphere, 33.3 g of phthalodinitrile was dispersed in 208 ml of diphenylmethane, and 12.5 g of titanium tetrachloride was added at 40 ° C. Thereafter, the temperature was raised to 205 to 210 ° C. over 1 hour and reacted at 205 to 210 ° C. for 5 hours. The product was filtered hot at 130 ° C. and washed with diphenylmethane and methanol in this order. Subsequently, heating and stirring were repeated twice in 300 ml of N-methylpyrrolidone (NMP) at 140 to 150 ° C., followed by washing with hot water and methanol, followed by drying to obtain 26.9 g of titanyl phthalocyanine. The mass spectrum is shown in FIG. 1. In the mass spectrum, a peak of unsubstituted titanyl phthalocyanine was confirmed at m / z: 576, and a peak of chlorinated titanyl phthalocyanine was confirmed at m / z: 610. The peak intensity ratio was measured three times. It was 0.042-0.054, and also chlorine content was 0.40%. An SEM photograph of the particle size of the obtained titanyl phthalocyanine is shown in FIG. 2, and the average particle size is 1 μm or less.

「実施例2」
窒素雰囲気下、フタロジニトリル33.3gをジフェニルメタン208ml中に分散し、40℃で四塩化チタン12.5gを添加した。その後3時間かけて205〜210℃まで昇温し、205〜210℃で5時間反応させた。それ以降は実施例1と同様に行い、チタニルフタロシアニン28.5gを得た。マススペクトルを図3に示すが、マススペクトルではm/z:576に無置換チタニルフタロシアニンのピーク、m/z:610は塩素化チタニルフタロシアニンのピークが確認され、そのピーク強度比は3回測定し0.048〜0.050であり、さらに塩素含有量は0.41%であった。得られたチタニルフタロシアニンの粒径のSEM写真を図4に示すが、平均粒径は1μm以下である。
"Example 2"
Under a nitrogen atmosphere, 33.3 g of phthalodinitrile was dispersed in 208 ml of diphenylmethane, and 12.5 g of titanium tetrachloride was added at 40 ° C. Thereafter, the temperature was raised to 205 to 210 ° C. over 3 hours and reacted at 205 to 210 ° C. for 5 hours. Thereafter, the same procedure as in Example 1 was performed to obtain 28.5 g of titanyl phthalocyanine. The mass spectrum is shown in FIG. 3. In the mass spectrum, a peak of unsubstituted titanyl phthalocyanine was confirmed at m / z: 576, and a peak of chlorinated titanyl phthalocyanine was confirmed at m / z: 610, and the peak intensity ratio was measured three times. The chlorine content was 0.048 to 0.050, and the chlorine content was 0.41%. An SEM photograph of the particle size of the obtained titanyl phthalocyanine is shown in FIG. 4, and the average particle size is 1 μm or less.

「実施例3」
40℃で四塩化チタン12.5gとジフェニルメタン8mlの混合液を添加した以外は実施例1と同様に行い、チタニルフタロシアニン27.5gを得た。マススペクトルではm/z:576に無置換チタニルフタロシアニンのピーク、m/z:610は塩素化チタニルフタロシアニンのピークが確認され、そのピーク強度比は3回測定し0.050であり、さらに塩素含有量は0.43%であった。得られたチタニルフタロシアニンの粒径のSEM写真を図5に示すが、平均粒径は1μm以下である。
"Example 3"
The same procedure as in Example 1 was carried out except that 12.5 g of titanium tetrachloride and 8 ml of diphenylmethane were added at 40 ° C., to obtain 27.5 g of titanyl phthalocyanine. In the mass spectrum, a peak of unsubstituted titanyl phthalocyanine was observed at m / z: 576, a peak of chlorinated titanyl phthalocyanine was confirmed at m / z: 610, the peak intensity ratio measured 0.05 times, and a chlorine content The amount was 0.43%. An SEM photograph of the particle size of the obtained titanyl phthalocyanine is shown in FIG. 5, and the average particle size is 1 μm or less.

「実施例4」
100℃で四塩化チタン12.5gとジフェニルメタン8mlの混合液を添加した以外は実施例1と同様に行い、チタニルフタロシアニン27.5gを得た。マススペクトルでのピーク強度比は3回測定し0.032〜0.035であり、さらに塩素含有量は0.37%であった。得られたチタニルフタロシアニンの粒径は実施例1と同様、平均粒径は1μm以下である。
Example 4
The same procedure as in Example 1 was performed except that a mixed liquid of 12.5 g of titanium tetrachloride and 8 ml of diphenylmethane was added at 100 ° C., to obtain 27.5 g of titanyl phthalocyanine. The peak intensity ratio in the mass spectrum was 0.032 to 0.035 as measured three times, and the chlorine content was 0.37%. The particle diameter of the obtained titanyl phthalocyanine is the same as in Example 1, and the average particle diameter is 1 μm or less.

「実施例5」
反応溶剤をメチルナフタレン208mlに変更した他は実施例1と同様に行い、チタニルフタロシアニン23.2gを得た。マススペクトルでのピーク強度比は3回測定し0.047〜0.052であり、さらに塩素含有量は0.49%であった。得られたチタニルフタロシアニンの粒径は実施例1と同様、平均粒径は1μm以下である。
"Example 5"
Except that the reaction solvent was changed to 208 ml of methylnaphthalene, the same procedure as in Example 1 was carried out to obtain 23.2 g of titanyl phthalocyanine. The peak intensity ratio in the mass spectrum was 0.047 to 0.052 measured three times, and the chlorine content was 0.49%. The particle diameter of the obtained titanyl phthalocyanine is the same as in Example 1, and the average particle diameter is 1 μm or less.

「実施例6」
反応溶剤をスルホラン208mlに変更した他は実施例1と同様に行い、チタニルフタロシアニン16.7gを得た。マススペクトルでのピーク強度比は3回測定し0.037〜0.042であり、さらに塩素含有量は0.31%であった。得られたチタニルフタロシアニンの粒径は実施例1と同様、平均粒径は1μm以下である。
"Example 6"
The reaction was performed in the same manner as in Example 1 except that the reaction solvent was changed to 208 ml of sulfolane to obtain 16.7 g of titanyl phthalocyanine. The peak intensity ratio in the mass spectrum was 0.037 to 0.042 as measured three times, and the chlorine content was 0.31%. The particle diameter of the obtained titanyl phthalocyanine is the same as in Example 1, and the average particle diameter is 1 μm or less.

「比較合成例1」
200℃で四塩化チタン12.5gとジフェニルメタン8mlの混合液を添加した以外は実施例1と同様に行い、チタニルフタロシアニン25.3gを得た。しかし、マススペ
クトルを図6に示すが、マススペクトルでのピーク強度比は3回測定し0.009〜0.011と小さく、さらに塩素含有量も0.077%と小であった。得られたチタニルフタロシアニンの粒径のSEM写真を図7に示すが、平均粒径は1μm以上と大きな粒子である。
“Comparative Synthesis Example 1”
The same procedure as in Example 1 was conducted except that a mixed liquid of 12.5 g of titanium tetrachloride and 8 ml of diphenylmethane was added at 200 ° C., thereby obtaining 25.3 g of titanyl phthalocyanine. However, although the mass spectrum is shown in FIG. 6, the peak intensity ratio in the mass spectrum was measured three times and was as small as 0.009 to 0.011, and the chlorine content was also as small as 0.077%. An SEM photograph of the particle size of the obtained titanyl phthalocyanine is shown in FIG. 7, and the average particle size is as large as 1 μm or more.

「比較合成例2」
180℃で四塩化チタン12.5gとジフェニルメタン8mlの混合液を添加した以外は実施例1と同様に行い、チタニルフタロシアニン25.3gを得た。マススペクトルでのピーク強度比は3回測定し0.0058〜0.0069と比較合成例1と同様に小さく、さらに塩素含有量も0.068%と小であった。得られたチタニルフタロシアニンの粒径のSEM写真を図8に示すが、平均粒径は1μm以上と大きな粒子である。
“Comparative Synthesis Example 2”
The same procedure as in Example 1 was carried out except that 12.5 g of titanium tetrachloride and 8 ml of diphenylmethane were added at 180 ° C., to obtain 25.3 g of titanyl phthalocyanine. The peak intensity ratio in the mass spectrum was measured three times and was as low as 0.0058 to 0.0069, as in Comparative Synthesis Example 1, and the chlorine content was as low as 0.068%. An SEM photograph of the particle size of the obtained titanyl phthalocyanine is shown in FIG. 8, and the average particle size is a large particle of 1 μm or more.

「比較合成例3」
窒素雰囲気下、フタロジニトリル33.3gをジフェニルメタン208ml中に分散し、40℃で四塩化チタン12.5g添加した。その後1時間かけて205〜210℃まで昇温し、205〜210℃で12時間反応させた。それ以降は実施例1と同様に行い、チタニルフタロシアニン28.1gを得た。マススペクトルでのピーク強度比は3回測定し0.0599〜0.0618と大きく、さらに塩素含有量は0.66%と大であった。
“Comparative Synthesis Example 3”
Under a nitrogen atmosphere, 33.3 g of phthalodinitrile was dispersed in 208 ml of diphenylmethane, and 12.5 g of titanium tetrachloride was added at 40 ° C. Thereafter, the temperature was raised to 205 to 210 ° C. over 1 hour, and the reaction was carried out at 205 to 210 ° C. for 12 hours. Thereafter, the same procedure as in Example 1 was performed to obtain 28.1 g of titanyl phthalocyanine. The peak intensity ratio in the mass spectrum was measured three times and was as large as 0.0599 to 0.0618, and the chlorine content was as large as 0.66%.

「比較合成例4」
窒素雰囲気下、フタロジニトリル33.3gをジフェニルメタン208ml中に分散し、40℃で四塩化チタン12.5g添加した。その後5時間かけて205〜210℃まで昇温し、205〜210℃で5時間反応させた。それ以降は実施例1と同様に行い、チタニルフタロシアニン25.5gを得た。マススペクトルでのピーク強度比は3回測定し0.0659〜0.0696と大きく、さらに塩素含有量は0.91%と大であった。
“Comparative Synthesis Example 4”
Under a nitrogen atmosphere, 33.3 g of phthalodinitrile was dispersed in 208 ml of diphenylmethane, and 12.5 g of titanium tetrachloride was added at 40 ° C. Thereafter, the temperature was raised to 205 to 210 ° C. over 5 hours, and the reaction was carried out at 205 to 210 ° C. for 5 hours. Thereafter, the same procedure as in Example 1 was carried out to obtain 25.5 g of titanyl phthalocyanine. The peak intensity ratio in the mass spectrum was measured three times and was as large as 0.0659 to 0.0696, and the chlorine content was as large as 0.91%.

「比較合成例5」
窒素雰囲気下、フタロジニトリル33.3gとクロロフタロニトリル0.36gをジフェニルメタン208ml中に分散し、40℃で四塩化チタン12.5g添加した。それ以降は合成例1と同様に行い、チタニルフタロシアニン27.2gを得た。マススペクトルでのピーク強度比は3回測定し0.0594〜0.0613と大きく、さらに塩素含有量は0.69%と大であった。
“Comparative Synthesis Example 5”
Under a nitrogen atmosphere, 33.3 g of phthalodinitrile and 0.36 g of chlorophthalonitrile were dispersed in 208 ml of diphenylmethane, and 12.5 g of titanium tetrachloride was added at 40 ° C. Thereafter, the same procedure as in Synthesis Example 1 was performed to obtain 27.2 g of titanyl phthalocyanine. The peak intensity ratio in the mass spectrum was measured three times and was as large as 0.0594 to 0.0613, and the chlorine content was as large as 0.69%.

「電子写真感光体の作成」
「実施例7」
実施例1で製造したチタニルフタロシアニン1.6gをジメトキシエタン30gに加え、サンドグラインドミルで6時間粉砕、微粒子化分散処理を行った。次に、ジメトキシエタン16gと4−メトキシ−4−メチルペンタノン−2を6g加え希釈し、さらにポリビニルブチラール(電気化学工業(株)製、デンカブチラール#6000C)0.4gとフェノキシ樹脂(ユニオンカーバイド(株)製、UCAR)0.4gをジメトキシエタン7gに溶解した液と混合し、分散液を得た。この分散液をアルミニウム蒸着されたポリエステルフィルム上に乾燥後の重量が0.4g/mになるようにワイヤーバーで塗布した後、乾燥して電荷発生層を形成させた。
次にこの電荷発生層の上に、下記に示すヒドラゾン化合物5.6gと
"Creation of electrophotographic photoreceptor"
"Example 7"
1.6 g of titanyl phthalocyanine produced in Example 1 was added to 30 g of dimethoxyethane, and pulverized with a sand grind mill for 6 hours to carry out a fine particle dispersion treatment. Next, 16 g of dimethoxyethane and 6 g of 4-methoxy-4-methylpentanone-2 were added for dilution, and 0.4 g of polyvinyl butyral (Denka Butyral # 6000C, manufactured by Denki Kagaku Kogyo Co., Ltd.) and phenoxy resin (Union Carbide). Co., Ltd., UCAR) 0.4 g was mixed with a solution obtained by dissolving 7 g of dimethoxyethane to obtain a dispersion. This dispersion was applied onto a polyester film on which aluminum had been deposited with a wire bar so that the weight after drying was 0.4 g / m 2 , and then dried to form a charge generation layer.
Next, 5.6 g of a hydrazone compound shown below is formed on the charge generation layer.

Figure 0004941345
Figure 0004941345

下記に示すヒドラゾン化合物1.4g   1.4g hydrazone compound shown below

Figure 0004941345
Figure 0004941345

及びポリカーボネート樹脂(三菱化学(株)、ノバレックス7030A)10gをTHF62gに溶解させた溶液をアプリケーターにより塗布し、乾燥後の膜厚が20μmとなるように電荷輸送層を設けた。 A solution in which 10 g of polycarbonate resin (Mitsubishi Chemical Corporation, Novalex 7030A) was dissolved in 62 g of THF was applied with an applicator, and a charge transport layer was provided so that the film thickness after drying was 20 μm.

「実施例8」
実施例1において用いたチタニルフタロシアニンに代えて、実施例2で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
「実施例9」
実施例1において用いたチタニルフタロシアニンに代えて、実施例3で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
"Example 8"
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Example 2 was used instead of the titanyl phthalocyanine used in Example 1.
"Example 9"
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Example 3 was used instead of the titanyl phthalocyanine used in Example 1.

「実施例10」
実施例1において用いたチタニルフタロシアニンに代えて、実施例4で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
「実施例11」
実施例1において用いたチタニルフタロシアニンに代えて、実施例5で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
"Example 10"
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Example 4 was used instead of the titanyl phthalocyanine used in Example 1.
"Example 11"
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Example 5 was used instead of the titanyl phthalocyanine used in Example 1.

「実施例12」
実施例1において用いたチタニルフタロシアニンに代えて、実施例6で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
「比較例1」
実施例1において用いたチタニルフタロシアニンに代えて、比較合成例1で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
"Example 12"
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Example 6 was used instead of the titanyl phthalocyanine used in Example 1.
“Comparative Example 1”
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Comparative Synthesis Example 1 was used instead of the titanyl phthalocyanine used in Example 1.

「比較例2」
実施例1において用いたチタニルフタロシアニンに代えて、比較合成例2で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
「比較例3」
実施例1において用いたチタニルフタロシアニンに代えて、比較合成例3で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
"Comparative Example 2"
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Comparative Synthesis Example 2 was used instead of the titanyl phthalocyanine used in Example 1.
“Comparative Example 3”
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Comparative Synthesis Example 3 was used instead of the titanyl phthalocyanine used in Example 1.

「比較例4」
実施例1において用いたチタニルフタロシアニンに代えて、比較合成例4で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
「比較例5」
実施例1において用いたチタニルフタロシアニンに代えて、比較合成例5で製造したチタニルフタロシアニンを用いた他は実施例1と同様にして電子写真感光体を作成した。
“Comparative Example 4”
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Comparative Synthesis Example 4 was used in place of the titanyl phthalocyanine used in Example 1.
“Comparative Example 5”
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the titanyl phthalocyanine produced in Comparative Synthesis Example 5 was used instead of the titanyl phthalocyanine used in Example 1.

「評価」
次にこれらの電子写真感光体を感光体特性測定装置に装着して、表面電位が−700Vになるように帯電させた後、780nmの光を照射したときの半減露光量(E1/2 感度)、E1/5 感度(光減衰曲線の裾切れの目安)を表す、さらに−700Vに帯電して5秒放置後の電荷保持率(DDR5)、660nmのLED光除電後の残留電位を測定した。その結果を表2に示す。
"Evaluation"
Next, these electrophotographic photoreceptors are mounted on a photoreceptor characteristic measuring apparatus, charged so that the surface potential becomes −700 V, and then the half-exposure amount (E 1/2 sensitivity) when irradiated with light of 780 nm. ), E 1/5 sensitivity (a measure of the tail of the light decay curve), further measured charge retention (DDR5) after being charged to -700V and left for 5 seconds, residual potential after 660nm LED light neutralization did. The results are shown in Table 2.

Figure 0004941345
Figure 0004941345

上記結果から、塩素化チタニルフタロシアニンの割合がマススペクトル強度比0.015〜0.055であるチタニルフタロシアニンは感度、光減衰曲線の裾切れ、電荷保持率のいずれの特性も良好である。特に光減衰曲線の裾切れは画像の濃淡に影響し、E1/5は0.8μJ/cm以下であることが望ましい。本発明のチタニルフタロシアニンを含有した電子写真感光体は画像的にも優れた特性を有することがわかる。一方、マススペクトル強度比が0.015未満では、比較例1,2のように、特に光減衰曲線の裾切れが悪く、画像的に問題となる。また、電荷保持率も悪目である。さらに、マススペクトル強度比が0.055を越えると、比較例3〜5のように、感度、光減衰曲線の裾切れ、電荷保持率、残留電位ともに悪くなることがわかる。 From the above results, titanyl phthalocyanine in which the ratio of chlorinated titanyl phthalocyanine is a mass spectral intensity ratio of 0.015 to 0.055 is excellent in sensitivity, tail of light decay curve, and charge retention. In particular, the bottom of the light attenuation curve affects the density of the image, and E 1/5 is desirably 0.8 μJ / cm 2 or less. It can be seen that the electrophotographic photoreceptor containing the titanyl phthalocyanine of the present invention has excellent image characteristics. On the other hand, when the mass spectrum intensity ratio is less than 0.015, as in Comparative Examples 1 and 2, the tail of the light attenuation curve is particularly bad, which causes an image problem. Also, the charge retention rate is bad. Furthermore, when the mass spectral intensity ratio exceeds 0.055, it can be seen that, as in Comparative Examples 3 to 5, the sensitivity, the tail of the light attenuation curve, the charge retention rate, and the residual potential deteriorate.

実施例1で得られたチタニルフタロシアニンのマススペクトル図を示す。The mass-spectrum figure of the titanyl phthalocyanine obtained in Example 1 is shown. 実施例1で得られたチタニルフタロシアニンのSEM写真を示す。The SEM photograph of the titanyl phthalocyanine obtained in Example 1 is shown. 実施例2で得られたチタニルフタロシアニンのマススペクトル図を示す。The mass-spectrum figure of the titanyl phthalocyanine obtained in Example 2 is shown. 実施例2で得られたチタニルフタロシアニンのSEM写真を示す。The SEM photograph of the titanyl phthalocyanine obtained in Example 2 is shown. 実施例3で得られたチタニルフタロシアニンのSEM写真を示す。The SEM photograph of the titanyl phthalocyanine obtained in Example 3 is shown. 比較合成例1で得られたチタニルフタロシアニンのマススペクトル図を示す。The mass-spectrum figure of the titanyl phthalocyanine obtained by the comparative synthesis example 1 is shown. 比較合成例1で得られたチタニルフタロシアニンのSEM写真を示す。2 shows an SEM photograph of titanyl phthalocyanine obtained in Comparative Synthesis Example 1. 比較合成例2で得られたチタニルフタロシアニンのSEM写真を示す。2 shows an SEM photograph of titanyl phthalocyanine obtained in Comparative Synthesis Example 2.

Claims (4)

モノ塩素化チタニルフタロシアニンの割合が無置換チタニルフタロシアニンに対してマススペクトル強度比で0.015〜0.055であるチタニルフタロシアニン混合物。 A titanyl phthalocyanine mixture in which the proportion of monochlorinated titanyl phthalocyanine is 0.015 to 0.055 in terms of mass spectral intensity ratio relative to unsubstituted titanyl phthalocyanine . 塩素含有量が0.25〜0.6%である請求項1に記載のチタニルフタロシアニン混合物。 The titanyl phthalocyanine mixture according to claim 1, wherein the chlorine content is 0.25 to 0.6% . 粒径が1μm以下である請求項1または2に記載のチタニルフタロシアニン混合物The titanyl phthalocyanine mixture according to claim 1 or 2, wherein the particle size is 1 µm or less. 請求項1〜3のいずれかに記載のチタニルフタロシアニン混合物を含有する電子写真感光体。

以上
An electrophotographic photosensitive member containing the titanyl phthalocyanine mixture according to claim 1.

more than
JP2008032696A 2008-02-14 2008-02-14 Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same Expired - Lifetime JP4941345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032696A JP4941345B2 (en) 2008-02-14 2008-02-14 Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032696A JP4941345B2 (en) 2008-02-14 2008-02-14 Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29197499A Division JP2001115054A (en) 1999-10-14 1999-10-14 Titanylphthalocyanine compound and electrophotographic sensitizer using the same

Publications (2)

Publication Number Publication Date
JP2008174753A JP2008174753A (en) 2008-07-31
JP4941345B2 true JP4941345B2 (en) 2012-05-30

Family

ID=39701985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032696A Expired - Lifetime JP4941345B2 (en) 2008-02-14 2008-02-14 Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same

Country Status (1)

Country Link
JP (1) JP4941345B2 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256866A (en) * 1986-04-30 1987-11-09 Mitsubishi Chem Ind Ltd Production of oxytitanium phthalocyanine
JPH075846B2 (en) * 1986-04-30 1995-01-25 三菱化学株式会社 Method for producing A-type oxytitanium phthalocyanine
JPS62256867A (en) * 1986-04-30 1987-11-09 Mitsubishi Chem Ind Ltd Production of oxytitanium phthalocyanine
JPS6380263A (en) * 1986-09-24 1988-04-11 Mitsubishi Kasei Corp Method for converting crystal form
JPS63116158A (en) * 1986-11-05 1988-05-20 Toyo Ink Mfg Co Ltd Photosemiconductor material and electrophotographic sensitive body prepared by using it
JPH061386B2 (en) * 1987-02-13 1994-01-05 東洋インキ製造株式会社 Optical semiconductor material and electrophotographic photoreceptor using the same
JPS63198068A (en) * 1987-02-13 1988-08-16 Toyo Ink Mfg Co Ltd Electrophotographic sensitive body
JPH0727244B2 (en) * 1987-02-27 1995-03-29 東洋インキ製造株式会社 Electrophotographic photoreceptor
JPH0789230B2 (en) * 1987-09-25 1995-09-27 コニカ株式会社 Photoconductor
JPH0791486B2 (en) * 1988-11-05 1995-10-04 三菱化学株式会社 Crystalline oxytitanium phthalocyanine and electrophotographic photoreceptor
JPH0310258A (en) * 1989-06-07 1991-01-17 Konica Corp Electrophotographic sensitive body
JPH0310256A (en) * 1989-06-07 1991-01-17 Konica Corp Electrophotographic sensitive body
JPH075851B2 (en) * 1989-07-21 1995-01-25 キヤノン株式会社 Oxytitanium phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same
JP2998809B2 (en) * 1991-04-17 2000-01-17 キヤノン株式会社 Electrophotographic photoreceptor and electrophotographic apparatus
JPH05289380A (en) * 1992-04-14 1993-11-05 Konica Corp Electrophotographic sensitive body
JPH05295293A (en) * 1992-04-20 1993-11-09 Matsushita Electric Ind Co Ltd Production of oxytitanium phthalocyanine crystal
JPH06293769A (en) * 1993-02-12 1994-10-21 Kawamura Inst Of Chem Res Production of metal phthalocyanine and photosensiive material for electrophotography
JP4887716B2 (en) * 2004-10-04 2012-02-29 三菱化学株式会社 Oxytitanium phthalocyanine composition, electrophotographic photoreceptor, and image forming apparatus using the photoreceptor

Also Published As

Publication number Publication date
JP2008174753A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JPH0228265A (en) Phthalocyanine crystal, its production and photosensitive material for electrophotography reduced by using the same crystal
JP2001115054A (en) Titanylphthalocyanine compound and electrophotographic sensitizer using the same
JP4230846B2 (en) Titanyl phthalocyanine compound, electrophotographic photoreceptor and image forming apparatus
JPH09157540A (en) Phthalocyanine composition, its production, and electrophotographic photoreceptor and coating fluid for charge generation layer each using the same
JPH01221461A (en) Alpha-type titanyl phthalocyanine composition, its production and electrophotographic photoreceptor containing same
JP4941345B2 (en) Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same
JP2861116B2 (en) Electrophotographic photoreceptor
JPH0426855A (en) Electrophotographic sensitive body
JP3768310B2 (en) Silicon phthalocyanine compound and electrophotographic photosensitive member using the same
JP3859291B2 (en) Electrophotographic photoreceptor using silicon phthalocyanine compound
JP5733685B2 (en) Bisdiazapentadiene derivatives and methods for producing them
JP3827034B2 (en) Electrophotographic photoreceptor using silicon phthalocyanine compound
JP3619668B2 (en) Electrophotographic photoreceptor
JP3929567B2 (en) Novel silicon phthalocyanine compound and electrophotographic photoreceptor using the same
JP2002287389A (en) Method for manufacturing oxotitanyl phthalocyanine having specified crystal form and organic electrophotographic photoreceptor which uses the same
JP3737235B2 (en) Germanium phthalocyanine compound and electrophotographic photoreceptor using the same
JP3966640B2 (en) Novel silicon phthalocyanine compound and electrophotographic photoreceptor using the same
JP3781067B2 (en) Method for producing dihydroxysilicon phthalocyanine compound
JP4297600B2 (en) Electrophotographic photoreceptor using phthalocyanine composition
KR100510871B1 (en) Coating Liquid for Charge Generating and Delivering Layer in Electrophotographic Photoconductor
JP2657839B2 (en) Electrophotographic photoreceptor
JPH0518424B2 (en)
JP3707192B2 (en) Electrophotographic photoreceptor
JP4973018B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, image forming apparatus, and phthalocyanine crystal
JP2002072523A (en) New crystalline oxytitanium phthalocyanine and electrophotographic photoreceptor using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term