JP4940541B2 - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- JP4940541B2 JP4940541B2 JP2004325114A JP2004325114A JP4940541B2 JP 4940541 B2 JP4940541 B2 JP 4940541B2 JP 2004325114 A JP2004325114 A JP 2004325114A JP 2004325114 A JP2004325114 A JP 2004325114A JP 4940541 B2 JP4940541 B2 JP 4940541B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- hydrogen circulation
- hydrogen
- fuel cell
- gas density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
本発明は、燃料電池システムに関し、より詳しくは、効率や燃費を悪化させることなく、水素循環路内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御するための技術に係わる。 The present invention relates to a fuel cell system, and more specifically, a technique for accurately controlling a hydrogen circulation flow rate to a required hydrogen circulation flow rate even when the gas density in the hydrogen circulation path changes without deteriorating efficiency and fuel consumption. Related to.
従来より、循環ポンプを利用して燃料電池の燃料極から排出された水素を燃料極に循環させる燃料電池システムが知られている。そして、このような燃料電池システムによれば、燃料極で未利用の水素を再利用することが可能となり、燃料電池システムの燃費性能を向上させることができる。 Conventionally, a fuel cell system that circulates hydrogen discharged from a fuel electrode of a fuel cell to a fuel electrode using a circulation pump is known. According to such a fuel cell system, unused hydrogen can be reused at the fuel electrode, and the fuel efficiency of the fuel cell system can be improved.
ところで、従来までの燃料電池システムは、水素循環路内のガス密度によって循環性能が変化しない体積式やスクロール式と呼ばれる形式の循環ポンプを用いて水素を循環させている(例えば、特許文献1を参照)。しかしながら、体積式やスクロール式と呼ばれる形式の循環ポンプを利用して大流量の水素を循環させようとする場合には、循環ポンプが大型化してしまう。 By the way, the conventional fuel cell system circulates hydrogen using a circulation pump of a volume type or a scroll type in which the circulation performance does not change depending on the gas density in the hydrogen circulation path (for example, see Patent Document 1). reference). However, when a large amount of hydrogen is circulated by using a circulation pump of a volume type or a scroll type, the circulation pump becomes large.
このような背景から、大型化することなく大流量の水素を循環させることが可能な速度式や過流式と呼ばれる形式の循環ポンプを用いて水素を循環させる方法が考えられている。しかしながら、速度式や過流式と呼ばれる形式の循環ポンプでは、ガス密度が低くなると循環性能が低下し、循環性能がガス密度によって影響を受ける。このため最近では、ガス密度が変化した場合でも必要な循環性能を確保できるように、循環ポンプを最大回転数(全開)で動作させる制御方法が提案されている。
しかしながら、上記制御方法によれば、ほとんどの運転状態において水素を過剰に循環させることになるので、循環ポンプが電力を無駄に消費することによって、燃料電池システムの効率や燃費が悪化する。 However, according to the above-described control method, hydrogen is circulated excessively in most operating states, so that the efficiency and fuel consumption of the fuel cell system are deteriorated when the circulation pump wastes power.
本発明は、上述の課題を解決するためになされたものであり、その目的は、効率や燃費を悪化させることなく、水素循環路内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御することが可能な燃料電池システムを提供することにある。 The present invention has been made to solve the above-described problems, and its purpose is to require a hydrogen circulation flow rate even when the gas density in the hydrogen circulation path changes without deteriorating efficiency and fuel consumption. An object of the present invention is to provide a fuel cell system capable of accurately controlling the flow rate.
本発明に係る燃料電池システムは、循環ポンプを利用して燃料電池の燃料極から排出された水素を水素循環路を介して燃料極に循環させる燃料電池システムであって、水素循環路に供給される水素の流量を検出する流量検出部を備え、更に、前記流量検出部により検出された流量から算出される要求水素循環流量と、前記燃料極の水素消費量から算出される要求水素循環流量のうち、値が大きい方を要求水素循環流量に設定し、前記水素循環路内の前記循環ポンプの制御状態とガス密度に基づいて前記水素循環路内における実水素循環流量を演算し、前記水素循環路内における実水素循環流量が、前記設定した要求水素循環流量となるように制御する制御部を備えることを特徴とする。 A fuel cell system according to the present invention is a fuel cell system that circulates hydrogen discharged from a fuel electrode of a fuel cell to a fuel electrode through a hydrogen circulation path using a circulation pump, and is supplied to the hydrogen circulation path. A flow rate detection unit for detecting a flow rate of hydrogen, and a required hydrogen circulation flow rate calculated from the flow rate detected by the flow rate detection unit and a required hydrogen circulation flow rate calculated from the hydrogen consumption of the fuel electrode. Of these, the larger value is set as the required hydrogen circulation flow rate, the actual hydrogen circulation flow rate in the hydrogen circulation path is calculated based on the control state and gas density of the circulation pump in the hydrogen circulation path, and the hydrogen circulation A control unit is provided for controlling the actual hydrogen circulation flow rate in the passage so as to be the set required hydrogen circulation flow rate.
本発明に係る燃料電池システムによれば、水素循環路内のガス密度に基づいて水素循環路内における実水素循環量を演算するので、効率や燃費を悪化させることなく、水素循環路内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御することができる。 According to the fuel cell system of the present invention, since the actual hydrogen circulation amount in the hydrogen circulation path is calculated based on the gas density in the hydrogen circulation path, the gas in the hydrogen circulation path does not deteriorate efficiency and fuel consumption. Even when the density changes, the hydrogen circulation flow rate can be accurately controlled to the required hydrogen circulation flow rate.
以下、図面を参照して、本発明の実施形態となる燃料電池システムの構成について説明する。 Hereinafter, a configuration of a fuel cell system according to an embodiment of the present invention will be described with reference to the drawings.
〔燃料電池システムの構成〕
本発明の実施形態となる燃料電池システムは、燃料極(アノード)及び酸化剤極(カソード)にそれぞれ水素及び空気の供給を受けて発電する燃料電池を備える。なお、この実施形態では、燃料電池は、固体高分子型燃料電池により構成され、アノード及びカソードにおける電気化学反応及び燃料電池全体としての電気化学反応は以下に示す化学反応式(1)〜(3)による。
[Configuration of fuel cell system]
A fuel cell system according to an embodiment of the present invention includes a fuel cell that generates power by receiving supply of hydrogen and air to a fuel electrode (anode) and an oxidant electrode (cathode), respectively. In this embodiment, the fuel cell is composed of a polymer electrolyte fuel cell, and the electrochemical reaction at the anode and the cathode and the electrochemical reaction as the whole fuel cell are represented by chemical reaction formulas (1) to (3) shown below. )by.
〔アノード〕 H2 → 2H+ +2e- …(1)
〔カソード〕 1/2 O2 +2H+ +2e- → H2O …(2)
〔全体〕 H2 +1/2 O2 → H2O …(3)
〔アノード系の構成〕
上記燃料電池システムは、図1に示すように、水素(H2)貯蔵装置1及び圧力調整バルブ2を備え、水素貯蔵装置1内に貯蔵された水素の圧力を圧力調整バルブ2により調整した後、水素循環路3aを介して燃料電池のアノードに水素を供給する。また、燃料電池のアノードから排出された水素は、水素循環路3bを介して循環ポンプ4に循環され、循環ポンプ4によって水素循環路3aを介して燃料電池のアノードに供給される。なお、この燃料電池システムでは、循環ポンプ4は、ガス密度によって循環性能が変化する速度式や過流式と呼ばれる形式の循環ポンプにより構成されている。
[Anode] H 2 → 2H + + 2e − (1)
[Cathode] 1/2 O 2 + 2H + + 2e − → H 2 O (2)
[Overall] H 2 +1/2 O 2 → H 2 O (3)
[Configuration of anode system]
As shown in FIG. 1, the fuel cell system includes a hydrogen (H 2 )
なお、水素循環路3a,3bには、カソードからリークした空気中の窒素やアルゴン等の不純物ガス、或いは、過剰な水分が液化した液水が蓄積することがある。そして、これらの不純物ガスは、水素の分圧を低下させて発電効率を低下させたり、循環ガスの平均分子量を上昇させ水素の循環を困難にする。また液水は水素の循環を妨げる。このため、この燃料電池システムでは、水素循環路3bにパージ弁5が設けられている。そして、不純物ガスや液水が蓄積した際には、ECU12からの指示でパージ弁5を短時間開き、不純物ガスや液水を系外へ排出させるパージを行う。これにより、アノードを含む水素循環路3a,3b内の水素分圧や循環性能を回復させることができる。
In the
〔カソード系の構成〕
上記燃料電池システムは、図示しないが、空気を圧縮して供給するコンプレッサを備え、コンプレッサは圧縮した空気を空気供給路を介して燃料電池のカソードへ供給する。そして、燃料電池のカソードで未使用の空気は、空気圧力調整弁により圧力調整された後、空気排出路から系外へ排出される。
[Cathode configuration]
Although not shown, the fuel cell system includes a compressor that compresses and supplies air, and the compressor supplies the compressed air to the cathode of the fuel cell via an air supply path. Then, the unused air at the cathode of the fuel cell is pressure-adjusted by the air pressure regulating valve, and then discharged out of the system from the air discharge path.
〔制御系の構成〕
上記燃料電池システムにおける制御系は、図1に示すように、水素循環路3aに供給される水素の流量を計測する流量計6と、水素循環路3a内のガスの温度及び圧力を検出する温度計7及び圧力計8と、水素循環路3b内の水素濃度を検出するガス濃度センサ9と、水素循環路3b内のガスの圧力及び温度を検出する圧力計10及び温度計11と、燃料電池システム全体の動作を制御するECU12とを備える。なお、ECU12は、CPUと、プログラムROMと、作業用RAMと、入出力インタフェースとを備えたマイクロプロセッサで構成されている。
[Control system configuration]
As shown in FIG. 1, the control system in the fuel cell system includes a
そして、このような構成を有する燃料電池システムでは、ECU12が以下に示す水素流量制御処理を実行することにより、効率や燃費を悪化させることなく、水素循環路3a,3b内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御する。以下、図面を参照して、本発明の第1乃至第3の実施形態となる水素流量制御処理を実行する際のECU12の動作について説明する。
In the fuel cell system having such a configuration, the
始めに、図2乃至図4を参照して、本発明の第1の実施形態となる水素流量制御処理の流れについて説明する。 First, the flow of the hydrogen flow rate control process according to the first embodiment of the present invention will be described with reference to FIGS.
図2に示すフローチャートは、燃料電池システムが起動されるのに応じて開始となり、水素流量制御処理はステップS1の処理に進む。 The flowchart shown in FIG. 2 starts as the fuel cell system is activated, and the hydrogen flow rate control process proceeds to step S1.
ステップS1の処理では、ECU12が、圧力計8,10及び温度計7,11を利用して水素循環路3a,3b内(以下、アノード系内と表記)のガスの圧力と温度を検出し、アノード系内のガスの圧力及び温度とその時にアノード系内に存在する窒素,水素,及び水蒸気の量を示すマップデータから、検出された圧力と温度時にアノード系内に存在する窒素,水素,及び水蒸気の量を読み出すことにより、アノード系内のガス密度ρを算出する。
In the process of step S1, the
なお、ECU12は、ガス密度ρの算出精度を高めるために、ガス濃度センサ9を利用して水素循環路3b内の水素濃度を検出し、圧力計8,10及び温度計7,11の検出値を利用して水蒸気濃度を算出し、100%から水素濃度と水蒸気濃度を減算することにより窒素濃度を算出し、水素濃度,水蒸気濃度,窒素濃度から各気体の体積を算出することにより、アノード系内のガス密度ρを算出してもよい。これにより、このステップS1の処理は完了し、水素流量制御処理はステップS1の処理からステップS2の処理に進む。
The
ステップS2の処理では、ECU12が、スタック出力電流値,パージ弁5によるパージに伴う排出水素量演算値,圧力計8,10及び温度計7,11の検出値,アノード側からカソード側にクロスリークする水素量推定値から、アノードにおける水素消費量を演算する。これにより、このステップS2の処理は完了し、水素流量制御処理はステップS2の処理からステップS3の処理に進む。
In the process of step S2, the
ステップS3の処理では、ECU12が、燃料電池システムの運転条件に応じて設定されている水素の要求ストイキから1を減算した値に水素消費量を乗算することにより、燃料電池の要求水素循環流量Q’を算出する。なお、ECU12は、水素の要求ストイキから1を減算した値に流量計6の検出値を乗算することにより要求水素循環流量Q’を算出してもよい。
In step S3, the
また、ECU12は、要求ストイキから1を減算した値に水素消費量を乗算する方法と要求ストイキから1を減算した値に流量計6の検出値を乗算する方法の2つの方法により要求水素循環流量を算出し、算出された値の大きい方を要求水素循環流量Q’として選択するようにしてもよい。このような処理によれば、算出される要求水素循環流量Q’の信頼性を向上させることができる。これにより、このステップS3の処理は完了し、水素流量制御処理はステップS3の処理からステップS4の処理に進む。
Further, the
ステップS4の処理では、ECU12が、圧力計8,10の検出値を利用して循環ポンプ4の差圧Pを算出し、算出された差圧Pを利用してアノード系内の実水素循環流量Qを算出する。具体的には、始めに、ECU12は、循環ポンプ4の回転数と循環ポンプ4の差圧(P)−水素循環流量(Q)線図(以下、P−Q線図と表記)の傾き及び切片(締め切り圧)の関係を示す曲線をアノード系内のガス密度毎に表したマップデータ(図3参照)をアノード系内のガスの圧力及び温度毎に用意し、現在のアノード系内のガスの圧力及び温度に対応する、若しくは、近いマップデータを抽出する。
In the process of step S4, the
次に、ECU12は、抽出されたマップデータからステップS1の処理により算出されたガス密度ρに対応する曲線のデータを読み出し、読み出したデータを用いて図4に示すようなステップS1の処理により算出されたガス密度ρに対応するP−Q線図を作成する。そして、ECU12は、作成されたP−Q線図から循環ポンプ4の差圧Pに対応する水素循環流量Qを読み出すことにより、アノード系内の実水素循環流量Qを算出する。これにより、このステップS4の処理は完了し、水素流量制御処理はステップS4の処理からステップS5の処理に進む。
Next, the
ステップS5の処理では、ECU12が、ステップS3の処理により算出された要求水素循環流量Q’とステップS4の処理により算出された実水素循環流量Qを比較することにより、要求水素循環流量Q’を実現するための循環ポンプ4の必要回転数を決定し、決定した必要回転数で動作するように循環ポンプ4を制御する。これにより、このステップS5の処理は完了し、水素流量制御処理はステップS5の処理からステップS1の処理に戻る。
In the process of step S5, the
以上の説明から明らかなように、本発明の第1の実施形態となる水素流量制御処理によれば、ECU12が、燃料電池システムの運転状態に基づいて要求水素循環流量Q’を演算し、アノード系内のガス密度ρに基づいてアノード系内における実水素循環量Qを演算し、アノード系内における実水素循環流量Qを要求水素循環流量Q’に制御する。すなわち、本発明の第1の実施形態となる水素流量制御処理によれば、アノード系内のガス密度に基づいてアノード系内における実水素循環量Qを演算するので、循環ポンプ4の循環流量が直接的に判らない状況下でも水素循環流量を制御し、効率や燃費を悪化させることなく、ガス密度ρが変化した場合でも水素循環流量Qを要求水素循環流量Q’に制御することができる。また、要求水素循環流量Q’を下回ることにより燃料電池が劣化することを防止することもできる。
As is apparent from the above description, according to the hydrogen flow rate control process according to the first embodiment of the present invention, the
なお、ECU12は、パージ弁5の開度を制御することにより、アノード系内における実水素循環流量Qを要求水素循環流量Q’に制御してもよい。このような構成によれば、パージ弁5の開度は、要求水素循環流量Q’を確保するために行われる制御に応じて決定されるようになるので、定期的にパージを行うシステムと比較して、パージ弁5からの排水素量を低減することができる。
The
次に、図5乃至図8を参照して、本発明の第2の実施形態となる水素流量制御処理の流れについて説明する。 Next, the flow of the hydrogen flow rate control process according to the second embodiment of the present invention will be described with reference to FIGS.
一般に、図5に示すように、アノード系内のガス密度ρが最も低い状態は、アノード系内に水素しか存在しない状態である水素100%の時であり、逆にガス密度ρが最も高くなる状態は、アノード系内に窒素と水蒸気しか存在しない水素0%の時である。また、循環ポンプ4の回転数が一定である場合、アノード系内のガス密度ρが上がるほど循環ポンプ4の総循環流量が増えるために、アノード系内における水素循環流量は次第に増えていき、最大値密度ρmaxで最大となる。
In general, as shown in FIG. 5, the state where the gas density ρ in the anode system is the lowest is when 100% hydrogen is in a state where only hydrogen is present in the anode system, and conversely, the gas density ρ is the highest. The condition is when 0% hydrogen where only nitrogen and water vapor are present in the anode system. Further, when the rotation speed of the
そして、循環ポンプ4の特性上、アノード系内のガス密度ρが上がるのに応じて総循環流量はさらに増加していくが、ガス密度ρの増加に伴う水素濃度の減少によって、水素循環流量は最大値(以下、水素循環流量最大値と表記)から減少を開始する。また、循環ポンプ4が最大回転数で動作している場合であっても、要求水素循環量領域の最大値を下回る水素循環量しか循環させられない密度(以下、性能保証最低密度と表記)ρminがある。
Due to the characteristics of the
より具体的には、アノード系内のガス密度ρは、カソード側からアノード系内への窒素の侵入や温度変化に伴う水蒸気量増加によって、時間と共に高くなる。これは、アノード系内において、水素と比較して分子量が大きい窒素や水蒸気の濃度が高くなるためである。そして、アノード系内のガス密度ρが高くなると、図6に示す直線L2のように、アノード系内の総循環流量は増加するが、ガス密度が上がった分、水素濃度が次第に低下することによって、図6に示す直線L3のように水素循環流量が不足する状態になる。 More specifically, the gas density ρ in the anode system increases with time due to the penetration of nitrogen from the cathode side into the anode system and the increase in the amount of water vapor accompanying a temperature change. This is because in the anode system, the concentration of nitrogen or water vapor having a higher molecular weight than hydrogen is high. As the gas density ρ in the anode system increases, the total circulation flow rate in the anode system increases as shown by the straight line L2 in FIG. 6, but the hydrogen concentration gradually decreases as the gas density increases. As shown in the straight line L3 in FIG. 6, the hydrogen circulation flow rate becomes insufficient.
また、水素循環流量が不足していなくても、総循環流量が多い割りに水素循環流量が少ないために、システム効率が悪くなる。一方、アノード系内のガス密度ρが低いということは水素濃度が高いことを意味するが、循環ポンプ4の特性上、ガス密度ρが下がると総循環流量も減るため、図6に示す直線L1のように循環ポンプ4を最大回転数で動作させても、必要な水素循環流量を確保できない場合がある。
Further, even if the hydrogen circulation flow rate is not insufficient, the system efficiency is deteriorated because the hydrogen circulation flow rate is small for a large total circulation flow rate. On the other hand, when the gas density ρ in the anode system is low, it means that the hydrogen concentration is high. However, due to the characteristics of the
そこで、本発明の第2の実施形態となる水素流量制御処理では、ECU12は、以下に示すように動作することにより、循環ポンプ4が無駄に電力を消費することを抑制する。以下、図7,8を参照して、本発明の第2の実施形態となる水素流量制御処理について説明する。
Therefore, in the hydrogen flow rate control process according to the second embodiment of the present invention, the
本発明の第2の実施形態となる水素流量制御処理では、始めに、ECU12が、図7,8に示すようにアノード系内のガス密度ρに上限閾値ρth2及び下限閾値ρth1を設定する。なお、アノード系内のガス密度ρが上限閾値ρth2以上である場合、多くのガスが循環していることになり、循環ポンプ4の消費電力に無駄が生じてしまう。また、ガス密度ρが上限閾値ρth2を上回っている状態は、水素循環流量がじきに水素循環流量最大値を超えてしまうことを意味する。
In the hydrogen flow rate control process according to the second embodiment of the present invention, first, the
また、ガス密度ρが増加するのに応じて循環ポンプ4による総循環流量は増加するが、最大値密度ρmaxは、密度増加によるポンプの水素循環量増加率よりも水素濃度低下に伴う水素循環流量減少率の方が上回る点なので、水素循環流量が水素循環流量最大値を超えた場合、循環ポンプ4にとっては、水素割合が少ない、換言すれば、窒素が多いために重くなったガスを循環させることになり、循環ポンプ4の消費電力が増加する。従って、水素循環流量が水素循環流量最大値を超えることは望ましくない。
In addition, the total circulation flow rate by the
次に、ECU12は、アノード系内のガス密度ρが上限閾値ρth2以上、又は下限閾値ρth1以下であるか否かを判別し、図7,8に示す点P1,P6のようにガス密度ρが上限閾値ρth2以上である場合、循環ポンプ4の回転数を一定にした状態でパージ量を増やすことによりガス密度ρが上限閾値ρth2以下になる点P2,P7まで水素循環流量を低下させた後、循環ポンプ4の回転数を必要回転数に補正することにより水素循環流量を要求値Q5,Q10に補正する。一方、図7,8に示す点P4,P9のようにガス密度ρが下限閾値ρth1以下である場合には、ECU12は、パージを停止して循環ポンプ4の回転数を上げることにより水素循環流量を要求値Q5,Q10に補正する。
Next, the
なお、ガス密度が下限閾値ρth1以下になった場合は循環ポンプ4の回転数を制御することにより水素循環流量Qを補正する理由は、水素循環流量Qはパージ量を増やしてガス密度ρを下げることにより下げることができるが、ガス密度ρを性能保証最低密度ρmin以下まで下げると、フル出力指令が出されて循環ポンプ4の回転数が最大になっても、ガス密度ρの低下によって水素循環流量Qも下がっているために、要求水素循環流量Q’を確保することができず、出力が制限されたり、水素ストイキが不足することによって燃料電池が劣化してしまうためである。また、ガス密度ρが下限閾値ρth1に達した後に、水素循環流量Qが要求値に足りないからといって、ガス密度を急に上げて水素循環流量Qを増やすことはできないためである(ガス密度ρを上げるためには、窒素濃度を増やせばいいが、窒素はカソード側から侵入してくるものなので急には増やすことができない)。
When the gas density is lower than the lower limit threshold ρth1, the reason for correcting the hydrogen circulation flow rate Q by controlling the rotation speed of the
以上の説明から明らかなように、本発明の第2の実施形態となる水素流量制御処理によれば、ECU12が、アノード系内のガス密度ρが上限閾値ρth2以上である場合、アノード系内のガスを外部に排出するパージ弁5の開度を制御することによりガス密度ρを上限閾値ρth2以下まで低下させた後、循環ポンプ4の回転数を制御することによりアノード系内における水素循環流量Qを要求水素循環流量Q’に制御するので、循環ポンプ4の負荷を減らし、且つ、アノード系内のガス密度ρを下げながら水素循環流量Qを補正することができる。
As is apparent from the above description, according to the hydrogen flow rate control process according to the second embodiment of the present invention, when the gas density ρ in the anode system is equal to or higher than the upper threshold ρth2, the
また、本発明の第2の実施形態となる水素流量制御処理によれば、アノード系内のガス密度ρが下限閾値ρth1以下である場合、ECU12が、循環ポンプ4の回転数を制御することにより、アノード系内における水素循環流量Qを要求水素循環流量Q’に制御するので、循環ポンプ4の負荷を小さく抑えた状態で、且つ、アノード系内のガス密度ρを上げながら水素循環流量Qを補正することができる。また、アノード系内のガス密度ρを上げながら水素循環流量Qを補正することができるので、ガス密度ρが性能保証最低密度ρminまで低下することを抑制し、システムの信頼性を確保することができる。
Further, according to the hydrogen flow rate control process according to the second embodiment of the present invention, when the gas density ρ in the anode system is equal to or lower than the lower limit threshold ρth1, the
最後に、図9,10を参照して、本発明の第3の実施形態となる水素流量制御処理の流れについて説明する。 Finally, with reference to FIGS. 9 and 10, the flow of the hydrogen flow rate control process according to the third embodiment of the present invention will be described.
本発明の第3の実施形態となる水素流量制御処理では、燃料電池システムが搭載されている車両の運転モードに応じて、ECU12が下限閾値ρth1及び上限閾値ρth2を変化させる。具体的には、運転者が山道等で意図的に行うスイッチング動作や車両駆動モータのトルクに対する車速がある一定時間の間連続して低い状態にあることを検知した場合、ECU12は、高出力運転モードとして、図9に示すようにガス密度範囲R1を水素循環流量最大値方向に変化させる。これにより、アノード系内のガス密度は通常時と比較して高めに制御され、通常時と比較して最大水素循環流量が高くなる(図9に示す水素循環流量Q12から水素循環流量Q13に変化)ので、高出力運転を行うことができるようになる。
In the hydrogen flow rate control process according to the third embodiment of the present invention, the
一方、燃料電池の発電量の低下量が所定値以下になったことを検知した場合には、ECU12は、燃料電池の劣化が生じていると判断し、スタック劣化保護モードとして、ガス密度範囲を水素循環流量最大値方向に変化させる。これにより、アノード系内のガス密度は通常時と比較して高めに制御され、通常時と比較して水素が多めに循環されるようになるので、水素循環流量が不足することによって燃料電池が劣化することを抑制することができる。
On the other hand, when it is detected that the amount of decrease in the power generation amount of the fuel cell has become a predetermined value or less, the
また、通常時や高速道路走行時等、エネルギー効率を重視する場合には、ECU12は以下に示すエネルギー効率重視型運転モードを実行する。一般に、アノード系内のガス密度ρが高い状態とは、パージ量を少なくした結果であり、系外への排水素量が少ない状態を示す。換言すれば、アノード系内のガス密度が低い状態とは、パージを頻繁に行った結果であり、エネルギー損失は大きい。このことから、パージによるエネルギー損失は、図10に示す曲線L6のように表される。また、循環ポンプ4の消費電力は、図10に示す曲線L5のように、高密度のガスを循環させた場合大きく、低密度のガスを循環させた場合は小さい。従って、曲線L6と曲線L5の和を算出することにより、ガス密度の変化に伴うエネルギー損失の変化は図10に示す曲線L4のように表される。
Further, when importance is placed on energy efficiency, such as during normal driving or highway driving, the
そこで、エネルギー効率を重視する場合、ECU12は、エネルギー効率重視型運転モードとして、図10に示す曲線L4が最も小さくなる密度領域(図10に示す領域B)で運転することにより、エネルギー効率が最も良い運転を行うように制御する。より具体的には、運転者による意図的なスイッチング動作や、車両駆動モータのトルク変動幅がある一定時間の間規定値以内に収まっている(=急加速がないことから信号待ちがなく、高速道路を走行していると判断する)ことを検知すると、ECU12は、エネルギー効率重視型運転モードとして、曲線L4の最小値を挟むようにガス密度範囲を設定することにより、エネルギー効率が最も良い運転を行うように制御する。
Therefore, when emphasizing energy efficiency, the
なお、上述の通り、アノードガス密度幅を水素循環流量最大値方向に変化させた場合には、アノード系内のガス密度は通常時と比較して高めに制御されるので、循環ポンプ4の回転数を下げても要求水素循環流量Q’を確保することができる。従って、循環ポンプ4の音や振動が目立つようなアイドルストップ状態を検知した場合、又は、運転者が意図的なスイッチ動作を行った場合、ECU12は、音振低減モードとして、ガス密度範囲を水素循環流量最大値方向に変化させることにより、循環ポンプ4の回転数を低減し、循環ポンプ4の音や振動を抑えるようにしてもよい。また、ガス密度範囲を狭める、又は、上限閾値ρth2と下限閾値ρth1を一致させてもよい。これにより、上述の各運転モードの特性をより大きく出すことができる。また、目標とする運転ガス密度付近で精度よく運転することもできる。
As described above, when the anode gas density width is changed in the direction of the maximum value of the hydrogen circulation flow rate, the gas density in the anode system is controlled to be higher than normal, so that the rotation of the
以上、本発明者によってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。 As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.
1:水素(H2)貯蔵装置
2:圧力調整バルブ
3a,3b:水素循環路
4:循環ポンプ
5:パージ弁
6:流量計
7,11:温度計
8,10:圧力計
9:ガス濃度センサ
12:ECU
1: Hydrogen (H 2 ) storage device 2:
Claims (9)
水素循環路に供給される水素の流量を検出する流量検出部を備え、更に、
前記流量検出部により検出された流量から算出される要求水素循環流量と、前記燃料極の水素消費量から算出される要求水素循環流量のうち、値が大きい方を要求水素循環流量に設定し、
前記水素循環路内の前記循環ポンプの制御状態とガス密度に基づいて前記水素循環路内における実水素循環流量を演算し、
前記水素循環路内における実水素循環流量が、前記設定した要求水素循環流量となるように制御する制御部を備えること
を特徴とする燃料電池システム。 A fuel cell system that circulates hydrogen discharged from a fuel electrode of a fuel cell using a circulation pump to the fuel electrode via a hydrogen circulation path,
A flow rate detection unit for detecting the flow rate of hydrogen supplied to the hydrogen circulation path;
Of the required hydrogen circulation flow rate calculated from the flow rate detected by the flow rate detection unit and the required hydrogen circulation flow rate calculated from the hydrogen consumption of the fuel electrode, the larger value is set as the required hydrogen circulation flow rate,
Calculate the actual hydrogen circulation flow rate in the hydrogen circulation path based on the control state and gas density of the circulation pump in the hydrogen circulation path,
Fuel cell system in which the actual hydrogen circulation rate in the hydrogen circulation path, characterized in that a control unit for controlling such that the required hydrogen circulation rate was the setting.
前記制御部は、前記循環ポンプの回転数を制御することにより、前記水素循環路内における実水素循環流量を、前記設定した要求水素循環流量に制御することを特徴とする燃料電池システム。 The fuel cell system according to claim 1,
The control unit controls the actual hydrogen circulation flow rate in the hydrogen circulation path to the set required hydrogen circulation flow rate by controlling the rotation speed of the circulation pump .
前記制御部は、前記水素循環路内のガスを系外に排出するパージ弁の開度を制御することにより、水素循環路内における実水素循環流量を、前記設定した要求水素循環流量に制御することを特徴とする燃料電池システム。 The fuel cell system of the placing serial to claim 1,
The control unit controls the actual hydrogen circulation flow rate in the hydrogen circulation path to the set required hydrogen circulation flow rate by controlling the opening degree of the purge valve that discharges the gas in the hydrogen circulation path to the outside of the system. A fuel cell system.
前記制御部は、
前記ガス密度の下限閾値、及び上限閾値を設定し、前記下限閾値と上限閾値の間となる範囲をガス密度範囲とし、前記水素循環路内のガス密度と前記ガス密度範囲との相対的な関係に基づき、前記水素循環路内のガス密度が前記下限閾値以下である場合には前記循環ポンプの回転数を調整し、前記水素循環路内のガス密度が前記上限閾値以上である場合には、前記パージ弁によるパージ量を調整することにより、前記水素循環路内における実水素循環流量を制御することを特徴とする燃料電池システム。 The fuel cell system according to claim 3 ,
The controller is
A lower limit threshold and an upper limit threshold for the gas density are set, a range between the lower limit threshold and the upper limit threshold is a gas density range, and a relative relationship between the gas density in the hydrogen circulation path and the gas density range is set. Based on the above, when the gas density in the hydrogen circulation path is less than or equal to the lower limit threshold, the number of revolutions of the circulation pump is adjusted, and when the gas density in the hydrogen circulation path is greater than or equal to the upper limit threshold, A fuel cell system , wherein an actual hydrogen circulation flow rate in the hydrogen circulation path is controlled by adjusting a purge amount by the purge valve .
前記制御部は、前記水素循環路内のガス密度が前記上限閾値以上である場合には、前記パージ弁の開度を制御することにより、水素循環路内のガス密度を前記上限閾値以下まで低下させ、その後、前記循環ポンプの回転数を制御することにより、水素循環路内における実水素循環流量が、前記要求水素循環流量となるように制御することを特徴とする燃料電池システム。 The fuel cell system according to claim 4 , wherein
When the gas density in the hydrogen circulation path is equal to or higher than the upper threshold, the control unit reduces the gas density in the hydrogen circulation path below the upper threshold by controlling the opening of the purge valve. And then controlling the number of revolutions of the circulation pump so that the actual hydrogen circulation flow rate in the hydrogen circulation path becomes the required hydrogen circulation flow rate .
前記制御部は、前記水素循環路内のガス密度が前記下限閾値以下である場合には、前記循環ポンプの回転数を制御することにより、水素循環路内における実水素循環流量が、前記要求水素循環流量となるように制御することを特徴とする燃料電池システム。 The fuel cell system according to claim 4 or 5 , wherein
When the gas density in the hydrogen circulation path is equal to or lower than the lower limit threshold, the control unit controls the number of revolutions of the circulation pump so that the actual hydrogen circulation flow rate in the hydrogen circulation path A fuel cell system that is controlled to have a circulating flow rate .
前記制御部は、燃料電池システムの運転状態に応じて前記ガス密度範囲を変更することを特徴とする燃料電池システム。 The fuel cell system according to any one of claims 4 to 6 ,
The said control part changes the said gas density range according to the driving | running state of a fuel cell system, The fuel cell system characterized by the above-mentioned .
前記制御部は、燃料電池の出力を増加させる場合には、前記水素循環路内の水素循環流量が高まるように前記ガス密度範囲を変更することを特徴とする燃料電池システム。 The fuel cell system according to 請 Motomeko 7,
When the output of the fuel cell is increased, the control unit changes the gas density range so that the hydrogen circulation flow rate in the hydrogen circulation path is increased .
前記制御部は、燃料電池システムのエネルギー効率を高める場合には、前記パージ弁により水素を排出することによるエネルギー損失量と、前記循環ポンプの消費電力量の和が最小になるガス密度を基準として前記ガス密度範囲を変更することを特徴とする燃料電池システム。 The fuel cell system according to claim 7 or 8 , wherein
In order to increase the energy efficiency of the fuel cell system, the control unit uses the gas density that minimizes the sum of the energy loss due to the discharge of hydrogen by the purge valve and the power consumption of the circulation pump as a reference. A fuel cell system, wherein the gas density range is changed .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004325114A JP4940541B2 (en) | 2004-11-09 | 2004-11-09 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004325114A JP4940541B2 (en) | 2004-11-09 | 2004-11-09 | Fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006134806A JP2006134806A (en) | 2006-05-25 |
JP4940541B2 true JP4940541B2 (en) | 2012-05-30 |
Family
ID=36728140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004325114A Expired - Fee Related JP4940541B2 (en) | 2004-11-09 | 2004-11-09 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4940541B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5057086B2 (en) * | 2008-06-10 | 2012-10-24 | トヨタ自動車株式会社 | Pump drive control device |
JP4378735B1 (en) | 2008-06-10 | 2009-12-09 | トヨタ自動車株式会社 | Fuel cell system |
JP4891961B2 (en) | 2008-09-04 | 2012-03-07 | 本田技研工業株式会社 | Fuel cell system |
JP5745206B2 (en) * | 2008-11-27 | 2015-07-08 | 日産自動車株式会社 | Fuel cell system |
JP5757227B2 (en) * | 2011-12-13 | 2015-07-29 | トヨタ自動車株式会社 | Fuel cell system and control method thereof |
JP6124619B2 (en) * | 2013-02-26 | 2017-05-10 | 株式会社チノー | Gas flow control device and gas flow control method |
JP6349710B2 (en) * | 2013-12-12 | 2018-07-04 | 株式会社デンソー | Fuel cell system |
KR101637642B1 (en) * | 2014-04-03 | 2016-07-07 | 현대자동차주식회사 | Device and method for operating anode of fuel cell |
CN117117260B (en) * | 2023-10-23 | 2024-02-13 | 上海重塑能源科技有限公司 | Anode circulation amount control method and device, electronic equipment and fuel cell |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06231786A (en) * | 1993-02-02 | 1994-08-19 | Toshiba Corp | Fuel cell controller |
JPH09213353A (en) * | 1996-02-05 | 1997-08-15 | Shikoku Sogo Kenkyusho:Kk | Fuel cell generating apparatus |
JP3840908B2 (en) * | 2001-03-19 | 2006-11-01 | 日産自動車株式会社 | Fuel cell system |
JP3705232B2 (en) * | 2001-03-23 | 2005-10-12 | 日産自動車株式会社 | Fuel cell system |
JP3659582B2 (en) * | 2001-11-20 | 2005-06-15 | 本田技研工業株式会社 | Fuel circulation fuel cell system |
JP3882667B2 (en) * | 2002-04-19 | 2007-02-21 | 日産自動車株式会社 | Fuel cell system and control method |
JP2004031234A (en) * | 2002-06-27 | 2004-01-29 | Nissan Motor Co Ltd | Fuel cell system |
JP4147936B2 (en) * | 2002-12-25 | 2008-09-10 | 日産自動車株式会社 | Fuel cell system |
-
2004
- 2004-11-09 JP JP2004325114A patent/JP4940541B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006134806A (en) | 2006-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100591365B1 (en) | Fuel cell system and related method | |
JP4852917B2 (en) | Fuel cell system | |
EP2355219B1 (en) | Fuel battery power generation control device and power generation control method | |
EP1984971B1 (en) | Controlling the requested power output of a fuel cell system | |
US20120015270A1 (en) | Fuel cell system | |
US7968241B2 (en) | Fuel cell system and method of controlling gas pressure in fuel cell system | |
JP4940541B2 (en) | Fuel cell system | |
JP4992261B2 (en) | Fuel cell system | |
US20050214608A1 (en) | Fuel cell control system and related method | |
JP5136415B2 (en) | Fuel cell system | |
JP5092335B2 (en) | Fuel cell system and fuel cell system control method | |
JP4982977B2 (en) | Fuel cell system | |
JP5304863B2 (en) | Fuel cell system | |
JP4372523B2 (en) | Fuel cell control device | |
JP5303904B2 (en) | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM | |
JP4495578B2 (en) | Fuel cell system | |
JP5034191B2 (en) | Fuel cell system | |
JP4923424B2 (en) | Fuel cell system | |
JP4682572B2 (en) | Fuel cell power generation control device | |
JP4561048B2 (en) | Fuel cell system | |
JP2006331966A (en) | Fuel cell system | |
JP2007234311A (en) | Fuel cell system | |
JP2004220794A (en) | Control device of fuel cell | |
JP2005235546A (en) | Fuel cell system | |
JP4802486B2 (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4940541 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |