JP4940204B2 - Gas turbine stationary blade - Google Patents

Gas turbine stationary blade Download PDF

Info

Publication number
JP4940204B2
JP4940204B2 JP2008222710A JP2008222710A JP4940204B2 JP 4940204 B2 JP4940204 B2 JP 4940204B2 JP 2008222710 A JP2008222710 A JP 2008222710A JP 2008222710 A JP2008222710 A JP 2008222710A JP 4940204 B2 JP4940204 B2 JP 4940204B2
Authority
JP
Japan
Prior art keywords
gas turbine
thermocouple
stationary blade
protection tube
turbine stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008222710A
Other languages
Japanese (ja)
Other versions
JP2010053846A (en
Inventor
勝康 伊藤
功 田尻
大蔵 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008222710A priority Critical patent/JP4940204B2/en
Publication of JP2010053846A publication Critical patent/JP2010053846A/en
Application granted granted Critical
Publication of JP4940204B2 publication Critical patent/JP4940204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、内部に冷却構造を有すると共にホイールスペース温度監視用の熱電対を設置したガスタービン静翼に係り、熱電対を収納する熱電対保護管の耐久性向上を図ったガスタービン静翼に関するものである。   The present invention relates to a gas turbine stationary blade having a cooling structure therein and a thermocouple for monitoring a wheel space temperature, and more particularly to a gas turbine stationary blade for improving the durability of a thermocouple protective tube for housing a thermocouple. Is.

ガスタービンは、複合サイクル発電所への設置をはじめとして、広く利用されている。ガスタービンは、運転中、高温の燃焼ガスにさらされるため、静翼内部に冷却構造を設けたものが一般的となっている。このようなガスタービン静翼においては、タービン高温部の運転状態が正常であることを確認する監視作業が重要である。   Gas turbines are widely used, including installation in combined cycle power plants. Since a gas turbine is exposed to high-temperature combustion gas during operation, a gas turbine provided with a cooling structure inside is generally used. In such a gas turbine stationary blade, it is important to perform a monitoring operation for confirming that the operation state of the high temperature portion of the turbine is normal.

そこで従来より、ガスタービン静翼に熱電対を取り付け、この熱電対を用いて、高温部であるタービンホイール付近、すなわちホイールスペースの雰囲気温度を計測監視する技術が提案されている(例えば、特許文献1、2)。ここで、図5及び図6を用いて、熱電対を備えたガスタービン静翼の従来例について、具体的に説明する。   Thus, conventionally, a technique has been proposed in which a thermocouple is attached to a gas turbine stationary blade, and the ambient temperature in the vicinity of the turbine wheel, ie, the wheel space, which is a high-temperature part is measured and monitored using this thermocouple (for example, Patent Document 1, 2). Here, a conventional example of a gas turbine stationary blade provided with a thermocouple will be specifically described with reference to FIGS. 5 and 6.

図5に示すように、ガスタービン静翼1は、内部に冷却空気が流通する中空体であって、内部に冷却空気を保持するマニホールド2が設置されている。これらガスタービン静翼1及びマニホールド2は、コバルト系の耐熱合金材料などから構成されている。   As shown in FIG. 5, the gas turbine stationary blade 1 is a hollow body in which cooling air flows, and a manifold 2 that holds the cooling air is installed therein. The gas turbine stationary blade 1 and the manifold 2 are made of a cobalt-based heat-resistant alloy material or the like.

導線を含む熱電対は細いので、外部接触による破損を防止すべく、熱電対保護管3に収納されている。熱電対保護管3はガスタービン静翼1及びマニホールド2を貫通して、感温部(先端部)がガスタービン静翼1内輪に設置されている。このように配置された熱電対を用いることにより、タービン静翼1内輪とタービンホイールとの間にあるホイールスペースの雰囲気温度を、計測監視することが可能であり、タービン高温部の運転状態を把握することができる。   Since the thermocouple including the conducting wire is thin, it is accommodated in the thermocouple protection tube 3 in order to prevent damage due to external contact. The thermocouple protection tube 3 penetrates the gas turbine stationary blade 1 and the manifold 2, and the temperature sensing portion (tip portion) is installed in the inner ring of the gas turbine stationary blade 1. By using the thermocouple arranged in this way, it is possible to measure and monitor the atmospheric temperature of the wheel space between the inner ring of the turbine stationary blade 1 and the turbine wheel, and to grasp the operating state of the turbine high temperature section can do.

また、熱電対保護管3の構成材料としては、ガスタービン静翼1などを構成する材料よりも硬度の低いもの、具体的にはSUS304等のステンレス系材料などの使用が主流である。
特開2001−98905号公報 特開2004−28036号公報
In addition, as a constituent material of the thermocouple protection tube 3, a material having a lower hardness than a material constituting the gas turbine stationary blade 1 or the like, specifically, a stainless steel material such as SUS304 is mainly used.
JP 2001-98905 A Japanese Patent Laid-Open No. 2004-28036

ところで、上記のガスタービン静翼1において、熱電対保護管3は、タービンケーシング側から静翼1の外輪に保持されており、マニホールド2を貫通してガスタービン静翼1内輪に達するので、必然的に、マニホールド2には熱電対保護管3挿入用の貫通孔4が形成されることになる。このとき、ガスタービン静翼1の冷却性能を維持するために、マニホールド2内部の冷却空気が貫通穴4から漏れないように、熱電対保護管3とマニホールド2の貫通孔4とを溶接等で固定してシールすることが考えられる。   By the way, in the gas turbine stationary blade 1, the thermocouple protection tube 3 is held by the outer ring of the stationary blade 1 from the turbine casing side and penetrates the manifold 2 to reach the inner ring of the gas turbine stationary blade 1. Therefore, a through hole 4 for inserting the thermocouple protection tube 3 is formed in the manifold 2. At this time, in order to maintain the cooling performance of the gas turbine stationary blade 1, the thermocouple protection tube 3 and the through hole 4 of the manifold 2 are welded or the like so that the cooling air inside the manifold 2 does not leak from the through hole 4. It may be possible to fix and seal.

しかし、ガスタービン運転中、マニホールド2及び熱電対保護管3は共に熱変形が大きく、しかも、構成材料が異なるため、熱伸び差が大きい。したがって、熱電対保護管3をマニホールド2の貫通孔4に固定してしまうと、固定部分に過大な応力が発生することになり、好ましくない。   However, during operation of the gas turbine, both the manifold 2 and the thermocouple protective tube 3 are greatly deformed by heat, and because the constituent materials are different, the difference in thermal expansion is large. Therefore, fixing the thermocouple protection tube 3 to the through hole 4 of the manifold 2 is not preferable because excessive stress is generated in the fixed portion.

そこで実際には、図6の拡大図(図5のA部)に示すように、貫通孔4と熱電対保護管3との間にクリアランスを設けておき、両者に対し過度の応力が加わらないような構造となっている。ただし、マニホールド2からの空気漏れは、出来る限り防ぐことが望ましいのは言うまでもない。そのため、貫通孔4内壁面と熱電対保護管3外周面との間隙は、極力小さく設定されている。   Therefore, in practice, as shown in the enlarged view of FIG. 6 (A part of FIG. 5), a clearance is provided between the through hole 4 and the thermocouple protective tube 3, and no excessive stress is applied to both. It has a structure like this. However, it goes without saying that it is desirable to prevent air leakage from the manifold 2 as much as possible. Therefore, the gap between the inner wall surface of the through hole 4 and the outer peripheral surface of the thermocouple protective tube 3 is set as small as possible.

ところが、既に述べたように、マニホールド2及び熱電対保護管3は共に熱変形が大きいので、貫通孔4内壁面と熱電対保護管3外周面との間隙が小さいと、ガスタービン運転時の振動によって、両者は互いに接触することは否めない。しかも、熱電対保護管3はいわゆる片持ち支持のため、ガスタービン運転に伴う振動は、端部に近づくほど振幅が大きくなり、熱電対保護管3の外周部が貫通孔4の内壁部と強く擦れ合う。   However, as already described, since both the manifold 2 and the thermocouple protective tube 3 are largely thermally deformed, if the gap between the inner wall surface of the through hole 4 and the outer peripheral surface of the thermocouple protective tube 3 is small, vibration during operation of the gas turbine is caused. Therefore, they cannot deny that they are in contact with each other. In addition, since the thermocouple protection tube 3 is so-called cantilevered, the vibration associated with the gas turbine operation increases in amplitude as it approaches the end, and the outer periphery of the thermocouple protection tube 3 is stronger than the inner wall of the through hole 4. rub against.

このとき、熱電対保護管3の構成材料は、マニホールド2の構成材料よりも硬度が低いので、摩耗によって減肉が生じることになる。したがって、減肉が進行し、熱電対保護管3の残肉厚の厚さ寸法が規定値以下になると、交換が余儀なくされる。その結果、ガスタービン静翼1本体に関しては、運転による損傷がまだ小さく、修理や交換が不要な場合であっても、熱電対保護管3を交換するための修理が必要となり、保守コストの増大を招いていた。   At this time, since the constituent material of the thermocouple protection tube 3 is lower in hardness than the constituent material of the manifold 2, thinning occurs due to wear. Therefore, when the thickness reduction proceeds and the thickness of the remaining thickness of the thermocouple protection tube 3 becomes a specified value or less, replacement is unavoidable. As a result, regarding the gas turbine stationary blade 1 main body, damage due to operation is still small, and even when repair or replacement is not necessary, repair for replacing the thermocouple protection tube 3 is necessary, which increases maintenance costs. Was invited.

ガスタービン静翼1は、信頼性確保の観点から、高頻度でメンテナンスを実施しており、保守コストは相当に高い。したがって、ガスタービン静翼1の修理や交換に先立ち、熱電対保護管3の交換を行うことは、保守コストの負担をさらに重くすることになり、問題となっていた。   The gas turbine stationary blade 1 is frequently maintained from the viewpoint of ensuring reliability, and the maintenance cost is considerably high. Therefore, replacing the thermocouple protection tube 3 prior to repair or replacement of the gas turbine stationary blade 1 increases the burden of maintenance costs, which is a problem.

本発明は、上記の事情に鑑みて提案されたものであり、その目的は、ガスタービン運転時の熱電対保護管に生じる摩耗減肉を抑えることにより、熱電対保護管の運用寿命を延伸し、保守コストの低減化を実現して経済性・信頼性に優れたガスタービン静翼を提供することにある。   The present invention has been proposed in view of the above circumstances, and its purpose is to extend the service life of the thermocouple protection tube by suppressing wear thinning that occurs in the thermocouple protection tube during gas turbine operation. An object of the present invention is to provide a gas turbine stationary blade that realizes reduction in maintenance cost and is excellent in economic efficiency and reliability.

上記の目的を達成するために、本発明は、タービンホイール付近の雰囲気温度を計測するための熱電対が設置されたガスタービン静翼であって、該ガスタービン静翼内部には、内部に冷却媒体を保持するマニホールドと、前記熱電対を収納するための熱電対保護管とが設けられたガスタービン静翼において、前記マニホールドには貫通穴が形成され、前記貫通穴には前記熱電対保護管が挿入され、前記熱電対保護管の外周面における前記貫通穴の内壁面と向かい合う部分には、前記熱電対保護管の半径方向に厚みのある肉厚部が設けられ、前記肉厚部は、その外周面が前記マニホールドの前記貫通穴内壁面に対して所定の間隔を持って設置され、且つ前記熱電対保護管と同一材料または前記マニホールドの構成材料よりも硬度が小さい材料から構成されたことを特徴とするものである。   In order to achieve the above object, the present invention provides a gas turbine stationary blade provided with a thermocouple for measuring the ambient temperature in the vicinity of the turbine wheel, and the inside of the gas turbine stationary blade is internally cooled. In a gas turbine stationary blade provided with a manifold for holding a medium and a thermocouple protection tube for housing the thermocouple, a through hole is formed in the manifold, and the thermocouple protection tube is formed in the through hole. Is inserted in a portion of the outer peripheral surface of the thermocouple protection tube facing the inner wall surface of the through hole, a thick portion having a thickness in the radial direction of the thermocouple protection tube is provided. Whether the outer peripheral surface of the manifold is installed at a predetermined interval with respect to the inner wall surface of the through hole and is the same material as the thermocouple protective tube or a material whose hardness is smaller than the constituent material of the manifold. It is characterized in that it has been configured.

以上のような構成を有する本発明では、マニホールドの貫通穴内壁面には熱電対保護管の肉厚部が接触するので、ガスタービン運転に伴う熱変形及び振動によって両者が擦れ合ったとしても、摩耗により減肉する部分は、熱電対保護管と同一材料またはマニホールドの構成材料よりも硬度が小さい肉厚部であって、摩耗による減肉が熱電対保護管にまで及ぶことがない。したがって、熱電対保護管の運用寿命が延び、ガスタービン静翼の修理・交換よりも早い段階で、熱電対保護管の修理・交換を行う必要がない。その結果、保守コストの増大を抑制することが可能となる。   In the present invention having the above-described configuration, since the thick portion of the thermocouple protection tube is in contact with the inner wall surface of the through hole of the manifold, even if they are rubbed due to thermal deformation and vibration accompanying gas turbine operation, The thinned portion is a thick portion whose hardness is smaller than that of the same material as the thermocouple protective tube or the constituent material of the manifold, and the thinning due to wear does not reach the thermocouple protective tube. Therefore, the service life of the thermocouple protection tube is extended, and it is not necessary to repair or replace the thermocouple protection tube at an earlier stage than the repair or replacement of the gas turbine stationary blade. As a result, an increase in maintenance cost can be suppressed.

本発明のガスタービン静翼によれば、マニホールドの貫通穴内壁面に対向する位置に、熱電対保護管と同一材料またはマニホールドの構成材料よりも硬度が小さい材料からなる肉厚部を設けるといった極めて簡単な構成によって、マニホールドとの摩擦による熱電対保護管の摩耗、減肉を防ぐことができ、熱電対保護管の運用寿命を延ばして、保守コストの低減化を図り、経済性・信頼性の向上に寄与することができる。   According to the gas turbine stationary blade of the present invention, a thick portion made of the same material as the thermocouple protection tube or a material whose hardness is smaller than the constituent material of the manifold is provided at a position facing the inner wall surface of the through hole of the manifold. This configuration prevents wear and thinning of the thermocouple protection tube due to friction with the manifold, prolongs the service life of the thermocouple protection tube, reduces maintenance costs, and improves economy and reliability. Can contribute.

(1)第1の実施形態
[構成]
以下、本発明に係る実施の形態について、図面を参照して具体的に説明する。なお、図5及び図6に示した従来技術と同一の部材に関しては同一符号を付して説明は省略する。
(1) First Embodiment [Configuration]
Embodiments according to the present invention will be specifically described below with reference to the drawings. In addition, about the same member as the prior art shown in FIG.5 and FIG.6, the same code | symbol is attached | subjected and description is abbreviate | omitted.

まず、図1及び図2を用いて本発明に係る第1の実施形態について述べる。図1は第1の実施形態の要部断面図、図2は図1に示したI−I断面における断面図である。図1及び図2に示すように、熱電対保護管3外周面においてマニホールド2の貫通穴4内壁面と向かい合う部分には、熱電対保護管3の半径方向に厚みのある肉厚部として、外筒部材5が取り付けられている。   First, a first embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a main part of the first embodiment, and FIG. As shown in FIGS. 1 and 2, the outer surface of the thermocouple protection tube 3 facing the inner wall surface of the through hole 4 of the manifold 2 is formed as a thick portion having a thickness in the radial direction of the thermocouple protection tube 3. A cylindrical member 5 is attached.

外筒部材5は、熱電対保護管3と同じくSUS304等のステンレス系の材料からなり、この材料はマニホールド2の構成材料よりも硬度が小さい。外筒部材5の厚さ寸法は、定期検査と直近の次回定期検査との間の運転期間に生じる予想摩耗量よりも厚くなるように形成されている。   The outer cylinder member 5 is made of a stainless steel material such as SUS304 like the thermocouple protection tube 3, and this material has a hardness lower than that of the constituent material of the manifold 2. The thickness dimension of the outer cylinder member 5 is formed so as to be thicker than the expected amount of wear that occurs during the operation period between the periodic inspection and the latest next periodic inspection.

さらに、外筒部材5は、熱電対保護管3とは別部材であって、図2に示すように、周方向に2等分割された分割部材5a、5bから構成される。外筒部材5は、熱電対保護管3に対し位置決めがなされた後、熱電対保護管3に溶接等で固定される。このとき、外筒部材5の外周面はマニホールド2の貫通穴4内壁面に対して所定の間隔を持って設置されている。   Furthermore, the outer cylinder member 5 is a separate member from the thermocouple protection tube 3, and is composed of divided members 5a and 5b divided into two equal parts in the circumferential direction as shown in FIG. The outer cylinder member 5 is positioned with respect to the thermocouple protection tube 3 and then fixed to the thermocouple protection tube 3 by welding or the like. At this time, the outer peripheral surface of the outer cylinder member 5 is installed at a predetermined interval with respect to the inner wall surface of the through hole 4 of the manifold 2.

[作用効果]
以上のような構成を有する第1の実施形態の作用効果と次の通りである。すなわち、ガスタービン運転に伴う熱変形及び振動により外筒部材5と貫通孔4内壁が接触する場合、外筒部材5は、マニホールド2の構成材料よりも柔らかい材料からなるので、熱電対保護管3の肉厚部である外筒部材5側が摩耗する。したがって、摩擦力が熱電対保護管3の外周面に及ぶことはなく、熱電対保護管3外周面が摩耗によって減肉されることがない。
[Function and effect]
The operational effects of the first embodiment having the above-described configuration are as follows. That is, when the outer cylinder member 5 and the inner wall of the through hole 4 come into contact with each other due to thermal deformation and vibration associated with the gas turbine operation, the outer cylinder member 5 is made of a material softer than the constituent material of the manifold 2. The outer cylinder member 5 side, which is a thick part, is worn. Therefore, the frictional force does not reach the outer peripheral surface of the thermocouple protective tube 3, and the outer peripheral surface of the thermocouple protective tube 3 is not reduced by wear.

しかも、外筒部材5の厚さ寸法を定期検査と直近の次回定期検査との間の運転期間に生じる予想摩耗量よりも厚くしてあるので、ガスタービンの定期点検を実施する際、2つの点検の間の運転期間により外筒部材5が減肉される深さよりも、外筒部材5は厚みがあり、熱電対保護管3がマニホールド2の貫通穴4に接触することがない。   Moreover, since the thickness dimension of the outer cylinder member 5 is made thicker than the expected amount of wear that occurs during the operation period between the periodic inspection and the next next periodic inspection, when carrying out the periodic inspection of the gas turbine, The outer cylinder member 5 is thicker than the depth at which the outer cylinder member 5 is thinned by the operation period during the inspection, and the thermocouple protection tube 3 does not contact the through hole 4 of the manifold 2.

すなわち、定期点検が適切なタイミングで行われる限り、マニホールド2の貫通穴4と熱電対保護管3とは互いに非接触であり、硬度の大きいマニホールド2により熱電対保護管3が減肉される心配がない。これにより、熱電対保護管3は次回定期点検まで修理しないで継続使用可能となる。   That is, as long as the periodic inspection is performed at an appropriate timing, the through hole 4 of the manifold 2 and the thermocouple protection tube 3 are not in contact with each other, and the thermocouple protection tube 3 may be thinned by the manifold 2 having a high hardness. There is no. Thereby, the thermocouple protection tube 3 can be continuously used without being repaired until the next periodic inspection.

さらに、減肉される部材は外筒部材5なので、これを交換している限り、基本的に熱電対保護管3には損傷が生じることがない。したがって、熱電対保護管3は、故障以外は交換の必要がなく、熱電対保護管3の運用寿命は長期化する。その結果、保守コストの大幅な低減が実現すると共に、優れた信頼性を確保することが可能である。   Further, since the member to be thinned is the outer cylindrical member 5, as long as it is replaced, the thermocouple protective tube 3 is basically not damaged. Therefore, the thermocouple protection tube 3 does not need to be replaced except for a failure, and the operation life of the thermocouple protection tube 3 is prolonged. As a result, maintenance costs can be significantly reduced and excellent reliability can be ensured.

その上、外筒部材5は分割部材5a、5bに2分割可能であるため、熱電対保護管3を静翼1から取り外すこと無く、外筒部材5だけを取り外すことができる。また、新たな外筒部材5を取り付ける時も熱電対保護管3の先端から嵌め込むこと無く、任意の位置から熱電対保護管3に取り付けることができる。このように、外筒部材5は熱電対保護管3に対する着脱作業が極めて容易であり、保守コスト低減に寄与することができる。   In addition, since the outer cylinder member 5 can be divided into two parts, that is, the divided members 5 a and 5 b, only the outer cylinder member 5 can be removed without removing the thermocouple protection tube 3 from the stationary blade 1. Further, when a new outer cylinder member 5 is attached, it can be attached to the thermocouple protection tube 3 from an arbitrary position without being fitted from the tip of the thermocouple protection tube 3. Thus, the outer cylinder member 5 is extremely easy to attach to and detach from the thermocouple protection tube 3, and can contribute to a reduction in maintenance costs.

また、外筒部材5の外周面はマニホールド2の貫通穴4内壁面に対し所定の間隔を持つので、貫通孔4と外筒部材5との間にはクリアランスを設けることができる。したがって、ガスタービン運転中でも外筒部材5及びマニホールド2に対し過度の応力が加わることがなく、高い安全性を獲得することが可能である。   Further, since the outer peripheral surface of the outer cylinder member 5 has a predetermined interval with respect to the inner wall surface of the through hole 4 of the manifold 2, a clearance can be provided between the through hole 4 and the outer cylinder member 5. Therefore, excessive stress is not applied to the outer cylinder member 5 and the manifold 2 even during operation of the gas turbine, and high safety can be obtained.

(2)第2の実施形態
[構成]
続いて、図3及び図4を用いて本発明に係る第1の実施形態について説明する。図3は第3の実施形態の要部断面図、図4は図3に示したII−II断面における断面図である。
(2) Second Embodiment [Configuration]
Subsequently, a first embodiment according to the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a cross-sectional view of the main part of the third embodiment, and FIG. 4 is a cross-sectional view taken along the line II-II shown in FIG.

上記第1の実施形態では、熱電対保護管3に外筒部材5を装着し、この外筒部材5がマニホールド2の貫通穴4と擦れ合っていたのに対して、第2の実施形態では、マニホールド2の貫通穴4側に筒状部材6を嵌着し、この筒状部材6の内壁部分と熱電対保護管3の外周部とが擦れ合うように配置した点に特徴がある。   In the first embodiment, the outer cylinder member 5 is mounted on the thermocouple protection tube 3, and the outer cylinder member 5 rubs against the through hole 4 of the manifold 2, whereas in the second embodiment, The cylindrical member 6 is fitted to the through hole 4 side of the manifold 2 and is characterized in that the inner wall portion of the cylindrical member 6 and the outer peripheral portion of the thermocouple protective tube 3 are rubbed with each other.

このとき、筒状部材6は、熱電対保護管3の減肉量を抑えるために、熱電対保護管3と同一材料または熱電対保護管3の構成材料よりも硬度が小さい材料からなる。また、熱電対保護管3の外周面において、筒状部材6と向かい合う部分には耐摩耗コーティング3aが施されている。   At this time, the tubular member 6 is made of the same material as the thermocouple protection tube 3 or a material having a smaller hardness than the constituent material of the thermocouple protection tube 3 in order to suppress the thinning amount of the thermocouple protection tube 3. Further, on the outer peripheral surface of the thermocouple protection tube 3, a wear-resistant coating 3 a is applied to a portion facing the cylindrical member 6.

ここで筒状部材6の構成について、より詳しく説明する。すなわち、図3及び図4に示すように、筒状部材6は、マニホールド2の貫通穴4に嵌着された状態で貫通穴4から両端部が突き出る長さ寸法があり、半径方向の厚さ寸法は、定期検査と次の定期検査との間の運転期間に生じる予想摩耗量よりも厚く設けられている。   Here, the configuration of the cylindrical member 6 will be described in more detail. That is, as shown in FIGS. 3 and 4, the cylindrical member 6 has a length dimension in which both end portions protrude from the through hole 4 in a state of being fitted into the through hole 4 of the manifold 2, and has a thickness in the radial direction. The dimension is set to be thicker than the expected amount of wear occurring during the operation period between the periodic inspection and the next periodic inspection.

また、筒状部材6は周方向に2分割される分割部材6a、6bから構成され、軸方向に挿通孔6cが設けられている。挿通孔6cの内径寸法は熱電対保護管3の外径寸法よりも大きく、ここに所定の間隔を持って熱電対保護管3が挿入される。さらに、挿通孔6cの両端部にはR形状部7が設置されている。   Moreover, the cylindrical member 6 is comprised from the division members 6a and 6b divided into 2 by the circumferential direction, and the penetration hole 6c is provided in the axial direction. The inner diameter dimension of the insertion hole 6c is larger than the outer diameter dimension of the thermocouple protection tube 3, and the thermocouple protection tube 3 is inserted therein at a predetermined interval. Furthermore, the R-shaped part 7 is installed in the both ends of the insertion hole 6c.

[作用効果]
以上のような構成を有する第2の実施形態の作用効果は次の通りである。すなわち、ガスタービン運転に伴う熱変形及び振動により、筒状部材6の挿通孔6c内壁面に対し熱電対保護管3の外周面が接触するが、筒状部材6は、熱電対保護管3の構成材料と同一もしくは熱電対保護管3よりも柔らかい材料からなるので、主に筒状部材6側が摩耗する。しかも、熱電対保護管3外周面は、耐摩耗コーティング3aを施しているので、その摩耗量を最小限に抑えることができる。
[Function and effect]
The operational effects of the second embodiment having the above-described configuration are as follows. That is, the outer peripheral surface of the thermocouple protection tube 3 comes into contact with the inner wall surface of the insertion hole 6c of the cylindrical member 6 due to thermal deformation and vibration accompanying the gas turbine operation. Since it is made of the same material as that of the constituent material or softer than the thermocouple protection tube 3, the cylindrical member 6 side is mainly worn. Moreover, since the outer peripheral surface of the thermocouple protection tube 3 is provided with the wear resistant coating 3a, the wear amount can be minimized.

また、筒状部材6の厚さ寸法は、前記外筒部材5のそれと同じく、定期検査と直近の次回定期検査との間の運転期間に生じる予想摩耗量よりも厚いので、ガスタービンの定期点検を実施する際、2つの点検の間の運転期間により筒状部材6が減肉する深さよりも、筒状部材6の方が厚い。   Further, the thickness dimension of the tubular member 6 is the same as that of the outer tubular member 5, and is thicker than the expected wear amount generated in the operation period between the periodic inspection and the next periodic inspection. When the operation is performed, the tubular member 6 is thicker than the depth at which the tubular member 6 is thinned by the operation period between two inspections.

したがって、定期点検が適切なタイミングで行われる限り、熱電対保護管3とマニホールド2の貫通穴4とが直接接触することがなく、硬度の大きいマニホールド2によって熱電対保護管3が減肉される心配がない。その結果、上記第1の実施形態と同じく、熱電対保護管3は次回定期点検まで修理しないで継続使用可能となる。これにより、熱電対保護管3の運用寿命の長期化が可能であり、保守コストの低減と信頼性の向上に寄与することができる。   Therefore, as long as the periodic inspection is performed at an appropriate timing, the thermocouple protection tube 3 and the through hole 4 of the manifold 2 are not in direct contact, and the thermocouple protection tube 3 is thinned by the manifold 2 having a high hardness. There is no worry. As a result, as in the first embodiment, the thermocouple protection tube 3 can be used continuously without being repaired until the next periodic inspection. As a result, the operational life of the thermocouple protection tube 3 can be extended, which can contribute to reduction of maintenance costs and improvement of reliability.

さらに、第2の実施形態においては、筒状部材6が減肉されるにせよ、硬いマニホールド2の貫通穴4との接触を原因とするのではなく、マニホールド2よりも柔らかい熱電対保護管3との接触による摩耗なので、減肉は穏やかである。したがって、熱電対保護管3の運用寿命の長期化という効果に加えて、熱電対保護管3の耐久性を高める筒状部材6に関しても、マニホールド2と接触していた前記外筒部材5に比べて、寿命の長期化が可能である。   Furthermore, in the second embodiment, even if the tubular member 6 is thinned, it does not cause contact with the through hole 4 of the hard manifold 2 but is a softer thermocouple protection tube 3 that is softer than the manifold 2. Thinning is gentle because of wear due to contact with Therefore, in addition to the effect of extending the operational life of the thermocouple protection tube 3, the cylindrical member 6 that increases the durability of the thermocouple protection tube 3 is also compared with the outer cylinder member 5 that is in contact with the manifold 2. Thus, the lifetime can be extended.

また、筒状部材6は分割部材6a、6bに2分割可能であり、マニホールド2の貫通穴4から簡単に取り外すことができ、しかも、新たな筒状部材6を取り付ける時も、貫通穴4に嵌め込むだけで済む。したがって、筒状部材6の着脱作業は非常に容易であり、保守コスト低減に寄与することができる。   Further, the cylindrical member 6 can be divided into two divided members 6a and 6b, which can be easily removed from the through hole 4 of the manifold 2, and also when the new cylindrical member 6 is attached, Just plug it in. Therefore, the attachment and detachment work of the cylindrical member 6 is very easy, and can contribute to maintenance cost reduction.

また、筒状部材6の内壁面は熱電対保護管3外周面に対し所定の間隔を持つので、ガスタービン運転中でも筒状部材6及び熱電対保護管3に過度の応力が加わることがなく、高い安全性を獲得することが可能である。さらに、挿通孔6cの両端部にR形状部7を設置したので、熱電対保護管3が筒状部材6のエッジ部分との接触による局所的摩耗減肉を防止することが可能となる。   Moreover, since the inner wall surface of the cylindrical member 6 has a predetermined interval with respect to the outer peripheral surface of the thermocouple protection tube 3, excessive stress is not applied to the cylindrical member 6 and the thermocouple protection tube 3 even during gas turbine operation. It is possible to obtain high safety. Furthermore, since the R-shaped portions 7 are installed at both ends of the insertion hole 6 c, it is possible to prevent local wear thinning due to the thermocouple protection tube 3 coming into contact with the edge portion of the cylindrical member 6.

(3)他の実施形態
本発明は、上述した実施形態に限定されるものではなく、各部材の形状や材料は適宜選択可能であり、例えば、筒状部材6の挿通孔6c両端部に設けたR形状部を、面取り部にしてもよく、その設置位置も、挿通孔6c両端部ではなく、ガスタービン静翼1内径側の端部としても構わない。また、外筒部材5もしくは筒状部材6を複数に分割する際の分割数も適宜変更可能である。さらに、熱電対保護管3に対し一体的に肉厚部を形成する実施形態も包含する。
(3) Other Embodiments The present invention is not limited to the above-described embodiments, and the shape and material of each member can be selected as appropriate. For example, it is provided at both ends of the insertion hole 6c of the cylindrical member 6. The R-shaped portion may be a chamfered portion, and the installation position may be the end portion on the inner diameter side of the gas turbine stationary blade 1 instead of the both end portions of the insertion hole 6c. Moreover, the division | segmentation number at the time of dividing | segmenting the outer cylinder member 5 or the cylindrical member 6 into plurality can also be changed suitably. Furthermore, the embodiment which forms a thick part integrally with the thermocouple protection tube 3 is also included.

本発明の第1の実施形態の要部断面図。The principal part sectional view of the 1st embodiment of the present invention. 図1に示したI-I断面における断面図。Sectional drawing in the II cross section shown in FIG. 本発明の第2の実施形態の要部断面図。Sectional drawing of the principal part of the 2nd Embodiment of this invention. 図3に示したII−II断面における断面図。Sectional drawing in the II-II cross section shown in FIG. 従来のガスタービン静翼の断面図。Sectional drawing of the conventional gas turbine stationary blade. 図5のA部の詳細説明図。Detailed explanatory drawing of the A section of FIG.

符号の説明Explanation of symbols

1…ガスタービン静翼
2…マニホールド
3…熱電対保護管
4…貫通孔
5…外筒部材
5a、5b、6a、6b…分割部材
6…筒状部材
6c…挿通孔
7・・・R形状部
DESCRIPTION OF SYMBOLS 1 ... Gas turbine stationary blade 2 ... Manifold 3 ... Thermocouple protective tube 4 ... Through-hole 5 ... Outer cylinder member 5a, 5b, 6a, 6b ... Split member 6 ... Cylindrical member 6c ... Insertion hole 7 ... R shape part

Claims (8)

タービンホイール付近の雰囲気温度を計測するための熱電対が設置されたガスタービン静翼であって、該ガスタービン静翼内部には、内部に冷却媒体を保持するマニホールドと、前記熱電対を収納するための熱電対保護管とが設けられたガスタービン静翼において、
前記マニホールドには貫通穴が形成され、
前記貫通穴には前記熱電対保護管が挿入され、
前記熱電対保護管の外周面における前記貫通穴の内壁面と向かい合う部分には、前記熱電対保護管の半径方向に厚みのある肉厚部が設けられ、
前記肉厚部は、その外周面が前記マニホールドの前記貫通穴内壁面に対して所定の間隔を持って設置され、且つ前記熱電対保護管と同一材料または前記マニホールドの構成材料よりも硬度が小さい材料から構成されたことを特徴とするガスタービン静翼。
A gas turbine stationary blade in which a thermocouple for measuring an ambient temperature in the vicinity of the turbine wheel is installed, and a manifold for holding a cooling medium therein and the thermocouple are accommodated in the gas turbine stationary blade. In the gas turbine stationary blade provided with a thermocouple protection tube for
A through hole is formed in the manifold,
The thermocouple protective tube is inserted into the through hole,
In the portion facing the inner wall surface of the through hole on the outer peripheral surface of the thermocouple protection tube, a thick portion having a thickness in the radial direction of the thermocouple protection tube is provided,
The thick portion has an outer peripheral surface set at a predetermined interval with respect to the inner wall surface of the through hole of the manifold, and a material having the same hardness as the thermocouple protection tube or a material having a hardness smaller than that of the manifold. A gas turbine stationary blade comprising:
前記肉厚部は、その厚さ寸法が、定期検査の間の運転期間に生じる予想摩耗量よりも厚くなるように形成されたことを特徴とする請求項1に記載のガスタービン静翼。   2. The gas turbine stationary blade according to claim 1, wherein the thick portion is formed so that a thickness dimension thereof is thicker than an expected wear amount generated during an operation period between periodic inspections. 前記肉厚部は、前記熱電対保護管とは別部材であって、且つ周方向に分割可能に構成されたことを特徴とする請求項1又は2に記載のガスタービン静翼。   3. The gas turbine stationary blade according to claim 1, wherein the thick portion is a separate member from the thermocouple protective tube and is configured to be divided in a circumferential direction. タービンホイール付近の雰囲気温度を計測するための熱電対が設置されたガスタービン静翼であって、該ガスタービン静翼内部には、内部に冷却媒体を保持するマニホールドと、前記熱電対を収納するための熱電対保護管とが設けられたガスタービン静翼において、
前記マニホールドには貫通穴が形成され、
前記貫通穴には該貫通穴より両端部が突き出るようにして筒状部材が嵌着され、
前記筒状部材には前記熱電対保護管の外径より大きい内径を有する挿通孔が形成され、
前記挿通孔には前記熱電対保護管が挿入され、
前記筒状部材は、前記熱電対保護管と同一材料または前記熱電対保護管の構成材料よりも硬度が小さい材料から構成されたことを特徴とするガスタービン静翼。
A gas turbine stationary blade in which a thermocouple for measuring an ambient temperature in the vicinity of the turbine wheel is installed, and a manifold for holding a cooling medium therein and the thermocouple are accommodated in the gas turbine stationary blade. In the gas turbine stationary blade provided with a thermocouple protection tube for
A through hole is formed in the manifold,
A cylindrical member is fitted to the through hole so that both ends protrude from the through hole,
The tubular member is formed with an insertion hole having an inner diameter larger than the outer diameter of the thermocouple protection tube,
The thermocouple protective tube is inserted into the insertion hole,
The gas turbine stationary blade according to claim 1, wherein the cylindrical member is made of the same material as the thermocouple protection tube or a material having a hardness lower than that of the constituent material of the thermocouple protection tube.
前記筒状部材は、半径方向の厚さ寸法が、定期検査の間の運転期間に生じる予想摩耗量よりも厚くなるように形成されたことを特徴とする請求項4に記載のガスタービン静翼。   5. The gas turbine stationary blade according to claim 4, wherein the cylindrical member is formed so that a thickness dimension in a radial direction is thicker than an expected amount of wear occurring during an operation period between periodic inspections. . 前記筒状部材の前記挿通孔における両端部又はガスタービン静翼内径側の端部には、R形状部又は面取り部が形成されたことを特徴とする請求項4又は5に記載のガスタービン静翼。   6. The gas turbine static according to claim 4, wherein an R-shaped portion or a chamfered portion is formed at both ends of the insertion hole of the cylindrical member or an end of the gas turbine stationary blade inner diameter side. Wings. 前記筒状部材は周方向に分割可能に構成されたことを特徴とする請求項4〜6のいずれか1項に記載のガスタービン静翼。   The gas turbine stationary blade according to any one of claims 4 to 6, wherein the cylindrical member is configured to be divided in a circumferential direction. 前記熱電対保護管の外周面には耐摩耗コーティングが施されたことを特徴とする請求項4〜7のいずれか1項に記載のガスタービン静翼。   The gas turbine stationary blade according to any one of claims 4 to 7, wherein a wear-resistant coating is applied to an outer peripheral surface of the thermocouple protection tube.
JP2008222710A 2008-08-29 2008-08-29 Gas turbine stationary blade Active JP4940204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222710A JP4940204B2 (en) 2008-08-29 2008-08-29 Gas turbine stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222710A JP4940204B2 (en) 2008-08-29 2008-08-29 Gas turbine stationary blade

Publications (2)

Publication Number Publication Date
JP2010053846A JP2010053846A (en) 2010-03-11
JP4940204B2 true JP4940204B2 (en) 2012-05-30

Family

ID=42070018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222710A Active JP4940204B2 (en) 2008-08-29 2008-08-29 Gas turbine stationary blade

Country Status (1)

Country Link
JP (1) JP4940204B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431824B2 (en) * 1999-10-01 2002-08-13 General Electric Company Turbine nozzle stage having thermocouple guide tube
US6546735B1 (en) * 2001-03-07 2003-04-15 General Electric Company Methods and apparatus for operating turbine engines using rotor temperature sensors
JP2004028036A (en) * 2002-06-28 2004-01-29 Hitachi Ltd Gas turbine stator vane and gas turbine
JP4476116B2 (en) * 2004-12-27 2010-06-09 三菱重工業株式会社 gas turbine

Also Published As

Publication number Publication date
JP2010053846A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
US8157511B2 (en) Turbine shroud gas path duct interface
US8079807B2 (en) Mounting apparatus for low-ductility turbine shroud
US20100068050A1 (en) Gas turbine vane attachment
US20120076659A1 (en) Anti fret liner assembly
JP2005351265A (en) Turbine engine shroud segment, hanger and assembly
US20100229558A1 (en) Methods and Apparatus for Providing A Sacrificial Shield For A Fuel Injector
EP3249170B1 (en) Seal assembly with seal rings for gas turbine engines
JP2008121512A (en) Brush seal and turbine using same
EP2990660B1 (en) A wear monitor for a gas turbine engine
US8926269B2 (en) Stepped, conical honeycomb seal carrier
US20100242293A1 (en) Time-indicating rub pin for transient clearance measurement and related method
JP2017101663A (en) Methods and systems for detecting wear in turbine engine
EP3270014B1 (en) Divided-type brush seal device
JP4940204B2 (en) Gas turbine stationary blade
JP5818717B2 (en) gas turbine
US8720257B2 (en) Methods, systems and apparatus for detecting material defects in combustors of combustion turbine engines
US8784056B2 (en) System and turbine including creep indicating member
JP2011111923A (en) Method for estimating life of centrifugal compressor impeller
JP4667137B2 (en) Drain tube for low pressure shaft of turbomachine
US8636462B2 (en) Methods, systems and apparatus for detecting material defects in rotor blades of combustion turbine engines
JP2005090304A (en) Seal plate structure
JP2009167905A (en) Gas turbine combustor outlet seal structure
JP4725428B2 (en) Geothermal steam turbine
US11566540B2 (en) Turbomachine ring
US20200033200A1 (en) Turbomachine component with a signaling device, turbomachine and method of upgrading a turbomachine component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4940204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3