JP4939122B2 - Method for manufacturing conductive elastic roller - Google Patents

Method for manufacturing conductive elastic roller Download PDF

Info

Publication number
JP4939122B2
JP4939122B2 JP2006171255A JP2006171255A JP4939122B2 JP 4939122 B2 JP4939122 B2 JP 4939122B2 JP 2006171255 A JP2006171255 A JP 2006171255A JP 2006171255 A JP2006171255 A JP 2006171255A JP 4939122 B2 JP4939122 B2 JP 4939122B2
Authority
JP
Japan
Prior art keywords
die
conductive elastic
peripheral surface
roller
crosshead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006171255A
Other languages
Japanese (ja)
Other versions
JP2008000946A (en
JP2008000946A5 (en
Inventor
雅基 小澤
淳 村田
久雄 加藤
之則 永田
和之 宍塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006171255A priority Critical patent/JP4939122B2/en
Publication of JP2008000946A publication Critical patent/JP2008000946A/en
Publication of JP2008000946A5 publication Critical patent/JP2008000946A5/ja
Application granted granted Critical
Publication of JP4939122B2 publication Critical patent/JP4939122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、たとえば複写機、印刷機、レーザビームプリンター、写真現像機などに用いられる導電性弾性体ローラに関し、特に電子写真プロセスを用いた画像形成装置に用いる導電性弾性体ローラに関するものである。また本発明は、このような導電性弾性体ローラを製造するために用いることのできる導電性弾性体押出成形装置、およびこの装置に用いられる導電性弾性体押出成形用クロスヘッド被覆ダイに関する。   The present invention relates to a conductive elastic roller used in, for example, a copying machine, a printing machine, a laser beam printer, a photographic developing machine, and the like, and more particularly to a conductive elastic roller used in an image forming apparatus using an electrophotographic process. . The present invention also relates to a conductive elastic body extrusion molding apparatus that can be used to manufacture such a conductive elastic body roller, and a crosshead coating die for conductive elastic body extrusion molding used in this apparatus.

電子写真方式のプリンター、複写機および静電記録装置等の画像形成は、帯電、露光、現像、転写、定着プロセスから成り立っている。図1に模式図を示すごとく導電性ローラは画像形成装置において、感光ドラム91表面を帯電させる帯電ローラ92、感光ドラム表面の静電潜像をトナー像に現像する現像ローラ93、感光ドラム表面上のトナー像を転写する転写ローラ94として使用されている。また、これら導電性ローラは感光ドラムに押圧されて使用されることが多く、感光ドラムと導電性ローラ間で均一なニップを得ること、感光ドラムを均一に帯電するために均一な電気抵抗値であること、感光ドラム汚染が少ないことなどが求められる。なお、図中Pは紙等の被転写材である。   Image formation of electrophotographic printers, copiers, electrostatic recording devices, and the like is composed of charging, exposure, development, transfer, and fixing processes. As shown schematically in FIG. 1, in the image forming apparatus, the conductive roller is a charging roller 92 for charging the surface of the photosensitive drum 91, a developing roller 93 for developing the electrostatic latent image on the surface of the photosensitive drum into a toner image, and a surface on the surface of the photosensitive drum. Used as a transfer roller 94 for transferring the toner image. In addition, these conductive rollers are often used by being pressed against the photosensitive drum. In order to obtain a uniform nip between the photosensitive drum and the conductive roller, and to uniformly charge the photosensitive drum, the conductive roller has a uniform electric resistance value. It is required that the photosensitive drum is less contaminated. In the figure, P is a material to be transferred such as paper.

さて、導電性ローラは、少なくともその内部に位置する支持軸とその外周面に導電性層を有する構成であるが、感光ドラムと導電性ローラ間で均一なニップを得るために低硬度であることが必要とされる。そのため、導電性ローラの外周面の導電性層材がゴム状弾性体から構成される導電性弾性体ローラが使用される。   The conductive roller has a structure having at least a support shaft located inside and a conductive layer on the outer peripheral surface thereof, but has a low hardness in order to obtain a uniform nip between the photosensitive drum and the conductive roller. Is needed. Therefore, a conductive elastic roller is used in which the conductive layer material on the outer peripheral surface of the conductive roller is made of a rubber-like elastic body.

導電性弾性体ローラの電気抵抗値の均一化については、導電性弾性体ローラの長手方向の電気抵抗値の均一化を図って、押出成形を用いた製造方法が広く採用されている。   For making the electrical resistance value of the conductive elastic roller uniform, a manufacturing method using extrusion molding is widely adopted in order to make the electrical resistance value in the longitudinal direction of the conductive elastic roller uniform.

押出成形を用いた導電性弾性体ローラの製造方法としては、次のような方法が知られている。すなわち、押出成形装置によって導電性弾性体組成物を中空円筒状に成形した後に、導電性弾性体組成物を当該組成物の性状に応じて加熱または冷却によって固化させることにより、中空の導電性弾性円筒体を得る。得られた導電性弾性円筒体の内部貫通孔に金属や樹脂からなる支持軸を挿入して、研磨や表面処理などの2次工程を経て、導電性弾性体ローラを得る。   As a method for producing a conductive elastic roller using extrusion molding, the following method is known. That is, after forming a conductive elastic body composition into a hollow cylindrical shape by an extrusion molding apparatus, the conductive elastic body composition is solidified by heating or cooling according to the properties of the composition, thereby forming a hollow conductive elastic composition. A cylinder is obtained. A support shaft made of metal or resin is inserted into the internal through-hole of the obtained conductive elastic cylindrical body, and a conductive elastic roller is obtained through secondary processes such as polishing and surface treatment.

また、安価に導電性弾性体ローラを製造するために、導電性弾性体チューブの貫通孔への導電性支持軸挿入工程を省略するために、クロスヘッド被覆ダイによる被覆押出成形を用いた導電性弾性体ローラの製造方法が知られている(特許文献1)。
特開2001−353766号公報
In addition, in order to manufacture a conductive elastic roller at a low cost, the conductivity using cover extrusion molding with a crosshead coating die is omitted in order to omit the step of inserting the conductive support shaft into the through hole of the conductive elastic tube. A method for manufacturing an elastic roller is known (Patent Document 1).
JP 2001-353766 A

クロスヘッド被覆ダイによる被覆押出成形を用いた導電性弾性体ローラの製造方法を、図2および図3を用いて説明する。図3はクロスヘッド被覆ダイを用いた被覆押出成形装置の模式図である。被覆押出成形装置は押出機10と、内側ダイ33および外側ダイ35によって構成される環状流路37を有するクロスヘッド被覆ダイ30と、円形状ダイリップ38とから構成される。はじめに、押出機10の投入口12に投入された導電性弾性体組成物11はシリンダ13内にてシリンダ13とスクリュ14から受けるせん断力により可塑化および混練されて、押出機シリンダ出口15へ搬送される。続いてブレーカプレート16を通過して、クロスヘッド被覆ダイ30の材料導入口へ搬送される。クロスヘッド被覆ダイ30に導入された導電性弾性体組成物11は内側ダイ33によって分流されたのち、再び合流して内側ダイ33と外側ダイ35で構成される環状流路37にて円筒状(断面は円環状)に形成されて導電性弾性円筒体となる。導電性弾性円筒体は、あらかじめ内側ダイ33内部の貫通孔に設置された支持軸3上に被覆されて、円形状のダイリップ38にて所望の外径寸法に調整される。このようして図2に示すような支持軸3の外周に導電性弾性円筒体2を有する導電性弾性円筒被覆体1が得られる。こうして得られた導電性弾性円筒被覆体を導電性弾性円筒体がゴムの場合は架橋工程、導電性弾性体組成物が熱可塑性のエラストマーの場合は冷却工程を経て導電性弾性体ローラを得る。なおシリンダ13には投入口12と押出機シリンダ出口15の間に脱気口17が設けられる。   A method of manufacturing a conductive elastic roller using coating extrusion molding with a crosshead coating die will be described with reference to FIGS. FIG. 3 is a schematic view of a coating extrusion molding apparatus using a crosshead coating die. The coating extrusion molding apparatus includes an extruder 10, a crosshead coating die 30 having an annular flow path 37 constituted by an inner die 33 and an outer die 35, and a circular die lip 38. First, the conductive elastic composition 11 charged into the inlet 12 of the extruder 10 is plasticized and kneaded in the cylinder 13 by the shearing force received from the cylinder 13 and the screw 14 and conveyed to the extruder cylinder outlet 15. Is done. Subsequently, it passes through the breaker plate 16 and is conveyed to the material introduction port of the crosshead coating die 30. The conductive elastic body composition 11 introduced into the crosshead-covering die 30 is divided by the inner die 33 and then merged again to form a cylindrical shape in an annular channel 37 composed of the inner die 33 and the outer die 35 ( The cross section is formed in an annular shape to form a conductive elastic cylinder. The conductive elastic cylindrical body is previously coated on the support shaft 3 installed in the through hole inside the inner die 33 and is adjusted to a desired outer diameter by a circular die lip 38. In this way, the conductive elastic cylindrical covering 1 having the conductive elastic cylindrical body 2 on the outer periphery of the support shaft 3 as shown in FIG. 2 is obtained. When the conductive elastic cylindrical body is rubber, the conductive elastic cylindrical covering obtained in this way is subjected to a crosslinking step, and when the conductive elastic body composition is a thermoplastic elastomer, a conductive elastic roller is obtained through a cooling step. The cylinder 13 is provided with a deaeration port 17 between the charging port 12 and the extruder cylinder outlet 15.

ところで、クロスヘッド被覆ダイ30の環状流路内37で導電性弾性体組成物11が内側ダイ33によって分流され、再び合流する地点ではウェルドラインと呼ばれる導電性弾性体組成物11の合わせ目が発生する。その結果、導電性弾性円筒被覆体1にウェルドライン4が生じることがある。ウェルドライン4は導電性弾性円筒被覆体1の導電性弾性円筒体2の内周面から外周面に渡って連続して存在するため、導電性弾性円筒被覆体に研磨などの2次加工を施して得られる導電性弾性体ローラにもウェルドライン4は残存する。導電性弾性体組成物において、ウェルドライン4の部分はウェルドライン以外の領域と組成が異なるため電気抵抗値が異なる。このため、導電性弾性体ローラの周方向の電気抵抗値にばらつきが生じ、例えば、導電性弾性体ローラが帯電ローラである場合は感光体ドラムを均一に帯電させることができなくなり、画像不良が発生する場合がある。   By the way, the joint of the conductive elastic composition 11 called a weld line is generated at the point where the conductive elastic composition 11 is divided by the inner die 33 in the annular flow path 37 of the crosshead coating die 30 and joined again. To do. As a result, a weld line 4 may occur in the conductive elastic cylindrical covering 1. Since the weld line 4 is continuously present from the inner peripheral surface to the outer peripheral surface of the conductive elastic cylindrical body 2 of the conductive elastic cylindrical cover 1, the secondary process such as polishing is applied to the conductive elastic cylindrical cover. The weld line 4 also remains on the conductive elastic roller obtained in this way. In the conductive elastic composition, the weld line 4 portion has a different composition from that of the region other than the weld line, so that the electric resistance value is different. For this reason, variation occurs in the electric resistance value in the circumferential direction of the conductive elastic roller. For example, when the conductive elastic roller is a charging roller, the photosensitive drum cannot be uniformly charged, resulting in poor image quality. May occur.

従って、導電性弾性円筒被覆体1のウェルドライン4を低減させることが望まれる。このために、外周面につる巻線状溝を有する内側ダイ外周面と平滑な外側ダイ内周面から構成される環状流路を有するクロスヘッド被覆ダイ(内側スパイラルダイ式クロスヘッド被覆ダイ)を用いた被覆押出成形を採用することができる。   Therefore, it is desired to reduce the weld line 4 of the conductive elastic cylindrical covering 1. For this purpose, a crosshead covering die (inner spiral die type crosshead covering die) having an annular flow path constituted by an inner die outer peripheral surface having a winding groove on the outer peripheral surface and a smooth outer die inner peripheral surface is provided. The coated extrusion used can be employed.

この成形では、図6に示すように、導電性弾性体導入口32よりクロスヘッド被覆ダイ30内に導かれた導電性弾性体組成物は、内側ダイ33によって分流される。そののち、導電性弾性体組成物は再び合流して内側ダイ33と外側ダイ35で構成される環状流路37にて円筒状に形成されて導電性弾性円筒体となる。図6は、クロスヘッド被覆ダイの押出方向に垂直な面における断面図であり、導電性弾性体組成物の流れを矢印で示してある。この際に、内側ダイ外周面のつる巻線状溝に導かれて内側ダイ周方向に周回する流れ(以下、周回流れと称す)が生じる。その結果、内側ダイ外周面のつる巻線状溝と外側ダイ内周面との間隙において押出軸方向に流れる漏洩流が発生して導電性弾性円筒体に生じるウェルドラインを低減する。   In this molding, as shown in FIG. 6, the conductive elastic material composition introduced into the crosshead coating die 30 from the conductive elastic material inlet 32 is diverted by the inner die 33. After that, the conductive elastic body composition is joined again and formed into a cylindrical shape in the annular flow path 37 constituted by the inner die 33 and the outer die 35 to become a conductive elastic cylindrical body. FIG. 6 is a cross-sectional view in a plane perpendicular to the extrusion direction of the crosshead-coated die, and the flow of the conductive elastic composition is indicated by arrows. At this time, a flow (hereinafter referred to as a “circular flow”) that is guided to the winding groove on the outer peripheral surface of the inner die and circulates in the inner die circumferential direction occurs. As a result, a leakage flow that flows in the direction of the extrusion axis is generated in the gap between the winding groove on the outer peripheral surface of the inner die and the inner peripheral surface of the outer die, thereby reducing the weld line generated in the conductive elastic cylinder.

しかし内側スパイラルダイ式クロスヘッド被覆ダイを用いたクロスヘッド被覆押出成形の場合においても、押出成形される導電性弾性体組成物11の環状流路37を流れる際の挙動によっては次のような現象が発生することがある。すなわち、導電性弾性体組成物が、熱可塑性樹脂が示すような粘性の挙動に加えて、ゴムや熱可塑性エラストマーのように弾性の挙動を大きく示す場合は、内側ダイ周方向に周回する流れが十分に発生しないことがある。この場合内側ダイ外周面のつる巻線状溝と外側ダイ内周面の間隙に発生する漏洩流が不足する。   However, even in the case of cross head covering extrusion using an inner spiral die type cross head covering die, depending on the behavior of the conductive elastic body composition 11 to be extruded through the annular flow path 37, the following phenomenon is caused. May occur. That is, when the conductive elastic composition exhibits a large elastic behavior such as rubber or thermoplastic elastomer in addition to the viscous behavior shown by the thermoplastic resin, the flow around the inner die circumferential direction is It may not occur sufficiently. In this case, the leakage flow generated in the gap between the winding groove on the outer peripheral surface of the inner die and the inner peripheral surface of the outer die is insufficient.

さらに、押出成形される導電性弾性体組成物11の環状流路37を流れる際の挙動が、熱可塑性樹脂が示すような粘性の挙動に加えて、ゴムや熱可塑性エラストマーのように弾性の挙動を大きく示す場合(弾性的挙動が大きい場合)は、次の懸念もある。すなわち、内側ダイと外側ダイの間隙の幅(以下、環状流路幅と称す)を大きくしなければ、環状流路内を導電性弾性体が流れることができなくなり押出成形ができなくなる可能性がある。このため、環状流路内における流れの挙動が弾性的挙動を大きく示す導電性弾性体組成物を押出成形するためのクロスヘッド被覆ダイは、クロスヘッド被覆ダイの環状流路幅を大きくする必要がある。しかし、環状流路幅を大きくすると、導電性弾性体組成物11が弾性的挙動を大きく示すために、環状流路の外側ダイ近傍における内側ダイ外周面のつる巻線状溝から受ける周回流れの力が不足することがある。その結果、環状流路の外側ダイ近傍の導電性弾性体組成物は十分に周回流れを発生することができず、漏洩流が不足することがある。このため、弾性的挙動を大きく示す導電性弾性体組成物に内側スパイラルダイ式クロスヘッドを用いた場合、十分にウェルドラインを低減することができない場合がある。このため、導電性弾性円筒体2のウェルドライン4を十分に低減することが出来なくなり、導電性弾性円筒被覆体1にウェルドライン4が生じることがある。このため、導電性弾性円筒被覆体1を次工程で加工して得られる導電性弾性体ローラにウェルドラインは残存して、当該ローラの周方向電気抵抗値にばらつきが生じることがある。また、導電性弾性体組成物11中に導電性付与や機械的強度向上などのためとして、カーボンブラック、カーボンファイバー、金属粉末、金属酸化物粉末などが含有される場合がある。これらはウェルドラインに偏在しやすいため、ウェルドラインとウェルドライン以外の電気抵抗値のばらつきが一層大きくなり、導電性弾性体ローラのウェルドラインに起因する電気抵抗値のばらつきが大きくなることがある。   Furthermore, the behavior of the conductive elastic body composition 11 to be extruded through the annular flow path 37 is elastic like that of rubber and thermoplastic elastomer, in addition to the behavior of viscosity as shown by thermoplastic resins. In the case where a large value is exhibited (when the elastic behavior is large), there is also the following concern. That is, unless the width of the gap between the inner die and the outer die (hereinafter referred to as the annular channel width) is increased, there is a possibility that the conductive elastic body cannot flow in the annular channel and extrusion molding cannot be performed. is there. For this reason, a crosshead coating die for extruding a conductive elastic composition in which the flow behavior in the annular channel exhibits a large elastic behavior needs to increase the annular channel width of the crosshead coating die. is there. However, when the annular channel width is increased, the conductive elastic composition 11 exhibits a large elastic behavior, so that the circulation flow received from the winding groove on the outer peripheral surface of the inner die in the vicinity of the outer die of the annular channel. Power may be insufficient. As a result, the conductive elastic body composition in the vicinity of the outer die of the annular channel cannot sufficiently generate a circular flow, and the leakage flow may be insufficient. For this reason, when an inner spiral die type cross head is used for a conductive elastic composition that exhibits a large elastic behavior, the weld line may not be sufficiently reduced. For this reason, the weld line 4 of the conductive elastic cylindrical body 2 cannot be sufficiently reduced, and the weld line 4 may be generated in the conductive elastic cylindrical covering 1. For this reason, the weld line may remain on the conductive elastic roller obtained by processing the conductive elastic cylindrical covering 1 in the next step, and the circumferential electric resistance value of the roller may vary. In addition, the conductive elastic composition 11 may contain carbon black, carbon fiber, metal powder, metal oxide powder, etc. for imparting conductivity and improving mechanical strength. Since these are likely to be unevenly distributed in the weld line, the variation in the electric resistance value other than the weld line and the weld line is further increased, and the variation in the electric resistance value due to the weld line of the conductive elastic roller may be increased.

本発明の目的は、導電性弾性体ローラの周方向電気抵抗値のばらつきを低減させ、電子写真式画像形成装置に用いた場合に画像不良を低減可能な導電性弾性体ローラの製造方法を提供することである。 The purpose of the present invention, the variation in circumferential electrical resistance of the conductive resilient roller is reduced, the manufacturing method capable of reducing conductive elastic roller an image defect when used in electrophotographic image forming apparatus Is to provide.

本発明により、
導電性弾性体組成物を押し出す押出機と、クロスヘッド被覆ダイとを有し、
該クロスヘッド被覆ダイは、
内側ダイおよび外側ダイを有しており、
該内側ダイの外周面と該外側ダイの内周面とで構成されている、該押出機から押し出される該導電性弾性体組成物を円筒状に形成する環状流路を有しており、
該内側ダイは、該環状流路の中心軸と同じ向きに該支持軸が装着される貫通孔を有しており、
該環状流路は、その出口が該貫通孔に面しており、さらに
該内側ダイの外周面および該外側ダイの内周面には、該導電性弾性体組成物の押出方向を中心軸とする、つる巻線状溝が形成されている導電性ローラの製造装置を用いた、支持軸と該支持軸を被覆している導電性弾性体とを有する導電性弾性体ローラの製造方法であって、
前記クロスヘッド被覆ダイの貫通孔に支持軸を装着する工程と、
前記押出機から前記クロスヘッド被覆ダイに、ゴムおよびカーボンブラックを含む導電性弾性体組成物を供給し、該貫通孔に装着された該支持軸を、前記環状流路において円筒状に形成された該導電性弾性体組成物で被覆する工程と、を有する導電性弾性体ローラの製造方法が提供される。
According to the present invention,
An extruder for extruding the conductive elastic composition, and a crosshead coating die,
The crosshead coating die is
Has an inner die and an outer die,
The outer peripheral surface of the inner die and the inner peripheral surface of the outer die have an annular flow path that forms the conductive elastic composition extruded from the extruder into a cylindrical shape;
The inner die has a through hole in which the support shaft is mounted in the same direction as the central axis of the annular flow path,
The annular channel has an outlet facing the through hole, and
An apparatus for producing a conductive roller, in which a helically wound groove is formed on the outer peripheral surface of the inner die and the inner peripheral surface of the outer die with the extrusion direction of the conductive elastic composition as a central axis. A method for producing a conductive elastic roller having a support shaft and a conductive elastic body covering the support shaft,
Attaching a support shaft to the through hole of the crosshead covering die;
A conductive elastic body composition containing rubber and carbon black is supplied from the extruder to the crosshead coating die, and the support shaft attached to the through hole is formed in a cylindrical shape in the annular flow path. And a step of coating with the conductive elastic body composition .

本発明により、導電性弾性体ローラの周方向電気抵抗値のばらつきを低減させ、電子写真式画像形成装置に用いた場合に画像不良を低減可能な導電性弾性体ローラの製造方法が提供される。 According to the present invention, there is provided a method for manufacturing a conductive elastic roller that can reduce variations in the circumferential electric resistance value of the conductive elastic roller and reduce image defects when used in an electrophotographic image forming apparatus. .

本発明の導電性弾性体押出成形用クロスヘッド被覆ダイは、内側ダイ外周面に押出方向を中心軸とする内側つる巻線状溝を有する内側ダイと、外側ダイ内周面に押出方向を中心軸とする外側つる巻線状溝を有する外側ダイから構成される環状流路を具備する。本発明の導電性弾性体押出成形装置は、このクロスヘッド被覆ダイと円形状ダイリップを具備する。つる巻線状とは内側ダイ外周面または外側ダイ内周面上において周方向にひとまわりした時に押出軸方向の位置が異なっている状態を示し、その時に押出軸方向に変化する当該押出軸方向距離をリードと定義する。図7に、つる巻線、リード、リード角などを示す。   The crosshead coated die for extrusion molding of the conductive elastic body of the present invention includes an inner die having an inner winding groove on the outer peripheral surface of the inner die and a central direction of the extrusion direction on the inner peripheral surface of the outer die. It comprises an annular channel composed of an outer die having an outer vine winding groove as an axis. The conductive elastic material extrusion molding apparatus of the present invention includes this crosshead coating die and a circular die lip. The helical winding shape indicates a state in which the position in the extrusion axis direction is different when it makes a round in the circumferential direction on the inner die outer peripheral surface or the outer die inner peripheral surface, and the direction of the extrusion axis changes in the extrusion axis direction at that time. Define distance as lead. FIG. 7 shows a vine winding, a lead, a lead angle, and the like.

本発明の導電性弾性体ローラは、上記導電性弾性体押出成形装置を用いて形成されたものである。この導電性弾性体ローラを構成する導電性弾性体形成用材料としては、天然ゴム、ブタジエンゴム、スチレンブタジエンゴム(SBR)、ニトリルゴム、エチレンプロピレンゴム(EPDM)、クロロプレンゴム(CR)、ニトリルブタジエンゴム(NBR)、エピクロルヒドリンゴム、ブチルゴム、シリコーンゴム、ウレタンゴム、フッソゴム、塩素ゴムを含むゴムや熱可塑性エラストマーなどを挙げることができる。   The conductive elastic roller of the present invention is formed using the conductive elastic body extrusion molding apparatus. Examples of the material for forming the conductive elastic body constituting the conductive elastic roller include natural rubber, butadiene rubber, styrene butadiene rubber (SBR), nitrile rubber, ethylene propylene rubber (EPDM), chloroprene rubber (CR), and nitrile butadiene. Examples thereof include rubber (NBR), epichlorohydrin rubber, butyl rubber, silicone rubber, urethane rubber, fluorine rubber, rubber containing chlorine rubber and thermoplastic elastomer.

本発明に係る押出成形装置においては、内側ダイと外側ダイから構成される環状流路を具備するクロスヘッド被覆ダイにおいて、当該内側ダイ外周面と当該外側ダイの内周面それぞれにつる巻線状溝を有している。   In the extrusion molding apparatus according to the present invention, in a crosshead-coated die having an annular flow path composed of an inner die and an outer die, a winding shape is formed on each of the inner die outer peripheral surface and the outer die inner peripheral surface. Has a groove.

このため、押出成形される導電性弾性体組成物の環状流路を流れる際の挙動が、熱可塑性樹脂が示すごとき粘性の挙動に加えて、ゴムや熱可塑性エラストマーのように弾性の挙動を大きく示す場合においても、次のようにウェルドラインを抑制することができる。すなわち、クロスヘッド被覆ダイ環状流路において導電性弾性体組成物を円筒状に形成する際に、環状流路の内側ダイ外周面のつる巻線状溝と外側ダイ内周面のつる巻線状溝の双方から押出軸方向の漏洩流が発生する。従って、環状流路における押出軸方向の漏洩流量が増加して、導電性弾性体組成物の組成の均一性が向上して導電性弾性体円筒体のウェルドラインが低減する。従って、本押出成形装置を用いて製造した導電性弾性円筒体から得られる導電性弾性体ローラは、ローラの周方向電気抵抗値のばらつきが小さくなり、この導電性弾性体ローラを用いた電子写真装置における画質不良の発生を抑えることができる。   For this reason, the behavior of the extruded elastic elastomer composition when it flows through the annular flow path greatly increases the behavior of elasticity like rubber and thermoplastic elastomer, in addition to the viscous behavior shown by thermoplastic resins. Even in the case shown, the weld line can be suppressed as follows. That is, when the conductive elastic composition is formed in a cylindrical shape in the crosshead-coated die annular flow path, the winding groove on the inner die outer peripheral surface of the annular flow path and the spiral winding shape on the outer peripheral surface of the outer die are formed. Leakage flows in the direction of the extrusion axis are generated from both grooves. Accordingly, the leakage flow rate in the direction of the extrusion axis in the annular channel increases, the uniformity of the composition of the conductive elastic body composition is improved, and the weld line of the conductive elastic body cylindrical body is reduced. Therefore, the conductive elastic roller obtained from the conductive elastic cylindrical body manufactured by using this extrusion molding apparatus has a small variation in the circumferential electric resistance value of the roller, and electrophotography using this conductive elastic roller. The occurrence of image quality defects in the apparatus can be suppressed.

[溝数量]
つる巻線1リードの間に存在するつる巻線の数を溝の数と定義する。内側ダイ外周面と外側ダイ内周面の溝の数はそれぞれ任意に設けることが許容されるが、好ましくは1〜36本の範囲、より好ましくは4〜20本である。溝の数を36本以下とすることで、つる巻線状溝内における導電性弾性体組成物の流動抵抗が増加することを抑制する観点から、溝の数は36本が好ましく、20本以下がより好ましい。
[Groove quantity]
The number of vine windings existing between one vine winding lead is defined as the number of grooves. The number of grooves on the inner die outer peripheral surface and the outer die inner peripheral surface can be arbitrarily provided, but is preferably in the range of 1 to 36, more preferably 4 to 20. From the viewpoint of suppressing an increase in the flow resistance of the conductive elastic composition in the vine winding groove by setting the number of grooves to 36 or less, the number of grooves is preferably 36, and 20 or less. Is more preferable.

環状流路出口における周方向の押出量の均一化の観点から、溝数は4本以上が好ましい。   From the viewpoint of uniformizing the amount of extrusion in the circumferential direction at the annular channel outlet, the number of grooves is preferably four or more.

[溝形状]
つる巻線状溝の形状は、つる巻線の接線を法線とする面へ当該溝形状を投影した時の形状(以下、投影溝形状と称す)が、例えば半円形状、半だ円形状、多角形状(例えば、三角形、矩形、台形等)等にすることができる。中でも、導電性弾性体組成物の滞留防止の観点から半円形状、半だ円形状など投影溝形状に隅角部の無い流線形状が望ましい。つる巻線状溝に沿って、投影溝形状の大きさと形が変化していてもよい。
[Groove shape]
As for the shape of the vine winding groove, the shape when the groove shape is projected onto a surface whose normal is the tangent of the vine winding (hereinafter referred to as the projected groove shape) is, for example, a semicircular shape or a semi-elliptical shape. , Polygonal shapes (eg, triangles, rectangles, trapezoids, etc.), etc. Among these, from the viewpoint of preventing the retention of the conductive elastic composition, a streamline shape having no corner portion in the projected groove shape such as a semicircular shape and a semi-elliptical shape is desirable. The size and shape of the projected groove shape may change along the coiled groove.

[つる巻線状溝のリード角]
つる巻線状溝と、当該つる巻線状溝上の一点を通る押出方向の軸に直角な平面とが成す角度を、当該点を通る内側ダイまたは外側ダイの半径線に直角な平面に投影した角度をリード角と定義する(図7参照)。
[Lead angle of helical winding groove]
The angle formed by the vine winding groove and a plane perpendicular to the axis of the extrusion direction passing through one point on the vine winding groove is projected onto a plane perpendicular to the radial line of the inner die or outer die passing through the point. The angle is defined as the lead angle (see FIG. 7).

内側ダイ外周面のつる巻線状溝のリード角と外側ダイ内周面のつる巻線状溝のリード角はそれぞれ任意に設定できる。つる巻線状溝のリード角はつる巻線状溝上の任意の位置で、該リード角を変化することを許容する。   The lead angle of the coiled groove on the outer peripheral surface of the inner die and the lead angle of the coiled groove on the inner peripheral surface of the outer die can be set arbitrarily. The lead angle of the vine winding groove allows the lead angle to be changed at any position on the vine winding groove.

[溝の配置]
内側ダイ外周面のつる巻線状溝と外側ダイ内周面のつる巻線状溝の配置はそれぞれ任意に設定できるが、環状流路出口における周方向の押出量が均一になるように配置することが望ましい。
[Groove arrangement]
The arrangement of the winding groove on the outer peripheral surface of the inner die and the arrangement of the winding groove on the inner peripheral surface of the outer die can be arbitrarily set, but they are arranged so that the circumferential extrusion amount at the annular channel outlet is uniform. It is desirable.

[環状流路]
また、本発明に係る押出成形装置は、単層の導電性弾性ローラを形成するための装置に限定されるものではない。外側ダイの外周面にもつる巻線状溝を形成し、さらにその外周につる巻線状溝を有する内周面を有する第二の外側ダイを設置して、第二の環状流路を設けることにより、二層の導電性弾性円筒体を支持軸上に設けることができる。このような装置は二層の導電性弾性体ローラの製造に適用することができる。さらに上述と同じようにして第三以上の外側ダイを用い、環状流路を複数段積層することにより、多層(三層以上)の導電性弾性体ローラを得ることができる。
[Annular channel]
Further, the extrusion molding apparatus according to the present invention is not limited to an apparatus for forming a single-layer conductive elastic roller. A winding groove is formed on the outer peripheral surface of the outer die, and a second outer die having an inner peripheral surface having a winding groove extending on the outer periphery is provided to provide a second annular channel. Thus, a two-layered conductive elastic cylinder can be provided on the support shaft. Such an apparatus can be applied to the production of a two-layered conductive elastic roller. Further, by using a third or more outer die and laminating a plurality of annular flow paths in the same manner as described above, a multilayer (three layers or more) conductive elastic body roller can be obtained.

また、内側ダイ外周面のつる巻線状溝と外側ダイ内周面のつる巻線状溝のそれぞれのつる巻線状溝の巻き方向が同方向となるように構成することが好ましい。   Further, it is preferable that the winding direction of each of the winding-shaped grooves on the outer circumferential surface of the inner die and the inner winding surface of the outer die is the same.

この場合、押出成形される導電性弾性体組成物の環状流路を流れる挙動が、熱可塑性樹脂が示すごとき粘性の挙動に加えて、ゴムや熱可塑性エラストマーのように弾性の挙動を大きく示す場合においても、次のような効果が得られる。すなわち、環状流路において導電性弾性体組成物を円筒状に形成して導電性弾性円筒体を得る際に、内側ダイ外周面のつる巻線状溝と外側ダイ内周面のつる巻線状溝から漏洩流が発生する。そして、さらに内側ダイ外周面のつる巻線状溝と外側ダイ外周面のつる巻線状溝の巻き方向が同じであるため、環状流路内における導電性弾性体組成物の周方向の流れが大きくなる。従って、内側ダイ外周面のつる巻線状溝と外側ダイ内周面のつる巻線状溝から生じる押出軸方向の漏洩流が増加する。その結果、導電性弾性体組成物の組成の均一性が向上して導電性弾性体円筒のウェルドラインをより低減することができ、導電性弾性円筒体から得られる導電性弾性体ローラのウェルドラインをより低減することができる。もって、導電性弾性体ローラにおける周方向電気抵抗値のばらつきがより低減される。   In this case, when the behavior of the extruded elastic elastomer composition flowing through the annular flow channel shows a large elastic behavior, such as rubber or thermoplastic elastomer, in addition to the viscous behavior shown by thermoplastic resins The following effects can be obtained. That is, when the conductive elastic body composition is formed into a cylindrical shape in the annular flow path to obtain a conductive elastic cylindrical body, the winding groove on the outer peripheral surface of the inner die and the winding shape of the inner peripheral surface of the outer die Leakage flow is generated from the groove. And since the winding direction of the coiled groove on the inner die outer peripheral surface and the coiled groove on the outer die outer peripheral surface are the same, the circumferential flow of the conductive elastic composition in the annular channel is growing. Therefore, the leakage flow in the direction of the extrusion axis generated from the helical winding groove on the inner die outer peripheral surface and the helical winding groove on the outer die inner peripheral surface increases. As a result, the uniformity of the composition of the conductive elastic body composition is improved and the weld line of the conductive elastic cylinder can be further reduced, and the weld line of the conductive elastic roller obtained from the conductive elastic cylinder is obtained. Can be further reduced. Accordingly, the variation in the circumferential electric resistance value in the conductive elastic roller is further reduced.

対向する内側ダイ外周面と外側ダイ内周面のつる巻線状溝の巻方向が同方向である導電性弾性体押出成形用クロスヘッド被覆ダイを有する押出成形装置を用いて製造した導電性弾性体ローラは、ローラの周方向電気抵抗値のばらつきがより小さくなる。その結果、この導電性弾性体ローラを用いた電子写真装置における画質不良の発生をより低減させることができる。   Conductive elasticity produced using an extrusion molding machine having a crosshead coated die for extrusion molding of a conductive elastic body in which the winding direction of the winding grooves on the inner peripheral surface and inner peripheral surface of the opposing die is the same direction. The body roller has a smaller variation in the circumferential electrical resistance value of the roller. As a result, it is possible to further reduce the occurrence of image quality defects in an electrophotographic apparatus using the conductive elastic roller.

本発明の押出成形装置は、内側ダイ外周面と外側ダイ内周面とから構成される環状流路を有するクロスヘッド被覆ダイを具備し、円形状ダイリップを具備する押出成形装置である。そしてこの装置は、内側ダイ外周面に押出方向を軸とする内側つる巻線状溝を有しつつ、外側ダイ内周面に押出方向を軸とする外側つる巻線状溝を有する環状流路を具備するクロスヘッド被覆ダイを有することを特徴とする。以下、本発明の好ましい実施の形態について図4を用いて説明する。   The extrusion molding apparatus of the present invention is an extrusion molding apparatus that includes a crosshead covering die having an annular flow path constituted by an inner die outer peripheral surface and an outer die inner peripheral surface, and a circular die lip. This device has an annular flow path having an inner spiral groove on the inner die outer peripheral surface and an outer spiral groove on the outer die inner surface while having an outer spiral groove on the outer die inner peripheral surface. It has the crosshead coating die | dye which comprises these. Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG.

図4に本発明に係る押出成形装置の例を示す。この装置は、押出機10と、環状流路37を具備する環状被覆ダイ30とを有する。押出機10は導電性弾性体組成物11を投入する投入口12と導電性弾性体組成物11を可塑化および混練しながら搬送するためのシリンダ13とスクリュ14を有する。そして、さらに可塑化および混練された導電性弾性体組成物を排出するための排出口(押出機シリンダ出口)15、ブレーカプレート16を有している。シリンダ13は投入口12と排出口15の間に脱気口17を有しており、脱気口17には真空ポンプ(不図示)が連結されている。なお、投入口12へ投入する導電性弾性体組成物の形状は、連続的に導電性弾性体組成物を押出機へ供給できる形状が好ましく、具体的には短冊状や紐状、粒状等の形状が適している。また、ブレーカプレート16には導電性弾性体組成物中の異物除去やシリンダ内圧力上昇などを目的とした金網の設置が許容される。   FIG. 4 shows an example of an extrusion molding apparatus according to the present invention. This apparatus has an extruder 10 and an annular coating die 30 having an annular flow path 37. The extruder 10 has a loading port 12 for charging the conductive elastic composition 11 and a cylinder 13 and a screw 14 for conveying the conductive elastic composition 11 while plasticizing and kneading. Further, it has a discharge port (extruder cylinder outlet) 15 and a breaker plate 16 for discharging the plasticized and kneaded conductive elastic composition. The cylinder 13 has a deaeration port 17 between the input port 12 and the discharge port 15, and a vacuum pump (not shown) is connected to the deaeration port 17. In addition, the shape of the conductive elastic composition to be charged into the charging port 12 is preferably a shape capable of continuously supplying the conductive elastic composition to the extruder, and specifically, a strip shape, a string shape, a granular shape, or the like. The shape is suitable. The breaker plate 16 is allowed to be provided with a metal mesh for the purpose of removing foreign substances in the conductive elastic composition or increasing the pressure in the cylinder.

本例では、クロスヘッド被覆ダイへの導電性弾性体組成物を供給する装置としてスクリュ式押出機を示した。しかし、当該導電性弾性体組成物供給装置としては、スクリュ式押出機以外にもギヤポンプ式押出機やスクリュ押出機とギヤポンプを組み合わせた装置などを用いることができる。   In this example, a screw type extruder was shown as an apparatus for supplying the conductive elastic composition to the crosshead coating die. However, as the conductive elastic body composition supply device, a gear pump type extruder or a combination device of a screw extruder and a gear pump can be used in addition to the screw type extruder.

押出機10の排出口15は、クロスヘッド被覆ダイ30を構成する外側ダイ35の導電性弾性体組成物導入口と連結する。クロスヘッド被覆ダイ30は内側ダイ33の外周面と外側ダイ35の内周面から構成される環状流路37を備える。内側ダイ33は外側ダイ35の内周面の一部と嵌合固定されつつ、環状流路37の内周側の壁面となり、外側ダイ35の内周面と環状流路を構成する。外側ダイ35の内周面は環状流路37の外周側の壁面となる。内側ダイ33は環状流路37の中心軸と同じ向きに貫通孔を具備し、この貫通孔には支持軸3を装着することができる。クロスヘッド被覆ダイ30の押出方向端部には円形状のダイリップ38が取り付けられており、図2に示すような、導電性弾性円筒体(断面は円環状)2によって支持軸3(の一部)が被覆された導電性弾性円筒被覆体1が排出される。排出された導電性弾性円筒被覆体1を加熱架橋または冷却固化して、導電性弾性体ローラを得る。   The discharge port 15 of the extruder 10 is connected to the conductive elastic composition introduction port of the outer die 35 constituting the crosshead coating die 30. The crosshead covering die 30 includes an annular flow path 37 constituted by the outer peripheral surface of the inner die 33 and the inner peripheral surface of the outer die 35. While the inner die 33 is fitted and fixed to a part of the inner peripheral surface of the outer die 35, the inner die 33 becomes a wall surface on the inner peripheral side of the annular flow path 37 and constitutes an inner peripheral surface of the outer die 35 and the annular flow path. The inner peripheral surface of the outer die 35 is a wall surface on the outer peripheral side of the annular flow path 37. The inner die 33 has a through hole in the same direction as the central axis of the annular flow path 37, and the support shaft 3 can be attached to the through hole. A circular die lip 38 is attached to the end of the crosshead covering die 30 in the extrusion direction, and a part of the support shaft 3 (part of the support shaft 3) is formed by a conductive elastic cylindrical body (the cross section is circular) as shown in FIG. The conductive elastic cylindrical covering 1 covered with) is discharged. The discharged conductive elastic cylindrical covering 1 is heated and crosslinked or cooled and solidified to obtain a conductive elastic roller.

支持軸3は往復動が自在な状態で内側ダイ貫通孔に設置される。支持軸の材質は特に制限は無く、例えば金属や樹脂などを用いる。   The support shaft 3 is installed in the inner die through hole in a state where it can freely reciprocate. The material of the support shaft is not particularly limited, and for example, metal or resin is used.

以下、実施例により本発明を詳しく説明するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this.

[実施例1]
図4に示す構造を有する押出成形装置を用いた。具体的には、シリンダ直径が50mmで、L/D(シリンダの長さ/直径比)が22である脱気口付きの押出機を用いた。クロスヘッド被覆ダイとして図4のごとく、外周面につる巻線状溝を有する内側ダイと内周面につる巻線状溝を有する外側ダイで構成される環状流路を具備するクロスヘッド被覆ダイを使用した。内側ダイ外周面に設置されたつる巻線状溝の形態は、つる巻線状溝数12本、つる巻線状溝のリード角60°、つる巻線状溝の配置は内側ダイ外周面に等間隔に配置した。また、つる巻線状溝をリード角に垂直な面に投影した時の当該つる巻線状溝の投影形状(投影溝形状)が半だ円形状、つる巻線の巻き方向は右ねじの方向とした。一方、外側ダイ内周面のつる巻線状溝の形態は、つる巻線状溝数6本、つる巻線状リード角45°、つる巻線状溝配置は外側ダイ内周面に等間隔に配置した。また投影溝形状が半円形であり、つる巻線状巻き方向が左ねじ方向とした。
[Example 1]
An extrusion molding apparatus having the structure shown in FIG. 4 was used. Specifically, an extruder with a deaeration port having a cylinder diameter of 50 mm and L / D (cylinder length / diameter ratio) of 22 was used. As shown in FIG. 4, as a crosshead covering die, a crosshead covering die having an annular flow path composed of an inner die having a winding groove on the outer peripheral surface and an outer die having a winding groove on the inner peripheral surface. It was used. The shape of the vine winding groove installed on the inner die outer peripheral surface is 12 vine winding groove grooves, the lead angle of the vine winding groove is 60 °, and the arrangement of the vine winding groove is on the inner die outer peripheral surface. Arranged at equal intervals. In addition, when the vine winding groove is projected onto a plane perpendicular to the lead angle, the projection shape of the vine winding groove (projection groove shape) is a semi-elliptical shape, and the winding direction of the vine winding is the right-handed screw direction. It was. On the other hand, the shape of the vine winding grooves on the inner peripheral surface of the outer die is 6 vine winding grooves, the lead angle of the vine winding is 45 °, and the arrangement of the vine winding groove is equally spaced on the inner peripheral surface of the outer die. Arranged. Further, the shape of the projected groove was semicircular, and the winding direction of the spiral winding was the left-handed screw direction.

また、導電性弾性体組成物として、
・NBR(商品名「Nipol DN219」:日本ゼオン(株)製)100質量部に対して、
・カーボンブラック1(導電性粒子)(商品名「旭HS−500」:旭カーボン製)14質量部、
・カーボンブラック2(導電性粒子)(商品名「ケッチェンブラックEC600JD」:ライオン製)6質量部、
・ステアリン酸亜鉛1質量部、
・酸化亜鉛5質量部、
・液状エポキシ化ポリブタジエン(商品名「アデカザイザーBF−1000」:旭電化工業(株)製)10質量部、
・炭酸カルシウム(商品名「ナノックス#30」:丸尾カルシウム(株)製)30質量部
・炭酸カルシウムを5質量%含む架橋NBR粒子(商品名「Baymod N PV KA 8641」:バイエル(株)製)50質量部、
・ジベンゾチアゾリルジスルフィド(商品名「ノクセラーDM−P」:大内新興化学(株)製)1質量部、
・テトラベンジルチウラムジスルフィド(商品名「パーカシットTBzTD」:フレキシス(株)製)3質量部、および
・硫黄(加硫剤)1.2質量部
をオープンロールで混錬したゴムを使用した。
In addition, as the conductive elastic composition,
-NBR (trade name "Nipol DN219": manufactured by Nippon Zeon Co., Ltd.) 100 parts by mass,
Carbon black 1 (conductive particles) (trade name “Asahi HS-500”: manufactured by Asahi Carbon) 14 parts by mass,
Carbon black 2 (conductive particles) (trade name “Ketjen Black EC600JD”: manufactured by Lion) 6 parts by mass,
-1 part by weight of zinc stearate,
-5 parts by mass of zinc oxide,
-10 parts by mass of liquid epoxidized polybutadiene (trade name "Adekaizer BF-1000": manufactured by Asahi Denka Kogyo Co., Ltd.)
・ 30 parts by weight of calcium carbonate (trade name “Nanox # 30”: manufactured by Maruo Calcium Co., Ltd.) ・ Bridged NBR particles containing 5% by weight of calcium carbonate (trade name “Baymod N PV KA 8641”: manufactured by Bayer Co., Ltd.) 50 parts by mass,
-1 part by weight of dibenzothiazolyl disulfide (trade name “Noxeller DM-P” manufactured by Ouchi Shinsei Chemical Co., Ltd.)
A rubber obtained by kneading 3 parts by mass of tetrabenzylthiuram disulfide (trade name “Perkasit TBzTD”: manufactured by Flexis Co., Ltd.) and 1.2 parts by mass of sulfur (vulcanizing agent) with an open roll was used.

クロスヘッド被覆ダイを構成する内側ダイ内部貫通孔には、予め外直径6mm、長さ251mmの丸棒状の鋼製支持軸を装着した。   A round bar-shaped steel support shaft having an outer diameter of 6 mm and a length of 251 mm was mounted in advance on the inner die inner through-hole constituting the crosshead coating die.

図4に示す構造を有する押出成形装置を用いて、シリンダ、スクリュ、クロスヘッド被覆ダイ、ダイリップの成形温度をそれぞれ100℃、スクリュ回転数10回転で外直径6mmの鋼製支持軸上に導電性弾性体組成物を被覆して導電性弾性円筒被覆体を得た。   Using an extrusion molding apparatus having the structure shown in FIG. 4, the cylinder, screw, crosshead coating die, and die lip are molded at a temperature of 100 ° C., on a steel support shaft having an outer diameter of 6 mm at a screw rotation speed of 10 revolutions. A conductive elastic cylindrical covering was obtained by coating the elastic composition.

得られた導電性弾性円筒被覆体を160℃の熱風炉で1時間架橋して、導電性弾性体ローラを得た。さらに導電性弾性体ローラの導電性弾性体長が230mmになるように導電性弾性体(導電性弾性円筒体が硬化したもの)端部を切断して、この導電性弾性体部分を回転砥石で研磨し、導電性弾性体部を端部直径8.3mm、中央部8.5mmのクラウン形状とした。さらに波長250nm近傍の紫外線ランプを得られたローラの軸方向と平行に設置して、このローラを周方向に回転させながら紫外線を2分間照射して、表面に高架橋層を形成した上で、帯電ローラとした。   The obtained conductive elastic cylindrical covering was crosslinked in a hot air oven at 160 ° C. for 1 hour to obtain a conductive elastic roller. Further, the end of the conductive elastic body (the hardened conductive elastic cylindrical body) is cut so that the length of the conductive elastic body of the conductive elastic roller becomes 230 mm, and this conductive elastic body portion is polished with a rotating grindstone. The conductive elastic body portion was formed into a crown shape having an end diameter of 8.3 mm and a central portion of 8.5 mm. Furthermore, an ultraviolet lamp having a wavelength of around 250 nm was installed in parallel with the axial direction of the obtained roller, and the roller was irradiated with ultraviolet rays for 2 minutes while rotating in the circumferential direction to form a highly crosslinked layer on the surface, and then charged. A roller.

[実施例2]
内側ダイ外周面のつる巻線状溝形態を、溝数12本、リード角60°、溝配置は内側ダイ外周面に等間隔に配置、投影溝形状が半だ円形状、つる巻線巻き方向は右ねじ方向とした。また、外側ダイ内周面のつる巻線状溝形態を、溝数12本、リード角60°、溝配置は外側ダイ内周面に等間隔に配置、投影溝形状が台形であり、つる巻線巻き方向が左ねじ方向とした。それ以外は実施例1と同様にして、帯電ローラを得た。
[Example 2]
Winding groove shape of the inner die outer peripheral surface, 12 grooves, lead angle 60 °, groove arrangement at equal intervals on the inner die outer peripheral surface, projected groove shape is semi-circular, winding direction of the winding Is the right-hand screw direction. In addition, the winding groove shape of the outer peripheral surface of the outer die is 12 grooves, the lead angle is 60 °, the groove arrangement is equally spaced on the inner peripheral surface of the outer die, and the projected groove shape is trapezoidal. The wire winding direction was the left-handed screw direction. Other than that was carried out similarly to Example 1, and obtained the charging roller.

[実施例3]
内側ダイ外周面のつる巻線状溝形態を、溝数12本、リード角60°、溝配置は内側ダイ外周面に等間隔に配置、投影溝形状が半だ円形状、つる巻線状巻き方向は右ねじ方向とした。また、外側ダイ内周面のつる巻線状溝形態を、溝数12本、リード角60°、溝の配置は外側ダイ内周面に等間隔に配置、投影溝形状が半円形であり、つる巻線巻き方向が右ねじ方向とした。それ以外は実施例1と同様にして、帯電ローラを得た。
[Example 3]
Winding groove shape on the outer peripheral surface of the inner die, 12 grooves, lead angle 60 °, groove arrangement at equal intervals on the outer peripheral surface of the inner die, semi-circular projection groove shape, helical winding winding The direction was the right-handed screw direction. In addition, the winding-like groove form of the outer peripheral surface of the outer die is 12 grooves, the lead angle is 60 °, the grooves are arranged at equal intervals on the outer peripheral surface of the outer die, and the projected groove shape is semicircular. The coil winding direction was the right-handed screw direction. Other than that was carried out similarly to Example 1, and obtained the charging roller.

[比較例1]
内側ダイ外周面のつる巻線状溝形態を、溝数12本、リード角60°、溝配置は内側ダイ外周面に等間隔に配置、投影溝形状が半だ円形状、つる巻線巻き方向は右ねじ方向とした。外側ダイ内周面は平滑面とした。それ以外は実施例1と同様にして、帯電ローラを得た。
[Comparative Example 1]
Winding groove shape of the inner die outer peripheral surface, 12 grooves, lead angle 60 °, groove arrangement at equal intervals on the inner die outer peripheral surface, projected groove shape is semi-circular, winding direction of the winding Is the right-hand screw direction. The inner surface of the outer die was a smooth surface. Other than that was carried out similarly to Example 1, and obtained the charging roller.

[比較例2]
内側ダイ外周面のつる巻線状溝のリード角を45°とした以外は比較例1と同様にして、帯電ローラを得た。
[Comparative Example 2]
A charging roller was obtained in the same manner as in Comparative Example 1 except that the lead angle of the winding groove on the outer peripheral surface of the inner die was 45 °.

以上の実施例と比較例の条件を表1に一覧として示す。   The conditions of the above examples and comparative examples are listed in Table 1.

上述の実施例1〜3、比較例1〜2で得られた帯電ローラについて周方向の電気抵抗値のばらつき測定と画像評価を実施した。   The charging rollers obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were measured for variation in electrical resistance value in the circumferential direction and image evaluation.

〈電気抵抗値のばらつき〉
図5に示す電子写真用導電性部材の電気抵抗測定装置を用いて帯電ローラの周方向電気抵抗値のばらつきを測定した。帯電ローラ5の支持軸3の両端部を図に示さない押圧手段で押圧することにより、帯電ローラは円柱状のステンレスドラム81に圧接され、ステンレスドラム61の回転駆動に伴い従動回転する。この状態で、電子写真用導電性部材(帯電ローラ)の支持軸3に外部電源82を用いて直流電圧を印加し、ステンレスドラム81に直列に接続した基準抵抗83にかかる電圧から、帯電ローラの電気抵抗を計算した。
<Dispersion of electrical resistance value>
The variation in the electrical resistance value in the circumferential direction of the charging roller was measured using the electrical resistance measuring device for the electrophotographic conductive member shown in FIG. By pressing both ends of the support shaft 3 of the charging roller 5 with pressing means (not shown), the charging roller is brought into pressure contact with the cylindrical stainless steel drum 81 and is rotated following the rotational driving of the stainless steel drum 61. In this state, a DC voltage is applied to the supporting shaft 3 of the electrophotographic conductive member (charging roller) using an external power source 82, and the voltage applied to the reference resistor 83 connected in series to the stainless steel drum 81 is used to determine the charging roller. The electrical resistance was calculated.

直流電源には小型電源PL−650−0.1(松定プレシジョン社製商品名)を、電圧計にはデジタルマルチメーターフルーク83(フルーク製商品名)を使用した。   A small power source PL-650-0.1 (trade name, manufactured by Matsusada Precision Co., Ltd.) was used as the DC power source, and a digital multimeter Fluke 83 (trade name, manufactured by Fluke) was used as the voltmeter.

上記帯電ローラの電気抵抗は、温度23℃、相対湿度50%環境下で、図5の装置を使用し、支持軸とステンレスドラムの間に直流200Vの電圧を印加して0.1秒ごとに5秒間測定した。そして、その測定値の最大値÷最小値を電気抵抗値のばらつきとして算出した。   The electrical resistance of the charging roller is as follows: at a temperature of 23 ° C. and a relative humidity of 50%, using the apparatus of FIG. 5 and applying a DC voltage of 200 V between the support shaft and the stainless drum every 0.1 seconds. Measured for 5 seconds. The maximum value / minimum value of the measured values was calculated as the variation of the electric resistance value.

〈画像評価〉
上述の実施例1〜3、比較例1〜2で得られた電子写真用導電性弾性体ローラを、図1の構成を有する電子写真装置であるLBP5500(キヤノン(株)製商品名)に帯電ローラとして、被帯電体(感光ドラム)と共に取り付けた。なお、ここで使用した被帯電体は、ポリカーボネート系樹脂を主体とする電荷輸送層をもつ。そして、温度15℃、相対湿度10%の環境下においてハーフトーン画像(感光ドラムの回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像)を出力した。このときに、帯電ローラの周方向電気抵抗値のばらつきに起因する帯状またはスジ状の「画像濃度むら」を評価した。その明部と暗部の濃度差から、以下の基準で評価した。実使用上、△評価以上であれば問題はない。
○:濃度差は無し。
△:濃度差は軽微。
×:はっきりとした濃度差が有り。
<Image evaluation>
The electroconductive elastic roller for electrophotography obtained in Examples 1 to 3 and Comparative Examples 1 and 2 described above is charged to LBP5500 (trade name, manufactured by Canon Inc.) which is an electrophotographic apparatus having the configuration of FIG. A roller was attached together with a member to be charged (photosensitive drum). The object to be charged used here has a charge transport layer mainly composed of a polycarbonate resin. Then, a halftone image (an image in which a horizontal line having a width of 1 dot and an interval of 2 dots was drawn in a direction perpendicular to the rotation direction of the photosensitive drum) was output in an environment of a temperature of 15 ° C. and a relative humidity of 10%. At this time, strip-like or stripe-like “image density unevenness” due to variation in the circumferential electric resistance value of the charging roller was evaluated. Based on the density difference between the bright part and the dark part, the following criteria were used for evaluation. In practical use, there is no problem as long as the evaluation is Δ.
○: No difference in density.
Δ: Concentration difference is slight.
X: There is a clear density difference.

実施例1〜3と比較例1〜2で得られた導電性帯電ローラの電気抵抗値のばらつきと画像評価の結果を表2に示す。   Table 2 shows the variation in electric resistance values of the conductive charging rollers obtained in Examples 1 to 3 and Comparative Examples 1 and 2 and the results of image evaluation.

Figure 0004939122
Figure 0004939122

Figure 0004939122
Figure 0004939122

以上説明されたように、本発明の押出成形装置によれば、被覆押出成形時のウェルドラインを低減させて、周方向電気抵抗値のばらつきの小さな導電性弾性体ローラを得ることができる。   As described above, according to the extrusion molding apparatus of the present invention, it is possible to obtain a conductive elastic roller having a small variation in circumferential electric resistance value by reducing the weld line during the coating extrusion molding.

電子写真プロセスによる画像形成装置を説明するための模式図である。It is a schematic diagram for demonstrating the image forming apparatus by an electrophotographic process. 押出成形装置から得られる導電性弾性円筒被覆体を説明するための模式図である。It is a schematic diagram for demonstrating the electroconductive elastic cylindrical covering obtained from an extrusion molding apparatus. クロスヘッド被覆ダイを有する従来の被覆押出装置を説明するための模式的部分断面図である。It is a typical fragmentary sectional view for demonstrating the conventional coating extrusion apparatus which has a crosshead coating die. 本発明のクロスヘッド被覆ダイを用いた押出成形装置を説明するための模式的部分断面図である。It is a typical fragmentary sectional view for demonstrating the extrusion molding apparatus using the crosshead coating die of this invention. 導電性弾性体ローラ電気抵抗測定装置の模式図である。It is a schematic diagram of a conductive elastic roller electrical resistance measuring device. クロスヘッド被覆ダイにおける内側ダイによる導電性弾性体組成物の分流及び合流を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the shunting and confluence | merging of the electroconductive elastic body composition by the inner side die in a crosshead coating die. つる巻線、リード、リード角を説明するための模式図である。It is a schematic diagram for demonstrating a vine winding, a lead, and a lead angle.

符号の説明Explanation of symbols

1・・・導電性弾性円筒被覆体
2・・・導電性弾性円筒体
3・・・支持軸
4・・・ウェルドライン
5・・・導電性弾性体ローラ
10・・・押出機
11・・・導電性弾性体組成物
12・・・投入口
13・・・シリンダ
14・・・スクリュ
15・・・排出口
16・・・ブレーカプレート
17・・・脱気孔
30・・・クロスヘッド被覆ダイ
32・・・導電性弾性体組成物導入口
33・・・内側ダイ
35・・・外側ダイ
37・・・環状流路
38・・・円形状ダイリップ
81・・・ステンレスドラム
82・・・外部電源
83・・・基準抵抗
91・・・感光ドラム
92・・・帯電ローラ
93・・・現像ローラ
94・・・転写ローラ
DESCRIPTION OF SYMBOLS 1 ... Conductive elastic cylindrical covering body 2 ... Conductive elastic cylindrical body 3 ... Support shaft 4 ... Weld line 5 ... Conductive elastic body roller 10 ... Extruder 11 ... Conductive elastic body composition 12 ... input port 13 ... cylinder 14 ... screw 15 ... discharge port 16 ... breaker plate 17 ... deaeration hole 30 ... crosshead coating die 32 .. Conductive elastic body composition inlet 33... Inner die 35... Outer die 37... Annular channel 38... Circular die lip 81. ..Reference resistance 91 ... photosensitive drum 92 ... charging roller 93 ... developing roller 94 ... transfer roller

Claims (1)

導電性弾性体組成物を押し出す押出機と、クロスヘッド被覆ダイとを有し、
該クロスヘッド被覆ダイは、
内側ダイおよび外側ダイを有しており、
該内側ダイの外周面と該外側ダイの内周面とで構成されている、該押出機から押し出される該導電性弾性体組成物を円筒状に形成する環状流路を有しており、
該内側ダイは、該環状流路の中心軸と同じ向きに該支持軸が装着される貫通孔を有しており、
該環状流路は、その出口が該貫通孔に面しており、さらに
該内側ダイの外周面および該外側ダイの内周面には、該導電性弾性体組成物の押出方向を中心軸とする、つる巻線状溝が形成されている導電性ローラの製造装置を用いた、支持軸と該支持軸を被覆している導電性弾性体とを有する導電性弾性体ローラの製造方法であって、
前記クロスヘッド被覆ダイの貫通孔に支持軸を装着する工程と、
前記押出機から前記クロスヘッド被覆ダイに、ゴムおよびカーボンブラックを含む導電性弾性体組成物を供給し、該貫通孔に装着された該支持軸を、前記環状流路において円筒状に形成された該導電性弾性体組成物で被覆する工程と、を有することを特徴とする導電性弾性体ローラの製造方法。
An extruder for extruding the conductive elastic composition, and a crosshead coating die,
The crosshead coating die is
Has an inner die and an outer die,
The outer peripheral surface of the inner die and the inner peripheral surface of the outer die have an annular flow path that forms the conductive elastic composition extruded from the extruder into a cylindrical shape;
The inner die has a through hole in which the support shaft is mounted in the same direction as the central axis of the annular flow path,
The annular channel has an outlet facing the through hole, and
An apparatus for producing a conductive roller, in which a helically wound groove is formed on the outer peripheral surface of the inner die and the inner peripheral surface of the outer die with the extrusion direction of the conductive elastic composition as a central axis. A method for producing a conductive elastic roller having a support shaft and a conductive elastic body covering the support shaft,
Attaching a support shaft to the through hole of the crosshead covering die;
Formed in the crosshead coating die from the extruder, supplying conductive elastic composition containing a rubber and carbon black, the support shaft attached to the through hole, the Oite cylindrically said annular channel And a step of coating with the conductive elastic body composition thus formed.
JP2006171255A 2006-06-21 2006-06-21 Method for manufacturing conductive elastic roller Expired - Fee Related JP4939122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171255A JP4939122B2 (en) 2006-06-21 2006-06-21 Method for manufacturing conductive elastic roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171255A JP4939122B2 (en) 2006-06-21 2006-06-21 Method for manufacturing conductive elastic roller

Publications (3)

Publication Number Publication Date
JP2008000946A JP2008000946A (en) 2008-01-10
JP2008000946A5 JP2008000946A5 (en) 2009-08-13
JP4939122B2 true JP4939122B2 (en) 2012-05-23

Family

ID=39005716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171255A Expired - Fee Related JP4939122B2 (en) 2006-06-21 2006-06-21 Method for manufacturing conductive elastic roller

Country Status (1)

Country Link
JP (1) JP4939122B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773832B2 (en) * 2011-10-05 2015-09-02 キヤノン株式会社 Apparatus for producing conductive elastic roller and method for producing conductive elastic roller
JP6019656B2 (en) * 2012-03-26 2016-11-02 富士ゼロックス株式会社 Manufacturing method of charging roll
CN106029335B (en) 2014-02-26 2019-01-11 不二精工株式会社 extruder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693435B2 (en) * 1995-10-04 2005-09-07 株式会社プラコー Spiral die
JP3614760B2 (en) * 2000-06-13 2005-01-26 株式会社金陽社 Extrusion molding method and extrusion molding apparatus

Also Published As

Publication number Publication date
JP2008000946A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US9372429B2 (en) Charging member, manufacturing method for charging member, electrophotographic apparatus, and process cartridge
US9046805B1 (en) Charging member, image-forming apparatus, and process cartridge
US10831126B2 (en) Developing roller having crown-shaped electro-conductive layer with outer surface providing electrically insulating first regions adjacent to second regions having higher conductivity
JP4939122B2 (en) Method for manufacturing conductive elastic roller
JP2012155263A (en) Conductive sponge rubber roller and transfer roller
US20070184252A1 (en) Semiconductive belt, semiconductive roll and image forming apparatus using these members
JP2015011335A (en) Charging member, charging apparatus, process cartridge, and image forming apparatus
JP2008180273A (en) Conductive rubber roller and developing roller
CN108241267B (en) Charging member, charging device, process cartridge, and image forming apparatus
JP6784079B2 (en) Charging member, charging device, process cartridge and image forming device
JP5709614B2 (en) Rubber roller extrusion molding apparatus and manufacturing method
JP6515485B2 (en) Charging roll, charging device, process cartridge and image forming apparatus
US10824087B2 (en) Charging member, charging device, process cartridge, and image forming apparatus
JP5747466B2 (en) Charging member, process unit cartridge, and image forming apparatus
JP5377024B2 (en) Method for manufacturing charging member
JP2014137453A (en) Charging device, assembly, and image forming apparatus
JP2006258933A (en) Conductive roller and method for manufacturing same
JP5505543B2 (en) Conductive roll manufacturing equipment
US20230168610A1 (en) Endless belt, belt unit, and image forming apparatus
CN107168023B (en) Charging member, process cartridge, and image forming apparatus
JP2009208179A (en) Manufacturing method for elastic body roller
JP5230186B2 (en) Elastic member and manufacturing method thereof
JP6883197B2 (en) Charging member, charging device, process cartridge, and image forming device
JP2015184486A (en) Charging roll, charging device, process cartridge, image forming apparatus, and manufacturing method of charging roll
JP2007038475A (en) Method for producing rubber roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4939122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees