JP4939104B2 - Organic EL device - Google Patents

Organic EL device Download PDF

Info

Publication number
JP4939104B2
JP4939104B2 JP2006121337A JP2006121337A JP4939104B2 JP 4939104 B2 JP4939104 B2 JP 4939104B2 JP 2006121337 A JP2006121337 A JP 2006121337A JP 2006121337 A JP2006121337 A JP 2006121337A JP 4939104 B2 JP4939104 B2 JP 4939104B2
Authority
JP
Japan
Prior art keywords
refractive index
layer
index layer
transparent
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006121337A
Other languages
Japanese (ja)
Other versions
JP2007294266A (en
Inventor
健之 山木
宜弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006121337A priority Critical patent/JP4939104B2/en
Publication of JP2007294266A publication Critical patent/JP2007294266A/en
Application granted granted Critical
Publication of JP4939104B2 publication Critical patent/JP4939104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、各種ディスプレイ、表示素子、液晶用バックライト等に用いられる有機EL素子に関するものである。   The present invention relates to an organic EL element used for various displays, display elements, liquid crystal backlights, and the like.

近年、情報化社会の進展に伴って、各種のディスプレイが開発されている。このようなディスプレイに用いられる薄膜型の発光素子の代表的なものの一つとして、例えば有機EL(エレクトロルミネッセンス)素子からなる発光体がある。   In recent years, various displays have been developed with the progress of the information society. As a typical thin film type light emitting element used for such a display, there is a light emitting body made of, for example, an organic EL (electroluminescence) element.

図3は透明基材1の上にエレクトロルミネッセンス層や電極などからなる発光層15を設けて形成される有機EL素子を概略的に示すものであり、発光層15から発光される光は透明基材1を通して、透明基材1の露出表面から出射されることによって、外部に取り出されるようになっている。ここで図3に矢印で示すように、透明基材1の表面と空気との界面に小さい入射角で入射する一部の光は透明基材1の露出表面から外部に出射されるが、多くの光は透明基材1の露出表面と空気との界面で反射して、透明基材1内において端部に向かう方向に導波されたり、内部で消失されたりしてしまい、発光した光の20%程度しか透明基材1の露出表面から取り出すことができない。この現象は、有機EL素子において光の取出効率を低く留めている大きな原因の一つである。   FIG. 3 schematically shows an organic EL device formed by providing a light emitting layer 15 composed of an electroluminescence layer, an electrode, or the like on a transparent substrate 1, and the light emitted from the light emitting layer 15 is a transparent substrate. By being emitted from the exposed surface of the transparent substrate 1 through the material 1, it is taken out to the outside. Here, as shown by arrows in FIG. 3, some of the light that enters the interface between the surface of the transparent substrate 1 and the air at a small incident angle is emitted from the exposed surface of the transparent substrate 1 to the outside. Is reflected at the interface between the exposed surface of the transparent base material 1 and the air, and is guided in the direction toward the end in the transparent base material 1 or disappears therein, and the emitted light Only about 20% can be taken out from the exposed surface of the transparent substrate 1. This phenomenon is one of the major causes that keep the light extraction efficiency low in the organic EL element.

そこで、このような現象を回避して透明基材1の露出表面からの光の取り出し効率を高めるための工夫が種々なされている。例えば、図4に概略的に示すように、透明基材1と発光素子15との間に透明基材1より屈折率が小さい低屈折率層17(例えば屈折率が1.3以下)を設けることが行なわれている。このようにすると、低屈折率層17と透明基材1との界面で光を屈折させて、透明基材1の露出表面と空気との界面に入射する光の入射角が小さくなり、その結果、透明基材1の露出表面と空気との界面で反射される光の量が少なくなって透明基材1内における導波が抑制され、透明基材1の表面から外部に光を取り出す効率が高まるものである。   Therefore, various ideas have been made to avoid such a phenomenon and to increase the light extraction efficiency from the exposed surface of the transparent substrate 1. For example, as schematically shown in FIG. 4, a low refractive index layer 17 (for example, a refractive index of 1.3 or less) having a refractive index smaller than that of the transparent substrate 1 is provided between the transparent substrate 1 and the light emitting element 15. Has been done. In this way, light is refracted at the interface between the low refractive index layer 17 and the transparent substrate 1, and the incident angle of light incident on the interface between the exposed surface of the transparent substrate 1 and the air is reduced. The amount of light reflected at the interface between the exposed surface of the transparent substrate 1 and the air is reduced, the wave guide in the transparent substrate 1 is suppressed, and the efficiency of extracting light from the surface of the transparent substrate 1 to the outside is improved. It will increase.

このように低屈折率層の挿入によって透明基材1内での導波を実質的に消滅させることが可能で、その結果、光の取出効率を高めることができる。そして特許文献1では、このような低屈折層をシリカエアロゲルに代表される多孔質薄膜で形成するようにしている。しかし多孔質薄膜は機械強度が必ずしも十分ではないので、特許文献2では、この機械強度が十分ではないシリカエアロゲル薄膜の代わりに、低屈折率微粒子とバインダーからなる低屈折率層を有機EL素子に導入することが提案されている。   As described above, the insertion of the low refractive index layer can substantially eliminate the waveguide in the transparent substrate 1, and as a result, the light extraction efficiency can be increased. In Patent Document 1, such a low refractive layer is formed of a porous thin film typified by silica aerogel. However, since the mechanical strength of the porous thin film is not always sufficient, in Patent Document 2, instead of the silica airgel thin film having insufficient mechanical strength, a low refractive index layer composed of low refractive index fine particles and a binder is used as an organic EL element. It has been proposed to introduce.

しかしながら、有機EL素子はエレクトロルミネッセンス層を形成する発光層・ホール輸送層・ホール注入層や透明電極等の多層積層構造となっており、光の干渉(増幅・減衰)が発生するものであり、光の干渉を考慮せずに、低屈折率層を透明電極と透明基材との間に挿入しても十分な光取り出しの向上は得られない。   However, the organic EL element has a multilayer laminated structure such as a light emitting layer, a hole transport layer, a hole injection layer, and a transparent electrode that form an electroluminescence layer, and light interference (amplification / attenuation) occurs. Even if the low refractive index layer is inserted between the transparent electrode and the transparent substrate without considering the interference of light, sufficient light extraction cannot be improved.

また特許文献3では透明電極と低屈折率層の界面の全反射による光取り出しロスの改善方法が提案されている。すなわち、低屈折率層に散乱機能(光散乱微粒子)を付与し、界面の全反射によるロスを低減している。しかしながら、このように低屈折率層に光散乱微粒子(粒径50nm以上)を導入すると、光散乱微粒子によって低屈折率層の表面粗さが大きくなり、その表面粗さが透明電極にも反映されることになって、有機EL素子としての信頼性を損なってしまうという問題があった。
特開2001−202827号公報 特開2003−216061号公報 特開2004−296437号公報
Patent Document 3 proposes a method for improving light extraction loss due to total reflection at the interface between the transparent electrode and the low refractive index layer. That is, a scattering function (light scattering fine particles) is imparted to the low refractive index layer, and loss due to total reflection at the interface is reduced. However, when light scattering fine particles (particle size of 50 nm or more) are introduced into the low refractive index layer in this way, the surface roughness of the low refractive index layer is increased by the light scattering fine particles, and the surface roughness is also reflected in the transparent electrode. As a result, there is a problem that reliability as an organic EL element is impaired.
JP 2001-202827 A Japanese Patent Laid-Open No. 2003-216061 JP 2004-296437 A

上記のように、薄膜型の発光素子である有機EL素子においては発光した光を外部(大気中)に取り出す場合の取り出し効率を向上させることが難しく、取り出し効率の向上が課題となっているものである。   As described above, in an organic EL element which is a thin-film light emitting element, it is difficult to improve the extraction efficiency when the emitted light is extracted outside (in the atmosphere), and improvement of the extraction efficiency is a problem. It is.

本発明は上記の点に鑑みてなされたものであり、有機EL素子において、光の取り出し効率を向上させることを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to improve light extraction efficiency in an organic EL element.

本発明の請求項1に係る有機EL素子は、少なくとも金属電極、エレクトロルミネッセンス層、透明電極、透明基材をこの順に積層し、エレクトロルミネッセンス層で発光した光を透明基材を通して取り出すようにした有機EL素子において、透明電極と透明基材の間に高屈折率層及び低屈折率層の2層を、高屈折率層を透明電極の側に、中空シリカ微粒子を含有する低屈折率層を透明基材の側に配置して設け、上記各層の光学膜厚及び屈折率を下記のように形成して成ることを特徴とするものである。
・透明電極の光学膜厚が、(1/2)λより小さい
・低屈折率層の光学膜厚が、(1/2)λより大きい
・高屈折率層の光学膜厚が、(1/8)λより大きく且つ(3/8)λより小さい
・高屈折率層の透明基材の側の面から、金属電極の透明基材の側の面までの光学距離が、λより小さい
・高屈折率層の屈折率が、(透明電極の屈折率−0.2)より大きい
(但し、λはエレクトロルミネッセンス層で発光する光の波長、屈折率はこの発光波長における屈折率)
また請求項2の発明は、請求項1において、低屈折率層の屈折率が1.40未満であることを特徴とするものである。
The organic EL device according to claim 1 of the present invention is an organic EL device in which at least a metal electrode, an electroluminescence layer, a transparent electrode, and a transparent substrate are laminated in this order, and light emitted from the electroluminescence layer is extracted through the transparent substrate. In an EL element, two layers, a high refractive index layer and a low refractive index layer, are transparent between the transparent electrode and the transparent substrate, the high refractive index layer is on the transparent electrode side, and the low refractive index layer containing hollow silica fine particles is transparent. The optical film thickness and refractive index of each of the above layers are formed as described below.
The optical film thickness of the transparent electrode is smaller than (1/2) λ The optical film thickness of the low refractive index layer is larger than (1/2) λ The optical film thickness of the high refractive index layer is (1 / 8) Larger than λ and smaller than (3/8) λ · The optical distance from the transparent substrate side surface of the high refractive index layer to the transparent substrate side surface of the metal electrode is less than λ · High The refractive index of the refractive index layer is larger than (refractive index of transparent electrode -0.2) (where λ is the wavelength of light emitted from the electroluminescent layer, and the refractive index is the refractive index at this emission wavelength).
The invention of claim 2 is characterized in that, in claim 1, the refractive index of the low refractive index layer is less than 1.40.

本発明によれば、透明基材の正面方向への光の取り出しの効率は、高屈折率層と低屈折率層によって形成される誘電体ミラーと、金属電極によって形成される金属ミラーとの間の共振効果による光干渉を利用して高めることができ、また透明基材の斜め方向への光の取り出し効率は、低屈折率層の取り出し効果を利用して高めることができ、全方位方向でのトータルの外部取り出し効率を向上させることができるものである。   According to the present invention, the light extraction efficiency in the front direction of the transparent substrate is between the dielectric mirror formed by the high refractive index layer and the low refractive index layer and the metal mirror formed by the metal electrode. The light extraction efficiency in the oblique direction of the transparent substrate can be increased by using the light extraction effect of the low refractive index layer, and can be increased in all directions. The total external extraction efficiency can be improved.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は有機EL素子の層構成の一例を示すものであり、透光性の透明基材1の上に透明導電膜からなる透明電極2を積層し、透明電極2の上にホール注入層3及びホ−ル輸送層4を積層すると共に、その上に有機発光層5が積層してある。さらにこの有機発光層5の上に電子輸送層6及び電子注入層7を積層し、その上に金属電極8が積層してある。通常、透明電極2が陽極、金属電極8が陰極として形成されるものであり、またホール注入層3・ホ−ル輸送層4・有機発光層5・電子輸送層6・電子注入層7によってエレクトロルミネッセンス層9が形成されるものである。そして本発明では、透明電極2と透明基材1の間に、高屈折率層10及び低屈折率層11の2層を、高屈折率層10を透明電極2の側に、低屈折率層11を透明基材1の側に配置して、挿入してある。ここで、低屈折率層11は透明基材1よりも屈折率が低い層であり、高屈折率層10は低屈折率層11よりも屈折率が高い層である。   FIG. 1 shows an example of the layer structure of an organic EL element. A transparent electrode 2 made of a transparent conductive film is laminated on a translucent transparent substrate 1, and a hole injection layer 3 is laminated on the transparent electrode 2. In addition, a hole transport layer 4 is laminated, and an organic light emitting layer 5 is laminated thereon. Further, an electron transport layer 6 and an electron injection layer 7 are laminated on the organic light emitting layer 5, and a metal electrode 8 is laminated thereon. Usually, the transparent electrode 2 is formed as an anode and the metal electrode 8 is formed as a cathode, and the hole injection layer 3, the hole transport layer 4, the organic light emitting layer 5, the electron transport layer 6, and the electron injection layer 7 are used for electrolysis. The luminescence layer 9 is formed. In the present invention, between the transparent electrode 2 and the transparent substrate 1, two layers of a high refractive index layer 10 and a low refractive index layer 11, a high refractive index layer 10 on the transparent electrode 2 side, and a low refractive index layer. 11 is arranged on the transparent substrate 1 side and inserted. Here, the low refractive index layer 11 is a layer having a refractive index lower than that of the transparent substrate 1, and the high refractive index layer 10 is a layer having a refractive index higher than that of the low refractive index layer 11.

勿論、この層構成はあくまでも一例であり、例えばホール注入層3とホ−ル輸送層4の一方あるいは両方を備えない構成、電子輸送層6と電子注入層7の一方あるいは両方を備えない層構成などに形成することもでき、本発明の趣旨に反しない限り図1の層構成に限定されるものではない。   Of course, this layer configuration is merely an example. For example, a configuration in which one or both of the hole injection layer 3 and the hole transport layer 4 are not provided, or a layer configuration in which one or both of the electron transport layer 6 and the electron injection layer 7 are not provided. The layer structure is not limited to that shown in FIG. 1 unless it is contrary to the spirit of the present invention.

そして、エレクトロルミネッセンス層9の有機発光層5で発光した光の一部は、透明電極2と透明基材1を透過して、透明基材1の表面(外面)から取り出されるものであり、また発光した光の他の一部は、金属電極8のエレクトロルミネッセンス層9側の面が金属ミラー8aとなって反射され、エレクトロルミネッセンス層9と透明電極2及び透明基材1を透過して、透明基材1の表面(外面)から取り出されるものである。   A part of the light emitted from the organic light emitting layer 5 of the electroluminescence layer 9 is transmitted through the transparent electrode 2 and the transparent base material 1 and taken out from the surface (outer surface) of the transparent base material 1. The other part of the emitted light is reflected by the surface of the metal electrode 8 on the side of the electroluminescence layer 9 serving as the metal mirror 8a, passes through the electroluminescence layer 9, the transparent electrode 2 and the transparent substrate 1, and is transparent. It is taken out from the surface (outer surface) of the substrate 1.

上記のように形成される有機EL素子にあって、光干渉(共振)を利用して透明基材1からの光の取り出し量を向上させるためには、透明電極2の透明基材1の側の面から金属電極8の金属ミラー8aまでの光学距離と、高屈折率層10と低屈折率層11によって形成される誘電体ミラーのしみ込み光学距離の和が、エレクトロルミネッセンス層9の有機発光層5で発光される光の主たる波長をλとすると、(1/2)λのm倍(mは整数)になるように設計すれば、正面方向の共振効果を得ることができるので、透明基材1の正面方向(透明基材1の表面に対して垂直あるいは垂直に近い方向)での取り出し量を向上させることができる。ここで誘電体ミラーのしみ込み光学距離は、誘電体実効屈折率をNeff、高屈折率層10と低屈折率層11の屈折率差をΔnとしたとき、(1/2)λ×(Neff/Δn)で求められる距離であり、誘電体実効屈折率は、高屈折率層10と低屈折率層11の屈折率の平均屈折率とほぼ同じ値である。しかし、透明基材1の斜め方向(透明基材1の表面に対して斜めの方向)での光の取り出し効率を向上させるためには、発光点から低屈折率層11までの光学距離を限りなく小さくすることが必要であり、透明電極2の透明基材1の側の面から金属電極8の金属ミラー8aまでの光学距離と誘電体ミラーのしみ込み光学距離の和はm=2のλ、あるいはm=3の(3/2)λ程度にすることが望ましく、m=2のλ程度が最も望ましい。   In the organic EL element formed as described above, in order to improve the amount of light extracted from the transparent substrate 1 by utilizing light interference (resonance), the transparent electrode 2 side of the transparent substrate 1 is used. The sum of the optical distance from the surface of the metal electrode 8 to the metal mirror 8a and the penetration optical distance of the dielectric mirror formed by the high refractive index layer 10 and the low refractive index layer 11 is the organic light emission of the electroluminescence layer 9. If the main wavelength of the light emitted from the layer 5 is λ, it is possible to obtain a resonance effect in the front direction by designing it to be m times (1/2) λ (m is an integer). The amount of take-out in the front direction of the substrate 1 (perpendicular or nearly perpendicular to the surface of the transparent substrate 1) can be improved. Here, the penetration optical distance of the dielectric mirror is (1/2) λ × (Neff, where Neff is the dielectric effective refractive index and Δn is the refractive index difference between the high refractive index layer 10 and the low refractive index layer 11. / Δn), and the dielectric effective refractive index is substantially the same as the average refractive index of the refractive indexes of the high refractive index layer 10 and the low refractive index layer 11. However, in order to improve the light extraction efficiency in the oblique direction of the transparent base material 1 (direction oblique to the surface of the transparent base material 1), the optical distance from the light emitting point to the low refractive index layer 11 is limited. The sum of the optical distance from the surface of the transparent electrode 2 on the transparent substrate 1 side to the metal mirror 8a of the metal electrode 8 and the penetration optical distance of the dielectric mirror is λ of m = 2. Alternatively, it is preferable to set m = 3 to about (3/2) λ, and m = 2 is most preferable.

このため本発明では、高屈折率層10の透明基材1の側の面から、金属電極8の透明基材1の側の面までの光学距離をλより小さく形成してあり、透明基材1の正面方向と斜め方向のいずれの方向からの光の取り出し効率を向上させ、透明基材1からの光の取り出し量を向上させることができるものである。   Therefore, in the present invention, the optical distance from the surface of the high refractive index layer 10 on the transparent substrate 1 side to the surface of the metal electrode 8 on the transparent substrate 1 side is formed to be smaller than λ. 1 can improve the light extraction efficiency from either the front direction or the oblique direction, and can improve the light extraction amount from the transparent substrate 1.

尚、上記の光学距離は各膜の光学膜厚(実膜厚と上記の発光波長での屈折率との積)の総和であり、図1の構成の有機EL素子において、透明電極2の透明基材1の側の面から金属電極8の金属ミラー8aまでの光学距離は、透明電極2・ホール注入層3・ホ−ル輸送層4・有機発光層5・電子輸送層6・電子注入層7の各実膜厚と屈折率との積の総和である。   The optical distance is the sum of the optical film thicknesses of each film (the product of the actual film thickness and the refractive index at the emission wavelength). In the organic EL device having the configuration shown in FIG. The optical distance from the substrate 1 side surface to the metal mirror 8a of the metal electrode 8 is as follows: transparent electrode 2, hole injection layer 3, hole transport layer 4, organic light emitting layer 5, electron transport layer 6, electron injection layer 7 is the sum of the products of the actual film thickness and the refractive index.

次に、透明電極2については、透明電極2を形成する代表的な透明電極材料であるITO、IZOは屈折率が1.9〜2.0であり、屈折率が約1.7程度のエレクトロルミネッセンス層9よりも高く、光の取り出しに対する障壁層になってしまう。このため、光の取り出し効率を向上させるためには、透明電極2はなるべく薄く形成するのがよく、光学膜厚で(1/2)λより薄くすることが必要である。透明電極2の光学膜厚は、より好ましくは(1/4)λ程度、さらに好ましくは(1/8)λ程度である。光の取り出し効率のうえではこれより薄いことがより好ましいが、電極としての機能を考慮すると、透明電極2の光学膜厚は(1/8)λ程度が最も好ましい。   Next, as for the transparent electrode 2, ITO and IZO, which are representative transparent electrode materials forming the transparent electrode 2, have an index of refraction of 1.9 to 2.0, and have an index of refraction of about 1.7. It is higher than the luminescence layer 9 and becomes a barrier layer against light extraction. For this reason, in order to improve the light extraction efficiency, the transparent electrode 2 is preferably formed as thin as possible, and it is necessary to make the optical film thickness thinner than (1/2) λ. The optical film thickness of the transparent electrode 2 is more preferably about (1/4) λ, and further preferably about (1/8) λ. In terms of light extraction efficiency, it is more preferable to be thinner than this, but considering the function as an electrode, the optical film thickness of the transparent electrode 2 is most preferably about (1/8) λ.

次に、透明電極2と透明基材1との間に設ける高屈折率層10と低屈折率層11については、高屈折率層10の屈折率は、透明電極2から高屈折率層10に光が入りやすくするために、(透明電極2の屈折率−0.2)よりも大きくすることが必要である。また、高屈折率層10の光学膜厚は、高屈折率層10と低屈折率層11とで形成される誘電体ミラーの反射率分散において、波長λのときに最高反射率になるのが最も好ましく、このため(1/8)λより厚く、かつ(3/8)λより薄く形成されるものであり、(1/4)λ程度の光学膜厚が最も望ましい。   Next, for the high refractive index layer 10 and the low refractive index layer 11 provided between the transparent electrode 2 and the transparent substrate 1, the refractive index of the high refractive index layer 10 is changed from the transparent electrode 2 to the high refractive index layer 10. In order to make light easy to enter, it is necessary to make it larger than (refractive index of the transparent electrode 2 -0.2). Further, the optical film thickness of the high refractive index layer 10 has the highest reflectance at the wavelength λ in the reflectance dispersion of the dielectric mirror formed by the high refractive index layer 10 and the low refractive index layer 11. Most preferably, it is thicker than (1/8) λ and thinner than (3/8) λ, and an optical thickness of about (1/4) λ is most desirable.

この高屈折率層10の材質としては、発光波長の領域において吸収がないものが好ましく、透過率・透明性に優れたものが好ましい。例えば蒸着・スパッタ・CVD等の気相法で形成される酸化チタン(屈折率2.4〜2.7)、酸化ジルコニウム(屈折率2.2)、酸化スズ(屈折率1.9〜2.1)等を使用することができる。   The material of the high refractive index layer 10 is preferably a material that does not absorb light in the emission wavelength region, and is preferably excellent in transmittance and transparency. For example, titanium oxide (refractive index 2.4-2.7), zirconium oxide (refractive index 2.2), tin oxide (refractive index 1.9-2. 1) etc. can be used.

また、低屈折率層11の屈折率は、高屈折率層10の屈折率より小さければ誘電体ミラーになるが、誘電体ミラーの反射率を高くし、かつ斜め方向の光取り出し効率を向上させるためには、1.4未満が好ましく、より好ましくは1.35未満である。また低屈折率層11の光学膜厚は、斜め方向の取り出し効率を向上させるためにも、1/2λよりも厚くする必要があり、λより厚くすることがより望ましい。   Moreover, if the refractive index of the low refractive index layer 11 is smaller than the refractive index of the high refractive index layer 10, it becomes a dielectric mirror. However, the reflectance of the dielectric mirror is increased and the light extraction efficiency in the oblique direction is improved. For this purpose, it is preferably less than 1.4, more preferably less than 1.35. Further, the optical film thickness of the low refractive index layer 11 needs to be thicker than 1 / 2λ, and more desirably thicker than λ, in order to improve the extraction efficiency in the oblique direction.

この低屈折率層11の材質としては、発光波長の領域において吸収がないものが好ましく、透過率に優れたものが好ましい。例えば蒸着・スパッタ・CVD法等の気相法で形成される酸化ケイ素(屈折率1.4〜1.5)、フッ化マグネシウムやフッ化リチウム等のフッ化金属(屈折率1.35〜1.4)、あるいは液相法(ゾル・ゲル等)で形成されるシリカ・シリコーン系樹脂膜、フッ素樹脂膜、及び多孔質微粒子と樹脂の複合膜等を使用することができる。液相法はさまざまな微粒子との組み合わせにより、散乱性を有する膜を形成することができるものであり、散乱性を付与することで、より高効率な光取り出しを達成することが可能である。   The material of the low refractive index layer 11 is preferably a material that does not absorb in the emission wavelength region, and preferably has a high transmittance. For example, silicon oxide (refractive index: 1.4 to 1.5) formed by a vapor phase method such as vapor deposition, sputtering, or CVD method, or a metal fluoride such as magnesium fluoride or lithium fluoride (refractive index of 1.35 to 1). 4), or a silica / silicone resin film, a fluororesin film, a composite film of porous fine particles and a resin, etc. formed by a liquid phase method (sol, gel, etc.) can be used. In the liquid phase method, a film having scattering properties can be formed by a combination with various fine particles, and it is possible to achieve more efficient light extraction by imparting scattering properties.

次に、本発明を実施例によって具体的に説明する。尚、重量平均分子量の測定は東ソー社製「HLC−8220」を用いたゲルパーミエーションクロマトグラフィー(GPC)で行ない、被膜屈折率の測定はエリプソメーター(ULVAC社製「EMS−1」)を用いて発光波長λ=650nmで行なった。   Next, the present invention will be specifically described with reference to examples. The weight average molecular weight was measured by gel permeation chromatography (GPC) using “HLC-8220” manufactured by Tosoh Corporation, and the film refractive index was measured using an ellipsometer (“EMS-1” manufactured by ULVAC). The emission wavelength was λ = 650 nm.

(実施例1)
テトラエトキシシラン208質量部にメタノール356質量部を加え、さらに水18質量部及び0.01Nの塩酸18質量部を加え、ディスパーを用いてよく混合することによって溶液を得た。得られた溶液を25℃恒温槽中で2時間攪拌し、重量平均分子量が850のシリコーンレジン(テトラエトキシシランが加水分解して縮重合したもの)を得た。次に、このシリコーンレジンに、中空シリカ微粒子として中空シリカIPA分散ゾル(固形分:20質量%、分散媒:イソプロピルアルコール、平均一次粒子径:約35nm、外殻厚み:約8nm、触媒化成工業株式会社製)を、中空シリカ微粒子/シリコーンレジン(縮合化合物換算)の固形分質量基準で80/20となるように添加し、全固形分が10質量%になるようにメタノールで希釈して、中空シリカ微粒子を含有するコーティング材を得た。尚、「縮合化合物換算」とはテトラエトキシシランに存在するSiがSiOであるとしての重量である。
Example 1
A solution was obtained by adding 356 parts by mass of methanol to 208 parts by mass of tetraethoxysilane, further adding 18 parts by mass of water and 18 parts by mass of 0.01N hydrochloric acid, and mixing well using a disper. The obtained solution was stirred for 2 hours in a thermostatic bath at 25 ° C. to obtain a silicone resin having a weight average molecular weight of 850 (one obtained by hydrolyzing and polymerizing tetraethoxysilane). Next, to this silicone resin, hollow silica IPA dispersion sol (solid content: 20% by mass, dispersion medium: isopropyl alcohol, average primary particle size: about 35 nm, outer shell thickness: about 8 nm, Catalyst Chemical Industry Co., Ltd.) Company) is added so as to be 80/20 based on the solid mass of hollow silica fine particles / silicone resin (condensed compound equivalent), diluted with methanol so that the total solid content becomes 10% by mass, and hollow A coating material containing silica fine particles was obtained. The “condensed compound equivalent” is the weight assuming that Si present in tetraethoxysilane is SiO 2 .

次に透明基材1としてガラス板(屈折率1.51)を用い、透明基材1の表面にこのコーティング材をスピンコーターで塗布して乾燥し、この塗布・乾燥を2回繰り返した後、200℃で10分間焼成することによって、実膜厚1000nmの低屈折率層11を得た。この低屈折率層11の屈折率は1.30であり、光学膜厚は1300nm(=2λ)であった。   Next, a glass plate (refractive index 1.51) is used as the transparent substrate 1, and this coating material is applied to the surface of the transparent substrate 1 with a spin coater and dried. After this coating and drying are repeated twice, By baking at 200 ° C. for 10 minutes, a low refractive index layer 11 having an actual film thickness of 1000 nm was obtained. The refractive index of the low refractive index layer 11 was 1.30, and the optical film thickness was 1300 nm (= 2λ).

次に、DCマグネトロンスパッタ法により、低屈折率層11の上に酸化チタン(屈折率2.45)を65nmの実膜厚で形成して高屈折率層10を得た。この高屈折率層10の光学膜厚は160nm(≒(1/4)λ)である。この時点での誘電体ミラー(透明基材/低屈折率層/高屈折率層)の反射率は、約30%(波長650nm)であった。   Next, a high refractive index layer 10 was obtained by forming titanium oxide (refractive index 2.45) with a real film thickness of 65 nm on the low refractive index layer 11 by DC magnetron sputtering. The optical film thickness of the high refractive index layer 10 is 160 nm (≈ (1/4) λ). At this time, the reflectance of the dielectric mirror (transparent substrate / low refractive index layer / high refractive index layer) was about 30% (wavelength 650 nm).

さらにDCマグネトロンスパッタ法により、高屈折率層10の上にITO薄膜を実膜厚50nmで形成し、透明電極2を得た。この透明電極2の屈折率は2.0であり、光学膜厚は100nm(<<(1/2)λ)であった。   Further, an ITO thin film having an actual film thickness of 50 nm was formed on the high refractive index layer 10 by DC magnetron sputtering to obtain a transparent electrode 2. The transparent electrode 2 had a refractive index of 2.0 and an optical film thickness of 100 nm (<< (1/2) λ).

次に、透明電極層上にPEDT/PSS(poly[3,4-(ethylenedioxy)thiophene]/poly(styrene sulfonate))(スタルクヴィテック社製「Baytron P AI4083」、PEDT:PSS=1:6)をスピンコートで塗布し、150℃で10分間焼成することにより、実膜厚50nmのホール注入層3を得た。ホール注入層3の屈折率は1.55であり、光学膜厚は78nmであった。   Next, on the transparent electrode layer, PEDT / PSS (poly [3,4- (ethylenedioxy) thiophene] / poly (styrene sulfonate)) ("Baytron P AI4083" manufactured by Starckvitech, PEDT: PSS = 1: 6) Was applied by spin coating and baked at 150 ° C. for 10 minutes to obtain a hole injection layer 3 having an actual film thickness of 50 nm. The refractive index of the hole injection layer 3 was 1.55, and the optical film thickness was 78 nm.

次に、TFB(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4’-(N-(4-sec-butylphenyl))diphenylamine)])(アメリカンダイソース社製「Hole Transport Polymer ADS259BE」、屈折率1.7)をTHF溶媒に溶解した溶液を、ホール注入層3の上にスピンコーターで塗布してTFB被膜を作製し、これを200℃で10分間焼成することによって、実膜厚20nmのホール輸送層4を得た。このホール輸送層4の光学膜厚は34nmである。   Next, TFB (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4 '-(N- (4-sec-butylphenyl)) diphenylamine)]) (manufactured by American Dice Source) A solution in which “Hole Transport Polymer ADS259BE”, refractive index 1.7) is dissolved in a THF solvent is applied onto the hole injection layer 3 by a spin coater to form a TFB film, which is baked at 200 ° C. for 10 minutes. As a result, a hole transport layer 4 having an actual film thickness of 20 nm was obtained. The hole transport layer 4 has an optical film thickness of 34 nm.

さらに、赤色高分子(アメリカンダイソース社製「Light Emittingpolymer ATS111RE」、屈折率1.7)をTHF溶媒に溶解した溶液を、ホール輸送層4の上にスピンコーターで塗布し、100℃で10分間焼成することによって、実膜厚が135nmの発光層5を得た。この発光層5の光学膜厚は230nmである。   Further, a solution obtained by dissolving a red polymer (“Light Emitting polymer ATS111RE” manufactured by American Dye Source, refractive index 1.7) in a THF solvent is applied onto the hole transport layer 4 with a spin coater, and is heated at 100 ° C. for 10 minutes. By firing, the light emitting layer 5 having an actual film thickness of 135 nm was obtained. The light emitting layer 5 has an optical film thickness of 230 nm.

最後に、真空蒸着法により、発光層5の上にアルミニウムを700nmの厚みで製膜して金属電極8を作製し、図2の層構成の有機EL素子を得た。   Finally, a metal electrode 8 was formed by depositing aluminum with a thickness of 700 nm on the light-emitting layer 5 by a vacuum vapor deposition method, to obtain an organic EL element having the layer structure of FIG.

このようにして得られた有機EL素子の高屈折率層10の透明基材1側の面から金属電極8の透明基材1側の面までの光学距離Lは602nmであり、λ(650nm)より薄くなるように設計されているものであった。   The optical distance L from the surface on the transparent substrate 1 side of the high refractive index layer 10 of the organic EL element thus obtained to the surface on the transparent substrate 1 side of the metal electrode 8 is 602 nm, and λ (650 nm) It was designed to be thinner.

(比較例1)
実施例1において、高屈折率層10と低屈折率層11を設けないようにした他は、実施例1と同様にして有機EL素子を作製した。
(Comparative Example 1)
In Example 1, an organic EL element was produced in the same manner as in Example 1 except that the high refractive index layer 10 and the low refractive index layer 11 were not provided.

(比較例2)
実施例1において、透明電極2を実膜厚213nmに形成して、光学膜厚が425nm(>(1/2)λ)になるようにした他は、実施例1と同様にして有機EL素子を作製した。
(Comparative Example 2)
In Example 1, an organic EL element was formed in the same manner as in Example 1 except that the transparent electrode 2 was formed to an actual film thickness of 213 nm and the optical film thickness was 425 nm (> (1/2) λ). Was made.

(比較例3)
実施例1において、低屈折率層11を実膜厚120nmに形成して、光学膜厚が156nm(≒(1/4)λ)になるようにした他は、実施例1と同様にして有機EL素子を作製した。
(Comparative Example 3)
In Example 1, the organic layer was formed in the same manner as in Example 1 except that the low refractive index layer 11 was formed to an actual film thickness of 120 nm and the optical film thickness was 156 nm (≈ (1/4) λ). An EL element was produced.

(比較例4)
実施例1において、高屈折率層10の代わりに、二酸化ケイ素(屈折率1.47)の層を光学膜厚で160nm(≒1/4λ)になるように形成した他は、実施例1と同様にして有機EL素子を作製した。
(Comparative Example 4)
In Example 1, instead of the high-refractive index layer 10, a layer of silicon dioxide (refractive index 1.47) was formed to have an optical film thickness of 160 nm (≈1 / 4λ). Similarly, an organic EL device was produced.

上記のように実施例1及び比較例1〜4で作製した有機EL素子において、透明電極2と金属電極8の間に直流電源を接続し、電流密度40mA/cmの条件下で発光させた。そして透明基材1の表面の発光スペクトルを色彩輝度計(トプコン社製「SR−3」、測定波長600〜700nm、1nmピッチ)で測定した。測定は、透明基材1の表面の垂直線に対して0度(正面)、10度、20度、30度、40度、50度、60度、70度、80度の角度について行なった。そして正面の発光スペクトルの積分値(600〜700nm)を導出し、各角度における発光スペクトル積分値から発光球体・楕円体としての体積値を導出し、正面・全方位方向の光取り出し量を測定した。結果を、比較例1の有機EL素子の正面・全方位方向の光取り出しを基準とし、その相対比を求めて表1に示す。 In the organic EL elements produced in Example 1 and Comparative Examples 1 to 4 as described above, a direct current power source was connected between the transparent electrode 2 and the metal electrode 8, and light was emitted under conditions of a current density of 40 mA / cm 2 . . And the emission spectrum of the surface of the transparent base material 1 was measured with the color luminance meter ("SR-3" by Topcon Corporation, measurement wavelength 600-700 nm, 1 nm pitch). The measurement was performed at angles of 0 degrees (front), 10 degrees, 20 degrees, 30 degrees, 40 degrees, 50 degrees, 60 degrees, 70 degrees, and 80 degrees with respect to the vertical line on the surface of the transparent substrate 1. Then, the integrated value (600 to 700 nm) of the front emission spectrum was derived, the volume value as the light emitting sphere / ellipsoid was derived from the integrated emission spectrum value at each angle, and the light extraction amount in the front and all directions was measured. . The results are shown in Table 1 with respect to the light extraction in the front and omnidirectional directions of the organic EL element of Comparative Example 1 as a reference, and the relative ratios obtained.

Figure 0004939104
Figure 0004939104

表1にみられるように、実施例1のものは、正面・全方位いずれの方向においても光取り出し量が優れているものであった。   As seen in Table 1, the light extraction amount of Example 1 was excellent both in the front direction and in all directions.

本発明に係る有機EL素子の層構成の一例を示す概略図である。It is the schematic which shows an example of the layer structure of the organic EL element which concerns on this invention. 本発明に係る有機EL素子の層構成の他の一例を示す概略図である。It is the schematic which shows another example of the layer structure of the organic EL element which concerns on this invention. 従来例を示す概略図である。It is the schematic which shows a prior art example. 他の従来例を示す概略図である。It is the schematic which shows another prior art example.

符号の説明Explanation of symbols

1 透明基材
2 透明電極
8 金属電極
9 エレクトロルミネッセンス層
10高屈折率層
11 低屈折率層
DESCRIPTION OF SYMBOLS 1 Transparent base material 2 Transparent electrode 8 Metal electrode 9 Electroluminescent layer 10 High refractive index layer 11 Low refractive index layer

Claims (2)

少なくとも金属電極、エレクトロルミネッセンス層、透明電極、透明基材をこの順に積層し、エレクトロルミネッセンス層で発光した光を透明基材を通して取り出すようにした有機EL素子において、透明電極と透明基材の間に高屈折率層及び低屈折率層の2層を、高屈折率層を透明電極の側に、中空シリカ微粒子を含有する低屈折率層を透明基材の側に配置して設け、上記各層の光学膜厚及び屈折率を下記のように形成して成ることを特徴とする有機EL素子。
・透明電極の光学膜厚が、(1/2)λより小さい
・低屈折率層の光学膜厚が、(1/2)λより大きい
・高屈折率層の光学膜厚が、(1/8)λより大きく且つ(3/8)λより小さい
・高屈折率層の透明基材の側の面から、金属電極の透明基材の側の面までの光学距離が、λより小さい
・高屈折率層の屈折率が、(透明電極の屈折率−0.2)より大きい
(但し、λはエレクトロルミネッセンス層で発光する光の波長、屈折率はこの発光波長における屈折率)
In an organic EL device in which at least a metal electrode, an electroluminescent layer, a transparent electrode, and a transparent base material are laminated in this order, and light emitted from the electroluminescent layer is extracted through the transparent base material, between the transparent electrode and the transparent base material Two layers, a high refractive index layer and a low refractive index layer, are provided with the high refractive index layer disposed on the transparent electrode side and the low refractive index layer containing hollow silica fine particles disposed on the transparent substrate side. An organic EL device comprising an optical film thickness and a refractive index formed as follows.
The optical film thickness of the transparent electrode is smaller than (1/2) λ The optical film thickness of the low refractive index layer is larger than (1/2) λ The optical film thickness of the high refractive index layer is (1 / 8) Larger than λ and smaller than (3/8) λ · The optical distance from the transparent substrate side surface of the high refractive index layer to the transparent substrate side surface of the metal electrode is less than λ · High The refractive index of the refractive index layer is larger than (refractive index of transparent electrode -0.2) (where λ is the wavelength of light emitted from the electroluminescent layer, and the refractive index is the refractive index at this emission wavelength).
低屈折率層の屈折率が1.40未満であることを特徴とする請求項1に記載の有機EL素子。   The organic EL element according to claim 1, wherein the refractive index of the low refractive index layer is less than 1.40.
JP2006121337A 2006-04-25 2006-04-25 Organic EL device Expired - Fee Related JP4939104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121337A JP4939104B2 (en) 2006-04-25 2006-04-25 Organic EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121337A JP4939104B2 (en) 2006-04-25 2006-04-25 Organic EL device

Publications (2)

Publication Number Publication Date
JP2007294266A JP2007294266A (en) 2007-11-08
JP4939104B2 true JP4939104B2 (en) 2012-05-23

Family

ID=38764674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121337A Expired - Fee Related JP4939104B2 (en) 2006-04-25 2006-04-25 Organic EL device

Country Status (1)

Country Link
JP (1) JP4939104B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306949B2 (en) * 2009-09-14 2013-10-02 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5567369B2 (en) * 2010-03-26 2014-08-06 ユー・ディー・シー アイルランド リミテッド Organic electroluminescent device and organic electroluminescent display using the same
WO2013065213A1 (en) 2011-11-02 2013-05-10 パナソニック株式会社 Organic light-emitting panel and method for producing same
CN103947001A (en) 2011-12-13 2014-07-23 松下电器产业株式会社 Organic electroluminescent element
WO2014098014A1 (en) * 2012-12-18 2014-06-26 コニカミノルタ株式会社 Transparent electrode and electronic device
CN108933196B (en) * 2017-12-15 2022-03-01 广东聚华印刷显示技术有限公司 Flexible substrate, preparation method thereof, flexible OLED device and display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279971B2 (en) * 1999-11-10 2009-06-17 パナソニック電工株式会社 Light emitting element
JP2003031374A (en) * 2001-07-17 2003-01-31 Sony Corp Organic electroluminescent element
EP1435761A4 (en) * 2001-09-12 2010-03-10 Nissan Chemical Ind Ltd Organic electroluminescence element-use transparent substrate and element
JP2005156871A (en) * 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd Exposure light source
JP4726411B2 (en) * 2003-12-16 2011-07-20 三星モバイルディスプレイ株式會社 Light emitting element substrate and light emitting element using the same
KR100683693B1 (en) * 2004-11-10 2007-02-15 삼성에스디아이 주식회사 Light emitting device
JP4876453B2 (en) * 2005-06-29 2012-02-15 ソニー株式会社 Organic light emitting device and organic light emitting device
KR100852111B1 (en) * 2005-07-13 2008-08-13 삼성에스디아이 주식회사 Flat panel display apparatus and method of manufacturing the same

Also Published As

Publication number Publication date
JP2007294266A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5066814B2 (en) ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
US8125128B2 (en) Electroluminescence element and lighting apparatus
KR101824353B1 (en) Electroluminescence element, illumination device, and method for manufacturing electroluminescence element
KR100671990B1 (en) Composite thin film holding substrate, transparent conductive film holding substrate, and surface light emitting body
Fuchs et al. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses
US8431943B2 (en) Light transmitting substrate, method for manufacturing light transmitting substrate, organic LED element and method for manufacturing organic LED element
JP4939104B2 (en) Organic EL device
KR101280795B1 (en) Organic electroluminescent device and method for fabricating the same
CN102983285B (en) A kind of high efficiency Organic Light Emitting Diode and preparation method thereof
JP6573160B2 (en) Light emitting element
Li et al. Efficient white polymer light-emitting diodes employing a silver nanowire–polymer composite electrode
CN102074659B (en) Organic electroluminescence device and multi-color display apparatus using same
WO2011162080A1 (en) Organic electroluminescence element
TWI605583B (en) Electroluminescent device
JP2013214531A (en) Organic light-emitting element and method for manufacturing the same
WO2010071195A1 (en) Organic electroluminescence element
Kim et al. Enhancing light-extraction efficiency of OLEDs with high-and low-refractive-index organic–inorganic hybrid materials
JP6089338B2 (en) Organic EL device and manufacturing method thereof
JP2007035313A (en) Light take-out film, translucent element with light take-out film, and electroluminescent element
JP2007066886A (en) Laminate for electroluminescent element and electroluminescent element
Riedel et al. Improving the outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via rough internal interfaces
Xu et al. Light extraction of flexible OLEDs based on transparent polyimide substrates with 3-D photonic structure
KR101735445B1 (en) Layer of high and low refractive index organic-inorganic hybrid materials and manufacturing method of OLEDs, OLEDs made thereby
KR101579457B1 (en) Method of fabricating light extraction substrate, light extraction substrate for oled and oled including the same
Lee et al. Suppressing surface plasmon losses to improve the efficiency of blue organic light-emitting diodes using the plasmonic quasi-bandgap phenomenon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees