JP4939022B2 - Method for producing powder coating - Google Patents

Method for producing powder coating Download PDF

Info

Publication number
JP4939022B2
JP4939022B2 JP2005275907A JP2005275907A JP4939022B2 JP 4939022 B2 JP4939022 B2 JP 4939022B2 JP 2005275907 A JP2005275907 A JP 2005275907A JP 2005275907 A JP2005275907 A JP 2005275907A JP 4939022 B2 JP4939022 B2 JP 4939022B2
Authority
JP
Japan
Prior art keywords
powder
powder coating
spherical
resin
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005275907A
Other languages
Japanese (ja)
Other versions
JP2007084709A (en
Inventor
卓資 橘
大輔 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Printing Ink Mfg Co Ltd
Original Assignee
Tokyo Printing Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Printing Ink Mfg Co Ltd filed Critical Tokyo Printing Ink Mfg Co Ltd
Priority to JP2005275907A priority Critical patent/JP4939022B2/en
Publication of JP2007084709A publication Critical patent/JP2007084709A/en
Application granted granted Critical
Publication of JP4939022B2 publication Critical patent/JP4939022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Description

本発明は、粉体塗料及びその製造方法に関する。   The present invention relates to a powder coating material and a manufacturing method thereof.

塗料分野では、近年、環境への影響を少なくするため脱溶剤が望まれ、その対策として粉体塗料が脚光を浴びてきた。粉体塗料は、溶剤を使用しないうえ、塗装面に付着しなかった塗料の回収が容易である等の利点を有するが、溶剤型に比べ製造工程が複雑なため、小ロット生産に適していない、注文を受けてから出荷までの期間が長い、調色(色合わせ)が難しい等の理由によってその普及が遅れているのが現状である。   In recent years, in the paint field, solvent removal has been desired in order to reduce the impact on the environment, and powder paint has attracted attention as a countermeasure. Powder paint has advantages such as not using a solvent and easy recovery of paint that has not adhered to the painted surface, but it is not suitable for small lot production due to the complexity of the manufacturing process compared to the solvent type. However, due to reasons such as a long period from receipt of an order to shipment and difficulty in color matching (color matching), the spread of the product has been delayed.

また、粉体塗料は、一般に体積平均粒子径が30〜40μm程度の塗膜形成用樹脂を主成分とし、静電粉体塗装や流動浸漬塗装などの方法により塗布され、焼き付けられることによって塗膜を形成するため、溶剤型塗料と比較して平滑な塗膜を形成できず塗膜の外観が劣るという欠点があった。   The powder coating is generally composed mainly of a resin for forming a coating film having a volume average particle size of about 30 to 40 μm, and is applied and baked by a method such as electrostatic powder coating or fluidized immersion coating. Therefore, a smooth coating film cannot be formed as compared with the solvent-type paint, and the appearance of the coating film is inferior.

そこで、上記欠点を改善するため、下記特許文献1には、体積平均粒子径が20〜50μmで粒子径分布標準偏差20μm以下の粉体塗料が開示され、こうすることによって高外観の塗膜を形成することができ、かつ搬送性に優れた粉体塗料が得られるとしている。さらに、特許文献2には、平均粒子径が5〜15μm、90%累積粒子径が15〜25μmかつ粒子形状を球形とする粉体塗料が開示され、粒子径が小さくても流動性が向上し、粉体塗装の作業性が良くなり、塗膜の平滑性が向上するとしている。   Therefore, in order to improve the above drawbacks, Patent Document 1 below discloses a powder coating material having a volume average particle size of 20 to 50 μm and a particle size distribution standard deviation of 20 μm or less. It is said that a powder coating material that can be formed and has excellent transportability is obtained. Further, Patent Document 2 discloses a powder coating material having an average particle size of 5 to 15 μm, a 90% cumulative particle size of 15 to 25 μm, and a spherical particle shape, and improves fluidity even if the particle size is small. It is said that the workability of powder coating is improved and the smoothness of the coating film is improved.

しかしながら、特許文献1記載の粉体塗料は、溶融混練し、冷却固化して得られた固形物を粉砕し、篩い分けして目的の粒子径としているため、その形状は不定形で球状とはならない。また、特許文献2記載の球状の粉体塗料の場合も、溶融混練し、冷却固化して得られた固形物を粉砕し、篩い分けした後に熱処理して粉体塗料表面を溶融させて球状としているに過ぎない。   However, since the powder coating described in Patent Document 1 is melt-kneaded and cooled and solidified, the solid material obtained is pulverized and sieved to the desired particle size. Don't be. Also, in the case of the spherical powder coating described in Patent Document 2, the solid material obtained by melt-kneading and cooling and solidifying is pulverized, sieved, and then heat-treated to melt the powder coating surface into a spherical shape. There are only.

以上説明したように、特許文献1及び2の粉体塗料は、一度製造した粉体塗料を粉砕し篩い分けするため、目的とする粒子径から外れる部分は無駄となり、粒度をそろえようとすればするほどコストアップの結果となる。もちろん、回収し再使用することも可能であるが、その場合は余分な工程が必要となるため、コストアップとなるばかりでなく品質劣化をきたす可能性を否定できない。   As described above, since the powder coatings of Patent Documents 1 and 2 pulverize and screen the powder coating once manufactured, the portion outside the target particle size is wasted, and if the particle size is to be made uniform The higher the cost, the higher the cost. Of course, it can be recovered and reused. In this case, however, an extra step is required, so that it is not possible to deny the possibility of not only cost increase but also quality degradation.

ところで、粉体塗料は従来、粉体樹脂、硬化剤及び必要に応じて着色顔料をミキサーでドライブレンドした後、2軸エクストルーダー等の混練機を使用して加熱溶融混練し、冷却、粉砕して製造しているが、該製造方法は、ドライブレンドした後、加熱溶融混練するといった製造工程を経るため工程が複雑であること、加熱溶融混練中に増粘、ゲル化する恐れがあること、混練機の清掃に手間が掛かること、低温硬化型塗料が製造できないことに加え、着色顔料の添加は最初の工程で行われるため微妙な色合わせをするには、最初の工程に戻らなければならないといった問題点がある。さらに、該製造方法は、一旦製造条件が決まれば連続的に生産できるので大量生産には向いているが、少量で多種の塗料を製造するには適していない。   By the way, powder coating materials have been conventionally dry-blended with a powder resin, a curing agent and, if necessary, a color pigment using a mixer, then heated and melt-kneaded using a kneader such as a twin screw extruder, cooled and pulverized. However, the manufacturing method is complicated because it undergoes a manufacturing process such as dry blending and then heat melting and kneading, and there is a risk of thickening and gelling during heating and melting and kneading. In addition to the time and effort required to clean the kneader and the inability to produce a low-temperature curable paint, the addition of the color pigment is performed in the first step, so it is necessary to return to the first step in order to achieve subtle color matching. There is a problem. Furthermore, the production method is suitable for mass production because it can be continuously produced once the production conditions are determined, but is not suitable for producing various kinds of paints in a small amount.

他に、ドライブレンドのみで加熱溶融混練を行わないこともあるが、これは、顔料として鱗片状のマイカや金属を用いて塗装面に輝度感を持たせるために、これら鱗片状顔料をできるだけ壊したくない場合に限られる。しかしながら、ドライブレンドのみでは、粉体樹脂表面に顔料が付着するだけであるため、不均一で剥がれやすく、結果として塗装面の色の再現性が悪く、塗装面に付着しなかった塗料の回収使用も困難となる。   In addition, heat melt kneading may not be performed only with dry blend, but this is to break down these scaly pigments as much as possible in order to give the painted surface a brightness feeling using scaly mica or metal as the pigment. Only if you do not want to. However, with dry blend alone, the pigment only adheres to the surface of the powder resin, so it is uneven and easy to peel off, resulting in poor color reproducibility of the painted surface and the use of paint that did not adhere to the painted surface. It will also be difficult.

そこで、これらの製造方法の少なくともひとつの欠点を改善するため、下記に示す特許が出願されている。   In order to improve at least one of the disadvantages of these production methods, the following patents have been filed.

特許文献3には、特殊な構造をもつ衝撃打撃装置を用いて粉体樹脂粒子の表面に硬化剤、硬化触媒及び着色剤から選ばれる少なくとも1種の物質を埋没または固着し、固定化することを特徴とする熱硬化性粉体塗料の製造方法が開示されている。特許文献4には、母粒子である樹脂粒子の表面に顔料を結合させる複合化工程により所望の色の粉体塗料を得る製造方法が開示されている。   In Patent Literature 3, at least one substance selected from a curing agent, a curing catalyst, and a colorant is embedded or fixed on the surface of the powder resin particles using an impact impact device having a special structure, and is fixed. A method for producing a thermosetting powder coating is disclosed. Patent Document 4 discloses a manufacturing method for obtaining a powder coating material of a desired color by a compounding process in which a pigment is bonded to the surface of resin particles that are mother particles.

これらは、いずれも予め製造した樹脂粒子の表面に硬化剤、硬化触媒及び着色剤から選ばれる少なくとも1種の物質、或いは顔料を埋没固着または結合させているところに特徴がある。   Each of these is characterized in that at least one substance selected from a curing agent, a curing catalyst and a colorant, or a pigment is embedded and fixed or bonded to the surface of resin particles produced in advance.

しかしながら、特許文献3に記載の粉体衝撃装置では、衝撃室内に衝撃ピンを周設した回転盤を有すると共に、該衝撃ピンの最外周軌道面に沿い、かつそれに対して一定の空間を置いて衝撃帯状リングを配置した衝撃室を設けた上に、該衝撃帯状リングの一部に開口した循環口から該回転盤の中央付近に繋がるように配置した循環経路を備えている等複雑なため、該装置の清掃及びメンテナンスには多大の労力をかける必要がある。特に、少量多品種の粉体塗料を製造しようとする場合などにはコストアップの原因となる。   However, the powder impact device described in Patent Document 3 has a rotating disk in which an impact pin is provided in the impact chamber, and is located along the outermost raceway surface of the impact pin and with a certain space with respect to it. Because it is complicated, such as having a circulation path arranged so as to be connected to the vicinity of the center of the rotating disk from a circulation opening opened in a part of the impact belt ring, after providing an impact chamber in which the impact belt ring is arranged, A great deal of effort is required to clean and maintain the device. In particular, when trying to produce a small amount of various types of powder coatings, it causes an increase in cost.

また、特許文献4に記載の顔料を母粒子である樹脂粒子に結合させ複合化させる装置では、 被処理物である顔料と樹脂粒子が遠心力で回転する受け面に押し付けられ、受け面と押圧ヘッドとの間で押圧力とせん断力を受けることによって結合、複合化させるとしているが、被処理物を効率的に混合循環させるために、受け面の下部に穴部が設けてある等工夫が施されている。このため該装置は結果として複雑な構造となっており、清掃及びメンテナンスには不利となる。
特開平8−41384号 特開平9−208855号 特開平8−176468号 特開2003−119427号
In addition, in the apparatus that combines the pigment described in Patent Document 4 with resin particles that are base particles, the pigment and resin particles that are to be processed are pressed against the receiving surface that rotates by centrifugal force, and the receiving surface and the pressing surface are pressed. It is said that it is combined and combined by receiving pressing force and shearing force with the head, but in order to efficiently mix and circulate the object to be processed, there is a device such as a hole provided at the bottom of the receiving surface It has been subjected. As a result, the apparatus has a complicated structure, which is disadvantageous for cleaning and maintenance.
JP-A-8-41384 JP-A-9-208855 JP-A-8-176468 JP 2003-119427 A

本発明は、上記課題を解決することを鑑みてなされたものであり、粒子径が小さくても流動性が良いため作業性が改良されて高外観の塗膜を形成でき、着色粉体塗料の場合は顔料などの着色剤が少なくても鮮やかな色彩を実現できる粉体塗料の製造方法であって、清掃及びメンテナンスが容易な単純な構造の装置で、かつ短時間で当該粉体塗料を製造する方法を提供することを目的とする。
The present invention has been made in view of solving the above-mentioned problems, and even if the particle size is small, the fluidity is good, so that the workability is improved and a high-appearance coating film can be formed. In this case, it is a method for producing a powder paint that can achieve vivid colors even if there are few colorants such as pigments, and the powder paint is produced in a short time with a simple structure that is easy to clean and maintain. It aims to provide a way to do.

上記課題を解決するため、請求項1に係る発明は、粉体樹脂粒子と、硬化剤、硬化触媒及び着色剤から選ばれる少なくとも1 種の添加物とを、容器内底面に沿って回転する下段回転羽と容器中央部で回転する上段回転羽の2種の回転羽を設けた球状ミキサーを用い、 該球状ミキサーの回転羽の先端周速度が20m/sec以上で混合撹拌することを特徴とする体積平均粒子径が10〜30μm
及び標準偏差が15μm以下で粒子形状が球状、かつ、上記添加物が粉体樹脂粒子表面に埋没または固着してなる粉体塗料製造方法である。
In order to solve the above problems, the invention according to claim 1 is a lower stage in which powder resin particles and at least one additive selected from a curing agent, a curing catalyst, and a colorant are rotated along the inner bottom surface of the container. A spherical mixer provided with two types of rotary blades, a rotary blade and an upper rotary blade rotating at the center of the container, is mixed and stirred at a tip peripheral speed of the spherical mixer of 20 m / sec or more. Volume average particle size is 10-30 μm
And a powder coating production method in which the standard deviation is 15 μm or less, the particle shape is spherical , and the additive is embedded or fixed on the surface of the powder resin particles .

また、請求項2 に係る発明は、前記粉体樹脂粒子の樹脂成分が、ポリエステル系樹脂、エポキシ系樹脂、アクリル系樹脂及びこれらのハイブリッド樹脂から選ばれる少なくとも1種であることを特徴とする請求項1記載の粉体塗料製造方法である。
The invention according to claim 2 is characterized in that the resin component of the powder resin particles is at least one selected from a polyester resin, an epoxy resin, an acrylic resin, and a hybrid resin thereof. Item 2. A method for producing a powder coating material according to Item 1 .

本発明によると、高外観な塗膜を形成できる粉体塗料の製造方法及び単純な構造の装置でかつ短時間で当該粉体塗料を製造する方法を提供することができる。すなわち、本発明の粉体塗料は、粒子径は小さくても粒度が揃い球状であるため流動性に優れ、塗装したとき高外観の塗膜となる。また、本発明の製造方法によると粉体塗料の大幅な生産性向上が達成でき、これにより粉体塗料の普及を妨げているコストの壁を打ち破ることが可能になるばかりでなく、少量多品種の粉体塗料の製造にも容易に対応できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the powder coating material which can form a high-appearance coating film, and the method of manufacturing the said powder coating material in a short time can be provided with the apparatus of a simple structure. That is, the powder coating material of the present invention is excellent in fluidity because it has a spherical shape with a uniform particle size even if the particle size is small, and it becomes a coating film having a high appearance when coated. In addition, according to the production method of the present invention, it is possible to achieve a significant productivity improvement of the powder coating material, thereby not only making it possible to break down the cost barrier that is preventing the spread of the powder coating material, but also a small variety of products. It can easily handle the production of powder coatings.

さらに顔料などで着色された着色粉体塗料の場合、顔料が塗料粉末の表面付近にだけ高濃度に埋没固着されているため従来の粉体塗料に比べ着色力が高く、かつ鮮やかな色彩の塗膜を得ることが可能となる。また先端周速度20m/sec以上で高速混合されるため、回転羽や機壁と粒子、及び粒子同士の衝突と摩擦により粉体塗料粒子が粉砕・合一しながら球形化され、平均化される結果、粒度分布が狭くなる。   Furthermore, in the case of colored powder paints colored with pigments, the pigment is buried and fixed only near the surface of the paint powder, so it has higher coloring power than conventional powder paints and has a vivid color coating. A film can be obtained. In addition, since high-speed mixing is performed at a tip peripheral speed of 20 m / sec or more, the powder coating particles are spheroidized and averaged while being pulverized and united by the rotating blades, the machine wall and the particles, and the collision and friction between the particles. As a result, the particle size distribution becomes narrow.

本実施形態に係る粉体塗料及びその製造方法について説明する。なお、本実施形態は、本発明を実施するための一形態に過ぎず、本発明は本実施形態によって限定されるものではない。   The powder coating material and its manufacturing method according to this embodiment will be described. In addition, this embodiment is only one form for implementing this invention, and this invention is not limited by this embodiment.

本発明者らは鋭意研究を重ねた結果、粉体樹脂粒子表面に硬化剤、硬化触媒及び着色剤から選ばれる少なくとも1種の添加物を埋没または固着してなる粉体塗料であって、体積平均粒子径が10〜30μm及び標準偏差が15μm以下で粒子形状が球状である粉体塗料が流動性に優れ、かつ高外観な塗膜を形成できることを見出すとともに、本出願人が開発した球状ミキサーを用いると当該粉体塗料を効率的に製造できることを見出して本発明を完成した。   As a result of intensive research, the inventors of the present invention are powder coatings obtained by embedding or fixing at least one additive selected from a curing agent, a curing catalyst, and a colorant on the surface of powder resin particles, Spherical mixer developed by the present applicant while finding that a powder coating having an average particle size of 10 to 30 μm and a standard deviation of 15 μm or less and having a spherical particle shape can form a coating film with excellent fluidity and high appearance The present invention was completed by finding that the powder coating material can be efficiently produced by using.

本発明により製造された粉体塗料は、粉体樹脂粒子表面に硬化剤、硬化触媒及び着色剤から選ばれる少なくとも1種の添加物を埋没または固着させているため粉体塗料表面からこれらの添加物が剥がれ落ちることがない。粉体塗料表面付近にだけこれらの添加物が存在しているため、加熱溶融混練よる粉体塗料に比べこれらの添加物の量を少なくでき、加熱溶融による熱劣化を受けることが少ない。また、ドライブレンドのようにこれら添加物が表面に付着しているだけではないので、不均一で外観不良な塗装面となることがない。
In the powder coating produced by the present invention, at least one additive selected from a curing agent, a curing catalyst and a colorant is buried or fixed on the surface of the powder resin particles, so that these additives are added from the surface of the powder coating. Things will not come off. Since these additives are present only near the surface of the powder coating material, the amount of these additives can be reduced compared to the powder coating material by heat-melt kneading, and is less susceptible to thermal degradation due to heat-melting. Moreover, since these additives are not only adhered to the surface as in the case of dry blending, a non-uniform and poorly painted surface is not obtained.

本発明において粉体塗料の形状は球状のものである。該球状は真球状のものが好ましいが球状に近いものであれば構わない。粉体塗料の粒子形状が球状以外のもの、例えば、熱硬化性粉体塗料をジェットミル、ピンディスクミル、アトマイザ−等の粉砕機で機械的粉砕したものでは粒子表面形状が不定形で角張っているために粉体塗料の流動性が低下する結果、塗装作業性が低下するので好ましくない。   In the present invention, the powder coating is spherical. The spherical shape is preferably a true spherical shape, but any spherical shape may be used. When the particle shape of the powder coating is other than spherical, for example, when the thermosetting powder coating is mechanically pulverized by a pulverizer such as a jet mill, a pin disc mill, an atomizer, etc., the particle surface shape is irregular and angular. As a result, the fluidity of the powder coating is lowered, and as a result, the coating workability is lowered.

本発明の粉体塗料の体積平均粒子径は10〜30μmである。10μmより小さいと球状で粒度が揃っていても凝集しやすく流動性は悪くなるため、塗装作業において移送パイプやノズルでの詰まりを引き起こしやすくなる。また30μmを越えると塗膜にした場合、平滑性が失われる結果、高外観の塗膜を得ることができない。   The powder coating material of the present invention has a volume average particle size of 10 to 30 μm. If it is smaller than 10 μm, it is easy to agglomerate even if the particle size is uniform, and the fluidity is deteriorated, so that clogging with a transfer pipe or nozzle is likely to occur in the painting operation. On the other hand, when the thickness exceeds 30 μm, the coating film having a high appearance cannot be obtained as a result of the loss of smoothness.

本発明の粉体塗料はその粒子のうち最大のものの粒子径は80μm以下である。80μmを越えると添加物が塗料表面にだけ埋没固着しているため硬化が不十分となったり、塗料内部が表面に出たりするため色むらがでるなど高外観の塗装面とならない。   The particle diameter of the largest powder coating material of the present invention is 80 μm or less. If the thickness exceeds 80 μm, the additive is buried and fixed only on the surface of the paint, so that the coating is not sufficiently cured, and the interior of the paint comes out on the surface, resulting in uneven color.

標準偏差は15μm以下である。15μmを越えると粒径が不揃いとなるため流動性が悪く高外観の塗膜とならない。本発明で用いる標準偏差SDは一般に統計学で用いられているもので、式1で定義され粒度分布の目安となり、小さいほど粒度分布が狭い、すなわち粒度が揃っていることを表す。
SD=〔Σ{(D−X)2}/n〕1/2 (式1)
(式中、SDは粒径分布の標準偏差、Dは個々の粒子の粒径、Xは体積平均粒径、nはデータ数を表す。)
The standard deviation is 15 μm or less. If it exceeds 15 μm, the particle size becomes uneven, so the fluidity is poor and the coating film does not have a high appearance. The standard deviation SD used in the present invention is generally used in statistics, and is defined by Equation 1 and is a measure of the particle size distribution. The smaller the value, the narrower the particle size distribution, that is, the more uniform the particle size.
SD = [Σ {(D−X) 2 } / n] 1/2 (Formula 1)
(In the formula, SD is the standard deviation of the particle size distribution, D is the particle size of each particle, X is the volume average particle size, and n is the number of data.)

なお、本発明において粉体樹脂粒子、粉体塗料粒子などの体積平均粒子径及び標準偏差の計算に用いるデータは日機装株式会社製マイクロトラック等のレーザー式粒度分布測定機を用いて測定することができる。   In the present invention, the data used for calculating the volume average particle diameter and standard deviation of powder resin particles, powder paint particles, etc. can be measured using a laser particle size distribution measuring instrument such as Nikkiso Microtrack. it can.

本発明で用いる粉体樹脂粒子は軟化点30〜100℃が好ましく、更に40〜60℃の範囲が好適である。軟化点が30℃を下回ると製造時に粉体樹脂粒子同士が融着し製造が困難となり、一方、100℃を上回ると固定化物質の付着性が悪くなり塗膜外観、性能等が低下するといった欠点がある。   The powder resin particles used in the present invention preferably have a softening point of 30 to 100 ° C, and more preferably in the range of 40 to 60 ° C. When the softening point is lower than 30 ° C., the powder resin particles are fused with each other at the time of manufacture, making it difficult to manufacture. On the other hand, when the softening point is higher than 100 ° C., the adhesion of the immobilizing substance is deteriorated and the appearance, performance, etc. There are drawbacks.

粉体樹脂粒子は、主成分が樹脂である粒子であり、その粒子中に硬化剤、硬化触媒、着色剤の1種もしくは2種以上のものを含有することができる。   The powder resin particles are particles whose main component is a resin, and the particles may contain one or more of a curing agent, a curing catalyst, and a colorant.

粉体樹脂粒子の主成分である樹脂としては、一般的な粉体塗料に用いられるものと同様のものを用いることができ、例えば、ポリエステル、エポキシ、アクリル及びこれらのハイブリッド樹脂が挙げられる。これらには熱可塑性樹脂と熱硬化性樹脂があるが、静電粉体塗装では、熱硬化性の樹脂が用いられることが多い。また、その他に、フッ素系の熱硬化性または熱可塑性樹脂、ポリエチレン、ポリプロピレン、ナイロン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、塩化ビニル等の熱可塑性樹脂、メラミン、ポリウレタン等の熱硬化性樹脂を用いることもできる。   As the resin that is the main component of the powder resin particles, the same resins as those used in general powder coatings can be used, and examples thereof include polyester, epoxy, acrylic, and hybrid resins thereof. These include thermoplastic resins and thermosetting resins. In electrostatic powder coating, thermosetting resins are often used. In addition, fluorine-based thermosetting or thermoplastic resins, polyethylene, polypropylene, nylon, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, thermoplastic resins such as vinyl chloride, melamine, polyurethane, etc. These thermosetting resins can also be used.

粉体樹脂粒子中に含有してもよい硬化剤としては、該樹脂中に含まれる官能基と反応し硬化塗膜を形成するものであればよく、例えば、水酸基を含有する樹脂ではアミノ樹脂(ヘキサメトキシメラミン樹脂等)、ブロックポリイソシアナート(カプロラクタムブロックイソホロンジイソシアナート等)等の硬化剤、カルボキシル基含有樹脂ではポリエポキシド(トリグリシジルイソシアナート等)等の硬化剤、エポキシ基含有樹脂ではポリカルボン酸(ドデカン二酸、トリメリット酸、アジピン酸ヒドラジッド等)等、ブロックされたイソシアナート基含有樹脂ではポリオール(トリメチロールプロパン等)等の硬化剤が挙げられる。   The curing agent that may be contained in the powder resin particles is not particularly limited as long as it reacts with a functional group contained in the resin to form a cured coating film. For example, in a resin containing a hydroxyl group, an amino resin ( Hexamethoxymelamine resins, etc.), block polyisocyanates (caprolactam block isophorone diisocyanate, etc.) hardeners, carboxyl group-containing resins such as polyepoxides (triglycidyl isocyanate etc.), epoxy group-containing resins, polycarboxylic Examples of blocked isocyanate group-containing resins such as acids (dodecanedioic acid, trimellitic acid, adipic hydrazide, etc.) include curing agents such as polyol (trimethylolpropane, etc.).

粉体樹脂粒子中に含有してもよい硬化触媒としては、例えば、水酸基とアミノ樹脂との反応では有機酸(パラトルエンスルホン酸、ドデシルベンゼンスルホン酸等)、無機酸(燐酸等)等の酸触媒、水酸基とブロックポリイソシアナート基との反応では有機錫触媒(テトラブチル錫、ジブチルジラウリル錫、テトラブチルジアセチルスタノキサン等)、カルボキシル基とエポキシ基の反応では酸類(3弗化硼素等)、塩基類(アミン、アルカリ土類金属水酸化物等)、塩類(第4級オニウム塩等)、有機金属触媒(塩化第一錫、テトラブチルジルコナート等)等が使用できる。エポキシ基含有樹脂の硬化触媒においては硬化剤を使用しなくても硬化塗膜を得ることができるもの、例えば、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモナート等の重合触媒があり、このものは単独で使用することができる。   Examples of the curing catalyst that may be contained in the powder resin particles include an acid such as an organic acid (paratoluenesulfonic acid, dodecylbenzenesulfonic acid, etc.), an inorganic acid (phosphoric acid, etc.) in the reaction between a hydroxyl group and an amino resin. Catalysts: Organic tin catalysts (tetrabutyltin, dibutyldilauryltin, tetrabutyldiacetylstannoxane, etc.) for the reaction of hydroxyl groups with block polyisocyanate groups; acids (boron trifluoride, etc.) for the reaction of carboxyl groups and epoxy groups Bases (amines, alkaline earth metal hydroxides, etc.), salts (quaternary onium salts, etc.), organometallic catalysts (stannous chloride, tetrabutyl zirconate, etc.) and the like can be used. Epoxy group-containing resin curing catalysts can be obtained without using a curing agent, for example, there are polymerization catalysts such as benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate. Can be used alone.

粉体樹脂粒子中に含有してもよい着色剤としては、有機顔料、無機顔料等が挙げられる。有機顔料としては、アゾ系顔料(ファーストエロー等)、フタロシアニン系顔料(フタロシアニンブルー、フタロシアニングリーン等)、縮合多環系顔料(キナクリドンレッド、ペリレンレッド等)、ニトロソ系顔料(ナフトールエロー等)等が挙げられ、無機顔料としては、酸化物系顔料(二酸化チタン、弁柄等)、フタロシアン化物系顔料(紺青等)、クロム酸塩系顔料(モリブデンレッド等)、炭素系顔料(カーボンブラック等)、マイカ系顔料(着色マイカ等)、金属粉末顔料(鱗辺状アルミニウム粉、ブロンズ粉、亜鉛末等)が挙げられる。これらの顔料は顔料分散剤によって被覆されていてもよい。   Examples of the colorant that may be contained in the powder resin particles include organic pigments and inorganic pigments. Examples of organic pigments include azo pigments (such as fast yellow), phthalocyanine pigments (such as phthalocyanine blue and phthalocyanine green), condensed polycyclic pigments (such as quinacridone red and perylene red), and nitroso pigments (such as naphthol yellow). Examples of inorganic pigments include oxide pigments (titanium dioxide, dials, etc.), phthalocyanide pigments (bitumen, etc.), chromate pigments (molybdenum red, etc.), carbon pigments (carbon black, etc.) , Mica pigments (colored mica, etc.), metal powder pigments (scale-side aluminum powder, bronze powder, zinc dust, etc.). These pigments may be coated with a pigment dispersant.

粉体樹脂粒子中に硬化剤、硬化触媒、着色剤を含有させるには、一般には粉体樹脂粒子にこれらを溶融、混練した後、冷却し粉砕することによる。   In order to contain a curing agent, a curing catalyst, and a colorant in the powder resin particles, generally, the powder resin particles are melted and kneaded, and then cooled and pulverized.

また、粉体樹脂粒子中には上記の添加物以外に、必要に応じて充填剤、防錆剤、紫外線安定剤、紫外線吸収剤、流動性調整剤、ハジキ防止剤等を加えてもよく、粉体状、液状(水または有機溶剤に溶解または分散してもよい)のいずれの状態であっても使用できる。   In addition to the above-mentioned additives, the powder resin particles may contain a filler, a rust inhibitor, an ultraviolet stabilizer, an ultraviolet absorber, a fluidity modifier, a repellency inhibitor, etc., if necessary. It can be used in any state of powder or liquid (which may be dissolved or dispersed in water or an organic solvent).

添加物は、粉体または分散物として使用する場合には、平均粒子径0.001〜30μmの範囲、更には0.01〜20μmの範囲が好ましい。   When the additive is used as a powder or dispersion, the average particle size is preferably in the range of 0.001 to 30 μm, more preferably in the range of 0.01 to 20 μm.

添加物の平均粒子径が上記した範囲を下回ると機械的力が掛かりにくくなるため粉体樹脂粒子に対する付着性が低下し、上記した範囲を越えると粉体樹脂粒子との接触面積が少なくなるため粉体塗装作業性、塗膜性能、色むら等の欠点が発現するので好ましくない。 When the average particle diameter of the additive is below the above range, mechanical force is less likely to be applied, so the adhesion to the powder resin particle is reduced, and when the above range is exceeded, the contact area with the powder resin particle is reduced. It is not preferable because defects such as powder coating workability, coating film performance, and color unevenness appear.

なお、添加物は粉体樹脂粒子の粒子径よりも小さいものを使用することが、粉体塗装作業性、塗膜仕上り性、塗膜性能等の観点から好ましい。   In addition, it is preferable to use an additive having a particle size smaller than that of the powder resin particles from the viewpoints of powder coating workability, coating finish, and coating performance.

本発明の粉体塗料を製造する際、添加物は粉体樹脂粒子と同時にまたは別々に供給しても、また、これらのものを予め融着及び/または混合させてから供給してもよい。   When manufacturing the powder coating material of this invention, an additive may be supplied simultaneously with powder resin particle | grains or separately, and these may be supplied after melt | fusion and / or mixing previously.

添加物である硬化剤、硬化触媒、及び着色剤は前記したと同様のものが包含されるが、着色剤としては上記したもの以外に着色粉体塗料が使用できる。該着色粉体塗料としては、熱可塑性樹脂及び/または熱硬化性樹脂に着色剤を配合したものが挙げられ、硬化剤及び/または硬化触媒を含んでいてもよい。   Additives such as a curing agent, a curing catalyst, and a colorant are the same as those described above, but as the colorant, a colored powder coating can be used in addition to the above-described ones. Examples of the colored powder coating material include those obtained by blending a thermoplastic resin and / or a thermosetting resin with a colorant, and may contain a curing agent and / or a curing catalyst.

添加物の混合割合は、目的とする粉体塗料の特性によるが、全量に対し好ましくは50%以内、さらに好ましくは20%以内である。   The mixing ratio of the additive depends on the properties of the target powder coating, but is preferably within 50%, more preferably within 20% with respect to the total amount.

粉体樹脂粒子の表面に添加物を埋没または固着させるには、本出願人が開発した球状ミキサーを用いて混合撹拌するが、球状ミキサーの回転羽の先端周速度は20m/sec以上が好ましい。これより遅い速度では、粉体樹脂粒子表面に十分な力がかからないため短時間で粉体塗料を製造できない。球状ミキサーの容器内面の構造としては、真球のみならず、ほぼ球状のもの、例えば卵型や断面が楕円状の球状容器等が挙げられる。また、容器内で回転する攪拌羽は、容器底面に沿って回転する下段回転羽と、中央部で回転する上段回転羽の2種の回転羽を設けると、より品質の優れた粉体塗料が得られるので好ましい。   In order to embed or fix the additive on the surface of the powder resin particles, a spherical mixer developed by the present applicant is used for mixing and stirring. The tip peripheral speed of the rotary blade of the spherical mixer is preferably 20 m / sec or more. If the speed is lower than this, a sufficient amount of force is not applied to the surface of the powder resin particles, so that a powder coating cannot be produced in a short time. The structure of the inner surface of the container of the spherical mixer includes not only a true sphere but also a substantially spherical one, such as an oval or a spherical container having an elliptical cross section. In addition, the stirring blade rotating in the container is provided with two types of rotating blades, a lower rotating blade rotating along the bottom surface of the container and an upper rotating blade rotating at the center, so that a powder coating with better quality can be obtained. Since it is obtained, it is preferable.

球状ミキサーの代表例として図2で示す上下二本の回転羽を有する球状ミキサーにより説明すると、球状ミキサーは、試料の投入口1及び取出口2を有し、内部が球状であり、球状容器底面に沿って下段回転羽3と中央部で回転する上段回転羽4を有する。そして、容器内の底面中央部分に存在する試料は、下段回転羽3の回転力で強く攪拌され、容器底部から周辺部分へと、そして下方から上方へと壁面に沿って押し上げられる。容器壁面に沿って押し上げられた試料は容器内が球状のために、中央部で回転する上段回転羽4の上に落ち、強烈に攪拌混合される。   As a typical example of the spherical mixer, a spherical mixer having two upper and lower rotating blades shown in FIG. 2 will be described. The spherical mixer has a sample inlet 1 and an outlet 2 and is spherical inside, and has a spherical container bottom. Are provided with a lower rotating blade 3 and an upper rotating blade 4 rotating at the center. And the sample which exists in the bottom face center part in a container is stirred strongly with the rotational force of the lower stage rotary blade 3, and is pushed up along a wall surface from a container bottom part to a peripheral part and from the downward direction to the upper part. Since the sample pushed up along the container wall surface is spherical, the sample falls on the upper rotating blade 4 rotating at the center, and is vigorously stirred and mixed.

即ち、本発明者らは、球状ミキサーの下段回転羽の先端周速度を20m/sec以上に大きくすると、添加物が粉体塗料表面に効率よく埋没固着されるため、添加物が粉体塗料から剥がれ落ちることがなく、塗装した場合に、仕上がり性、機械的及び化学的性能に優れた塗膜を得ることができることを見出した。なお、球状ミキサーの回転羽の周速度を高くした場合には、発生する摩擦熱による特性劣化を抑えるため球状ミキサーの容器、駆動軸及び/または回転羽に水などの冷媒を通して冷却することが好ましい。   That is, when the tip peripheral speed of the lower rotary blade of the spherical mixer is increased to 20 m / sec or more, the present inventors efficiently embed and fix the additive on the surface of the powder coating material. It has been found that a coating film excellent in finish, mechanical and chemical performance can be obtained when painted without peeling off. When the peripheral speed of the rotating blades of the spherical mixer is increased, it is preferable to cool the container, the drive shaft and / or the rotating blades of the spherical mixer with a coolant such as water in order to suppress deterioration of characteristics due to generated frictional heat. .

また、図2で、回転羽の駆動軸5を上段回転部分付近から球状容器底面に向かって広がる円錐形にすると、球状容器内の底面部分に試料が滞留せず、効率よく攪拌され、均一に処理されるため好ましい。   Further, in FIG. 2, when the drive shaft 5 of the rotary blade is formed in a conical shape extending from the vicinity of the upper rotating portion toward the bottom surface of the spherical container, the sample does not stay on the bottom surface portion in the spherical container, and is stirred efficiently and uniformly. Since it is processed, it is preferable.

上記で説明したように、球状ミキサーは、構造が単純なため清掃及びメンテナンスが容易で、かつ回転の力が効率的に粉体樹脂粒子表面及び添加物にかかるため処理時間が短くなる。   As described above, since the spherical mixer has a simple structure, cleaning and maintenance are easy, and the rotational force is efficiently applied to the surface of the powder resin particles and the additive, so that the processing time is shortened.

以上、本出願人が開発した球状ミキサーを用いて本発明の粉体塗料の製造方法を説明したが、本発明の粉体塗料が得られるのであればこの製造方法に限定されるものではない。   As mentioned above, although the manufacturing method of the powder coating material of this invention was demonstrated using the spherical mixer which the present applicant developed, if the powder coating material of this invention is obtained, it will not be limited to this manufacturing method.

粉体塗装は、それ自体公知の方法、例えば、静電粉体塗装、摩擦帯電粉体塗装、流動浸漬等の塗装方法によって行うことができる。熱硬化性粉体塗料の場合には、粉体塗装した後、焼付けによって硬化塗膜を形成する。   The powder coating can be performed by a method known per se, for example, a coating method such as electrostatic powder coating, triboelectric powder coating, fluid immersion, or the like. In the case of a thermosetting powder coating, after the powder coating, a cured coating film is formed by baking.

以下に実施例を挙げて、具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例において部と記載されているものは重量部を表す。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, what is described as a part in an Example and a comparative example represents a weight part.

本実施例において粉体塗料及び粉体塗装の評価は次の試験方法により行った。
<静電粉体塗装作業性>
静電塗装機(ラボジェット、SAMES社製)を使用し、粉体塗料のガンへの安定供給性と吐出安定性を下記基準で評価した。
○は粉体の吐出が均一で、塗装作業性に優れる。
△は粉体の吐出が不均一で、塗装作業性が劣る。
×は粉体の吐出が著しく不均一で、塗装作業性が非常に悪いもの。
In this example, the powder coating and powder coating were evaluated by the following test methods.
<Electric powder coating workability>
An electrostatic coating machine (Labjet, manufactured by SAMES) was used, and the stable supply and discharge stability of the powder coating to the gun were evaluated according to the following criteria.
○ is uniform discharge of powder and excellent paint workability.
Δ indicates uneven powder discharge and poor coating workability.
X indicates that the powder discharge is extremely uneven and the coating workability is very poor.

<塗膜性能試験塗装板の調製>
燐酸亜鉛処理した鋼板に乾燥膜厚が約60μmになるように静電粉体塗装し、所定の温度で焼付けを行ったものを試験片として使用し、塗膜外観、鏡面反射率、硬化性及び加工性を下記の方法で試験した。
<Preparation of paint performance test coating plate>
Electrostatic powder coating is applied to a zinc phosphate-treated steel sheet so that the dry film thickness is about 60 μm, and baking is performed at a predetermined temperature as a test piece. The coating film appearance, specular reflectance, curability and Workability was tested by the following method.

<塗膜外観>
塗膜表面を目視で観察し評価した。
○は平滑性、光沢、色むら等の異常がないもの。
△は平滑性、光沢、色むら等の異常が認められるもの。
×は平滑性、光沢、色むら等の異常が著しく認められるもの。
<Appearance of coating film>
The coating surface was visually observed and evaluated.
○ indicates that there is no abnormality such as smoothness, gloss, and uneven color.
Δ indicates abnormalities such as smoothness, gloss, and uneven color.
X indicates that abnormalities such as smoothness, gloss, and color unevenness are remarkably observed.

<鏡面反射率>
JIS K−5600−4−7の60度鏡面光沢度を測定した。
<Specular reflectance>
The 60 degree specular glossiness of JIS K-5600-4-7 was measured.

<硬化性>
塗膜表面をキシレン含浸ガ−ゼを指先で強く押さえながら往復10回払拭した後の外観を目視評価した。○は表面に異常がなく硬化性が良いもの、△はわずかに表面に傷が認められ硬化性が劣るもの、×は表面が溶解し硬化性が著しく劣るもの。
<Curing property>
The appearance after wiping 10 times back and forth while pressing the xylene-impregnated gauze with the fingertips was visually evaluated. ○ indicates that the surface has no abnormality and good curability, Δ indicates that the surface is slightly scratched and inferior in curability, and × indicates that the surface dissolves and the curability is extremely inferior.

<エリクセン試験>
JIS−Z−2247に基づきエリクセン試験を行った。
<Erichsen test>
The Eriksen test was conducted based on JIS-Z-2247.

実施例1
エポキシ樹脂粉体(旭チバ社製 商品名:ARALDITE6014)をピンディスクミルで粉砕した。この粉体100部に対しアジピン酸ヒドラジッド(平均粒子径1μm)7部を混合し球状ミキサーに投入した。攪拌混合羽の周速が80m/secで3分間処理後、粉体塗料の流動調整剤としてシリカ(日本アエロジル社製 商品名:アエロジルR−972)0.2部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて粉体塗料を得た。
図1Aに球状ミキサー処理前、図1Bに球状ミキサー処理後の粉体塗料の走査型電子顕微鏡写真を載せた。
Example 1
Epoxy resin powder (trade name: ARALDITE 6014, manufactured by Asahi Ciba) was pulverized with a pin disc mill. 7 parts of adipic acid hydrazide (average particle diameter 1 μm) was mixed with 100 parts of this powder and charged into a spherical mixer. After processing for 3 minutes at a peripheral speed of the stirring and mixing blades of 80 m / sec, 0.2 parts of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) was added as a flow regulator for the powder coating, and the periphery of the stirring and mixing blades After processing at a speed of 40 m / sec for 1 minute, coarse particles were removed with 150 mesh to obtain a powder coating material.
FIG. 1A shows a scanning electron micrograph of the powder coating before the spherical mixer treatment and FIG. 1B after the spherical mixer treatment.

実施例2
ポリエステル樹脂粉体(日本ユピカ社製 商品名:GV−126)をピンディスクミルで粉砕した。この粉体100部に対しブロックイソシアネート(ヒュルス社製 商品名:B1530)10部を混合し球状ミキサーに投入した。攪拌混合羽の周速が80m/secで3分間処理後、粉体塗料の流動調整剤としてシリカ(日本アエロジル社製 商品名:アエロジルR−972)0.2部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて粉体塗料を得た。
Example 2
A polyester resin powder (trade name: GV-126, manufactured by Nippon Iupika Co., Ltd.) was pulverized with a pin disc mill. 100 parts of this powder was mixed with 10 parts of blocked isocyanate (trade name: B1530, manufactured by Huls) and charged into a spherical mixer. After processing for 3 minutes at a peripheral speed of the stirring and mixing blades of 80 m / sec, 0.2 parts of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) was added as a flow regulator for the powder coating, and the periphery of the stirring and mixing blades After processing at a speed of 40 m / sec for 1 minute, coarse particles were removed with 150 mesh to obtain a powder coating material.

実施例3
アクリル樹脂(三井化学社製 商品名:PD−7210)をジェットミルで粉砕・分級して平均粒子径を約15μmに調整した。この粉体100部に対しドデカン二酸(宇部興産社製
商品名:DDA)15部を混合し球状ミキサーに投入した。攪拌混合羽の周速が80m/secで3分間処理後、粉体塗料の流動調整剤としてシリカ(日本アエロジル社製 商品名:アエロジルR−972)0.2部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて粉体塗料を得た。
Example 3
Acrylic resin (trade name: PD-7210 manufactured by Mitsui Chemicals) was pulverized and classified with a jet mill to adjust the average particle size to about 15 μm. To 100 parts of this powder, 15 parts of dodecanedioic acid (trade name: DDA manufactured by Ube Industries) was mixed and charged into a spherical mixer. After processing for 3 minutes at a peripheral speed of the stirring and mixing blades of 80 m / sec, 0.2 parts of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) was added as a flow regulator for the powder coating, and the periphery of the stirring and mixing blades After processing at a speed of 40 m / sec for 1 minute, coarse particles were removed with 150 mesh to obtain a powder coating material.

比較例1
実施例1で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 1
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 1.

比較例2
実施例2で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 2
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 2.

比較例3
実施例3で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 3
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 3.

上記実施例1〜3及び比較例1〜3で得られた粉体塗料の評価結果を表1にまとめたが、本発明による実施例1〜3で製造された粉体塗料は、比較例1〜3のドライブレンドによるものに比べ静電塗装作業性、塗膜外観及び硬化性に優れていること、エリクセン試験の結果から堅固な塗膜を形成していること、さらに鏡面反射率が高いことから塗膜表面が平滑で高外観であることが分かる。   The evaluation results of the powder coating materials obtained in Examples 1 to 3 and Comparative Examples 1 to 3 are summarized in Table 1, but the powder coating materials manufactured in Examples 1 to 3 according to the present invention are Comparative Example 1. Compared to the dry blends of ~ 3, it has excellent electrostatic coating workability, coating film appearance and curability, a firm coating film is formed from the results of the Eriksen test, and has a high specular reflectance. It can be seen that the coating surface is smooth and has a high appearance.

また、実施例1における球状ミキサー処理前(図1A)、処理後(図1B)の走査型電子顕微鏡写真から、球状ミキサー処理すると粒径が揃いかつ粒子が角張ったところがなく球状となっていることが目視で確認できる。   In addition, from the scanning electron micrographs before (FIG. 1A) and after processing (FIG. 1B) in the spherical mixer in Example 1, when the spherical mixer processing is performed, the particle size is uniform and the particles are spherical without any angularity. Can be visually confirmed.

Figure 0004939022
Figure 0004939022

以下の実施例4〜8及び比較例4〜8において、粒子径、安息角及び塗膜の視覚特性(明度、a値、b値、彩度)は下記に示す方法により測定した。   In the following Examples 4 to 8 and Comparative Examples 4 to 8, the particle diameter, the angle of repose, and the visual characteristics (lightness, a value, b value, saturation) of the coating film were measured by the methods shown below.

<粒子径>
レーザー式粒度分布測定機(マイクロトラック 日機装株式会社)を用いて粉体塗料の粒度分布・平均粒子径を測定した。
<Particle size>
The particle size distribution and average particle size of the powder coating were measured using a laser type particle size distribution analyzer (Microtrac Nikkiso Co., Ltd.).

<安息角>
パウダーテスター(ホソカワミクロン株式会社製)を用いて、テーブル上に粉体塗料を流下させ、堆積する山の稜線の角度を測定した。
<Repose angle>
Using a powder tester (manufactured by Hosokawa Micron Corporation), the powder coating material was allowed to flow down on the table, and the angle of the ridgeline of the piles was measured.

<塗膜の視覚特性>
JIS K 5600−4−5に基づき Macbeth CE7000色差計を用いて塗膜の測色を行い、JIS Z 8729に従い表示した。
1)明度(L値) :色の明るさを数値化したもの。白に近づくほど高く、黒に近づくほど低い値となる。
2)a値:赤色度を数値化したもの。正の値が大きいほど赤色に近づき、負の値が大きいほど緑色に近づく。
3)b値:黄色度を数値化したもの。正の値が大きいほど黄色に近づき、負の値が大きいほど青色に近づく。
4)彩度:色の鮮やかさを数値化したもの。大きいほど鮮やかになる。
<Visual characteristics of coating film>
The coating film was measured using a Macbeth CE7000 color difference meter based on JIS K 5600-4-5, and displayed according to JIS Z 8729.
1) Lightness (L value): A numerical value of color brightness. The closer to white, the higher, and the closer to black, the lower the value.
2) a value: A numerical value of redness. The higher the positive value, the closer to red, and the higher the negative value, the closer to green.
3) b value: A numerical value of yellowness. The higher the positive value, the closer to yellow, and the higher the negative value, the closer to blue.
4) Saturation: Quantification of color vividness. The bigger it is, the brighter it becomes.

実施例4
エポキシ樹脂粉体(旭チバ社製 商品名:ARALDITE6003)58部、ポリエステル樹脂粉体(日本ユピカ社製 商品名:GV−230)42部、硬化触媒(四国化成工業社製
商品名:C11Z)0.2部、二酸化チタン(石原産業社製 商品名:CR−95)30部、流動調整剤(BASF社 商品名:アクロナール4F)0.8部、ピンホール防止剤(みどり化学社製
商品名:ベンゾイン)0.3部を計量し、ヘンシェルミキサーでドライブレンド後、二軸押出機を用いて120℃で溶融混練し、ピンディスクミルで粉砕して白色粉体塗料を製造した。
この白色粉体塗料100部に銅フタロシアニンブルー(山陽色素社製 商品名:FBK#3)1部を混合し球状ミキサーに投入した。攪拌混合羽の周速が40m/secで5分間処理後、シリカ(日本アエロジル社製
商品名:アエロジルR−972)0.2部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて青色粉体塗料を得た。
Example 4
58 parts of epoxy resin powder (trade name: ARALDITE 6003 manufactured by Asahi Ciba Co., Ltd.), 42 parts of polyester resin powder (trade name: GV-230, manufactured by Nippon Yupica Co., Ltd.), curing catalyst (trade name: C11Z, manufactured by Shikoku Kasei Kogyo Co., Ltd.) 2 parts, 30 parts of titanium dioxide (trade name: CR-95, manufactured by Ishihara Sangyo Co., Ltd.), 0.8 parts of flow regulator (BASF product name: Acronal 4F), pinhole inhibitor (trade name, manufactured by Midori Chemical Co., Ltd.) 0.3 parts of benzoin) was weighed, dry blended with a Henschel mixer, melt kneaded at 120 ° C. using a twin screw extruder, and pulverized with a pin disk mill to produce a white powder paint.
100 parts of this white powder coating material was mixed with 1 part of copper phthalocyanine blue (trade name: FBK # 3, manufactured by Sanyo Dye Co., Ltd.) and charged into a spherical mixer. After processing for 5 minutes at a peripheral speed of the stirring and mixing blades of 40 m / sec, 0.2 part of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) was added and the peripheral speed of the stirring and mixing blades was 40 m / sec for 1 minute. After the treatment, coarse particles were removed with 150 mesh to obtain a blue powder paint.

実施例5
実施例4で製造した白色粉体塗料100部に弁柄(バイエル社製 商品名:バイフェロックス120NM)1.7部、二酸化チタン(石原産業社製 商品名:CR−95)2.5部を混合し球状ミキサーに投入した。攪拌混合羽の周速が80m/secで5分間処理後、シリカ(日本アエロジル社製
商品名:アエロジルR−972)0.2部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて茶色粉体塗料を得た。
Example 5
100 parts of white powder coating material produced in Example 4 1.7 parts of petal (Bayferx brand name: Biferox 120NM), 2.5 parts of titanium dioxide (Ishihara Sangyo brand name: CR-95) Were mixed and put into a spherical mixer. After processing for 5 minutes at a peripheral speed of the stirring and mixing blades of 80 m / sec, 0.2 part of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) is added and the peripheral speed of the stirring and mixing blades is 40 m / sec for 1 minute. After the treatment, coarse particles were removed with 150 mesh to obtain a brown powder paint.

実施例6
実施例4で製造した白色粉体塗料100部に艶消し剤(ヒュルス社製 商品名:VESTAGON B−68)8部を混合し球状ミキサーに投入した。攪拌混合羽の周速が120m/secで4分間処理後、シリカ(日本アエロジル社製
商品名:アエロジルR−972)0.2部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて艶消し白色粉体塗料を得た。
Example 6
8 parts of a matting agent (trade name: VESTAGON B-68, manufactured by Huls) were mixed with 100 parts of the white powder coating material produced in Example 4, and charged into a spherical mixer. After processing for 4 minutes at a peripheral speed of the stirring and mixing blades of 120 m / sec, 0.2 part of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) is added and the peripheral speed of the stirring and mixing blades is 40 m / sec for 1 minute. After the treatment, coarse particles were removed with 150 mesh to obtain a matte white powder paint.

実施例7
ポリエステル樹脂粉体(日本ユピカ社製 商品名:GV−126)59部、ブロックイソシアネート(ヒュルス社製 商品名:B1530)11部、二酸化チタン(石原産業社製
商品名:CR−95)30部、流動調整剤(BASF社 商品名:アクロナール4F)0.8部、ピンホール防止剤(みどり化学社製 商品名:ベンゾイン)0.3部を計量し、ヘンシェルミキサーでドライブレンド後、二軸押出機を用いて120℃で溶融混練し、ピンディスクミルで粉砕して白色粉体塗料を製造した。
この白色粉体塗料100部に銅フタロシアニンブルー(山陽色素株社製 商品名:FBK#3)1部を混合し球状ミキサーに投入した。攪拌混合羽の周速が40m/secで5分間処理後、シリカ(日本アエロジル社製
商品名:アエロジルR−972)0.2部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて青色粉体塗料を得た。
Example 7
59 parts of polyester resin powder (trade name: GV-126, manufactured by Nippon Iupika Co., Ltd.), 11 parts of blocked isocyanate (trade name: B1530, manufactured by Huls), 30 parts of titanium dioxide (trade name: CR-95, manufactured by Ishihara Sangyo Co., Ltd.) Weighing 0.8 parts of flow control agent (BASF brand name: acronal 4F) and 0.3 part of pinhole inhibitor (brand name: benzoin, manufactured by Midori Chemical Co., Ltd.), dry blending with a Henschel mixer, twin screw extruder Was melt kneaded at 120 ° C. and pulverized with a pin disc mill to produce a white powder coating material.
One part of copper phthalocyanine blue (trade name: FBK # 3, manufactured by Sanyo Dyeing Co., Ltd.) was mixed with 100 parts of this white powder coating material and charged into a spherical mixer. After processing for 5 minutes at a peripheral speed of the stirring and mixing blades of 40 m / sec, 0.2 part of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) was added and the peripheral speed of the stirring and mixing blades was 40 m / sec for 1 minute. After the treatment, coarse particles were removed with 150 mesh to obtain a blue powder paint.

実施例8
アクリル樹脂(三井化学社製 商品名:PD−7210)61部、ドデカン二酸(宇部興産社製 商品名:DDA)9部、二酸化チタン(石原産業社製 商品名:CR−95)30部、流動調整剤(三井化学社製
商品名:レジミックスRL−4)0.6部を計量し、ヘンシェルミキサーでドライブレンド後、二軸押出機を用いて120℃で溶融混練し、ジェットミルで粉砕・分級して白色粉体塗料を製造した。
この白色粉体塗料100部に銅フタロシアニンブルー(山陽色素株社製 商品名:FBK#3)1部を混合し球状ミキサーに投入した。攪拌混合羽の周速が120m/secで3分間処理後、シリカ(日本アエロジル社製
商品名:アエロジルR−972)0.4部投入して攪拌混合羽の周速が40m/secで1分間処理した後、150メッシュで粗粒を取り除いて青色粉体塗料を得た。
Example 8
61 parts acrylic resin (trade name: PD-7210, manufactured by Mitsui Chemicals), 9 parts, dodecanedioic acid (trade name: DDA, manufactured by Ube Industries), 30 parts, titanium dioxide (trade name: CR-95, manufactured by Ishihara Sangyo Co., Ltd.) 0.6 parts of flow control agent (trade name: Resimix RL-4, manufactured by Mitsui Chemicals) is weighed, dry blended with a Henschel mixer, melt kneaded at 120 ° C using a twin screw extruder, and pulverized with a jet mill.・ Classification produced white powder paint.
One part of copper phthalocyanine blue (trade name: FBK # 3, manufactured by Sanyo Dyeing Co., Ltd.) was mixed with 100 parts of this white powder coating material and charged into a spherical mixer. After processing for 3 minutes at a peripheral speed of stirring and mixing blades of 120 m / sec, 0.4 part of silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) was added, and the peripheral speed of stirring and mixing blades was 40 m / sec for 1 minute. After the treatment, coarse particles were removed with 150 mesh to obtain a blue powder paint.

比較例4−1
実施例4で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 4-1
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 4.

比較例4−2
実施例4の全配合組成からシリカ(日本アエロジル社製 商品名:アエロジルR−972)を除いた配合物をヘンシェルミキサーで混合後、二軸押出機を用いて120℃で溶融混練し、ピンディスクミルで粉砕し、シリカ(日本アエロジル 商品名:アエロジルR-972)0.2部投入して1分間混合した後150メッシュで粗粒を取り除いて溶融混練粉砕による粉体塗料を得た。
Comparative Example 4-2
A compound obtained by removing silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) from the total composition of Example 4 was mixed with a Henschel mixer, and then melt-kneaded at 120 ° C. using a twin-screw extruder, and then a pin disk. After pulverizing with a mill, 0.2 part of silica (Nippon Aerosil brand name: Aerosil R-972) was added and mixed for 1 minute, and then coarse particles were removed with 150 mesh to obtain a powder coating material by melt kneading and pulverization.

比較例4−3
実施例4の全配合組成からシリカ(日本アエロジル社製 商品名:アエロジルR−972)を除いた配合物に銅フタロシアニンブルー(山陽色素社製 商品名:FBK#3)0.8部を添加しヘンシェルミキサーで混合後、二軸押出機を用いて120℃で溶融混練し、ピンディスクミルで粉砕し、シリカ(日本アエロジル 商品名:アエロジルR-972)0.2部投入して1分間混合した後150メッシュで粗粒を取り除いて溶融混練粉砕による粉体塗料を得た。
Comparative Example 4-3
0.8 parts of copper phthalocyanine blue (trade name: FBK # 3, manufactured by Sanyo Dye Co., Ltd.) was added to the composition obtained by removing silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) from the total composition of Example 4. After mixing with a Henschel mixer, it was melt-kneaded at 120 ° C. using a twin screw extruder, pulverized with a pin disc mill, and 0.2 part of silica (Nippon Aerosil product name: Aerosil R-972) was added and mixed for 1 minute. Thereafter, coarse particles were removed with 150 mesh to obtain a powder coating material by melt kneading and pulverization.

比較例5−1
実施例5で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 5-1
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 5.

比較例5−2
実施例5の全配合組成からシリカ(日本アエロジル社製 商品名:アエロジルR−972)を除いた配合物をヘンシェルミキサーで混合後、二軸押出機を用いて120℃で溶融混練し、ピンディスクミルで粉砕し、シリカ(日本アエロジル 商品名:アエロジルR-972)0.2部投入して1分間混合した後150メッシュで粗粒を取り除いて溶融混練粉砕による粉体塗料を得た。
Comparative Example 5-2
A compound obtained by removing silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) from the total composition of Example 5 was mixed with a Henschel mixer, and then melt-kneaded at 120 ° C. using a twin-screw extruder, and then a pin disk. After pulverizing with a mill, 0.2 part of silica (Nippon Aerosil brand name: Aerosil R-972) was added and mixed for 1 minute, and then coarse particles were removed with 150 mesh to obtain a powder coating material by melt kneading and pulverization.

比較例6−1
実施例6で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 6-1
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 6.

比較例6−2
実施例6の全配合組成からシリカ(日本アエロジル社製 商品名:アエロジルR−972)を除いた配合物をヘンシェルミキサーで混合後、二軸押出機を用いて120℃で溶融混練し、ピンディスクミルで粉砕し、シリカ(日本アエロジル 商品名:アエロジルR-972)0.2部投入して1分間混合した後150メッシュで粗粒を取り除いて溶融混練粉砕による粉体塗料を得た。
Comparative Example 6-2
A compound obtained by removing silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) from the total composition of Example 6 was mixed with a Henschel mixer, and then melt-kneaded at 120 ° C. using a twin-screw extruder, and then a pin disk. After pulverizing with a mill, 0.2 part of silica (Nippon Aerosil brand name: Aerosil R-972) was added and mixed for 1 minute, and then coarse particles were removed with 150 mesh to obtain a powder coating material by melt kneading and pulverization.

比較例7−1
実施例7で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 7-1
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 7.

比較例7−2
実施例7の全配合組成からシリカ(日本アエロジル社製 商品名:アエロジルR−972)を除いた配合物をヘンシェルミキサーで混合後、二軸押出機を用いて120℃で溶融混練し、ピンディスクミルで粉砕し、シリカ(日本アエロジル 商品名:アエロジルR-972)0.2部投入して1分間混合した後150メッシュで粗粒を取り除いて溶融混練粉砕による粉体塗料を得た。
Comparative Example 7-2
A compound obtained by removing silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) from the total composition of Example 7 was mixed with a Henschel mixer, and then melt-kneaded at 120 ° C. using a twin-screw extruder, and a pin disk. After pulverizing with a mill, 0.2 part of silica (Nippon Aerosil brand name: Aerosil R-972) was added and mixed for 1 minute, and then coarse particles were removed with 150 mesh to obtain a powder coating material by melt kneading and pulverization.

比較例8−1
実施例8で球状ミキサーをヘンシェルミキサーに変更した以外は同様にしてドライブレンドによる粉体塗料を得た。
Comparative Example 8-1
A powder paint by dry blending was obtained in the same manner except that the spherical mixer was changed to a Henschel mixer in Example 8.

比較例8−2
実施例8の全配合組成からシリカ(日本アエロジル社製 商品名:アエロジルR−972)を除いた配合物をヘンシェルミキサーで混合後、二軸押出機を用いて120℃で溶融混練し、ジェットミルで粉砕・分級後に、シリカ(日本アエロジル 商品名:アエロジルR-972)0.4部投入して1分間混合した後150メッシュで粗粒を取り除いて溶融混練粉砕による粉体塗料を得た。
Comparative Example 8-2
A blend obtained by removing silica (trade name: Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) from the entire blend composition of Example 8 was mixed with a Henschel mixer, melt-kneaded at 120 ° C. using a twin screw extruder, and jet mill After pulverization and classification, 0.4 part of silica (Nippon Aerosil product name: Aerosil R-972) was added and mixed for 1 minute, and then coarse particles were removed with 150 mesh to obtain a powder coating material by melt kneading and pulverization.

表2に実施例4〜8、表3に比較例4及び5、表4に比較例6〜8の評価結果を示す。実施例4の青色粉体塗料は、配合組成が同じである比較例4−1のドライブレンドに比較して、粒子径はほぼ同じであるが標準偏差は小さく塗装作業性及び色むらがないなど塗装外観が優れ、鮮やかな色彩になることが分かる。また、配合組成が同じ比較例4−2の溶融混練粉砕による粉体塗料と比較して塗装外観は同等であるが、安息角が小さいことから流動性が良く、鮮やかな色彩となる。従来の溶融混練粉砕による粉体塗料(比較例4−3)では、1.8倍の顔料を入れても実施例4と同等の彩度に到達しない。   Table 2 shows Examples 4 to 8, Table 3 shows Comparative Examples 4 and 5, and Table 4 shows Comparative Examples 6 to 8. The blue powder coating material of Example 4 has substantially the same particle size as the dry blend of Comparative Example 4-1, which has the same blending composition, but the standard deviation is small, and there is no coating workability and no color unevenness. It can be seen that the paint appearance is excellent and the colors become vivid. Moreover, although the coating external appearance is equivalent compared with the powder coating material by the melt-kneading grinding | pulverization of the comparative example 4-2 with the same compounding composition, since the angle of repose is small, fluidity | liquidity is good and it becomes a vivid color. In the conventional powder coating by melt kneading and pulverization (Comparative Example 4-3), even when 1.8 times the pigment is added, the saturation equivalent to that in Example 4 is not reached.

実施例5の茶色粉体塗料は、比較例5−1のドライブレンドに比べ、粒子径はほぼ同じであるが標準偏差は小さく塗装作業性及び色むらがないなど塗装外観が優れ、鮮やかな色彩になり、比較例5−2の溶融混練粉砕による粉体塗料と比較しても流動性が良く、鮮やかな色彩となる。   The brown powder coating of Example 5 has a particle appearance that is almost the same as that of the dry blend of Comparative Example 5-1, but has a small standard deviation, excellent coating workability and no color unevenness, and vivid colors. Thus, even if compared with the powder coating material by melt kneading and pulverization of Comparative Example 5-2, the fluidity is good and the color is vivid.

実施例6は艶消し剤を加えた配合であるが、ドライブレンド(比較例6−1)と比べて塗装作業性、塗装外観に優れ、艶消し剤の効果が十分に出ていることが分かる。溶融混練粉砕した粉体塗料(比較例6−2)と比べても艶消し剤の効果が十分に発揮されている。   Example 6 is a formulation to which a matting agent is added, but it is excellent in coating workability and coating appearance as compared with the dry blend (Comparative Example 6-1), and it is understood that the effect of the matting agent is sufficiently exhibited. . Even when compared with the melt-kneaded and pulverized powder coating (Comparative Example 6-2), the effect of the matting agent is sufficiently exhibited.

実施例7及び8は、実施例4から樹脂成分を変更した青色粉体塗料である。いずれもドライブレンド(比較例7−1及び8−1)と比べて、塗装作業性及び色むらがないなど塗装外観が優れ、鮮やかな色彩になり、溶融混練粉砕した粉体塗料(比較例7−2及び8−2)と比べても流動性が良く、鮮やかな色彩となる。   Examples 7 and 8 are blue powder coating materials in which the resin components are changed from those in Example 4. Compared to dry blends (Comparative Examples 7-1 and 8-1), the powder coating (Comparative Example 7) has excellent coating appearance such as no coating workability and no color unevenness, has a vivid color, is melt kneaded and pulverized. -2 and 8-2), the fluidity is good and the color is vivid.

Figure 0004939022
Figure 0004939022

Figure 0004939022
Figure 0004939022

Figure 0004939022
Figure 0004939022

本発明によれば、粒子径が小さくても流動性が良いため作業性が改良されて高外観の塗膜を形成でき、着色粉体塗料の場合は顔料などの着色剤が少なくても鮮やかな色彩を実現できる粉体塗料、及び清掃及びメンテナンスが容易な単純な構造の装置で、かつ短時間で当該粉体塗料を製造する方法を提供することができる。   According to the present invention, even if the particle size is small, the fluidity is good, so that the workability is improved and a high-appearance coating film can be formed. It is possible to provide a powder coating material capable of realizing colors and a method of manufacturing the powder coating material in a short time with an apparatus having a simple structure that can be easily cleaned and maintained.

本実施形態に係る粉体塗料の球状ミキサー処理前の走査型電子顕微鏡写真である。It is a scanning electron micrograph before the spherical mixer process of the powder coating material which concerns on this embodiment. 本実施形態に係る粉体塗料の球状ミキサー処理後の走査型電子顕微鏡写真である。It is a scanning electron micrograph after the spherical mixer process of the powder coating material which concerns on this embodiment. 本実施形態に係る製造装置である。It is a manufacturing apparatus concerning this embodiment.

Claims (2)

粉体樹脂粒子と、硬化剤、硬化触媒及び着色剤から選ばれる少なくとも1 種の添加物とを、
容器内底面に沿って回転する下段回転羽と容器中央部で回転する上段回転羽の2種の回転羽を設けた球状ミキサーを用い、
該球状ミキサーの回転羽の先端周速度が20m/sec以上で混合撹拌することを特徴とする
体積平均粒子径が10〜30μm 及び標準偏差が15μm以下で粒子形状が球状、かつ、上記添加物が粉体樹脂粒子表面に埋没または固着してなる粉体塗料製造方法。
Powder resin particles and at least one additive selected from a curing agent, a curing catalyst and a colorant,
Using a spherical mixer provided with two types of rotating blades, a lower rotating blade rotating along the bottom surface of the container and an upper rotating blade rotating at the center of the container,
Mixing and stirring at a tip peripheral speed of the rotary blade of the spherical mixer of 20 m / sec or more, the volume average particle diameter is 10 to 30 μm, the standard deviation is 15 μm or less, the particle shape is spherical , and the additive is A method for producing a powder coating, which is buried or fixed on the surface of powder resin particles .
前記粉体樹脂粒子の樹脂成分が、ポリエステル系樹脂、エポキシ系樹脂、アクリル系樹脂及びこれらのハイブリッド樹脂から選ばれる少なくとも1種であることを特徴とする請求項1記載の粉体塗料製造方法。   The method for producing a powder coating material according to claim 1, wherein the resin component of the powder resin particles is at least one selected from a polyester resin, an epoxy resin, an acrylic resin, and a hybrid resin thereof.
JP2005275907A 2005-09-22 2005-09-22 Method for producing powder coating Active JP4939022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275907A JP4939022B2 (en) 2005-09-22 2005-09-22 Method for producing powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275907A JP4939022B2 (en) 2005-09-22 2005-09-22 Method for producing powder coating

Publications (2)

Publication Number Publication Date
JP2007084709A JP2007084709A (en) 2007-04-05
JP4939022B2 true JP4939022B2 (en) 2012-05-23

Family

ID=37972020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275907A Active JP4939022B2 (en) 2005-09-22 2005-09-22 Method for producing powder coating

Country Status (1)

Country Link
JP (1) JP4939022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602008002402D1 (en) 2008-03-04 2010-10-14 Rohm & Haas LOVING COATINGS WITH FILIFORM CORROSION RESISTANCE
JP2016145298A (en) * 2015-02-09 2016-08-12 富士ゼロックス株式会社 Powdered paint and production method of powdered paint

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849353B2 (en) * 1994-05-27 1999-01-20 日本ペイント株式会社 Powder paint
JPH08311369A (en) * 1995-05-16 1996-11-26 Dainippon Ink & Chem Inc Powdery coating and its production
JPH09208855A (en) * 1996-01-29 1997-08-12 Kansai Paint Co Ltd Thermosetting powder coating material
JPH1095855A (en) * 1996-09-20 1998-04-14 Tokyo Ink Kk Production of surface-treating resin powder
JPH11302569A (en) * 1998-04-16 1999-11-02 Nippon Paint Co Ltd Spherical thermosetting powder clear coating paticle, production of spherical thermosetting powder clear coating particle, method for forming multilayered coating and multilayered coating obtained thereby
JP2002020692A (en) * 2000-07-05 2002-01-23 Mitsubishi Gas Chem Co Inc Process for producing powder coating
JP2003119427A (en) * 2001-10-17 2003-04-23 Hosokawa Micron Corp Method for producing powder coating material
JP2004123969A (en) * 2002-10-04 2004-04-22 Dainippon Toryo Co Ltd Method for manufacturing metallic powder coating material
JP2005029651A (en) * 2003-07-09 2005-02-03 Canon Semiconductor Equipment Inc Preparation method of powder coating

Also Published As

Publication number Publication date
JP2007084709A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
CN100560637C (en) Raw mix powder compositions and its preparation method
CN105765004B (en) Polyester resin for high powder filler coating
JP3208825B2 (en) Powder coating for forming a coating film having a concavo-convex pattern, method for manufacturing the same, manufacturing apparatus, coating method, and coating film
CN101291997B (en) Novel powder coloring system
JP2005187543A (en) Thermosetting metallic powder coating composition and forming method of metallic powder coating film
CN108473809A (en) Powder coating, the manufacturing method of powder coating and coated article
JP4939022B2 (en) Method for producing powder coating
CN1445313A (en) Powder coating composition and method
US6331581B1 (en) Method for color matching of powder coating composition and process for the preparation thereof
JP4088065B2 (en) Method for producing glitter powder coating
JP2004018827A (en) Method for producing powder coating
JP4139173B2 (en) Method for producing glitter powder coating
JP2001062385A (en) Coating method
JP2005272723A (en) Powder coating and method for producing the same
JP2012111833A (en) Method for producing regenerated powder coating
JP2004331732A (en) Raw material masterbatch for thermosetting powder coating material and preparation method therefor, thermosetting powder coating material using the same and preparation method therefor, and article coated with the thermosetting powder coating material
JPH10212435A (en) Powder coating material
JPS63159480A (en) Powder coating
JP2003286441A (en) Coating composition comprising water-dispersed thermosetting mat powder
JP2867024B1 (en) Power coating material
JP2002265864A (en) Powder coating composition and method for producing the same
JP2012111834A (en) Method for producing regenerated powder coating
JP2001104873A (en) Coating method
WO2003087248A1 (en) Water-dispersed powder coating, process for the production thereof, and color matching method
JP2001129476A (en) Coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250