JP2002020692A - Process for producing powder coating - Google Patents

Process for producing powder coating

Info

Publication number
JP2002020692A
JP2002020692A JP2000203774A JP2000203774A JP2002020692A JP 2002020692 A JP2002020692 A JP 2002020692A JP 2000203774 A JP2000203774 A JP 2000203774A JP 2000203774 A JP2000203774 A JP 2000203774A JP 2002020692 A JP2002020692 A JP 2002020692A
Authority
JP
Japan
Prior art keywords
powder coating
fine particles
resin
powder
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000203774A
Other languages
Japanese (ja)
Inventor
Shojiro Kuwabara
章二郎 桑原
Takeshi Isozaki
剛 磯崎
Masahiro Kurokawa
正弘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000203774A priority Critical patent/JP2002020692A/en
Publication of JP2002020692A publication Critical patent/JP2002020692A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a powder coating which shows an excellent flow property, blocking resistance and coating efficiency and yields a smooth coated film showing a fine appearance. SOLUTION: A composite fine particle is obtained by subjecting a mixture of (A) a fine particle of a resin composition for powder coatings comprising a resin for powder coatings and a hardener or a fine particle of a resin for powder coatings and (B) at least one fine particle chosen from a hardener, an additive for powder coatings and a dyestuff to a frictional force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、作業性と耐ブロッ
キング性および塗装効率に優れ、平滑で外観に優れる塗
膜を提供する粉体塗料の新規な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing a powder coating material which provides a coating film which is excellent in workability, blocking resistance and coating efficiency, and which is smooth and excellent in appearance.

【0002】[0002]

【従来の技術】粉体塗料は、焼き付け時に揮発性有機物
質の発生が無く大気汚染等の環境問題を生じないことか
ら、溶液型塗料に代わり広い分野で用いられている。粉
体塗料として、グリシジル基または水酸基を有するアク
リル樹脂と硬化剤(脂肪族二塩基酸、ブロックイソシア
ネート)、カルボキシル基または水酸基を有するポリエ
ステル樹脂と硬化剤(ブロックイソシアネート、TGI
C)、エポキシ樹脂と硬化剤(ジシアンジアミド、酸無
水物)を用いることは既に公知である。
2. Description of the Related Art Powder coatings are used in a wide range of fields instead of solution coatings because they do not generate volatile organic substances during baking and do not cause environmental problems such as air pollution. As a powder coating, an acrylic resin having a glycidyl group or a hydroxyl group and a curing agent (aliphatic dibasic acid, blocked isocyanate), a polyester resin having a carboxyl group or a hydroxyl group and a curing agent (block isocyanate, TGI
It is already known to use C), an epoxy resin and a curing agent (dicyandiamide, acid anhydride).

【0003】しかし、従来の粉体塗料は単なる機械粉砕
により製造されているため粒子形状が不定型であり粉体
流動性が充分でなく、塗膜平滑性と貯蔵時の耐ブロッキ
ング性のバランスに欠けるという問題があった(例え
ば、特開昭47−26439)。そこで、懸濁法により
球形粒子を製造する方法(特開平9−157309,特
開平9−100414)が開示されているが、粉体の洗
浄、濾過、乾燥等煩雑な操作が必要で製造コストが高い
という欠点がある。粉体塗料に樹脂微粒子を付着させる
ことにより耐ブロッキング性を改善する方法(特公平7
−122035、特開平2−178361)も開示され
ているが、完全なコア/シェル構造ではないため長期間
にわたる耐ブロッキング性に問題が残る。塗膜平滑性を
改善するため粉体塗料用樹脂のTgを下げ、硬化剤等を
衝撃式打撃手段を用いて固着させる方法(特開平8−1
76468)が提案されているが、粉体塗料の球状化が
充分ではなく粉体流動性に問題がある。さらに疎水性シ
リカを配合する方法(特開昭52−23133)を用い
て、貯蔵時の耐ブロッキング性と塗膜平滑性のバランス
を保つ方法も提案されているが望まれる効果が充分に得
られていないのが現状である。
However, since conventional powder coatings are produced by simple mechanical pulverization, the particle shape is indeterminate and the powder flowability is not sufficient, so that the balance between the smoothness of the coating film and the anti-blocking property during storage is poor. There was a problem of chipping (for example, JP-A-47-26439). Therefore, methods for producing spherical particles by a suspension method (Japanese Patent Application Laid-Open Nos. Hei 9-157309 and Hei 9-100414) are disclosed. However, complicated operations such as washing, filtration, and drying of powder are required, and the production cost is reduced. It has the disadvantage of being expensive. Method of improving blocking resistance by adhering resin fine particles to powder coating (Japanese Patent Publication No.
JP-A-1222035 and JP-A-2-178361) are also disclosed, but there is a problem in the long-term blocking resistance because the core / shell structure is not perfect. A method of lowering the Tg of a resin for powder coatings and fixing a curing agent or the like by using an impact hitting means in order to improve the smoothness of the coating film (JP-A-8-1)
76468), but the spheroidization of the powder coating is not sufficient and there is a problem in powder fluidity. Further, a method of blending hydrophobic silica (JP-A-52-23133) to maintain the balance between the blocking resistance during storage and the smoothness of the coating film has been proposed, but the desired effects can be sufficiently obtained. It is not at present.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の持つ欠点を克服した作業性と耐ブロッキング
性および塗装効率に優れ、平滑で外観に優れる塗膜を提
供する粉体塗料の新規な製造方法を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a powder coating material which is excellent in workability, blocking resistance and coating efficiency, which overcomes the above-mentioned disadvantages of the prior art, and which provides a coating film which is smooth and excellent in appearance. It is to provide a new manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、粒子間に摩擦力を作用させて、(A)粉体塗料用
樹脂組成物微粒子または粉体塗料用樹脂微粒子と(B)
硬化剤、粉体塗料用添加剤および顔料から選ばれる少な
くとも一種の微粒子とを複合化処理することにより、粉
体塗料の粉体流動性、耐ブロッキング性が改善され、上
記した欠点のない粉体塗料が得られることを見いだし本
発明に到達した。即ち本発明は、(A)粉体塗料用樹脂
と硬化剤とからなる粉体塗料用樹脂組成物微粒子または
粉体塗料用樹脂微粒子と、(B)硬化剤、粉体塗料用添
加剤および顔料から選ばれる少なくとも一種の微粒子と
の混合物に対し、摩擦力を作用させることにより複合化
微粒子を得ることを特徴とする粉体塗料の製造方法に関
する。
Means for Solving the Problems As a result of intensive studies, the present inventors exerted a frictional force between the particles to form (A) the resin composition fine particles for powder coating or the resin fine particles for powder coating (B). )
By performing a complexing treatment with at least one kind of fine particles selected from a curing agent, an additive for powder coating and a pigment, the powder fluidity of the powder coating and the blocking resistance are improved, and the powder without the above-described disadvantages The inventors have found that a paint can be obtained, and reached the present invention. That is, the present invention provides (A) resin composition fine particles for powder coating or resin fine particles for powder coating comprising a resin for powder coating and a curing agent, and (B) a curing agent, an additive for powder coating and a pigment. The present invention relates to a method for producing a powder coating, characterized in that composite fine particles are obtained by applying a frictional force to a mixture with at least one type of fine particles selected from the group consisting of

【0006】[0006]

【発明の実施の形態】本発明の粉体塗料用樹脂組成物微
粒子および粉体塗料用樹脂微粒子に使用される粉体塗料
用樹脂は、ポリエステル樹脂、エポキシ樹脂、アクリル
樹脂、フェノール樹脂等が挙げられるが、これらに限定
されるものではない。本発明の粉体塗料用樹脂組成物微
粒子は粉体塗料用樹脂と硬化剤とからなるものであるが
その他の成分を含んでいてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The resin for powder coating used in the resin composition fine particles for powder coating of the present invention and the resin fine particles for powder coating include polyester resin, epoxy resin, acrylic resin, phenol resin and the like. However, the present invention is not limited to these. The resin composition fine particles for powder coating of the present invention are composed of the resin for powder coating and a curing agent, but may contain other components.

【0007】本発明において使用される粉体塗料用樹脂
組成物微粒子および粉体塗料用樹脂微粒子の平均粒径は
5〜60μm のものが好適である。
The average particle size of the resin composition fine particles for powder coating and the resin fine particles for powder coating used in the present invention is preferably 5 to 60 μm.

【0008】本発明において使用される硬化剤として
は、多価カルボン酸および無水物、メタフェニレンジア
ミン、メタキシリレンジアミン、ジシアンジアミド、脂
肪族アミン類、脂環族アミン類、メラミン化合物類、ヒ
ドラジン化合物類、マレイミド類、シアネート類、ブロ
ックイソシアネート等が挙げられるが、これらに限定さ
れるものではない。
The curing agents used in the present invention include polycarboxylic acids and anhydrides, metaphenylenediamine, metaxylylenediamine, dicyandiamide, aliphatic amines, alicyclic amines, melamine compounds, hydrazine compounds , Maleimides, cyanates, blocked isocyanates and the like, but are not limited thereto.

【0009】本発明において使用される粉体塗料用添加
剤微粒子としては、溶融流動調節剤、ピンホール防止
剤、紫外線吸収剤、酸化防止剤、硬化触媒、可塑剤、耐
ブロッキング性向上剤、粉体流動付与剤等を必要に応じ
て粉砕処理したものが挙げられるが、これらに限定され
るものではない。
The additive fine particles for powder coatings used in the present invention include a melt flow regulator, a pinhole inhibitor, an ultraviolet absorber, an antioxidant, a curing catalyst, a plasticizer, a blocking resistance improver, and a powder. A body fluid imparting agent or the like may be pulverized if necessary, but is not limited thereto.

【0010】本発明において使用される顔料としては、
酸化チタン、フタロシアニンブルー、フタロシアニング
リーン、カーボンブラック、酸化鉄等が挙げられるが、
これらに限定されるものではない。
The pigments used in the present invention include:
Titanium oxide, phthalocyanine blue, phthalocyanine green, carbon black, iron oxide and the like,
It is not limited to these.

【0011】本発明において使用される耐ブロッキング
性向上剤としては、アクリル樹脂微粒子、シリカ化合物
微粒子等が挙げられるが、これらに限定されるものでは
ない。
The blocking resistance improver used in the present invention includes acrylic resin fine particles and silica compound fine particles, but is not limited thereto.

【0012】本発明において使用される粉体流動付与剤
としては、シリカ化合物微粒子が挙げられるが、これに
限定されるものではない。
The powder fluidizing agent used in the present invention includes, but is not limited to, silica compound fine particles.

【0013】本発明において使用される硬化剤、顔料の
平均粒径は0.01〜10μmのものが好適である。粉
体塗料用添加剤微粒子の平均粒径は0.0001〜10
μmのものが好適であるが、この内、耐ブロッキング性
向上剤および粉体流動付与剤は0.0001〜3μmで
あることが望ましい。
The curing agent and pigment used in the present invention preferably have an average particle size of 0.01 to 10 μm. The average particle size of the powder coating additive fine particles is 0.0001 to 10
Although those having a thickness of μm are suitable, the blocking resistance improver and the powder flow-imparting agent are desirably 0.0001 to 3 μm.

【0014】本発明において使用される摩擦力を利用し
た複合化装置としては、摩砕式の粉砕機や整粒機であ
り、例えばホソカワミクロン株式会社製メカノフュージ
ョン、(株)徳寿工作所製シータ・コンポーザ、(株)
奈良機械製作所製ネビュラサイザー、(株)ケイ・シー
・ケイ製DMMメカノケミカル装置等が挙げられるがこ
れに限定されるものではない。
Examples of the compounding device utilizing frictional force used in the present invention include a grinding type pulverizer and a particle sizer. For example, Mechanofusion manufactured by Hosokawa Micron Co., Ltd., Theta by Tokuju Kosakusho Co., Ltd. Composer, Inc.
Examples include, but are not limited to, a nebula sizer manufactured by Nara Machinery Co., Ltd., and a DMM mechanochemical device manufactured by K.C.K.

【0015】[0015]

【発明の効果】本発明の方法により得られた粉体塗料
は、耐ブロッキング性および粉体流動性に優れ、塗膜を
形成した場合、塗膜平滑性に優れた塗膜を提供すること
ができる。
The powder coating obtained by the method of the present invention is excellent in blocking resistance and powder fluidity and, when a coating is formed, provides a coating excellent in coating smoothness. it can.

【0016】[0016]

【実施例】以下、参考例、実施例および比較例により本
発明を具体的に説明するが、本発明はこれらの実施例に
よりなんら限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Reference Examples, Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0017】参考例1 粉体塗料用樹脂微粒子(成分
A)の製造方法 温度計、撹拌機、還流冷却器、窒素による圧力調整装置
および底部抜き出し管を備えた反応器中にメタノール2
00部を仕込んで103℃に加熱し、メタクリル酸メチ
ル35部、メタクリル酸グリシジル30部、スチレン1
5部、メタクリル酸n−ブチル20部、t−アミルパー
2−エチルヘキサノエート4部を2時間かけて加え、同
温度に1時間保持してアクリル樹脂溶液を得た。この樹
脂溶液を撹拌下急冷し、樹脂スラリー溶液とした後、ろ
過および乾燥により平均粒径26μmのアクリル樹脂微
粒子を得た。得られた樹脂のガラス転移温度は53℃で
あった。
Reference Example 1 Method for Producing Resin Fine Particles (Component A) for Powder Coating Methanol 2 was placed in a reactor equipped with a thermometer, a stirrer, a reflux condenser, a pressure regulator with nitrogen, and a bottom extraction tube.
Then, the mixture was heated to 103 ° C., and 35 parts of methyl methacrylate, 30 parts of glycidyl methacrylate, and styrene 1
5 parts, 20 parts of n-butyl methacrylate, and 4 parts of t-amyl par 2-ethylhexanoate were added over 2 hours, and the mixture was kept at the same temperature for 1 hour to obtain an acrylic resin solution. This resin solution was rapidly cooled under stirring to form a resin slurry solution, and then filtered and dried to obtain acrylic resin fine particles having an average particle size of 26 μm. The glass transition temperature of the obtained resin was 53 ° C.

【0018】参考例2 粉体塗料用添加剤微粒子(成分
B)の製造方法 温度計、撹拌機、還流冷却器及び底部抜き出し管を備え
た反応器中にイオン交換水100部、メタクリル酸メチ
ル60部、乳化剤としてTween20(ICI製)1
部を加え、攪拌下、充分に乳化させ、70℃に昇温し
た。次いで過硫酸カリウム0.3部とイオン交換水10
部の溶液を反応器に投入して乳化重合を4時間かけて行
い、ポリメタクリル酸メチル(PMMA)エマルジョン
を得た。さらに、エマルジョンを凍結してポリマー分を
遊離させた後、洗浄、遠心濾過を繰り返してPMMA超
微粒子を得た。この粒径は0.5μmであり、ガラス転
移温度は103℃であった。
REFERENCE EXAMPLE 2 Method for Producing Additive Fine Particles (Component B) for Powder Coating In a reactor equipped with a thermometer, a stirrer, a reflux condenser and a bottom extraction pipe, 100 parts of ion-exchanged water and 60 parts of methyl methacrylate were added. Part, Tween 20 (manufactured by ICI) 1 as emulsifier
Then, the mixture was emulsified sufficiently with stirring, and the temperature was raised to 70 ° C. Then 0.3 parts of potassium persulfate and 10 parts of ion-exchanged water
Of the solution was charged into a reactor and emulsion polymerization was carried out for 4 hours to obtain a polymethyl methacrylate (PMMA) emulsion. Further, after the emulsion was frozen to release the polymer component, washing and centrifugal filtration were repeated to obtain ultrafine PMMA particles. The particle size was 0.5 μm and the glass transition temperature was 103 ° C.

【0019】参考例3 粉体塗料用樹脂組成物微粒子
(成分A)の製造方法 温度計、撹拌機、還流冷却器、窒素による圧力調整装置
および底部抜き出し管を備えた反応器中にメタノール1
00部を仕込んで103℃に加熱し、メタクリル酸メチ
ル35部、メタクリル酸グリシジル30部、スチレン1
5部、メタクリル酸n−ブチル20部、t−アミルパー
2−エチルヘキサノエート4部を2時間かけて加え、同
温度に1時間保持してアクリル樹脂溶液を得た。この樹
脂溶液を70℃まで冷却した後、70℃に保持した硬化
剤ドデカン二酸50wt%、溶融流動調節剤ポリフロー
S 1wt%、ピンホール防止剤ベンゾイン 1wt%
を含むメタノール溶液50部を加えて均一に混合した
後、噴霧乾燥により平均粒径40μmのアクリル樹脂組
成物微粒子を得た。得られた樹脂組成物に架橋反応によ
るゲル物は見られなかった。
Reference Example 3 Method for Producing Resin Composition Fine Particles (Component A) for Powder Coating Methanol 1 was placed in a reactor equipped with a thermometer, a stirrer, a reflux condenser, a pressure regulator with nitrogen, and a bottom extraction pipe.
Then, the mixture was heated to 103 ° C., and 35 parts of methyl methacrylate, 30 parts of glycidyl methacrylate, and styrene 1
5 parts, 20 parts of n-butyl methacrylate, and 4 parts of t-amyl par 2-ethylhexanoate were added over 2 hours, and the mixture was kept at the same temperature for 1 hour to obtain an acrylic resin solution. After cooling this resin solution to 70 ° C., the curing agent kept at 70 ° C., 50 wt% of dodecane diacid, 1 wt% of melt flow regulator Polyflow S, 1 wt% of pinhole inhibitor benzoin
Was added and uniformly mixed, and then spray-dried to obtain fine particles of an acrylic resin composition having an average particle size of 40 μm. No gel material due to a crosslinking reaction was found in the obtained resin composition.

【0020】参考例4 粉体塗料用樹脂組成物微粒子
(成分A)の製造方法 温度計、撹拌機、還流冷却器、窒素による圧力調整装置
および底部抜き出し管を備えた反応器中にメタノール1
00部を仕込んで103℃に加熱し、メタクリル酸メチ
ル35部、メタクリル酸グリシジル30部、スチレン1
5部、メタクリル酸n−ブチル20部、t−アミルパー
2−エチルヘキサノエート4部を2時間かけて加え、同
温度に1時間保持してアクリル樹脂溶液を得た。この樹
脂溶液を70℃まで冷却した後、70℃に保持した硬化
剤ドデカン二酸50wt%、溶融流動調節剤ポリフロー
S 1wt%、ピンホール防止剤ベンゾイン 1wt%
含むメタノール溶液50部を加えて均一に混合した後、
ベント押出機に供給してメタノールの脱揮を行った。得
られた粉体塗料組成物を衝撃式粉砕機を用いて粉砕し、
平均粒径28μmの粉体塗料を得た。得られたアクリル
樹脂組成物に架橋反応によるゲル物は見られなかった。
Reference Example 4 Method for producing fine particles of resin composition for powder coating (component A) Methanol 1 was placed in a reactor equipped with a thermometer, a stirrer, a reflux condenser, a pressure regulator using nitrogen, and a bottom extraction pipe.
Then, the mixture was heated to 103 ° C., and 35 parts of methyl methacrylate, 30 parts of glycidyl methacrylate, and styrene 1
5 parts, 20 parts of n-butyl methacrylate, and 4 parts of t-amyl par 2-ethylhexanoate were added over 2 hours, and the mixture was kept at the same temperature for 1 hour to obtain an acrylic resin solution. After cooling this resin solution to 70 ° C., the curing agent kept at 70 ° C., 50 wt% of dodecane diacid, 1 wt% of melt flow regulator Polyflow S, 1 wt% of pinhole inhibitor benzoin
After adding 50 parts of methanol solution containing and mixing uniformly,
It was supplied to a vent extruder to devolatilize methanol. The obtained powder coating composition is pulverized using an impact type pulverizer,
A powder coating having an average particle size of 28 μm was obtained. No gel product due to a crosslinking reaction was found in the obtained acrylic resin composition.

【0021】 実施例1 アクリル樹脂微粒子(参考例1記載) 100部 溶融流動調節剤ポリフローS 0.5部 ピンホール防止剤ベンゾイン 0.5部 硬化剤ドデカン二酸(平均粒径1μmに粉砕) 25部 PMMA超微粒子(参考例2記載) 0.5部 とを摩砕式の粉砕機を用いて粒子間の摩擦力による複合
化処理を行い、粉体塗料用樹脂微粒子微粒子表面に硬化
剤微粒子、添加剤微粒子等をコーティングしたところ、
平均粒径21μm の球状粉体塗料を得た。
Example 1 Acrylic resin fine particles (described in Reference Example 1) 100 parts Melt flow regulator Polyflow S 0.5 parts Pinhole inhibitor benzoin 0.5 parts Curing agent dodecane diacid (pulverized to an average particle diameter of 1 μm) 25 0.5 parts of PMMA ultrafine particles (described in Reference Example 2) are subjected to a compounding treatment by frictional force between particles using a grinding type pulverizer. After coating with additive fine particles, etc.,
A spherical powder coating having an average particle size of 21 μm was obtained.

【0022】 実施例2 アクリル樹脂組成物微粒子(参考例3記載) 100部 アエロジルR972(日本アエロジル社製) 0.5部 とを摩砕式の粉砕機を用いて複合化処理を行い、粉体塗
料用樹脂組成物微粒子に粉体流動付与剤疎水性シリカ微
粒子アエロジルR972をコーティングしたところ、平
均粒径36μmの球状粉体塗料を得た。摩擦力によって
粉体塗料が小粒径化したものと考えられる。
Example 2 Acrylic resin composition fine particles (described in Reference Example 3) 100 parts Aerosil R972 (manufactured by Nippon Aerosil Co., Ltd.) 0.5 part were subjected to a compounding treatment using a grinding type pulverizer, and powder was obtained. When the fine particles of the resin composition for coating were coated with a powder flow imparting agent, hydrophobic silica fine particles Aerosil R972, a spherical powder coating having an average particle diameter of 36 μm was obtained. It is considered that the powder coating material was reduced in particle size by the frictional force.

【0023】 実施例3 アクリル樹脂組成物微粒子(参考例4記載) 100部 PMMA超微粒子(参考例2記載) 0.5部 とを摩砕式の粉砕機を用いてアクリル粉体塗料用樹脂微
粒子に耐ブロッキング性向上剤としてPMMA超微粒子
をコーティングしたところ、不定形粉体塗料組成物微粒
子から平均粒径30μmの球状粉体塗料を得た。
Example 3 Acrylic resin composition fine particles (described in Reference Example 4) 100 parts PMMA ultrafine particles (described in Reference Example 2) 0.5 part were mixed with a grinding type pulverizer to obtain resin fine particles for acrylic powder coating. Was coated with PMMA ultrafine particles as a blocking resistance improver, and a spherical powder coating having an average particle diameter of 30 μm was obtained from the irregular shaped powder coating composition fine particles.

【0024】 実施例4 ポリエステル樹脂(大日本インキ化学社製ファインディックM−8020) 82部 ポリフローS 0.5部 ベンゾイン 0.5部 ブロックイソシアネート(バイエル社製 クレランUI) 52.5部 酸化チタン 43部 をキシレン200部に90℃で均一分散させた後、0℃
のメタノール1000部中に噴霧し、粉体塗料用樹脂組
成物スラリー液とした後、ろ過および乾燥により平均粒
径36μm のポリエステル樹脂組成物微粒子を得た。得
られたポリエステル樹脂組成物微粒子に架橋反応による
ゲル物は見られなかった。メカノフュージョンによる複
合化処理を行い、上記ポリエステル樹脂組成物微粒子1
00部にエアロジルR972 0.6部をコーティング
したところ、平均粒径36μmの球状粉体塗料を得た。
Example 4 82 parts of polyester resin (FINEDIC M-8020 manufactured by Dainippon Ink and Chemicals, Inc.) 82 parts Polyflow S 0.5 part Benzoin 0.5 part Block isocyanate (Cleran UI manufactured by Bayer) 52.5 parts Titanium oxide 43 Part was uniformly dispersed at 90 ° C. in 200 parts of xylene, and then 0 ° C.
Was sprayed into 1,000 parts of methanol to obtain a slurry of the resin composition for powder coating, followed by filtration and drying to obtain fine particles of a polyester resin composition having an average particle diameter of 36 μm. No gel substance due to a crosslinking reaction was found in the obtained fine particles of the polyester resin composition. The composite treatment by mechanofusion is performed, and the above polyester resin composition fine particles 1
When 00 parts were coated with 0.6 part of Aerosil R972, a spherical powder coating having an average particle diameter of 36 μm was obtained.

【0025】 比較例1 アクリル樹脂微粒子(参考例1記載) 100部 ポリフローS 0.5部 ベンゾイン 0.5部 ドデカン二酸 22部 をヘンシェルミキサーで混合した後、溶融混練した樹脂
組成物を機械式粉砕機で粉砕して平均粒径20μm の粉
体塗料を得た。
Comparative Example 1 Acrylic resin fine particles (described in Reference Example 1) 100 parts Polyflow S 0.5 part Benzoin 0.5 part Dodecane diacid 22 parts were mixed with a Henschel mixer, and then melt-kneaded. The powder was pulverized with a pulverizer to obtain a powder coating having an average particle diameter of 20 μm.

【0026】 比較例2 アクリル樹脂微粒子(参考例1記載) 100部 ポリフローS 0.5部 ベンゾイン 0.5部 ドデカン二酸 18部 酸化チタン 30部 をヘンシェルミキサーで混合した後、溶融混練した樹脂
組成物を機械式粉砕機で粉砕して平均粒径20μm の粉
体塗料を得た。
Comparative Example 2 Acrylic resin fine particles (described in Reference Example 1) 100 parts Polyflow S 0.5 part Benzoin 0.5 part Dodecane diacid 18 parts Titanium oxide 30 parts were mixed with a Henschel mixer and then melt-kneaded. The product was pulverized with a mechanical pulverizer to obtain a powder coating having an average particle size of 20 μm.

【0027】 比較例3 ポリエステル樹脂(大日本インキ化学社製ファインディックM−8075) 77部 ポリフローS 0.5部 ベンゾイン 0.5部 ブロックイソシアネート(ヒュルス社製IPDIaduct B−1530) 22部 酸化チタン 30部 をヘンシェルミキサーで混合した後、溶融混練した樹脂
組成物を機械式粉砕機で粉砕して平均粒径20μm の粉
体塗料を得た。
Comparative Example 3 77 parts of polyester resin (FINEDIC M-8075 manufactured by Dainippon Ink and Chemicals, Inc.) 0.5 part of Polyflow S 0.5 part of benzoin 0.5 part of blocked isocyanate (IPDIad B-1530 manufactured by Huls) 22 parts of titanium oxide 30 After mixing with a Henschel mixer, the resin composition melt-kneaded was pulverized with a mechanical pulverizer to obtain a powder coating having an average particle diameter of 20 μm.

【0028】各実施例および比較例で得られた粉体塗料
の評価を行った。評価項目は、粉体塗料を用いて形成し
た塗膜については塗膜外観、光沢、エリクセン、耐衝撃
性および密着性、粉体塗料そのものについては耐ブロッ
キング性である。評価方法は次の通りである。塗膜外観(平滑性) 塗膜の表面状態を目視により評価判定する。 ○…何ら異常が認められない △…少し凹凸が認めら
れる ×…相当に凹凸が認められる光沢(60°) JIS K5400 7.6による。エリクセン JIS K5400 8.2による。耐衝撃性 JIS K5400 8.3.2による。密着性 JIS K5400 8.5.2による。耐ブロッキング性 40℃に7日間貯蔵した後の塗料について以下の基準で
評価した。 ○…全く塊が見られない △…塊があっても指でつかめない ×…塊を指でつかむことが出来る 評価結果を表1および表2に記す。
The powder coatings obtained in each of the examples and comparative examples were evaluated. The evaluation items are coating film appearance, gloss, Erichsen, impact resistance and adhesion for a coating film formed using a powder coating, and blocking resistance for the powder coating itself. The evaluation method is as follows. Coating appearance (smoothness) The surface condition of the coating is visually evaluated and determined. …: No abnormality is observed Δ: Slight unevenness is observed X: Gloss is observed considerably (60 °) According to JIS K5400 7.6. According to Erichsen JIS K5400 8.2. Impact resistance According to JIS K5400 8.3.2. Adhesion According to JIS K5400 8.5.2. The coating composition after storage at 40 ° C. for 7 days was evaluated according to the following criteria. …: No lumps were seen at all △: Lumps could not be grasped with fingers ×: Lumps could be grasped with fingers The evaluation results are shown in Tables 1 and 2.

【0029】 表1 実施例1 実施例2 実施例3 実施例4 膜厚(μm) 40 40 42 45 焼付条件(℃×min) 160×20 ← ← 180×20 塗膜外観(平滑性) ○ ○ ○ ○ 光沢(60°) 96 97 95 91 エリクセン(mm) >7 >7 >7 >7 耐衝撃性(cm) 50 50 50 50 密着性 100/100 100/100 100/100 100/100 耐ブロッキング性 ○ ○ ○ ○ Table 1 Example 1 Example 2 Example 3 Example 4 Film thickness (μm) 40 40 42 45 Baking conditions (° C. × min) 160 × 20 ← ← 180 × 20 Appearance of coating film (smoothness) ○ ○ ○ ○ Gloss (60 °) 96 97 95 91 Erichsen (mm)>7>7>7> 7 Impact resistance (cm) 50 50 50 50 Adhesion 100/100 100/100 100/100 100/100 Blocking resistance ○ ○ ○ ○

【0030】 表2 比較例1 比較例2 比較例3 膜厚(μm) 40 40 40 焼付条件(℃×min) 160×20 ← 180×20 塗膜外観(平滑性) × × × 光沢(60°) 88 84 78 エリクセン(mm) >7 6 6 耐衝撃性(cm) 20 30 20 密着性 90/100 88/100 86/100 耐ブロッキング性 × × △ 表1および表2に示した結果から、本発明の粉体塗料
は、摩擦力による複合化処理を施すことにより粉体特
性、塗膜形成時の塗膜特性の向上がみられ、特に保存時
の耐ブロッキング性と塗膜形成時の塗膜外観に優れるこ
とが理解できる。
Table 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Film thickness (μm) 40 40 40 Baking conditions (° C. × min) 160 × 20 ← 180 × 20 Coating appearance (smoothness) × × × Gloss (60 °) ) 88 84 78 Erichsen (mm)> 7 6 6 Impact resistance (cm) 20 30 20 Adhesion 90/100 88/100 86/100 Blocking resistance × × △ From the results shown in Tables 1 and 2, The powder coating of the present invention is improved in powder properties and coating properties at the time of forming a coating film by performing a compounding treatment by frictional force. It can be understood that the appearance is excellent.

フロントページの続き Fターム(参考) 4J038 CG001 DA041 DB001 DD001 DG262 HA446 JA01 KA03 KA08 LA07 MA02 MA13 MA14 NA01 NA10 PA02 Continuation of the front page F term (reference) 4J038 CG001 DA041 DB001 DD001 DG262 HA446 JA01 KA03 KA08 LA07 MA02 MA13 MA14 NA01 NA10 PA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (A)粉体塗料用樹脂と硬化剤とからな
る粉体塗料用樹脂組成物微粒子または粉体塗料用樹脂微
粒子と、(B)硬化剤、粉体塗料用添加剤および顔料か
ら選ばれる少なくとも一種の微粒子との混合物に対し、
摩擦力を作用させることにより複合化微粒子を得ること
を特徴とする粉体塗料の製造方法。
1. A resin composition fine particle for powder coating or a resin fine particle for powder coating comprising (A) a resin for powder coating and a curing agent, and (B) a curing agent, an additive and a pigment for powder coating. For a mixture with at least one type of fine particles selected from
A method for producing a powder coating, wherein composite fine particles are obtained by applying a frictional force.
【請求項2】 粉体塗料用樹脂組成物微粒子および粉体
塗料用樹脂微粒子が球状である請求項1記載の製造方
法。
2. The method according to claim 1, wherein the resin composition fine particles for powder coating and the resin fine particles for powder coating are spherical.
【請求項3】 粉体塗料用樹脂組成物微粒子および粉体
塗料用樹脂微粒子の平均粒径が5〜60μmであること
を特徴とする請求項1記載の製造方法。
3. The method according to claim 1, wherein the fine particles of the resin composition for powder coating and the fine particles of resin for powder coating have an average particle size of 5 to 60 μm.
【請求項4】 硬化剤微粒子および顔料微粒子の平均粒
径が0.01〜10μmである請求項1記載の製造方法
4. The method according to claim 1, wherein the average particle diameter of the hardener fine particles and the pigment fine particles is 0.01 to 10 μm.
【請求項5】 粉体塗料用添加剤微粒子の平均粒径が
0.0001〜10μmであることを特徴とする請求項
1に記載の粉体塗料の製造方法。
5. The method for producing a powder coating according to claim 1, wherein the average particle size of the additive fine particles for a powder coating is 0.0001 to 10 μm.
【請求項6】 粉体塗料用樹脂組成物微粒子または粉体
塗料用樹脂微粒子を構成する粉体塗料用樹脂がガラス転
移温度0〜70℃の熱可塑性樹脂である請求項1記載の
製造方法。
6. The method according to claim 1, wherein the resin composition for powder coating or the resin for powder coating constituting the resin fine particles for powder coating is a thermoplastic resin having a glass transition temperature of 0 to 70 ° C.
【請求項7】 粉体塗料用添加剤がガラス転移温度70
〜150℃の熱可塑性樹脂微粒子またはシリカ化合物微
粒子である請求項1または5記載の粉体塗料の製造方
法。
7. The powder coating additive has a glass transition temperature of 70.
The method for producing a powder coating according to claim 1, wherein the powder is a thermoplastic resin fine particle or a silica compound fine particle at a temperature of from −150 ° C.
JP2000203774A 2000-07-05 2000-07-05 Process for producing powder coating Pending JP2002020692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203774A JP2002020692A (en) 2000-07-05 2000-07-05 Process for producing powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203774A JP2002020692A (en) 2000-07-05 2000-07-05 Process for producing powder coating

Publications (1)

Publication Number Publication Date
JP2002020692A true JP2002020692A (en) 2002-01-23

Family

ID=18701142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203774A Pending JP2002020692A (en) 2000-07-05 2000-07-05 Process for producing powder coating

Country Status (1)

Country Link
JP (1) JP2002020692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111853A (en) * 2004-09-16 2006-04-27 Sanyo Chem Ind Ltd Coating composition
JP2007084709A (en) * 2005-09-22 2007-04-05 Tokyo Printing Ink Mfg Co Ltd Powder coating and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111853A (en) * 2004-09-16 2006-04-27 Sanyo Chem Ind Ltd Coating composition
JP2007084709A (en) * 2005-09-22 2007-04-05 Tokyo Printing Ink Mfg Co Ltd Powder coating and method for producing the same

Similar Documents

Publication Publication Date Title
US4256805A (en) Powdery coating composition and process for preparing the same
US6313221B1 (en) Powder coating of epoxy-acrylic resin, polycarboxylic acid, crosslinked particles and liquid resin
JPS62292869A (en) Powder coating
JPH09255896A (en) Powdery coating material composition to be readily screened
JP4214318B2 (en) Granulated powder paint and method for producing the same
JPH0598193A (en) Powder coating and its raw material
WO1995025145A1 (en) Powder paint, method of manufacturing the same, and method of painting using the paint
US4165406A (en) Powdery coating composition and process for preparing the same
JP2840201B2 (en) Powder paint
JP2005139336A (en) Two-pack type coating composition, method for finishing coating and coated article
JP2002020692A (en) Process for producing powder coating
JP2017109193A (en) Electrostatic powder coating method, and powder coating
US5763535A (en) Process for production of a powder coating
TW526248B (en) Powder coating compositions
JP4358930B2 (en) Curing agent composition and method for producing the same
JP2001064574A (en) Thermosetting powder coating composition
JP2003301135A (en) Curing agent composition for powder coating material and manufacturing method therefor
JP2000063705A (en) Thermosetting powder coating material
JP2004051784A (en) Aqueous base coating composition for automobile and method for forming multilayer coating film using the same
CA2209320C (en) Process for production of powder coating
JPS63159480A (en) Powder coating
JP2001139874A (en) Thermosetting powder coating composition
JP2003105264A (en) Thermosetting powder coating material, method for producing the same and method for forming coated film
JP2000034426A (en) Preparation of powder coating
JP2000273360A (en) Production of powder coating