JP4938432B2 - Continuous production method of cured acrylic resin - Google Patents

Continuous production method of cured acrylic resin Download PDF

Info

Publication number
JP4938432B2
JP4938432B2 JP2006335796A JP2006335796A JP4938432B2 JP 4938432 B2 JP4938432 B2 JP 4938432B2 JP 2006335796 A JP2006335796 A JP 2006335796A JP 2006335796 A JP2006335796 A JP 2006335796A JP 4938432 B2 JP4938432 B2 JP 4938432B2
Authority
JP
Japan
Prior art keywords
hot air
temperature
heating furnace
hot
polymerizable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006335796A
Other languages
Japanese (ja)
Other versions
JP2008144108A (en
JP2008144108A5 (en
Inventor
真吾 古澤
拓 酒井
雄一郎 稲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006335796A priority Critical patent/JP4938432B2/en
Publication of JP2008144108A publication Critical patent/JP2008144108A/en
Publication of JP2008144108A5 publication Critical patent/JP2008144108A5/ja
Application granted granted Critical
Publication of JP4938432B2 publication Critical patent/JP4938432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

本発明は、アクリル系樹脂硬化物を連続的に製造する方法に関する。より詳細には、本発明は、品質の良好なアクリル系樹脂硬化物を、簡単な装置を用いて、簡単な方法で、高いエネルギー効率で、生産性良く連続的に製造する方法に関する。   The present invention relates to a method for continuously producing a cured acrylic resin. More specifically, the present invention relates to a method for continuously producing a cured acrylic resin product having a good quality by a simple method with high energy efficiency and high productivity using a simple apparatus.

アクリル系重合性組成物を重合硬化させ板状体を製造する方法としては、鋳型を用いるバッチ法および連続した板状空間内で重合硬化させて板状体を連続的に製造する連続法が知られている。鋳型を用いるバッチ法としては、2枚の金属板またはガラス板の間にガスケットを挿入しクランプで圧着して鋳型(型枠)を形成し、その型枠内にアクリル系重合性組成物を注入した後、水槽中や空気循環オーブン中で重合硬化させ、次いで型枠を解体して板状の重合硬化物を取り出す方法が一般に採用されている(例えば特許文献1を参照)。しかし、鋳型を用いるバッチ法は、操作が煩雑で、生産性が非常に低く、しかも費用がかかるという問題がある。   As a method for producing a plate-like body by polymerizing and curing an acrylic polymerizable composition, a batch method using a mold and a continuous method for continuously producing a plate-like body by polymerizing and curing in a continuous plate-like space are known. It has been. As a batch method using a mold, a gasket (mold) is formed by inserting a gasket between two metal plates or glass plates and press-bonding with a clamp, and an acrylic polymerizable composition is injected into the mold In general, a method of polymerizing and curing in a water tank or an air circulation oven and then disassembling the mold and taking out a plate-shaped polymerized cured product is generally employed (see, for example, Patent Document 1). However, the batch method using a mold has problems that the operation is complicated, the productivity is very low, and the cost is high.

また、板状のアクリル系樹脂硬化物を連続的に製造する方法としては、エンドレスベルトと付帯装置から構成される連続硬化装置に、メタクリル酸メチル系単量体混合物やアクリル系樹脂人造大理石板用重合原料混合物などのアクリル系重合性組成物を連続的に注入し、エンドレスベルトの移動に伴って重合硬化させて板状の製品を連続的に製造する方法が知られている(特許文献2〜4を参照)。
しかしながら、前記した従来の板状アクリル系樹脂硬化物の連続製造方法では、アクリル系重合性組成物を重合硬化するために、アクリル系重合性組成物の移動経路に沿って加熱装置および冷却装置を複数設置するか、または空気循環型の硬化チャンバを複数の区域(室)に仕切り、それぞれの区域(室)に送風機、ヒーター、循環ダクト、ノズルユニットなどを個別に設けて、重合硬化時の温度調整などを個別に行う方式が採用されている。そのため、設備が複雑で、コストのかかるものとなっている。しかも、そのような従来のアクリル系樹脂硬化物の連続製造方法による場合は、製造しようとする銘柄や、製造量などに応じて、各加熱装置や冷却装置、各室や区域の加熱条件などを、板状体の上下面での硬化が均一に行われるように個別に調節する必要であるため、銘柄切替え時や製造条件の変更時などに、多大の手間および時間がかかり、繁雑で、しかも熟練を要する。その上、加熱区域と冷却区域を分割して設けてあることにより、加熱区域の熱交換器は常に加熱が必要であり、一方冷却区域の熱交換器は重合反応により発生する重合熱を常に冷却する必要があり、隣接した区域で反対の処理を常時行わなければならず、エネルギー効率が非常に悪いという欠点がある。
In addition, as a method of continuously producing a plate-like acrylic resin cured product, a continuous curing device composed of an endless belt and an auxiliary device is used for a methyl methacrylate monomer mixture or an acrylic resin artificial marble plate. A method of continuously producing a plate-like product by continuously injecting an acrylic polymerizable composition such as a polymerization raw material mixture and polymerizing and curing as the endless belt moves is known (Patent Documents 2 and 2). 4).
However, in the conventional method for continuously producing a plate-like acrylic resin cured product described above, in order to polymerize and cure the acrylic polymerizable composition, a heating device and a cooling device are provided along the movement path of the acrylic polymerizable composition. The temperature at the time of polymerization and curing can be set up by dividing the air-curing type curing chamber into multiple areas (rooms), and individually providing a blower, heater, circulation duct, nozzle unit, etc. in each area (room). A method of making individual adjustments is adopted. For this reason, the facilities are complicated and costly. Moreover, in the case of such a conventional method for continuously producing a cured acrylic resin, depending on the brand to be produced, the production amount, etc., each heating device, cooling device, heating conditions for each room or area, etc. Because it is necessary to individually adjust so that the curing on the upper and lower surfaces of the plate-shaped body is performed uniformly, it takes a lot of time and effort when changing brands or changing manufacturing conditions, and it is complicated. Requires skill. In addition, since the heating and cooling zones are separated, the heat exchanger in the heating zone always needs to be heated, while the heat exchanger in the cooling zone always cools the polymerization heat generated by the polymerization reaction. There is a drawback that the opposite process must always be performed in the adjacent area and the energy efficiency is very poor.

特開昭53−112990号公報JP-A-53-112990 米国特許第4,133,861号明細書U.S. Pat. No. 4,133,861 特公昭47−34815号公報Japanese Patent Publication No. 47-34815 特開平10−217264号公報JP-A-10-217264 「有機過酸化物総合カタログ(第10版) 一般性状、作用と用途、選択、分析法」、1−5(表1)、日本油脂株式会社発行、2003年"Organic peroxide general catalog (10th edition) General properties, action and application, selection, analysis method", 1-5 (Table 1), published by Nippon Oils and Fats, 2003

本発明の目的は、加熱装置や冷却装置を複数段にわたって設置したり、空気循環型のチャンバを複数の区域(室)に仕切ってそれぞれの区域(室)に送風機、ヒーター、循環ダクト、ノズルユニットなどを個別に設けるというような複雑で、しかも高価な設備を使用せずに、簡単な製造装置を用いて、改善されたエネルギー効率で、高い品質を有するアクリル系樹脂硬化物を生産性良く連続的に製造する方法を提供することである。   An object of the present invention is to install a heating device and a cooling device in a plurality of stages, or to divide an air circulation type chamber into a plurality of areas (rooms) and to supply a fan, a heater, a circulation duct, and a nozzle unit in each area (room). Without using complicated and expensive equipment such as individually, etc., using a simple manufacturing equipment, continuous high-quality acrylic resin cured products with improved energy efficiency and high productivity It is to provide a method of manufacturing automatically.

本発明者らは、前記した目的を達成するために鋭意検討を重ねてきた。その結果、アクリル系重合性組成物を、複数の区域(室)に仕切られていない1つの熱風循環式加熱炉に連続的に供給して当該熱風循環式加熱炉内を連続的に移動させながら重合硬化させ、その際にアクリル系重合性組成物を重合硬化させるための熱重合開始剤として、熱風循環式加熱炉に導入する熱風の温度よりも10〜60℃低い10時間半減期温度を有する特定の熱重合開始剤を用いると、アクリル系重合性組成物が熱風循環式加熱炉内を連続的に移動している間に重合硬化が十分に行われて、品質の良好なアクリル系樹脂硬化物が得られることを見出した。   The present inventors have intensively studied to achieve the above-described object. As a result, while continuously supplying the acrylic polymerizable composition to one hot-air circulating heating furnace not partitioned into a plurality of zones (chambers) and continuously moving in the hot-air circulating heating furnace It has a 10-hour half-life temperature that is 10 to 60 ° C. lower than the temperature of hot air introduced into the hot air circulating heating furnace as a thermal polymerization initiator for polymerizing and curing the acrylic polymerizable composition at that time. When a specific thermal polymerization initiator is used, polymerization curing is sufficiently performed while the acrylic polymerizable composition continuously moves in the hot-air circulating heating furnace, and curing of the acrylic resin with good quality is achieved. It was found that a product was obtained.

また、本発明者らは、複数区域(室)に仕切られていない前記した熱風循環式加熱炉にアクリル系重合性組成物を連続的に供給してアクリル系樹脂硬化物を製造する際に、アクリル系重合性組成物が熱風循環式加熱炉の入口に達した時点からアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度と同じ温度に達するまでの時間と、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度と同じ温度に達した時点から重合硬化物が熱風循環式加熱炉の出口に到達するまでの時間との比が特定の範囲になるようにしてアクリル系重合性組成物の重合硬化を行うと、アクリル系重合性組成物の重合硬化が一層円滑に行われることを見出した。   In addition, the present inventors continuously supply an acrylic polymerizable composition to the above-described hot air circulation type heating furnace that is not partitioned into a plurality of zones (chambers) to produce an acrylic resin cured product, From the time when the acrylic polymerizable composition reaches the inlet of the hot-air circulating heating furnace, the temperature of the acrylic polymerizable composition or its polymerized cured product reaches the same temperature as the hot air introduced into the hot-air circulating heating furnace. Until the temperature of the acrylic polymerizable composition or the temperature of the polymerized cured product reaches the same temperature as the temperature of the hot air introduced into the hot-air circulating heating furnace, the polymerization cured product exits from the hot-air circulating heating furnace. It has been found that when the acrylic polymerizable composition is polymerized and cured such that the ratio to the time to reach a specific range is within a specific range, the acrylic polymerizable composition can be polymerized and cured more smoothly. .

さらに、本発明者らは、前記した熱風循環式加熱炉における熱風の循環、すなわち熱風循環式加熱炉への熱風の導入と熱風循環式加熱炉からの気体(熱風)の取り出しに当たって、熱風循環式加熱炉からの気体(熱風)の取り出しを、熱風循環式加熱炉における特定の複数の箇所から行い、当該複数の箇所から取り出した気体(熱風)を混合した後に、熱風循環式加熱炉への導入温度に調節して熱風循環式加熱炉に再循環する(再び導入する)と、熱風循環式加熱炉から取り出した気体(熱風)の熱が無駄なく有効に再利用できて、極めて高い熱エネルギー効率で、アクリル系樹脂硬化物の連続生産を行えることを見出し、それらの種々の知見に基づいて本発明を完成した。   Furthermore, the present inventors circulate hot air in the hot air circulation heating furnace, that is, hot air circulation type in introducing hot air into the hot air circulation heating furnace and taking out gas (hot air) from the hot air circulation heating furnace. Extraction of gas (hot air) from the heating furnace is performed from a plurality of specific locations in the hot air circulation heating furnace, and the gas (hot air) extracted from the plurality of locations is mixed and then introduced into the hot air circulation heating furnace When the temperature is adjusted and recirculated (re-introduced) to the hot air circulation heating furnace, the heat of the gas (hot air) taken out from the hot air circulation heating furnace can be effectively reused without waste, and extremely high thermal energy efficiency Thus, it was found that the acrylic resin cured product can be continuously produced, and the present invention was completed based on these various findings.

すなわち、本発明は、
(1) メタクリル酸メチルを主体とする不飽和単量体および熱重合開始剤を含有するアクリル系重合性組成物を、熱風循環式加熱炉内を連続的に前進移動する成形空間に供給して重合硬化させてアクリル系樹脂硬化物を連続的に製造する方法であって、前記熱重合開始剤として、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも10〜60℃低い10時間半減期温度を有する熱重合開始剤を用いることを特徴とするアクリル系樹脂硬化物の連続製造方法である。
That is, the present invention
(1) An acrylic polymerizable composition containing an unsaturated monomer mainly composed of methyl methacrylate and a thermal polymerization initiator is supplied to a molding space that continuously moves forward in a hot-air circulating heating furnace. A method of continuously producing an acrylic resin cured product by polymerization and curing, wherein the thermal polymerization initiator is 10 to 60 ° C. higher than the temperature (Ta) (° C.) of hot air introduced into a hot air circulating heating furnace. A method for continuously producing a cured acrylic resin, characterized by using a thermal polymerization initiator having a low 10-hour half-life temperature.

そして、本発明は、
(2) 熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)が30〜120℃の範囲内の一定の温度である前記(1)の連続製造方法;
(3) 熱風循環式加熱炉内の雰囲気温度(Tb)(℃)を、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)−10(℃)]と、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)+10(℃)]の範囲内の温度に維持する前記(1)または(2)の連続製造方法;および、
(4) アクリル系重合性組成物が熱風循環式加熱炉の入口に到達した時点からアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達するまでの時間を(A)とし、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達した時点から重合硬化物が熱風循環式加熱炉の出口に到達するまでの時間を(B)としたときに、(A)/(B)=1〜3になるようにして熱風循環式加熱炉内でアクリル系重合性組成物を重合硬化させる前記(1)〜(3)のいずれかの連続製造方法;
である。
And this invention,
(2) The continuous production method of the above (1), wherein the temperature (Ta) (° C.) of the hot air introduced into the hot air circulation heating furnace is a constant temperature in the range of 30 to 120 ° C .;
(3) The atmospheric temperature (Tb) (° C.) in the hot air circulation heating furnace is changed to [temperature of hot air introduced into the hot air circulation heating furnace (Ta) (° C.) − 10 (° C.)] and [hot air circulation type The continuous production method of the above (1) or (2), which is maintained at a temperature within the range of the temperature of hot air introduced into the heating furnace (Ta) (° C.) + 10 (° C.)]; and
(4) When the acrylic polymerizable composition reaches the inlet of the hot air circulation type heating furnace, the temperature of the hot air introduced into the hot air circulation type heating furnace (Ta ) The time to reach the same temperature as (° C.) is (A), and the temperature of the hot air introduced into the hot air circulation furnace (Ta) (° C.) When the time from when the temperature reaches the same temperature until the polymerization cured product reaches the outlet of the hot-air circulating heating furnace is (B), (A) / (B) = 1-3 A continuous production method according to any one of the above (1) to (3), wherein the acrylic polymerizable composition is polymerized and cured in a hot-air circulating heating furnace;
It is.

さらに、本発明は、
(5) 熱風循環式加熱炉の入口とアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達するまでの間の区域(EA)に熱風循環式加熱炉からの気体取り出し部を設けると共に、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達する箇所と熱風循環式加熱炉の出口までの間の区域(EB)に熱風循環式加熱炉からの気体取り出し部を設け、区域(EA)および区域(EB)のそれぞれに設けた気体取り出し部から取り出した気体を混合して混合気体とし、当該混合気体を熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)に調温して熱風循環式加熱炉に導入する前記(1)〜(4)のいずれかの連続製造方法;
(6) 区域(EA)および区域(EB)のそれぞれに設けた気体取り出し部から取り出した気体を混合してなる混合気体の温度(Tmix)(℃)と、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)との差が、5℃以下である前記(5)の連続製造方法;
(7) アクリル系重合性組成物が、無機粉末を更に含有するアクリル樹脂系人工大理石製造用のアクリル系重合性組成物である前記(1)〜(6)のいずれかの連続製造方法;および、
(8) 板状のアクリル系樹脂硬化物を製造する前記(1)〜(7)のいずれかの連続製造方法;
である。
Furthermore, the present invention provides
(5) Until the product temperature of the inlet of the hot air circulation heating furnace and the acrylic polymerizable composition or its polymerized cured product reaches the same temperature as the temperature (Ta) (° C) of the hot air introduced into the hot air circulation heating furnace A gas take-out part from the hot air circulation heating furnace is provided in the area (E A ), and the temperature of the hot air introduced into the hot air circulation heating furnace (Ta) ) A gas extraction part from the hot air circulation heating furnace is provided in an area (E B ) between the point where the temperature reaches the same temperature as (° C.) and the exit of the hot air circulation heating furnace, and the area (E A ) and the area (E B ) The gas extracted from the gas extraction part provided in each of the above is mixed into a mixed gas, and the mixed gas is adjusted to the temperature (Ta) (° C) of hot air introduced into the hot-air circulating heating furnace to circulate hot air (1) to (4) Any continuous production method;
(6) The temperature (T mix ) (° C) of the mixed gas obtained by mixing the gas extracted from the gas extraction section provided in each of the section (E A ) and the section (E B ), and the hot-air circulating furnace The continuous production method of the above (5), wherein the difference from the temperature (Ta) (° C) of the hot air to be introduced is 5 ° C or less;
(7) The continuous production method according to any one of (1) to (6), wherein the acrylic polymerizable composition is an acrylic polymerizable composition for producing an acrylic resin-based artificial marble further containing an inorganic powder; and ,
(8) The continuous production method according to any one of (1) to (7), wherein a plate-like acrylic resin cured product is produced;
It is.

本発明の方法による場合は、複数の室に仕切られていない、構造の極めて簡単な熱風循環式加熱炉をアクリル系重合性組成物を重合硬化するための加熱装置として使用して、複雑な温度管理や温度制御を要することなく、重合硬化が十分に行われていて品質の良好なアクリル系樹脂硬化物を極めて簡単に且つ生産性良く製造することができる。
さらに、本発明では、アクリル系重合性組成物が熱風循環式加熱炉の入口に到達した時点からアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達するまでの時間Aと、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達した時点から重合硬化物が熱風循環式加熱炉の出口に到達するまでの時間Bとの比(A/B)が1〜3の範囲になる条件を採用することによって、アクリル系重合性組成物の重合硬化を一層円滑に行うことができる。
In the case of the method of the present invention, a hot air circulation type heating furnace that is not partitioned into a plurality of chambers and has a very simple structure is used as a heating device for polymerizing and curing an acrylic polymerizable composition, and a complicated temperature is used. Without requiring management or temperature control, it is possible to produce an acrylic resin cured product having a sufficient quality that is sufficiently cured by polymerization and having a good quality, with high productivity.
Furthermore, in the present invention, the temperature of the acrylic polymerizable composition or the polymerization cured product thereof is introduced into the hot air circulating heating furnace from the time when the acrylic polymerizable composition reaches the inlet of the hot air circulating heating furnace. The time A until reaching the same temperature as the temperature (Ta) (° C.), and the temperature of the hot air introduced into the hot-air circulating heating furnace (Ta) (° C.) by the product temperature of the acrylic polymerizable composition or its polymerized cured product By adopting a condition in which the ratio (A / B) to the time B until the polymerized cured product reaches the outlet of the hot-air circulating heating furnace from the point of time when the temperature reaches the same temperature as in the range from 1 to 3, Polymerization and curing of the system polymerizable composition can be performed more smoothly.

また、本発明では、熱風循環式加熱炉の入口とアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達するまでの間の区域(EA)(前段区域)と、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達した箇所と熱風循環式加熱炉の出口までの間の区域(EB)(後段区域)の両方に、熱風循環式加熱炉からの気体取り出し部をそれぞれ設け、前記前段区域と後段区域に設けた気体取り出し部から取り出した気体を混合して混合気体とし、その混合気体を、熱風循環式加熱炉に導入する熱風温度(Ta)(℃)に調温して熱風循環式加熱炉に再循環することで、熱風循環式加熱炉の区域(EB)(後段区域)で発生する高温の熱風(気体)の熱量を無駄なく有効に再利用して、極めて高いエネルギー効率で、アクリル系樹脂硬化物を連続的に経済的に製造することができる。
本発明の方法によって、アクリル樹脂系人工大理石や人工花崗岩およびその他のアクリル系樹脂硬化物のいずれをも円滑に生産性良く製造することができ、特に本発明の方法は、板状をなすアクリル系樹脂硬化物の製造に有効である。
In the present invention, the temperature of the hot air circulating heating furnace and the temperature of the acrylic polymerizable composition or the polymerized cured product thereof are the same as the temperature (Ta) (° C.) of hot air introduced into the hot air circulating heating furnace. The temperature until reaching (E A ) (previous stage) and the temperature of the acrylic polymerizable composition or its polymerized cured product is the same as the temperature (Ta) (° C.) of the hot air introduced into the hot air circulating furnace Gas extraction parts from the hot air circulation heating furnace are provided in both the area (E B ) (rear stage area) between the point where the temperature has been reached and the outlet of the hot air circulation heating furnace, respectively, The gas taken out from the gas take-out part provided in the above is mixed to make a mixed gas, and the mixed gas is adjusted to the hot air temperature (Ta) (° C.) to be introduced into the hot air circulation heating furnace, and then into the hot air circulation heating furnace by recycling, zone convection oven (E B) Subsequent zone) by effectively reused without waste heat of high temperature hot air generated (gas), in a very high energy efficiency, it is possible to continuously and economically producing an acrylic resin cured product.
According to the method of the present invention, any of acrylic resin-based artificial marble, artificial granite, and other cured acrylic resins can be produced smoothly and with good productivity. In particular, the method of the present invention is an acrylic resin having a plate shape. It is effective for the production of cured resin.

以下に本発明について詳細に説明する。
本発明は、メタクリル酸メチルを主体とする不飽和単量体および熱重合開始剤を含有するアクリル系重合性組成物を、熱風循環式加熱炉内を連続的に前進移動する成形空間に供給して熱風循環式加熱炉内を移動させながら重合硬化させてアクリル系樹脂硬化物にし、そのアクリル系樹脂硬化物を熱風循環式加熱炉から連続的に取り出す、アクリル系樹脂硬化物の連続製造方法である。
本発明で使用する「熱風循環式加熱炉」は、炉内に所定の温度の熱風を連続的に導入し、同時に炉から気体を連続的に取り出すことによって、炉内で熱風を循環させて、炉内の雰囲気温度を炉内に導入する熱風の温度またはそれに近い温度に維持する加熱炉をいう。
本発明で使用する熱風循環式加熱炉の内部空間は、複数の室に仕切られておらず、アクリル系重合性組成物が熱風循環式加熱炉に入る入口部分から、アクリル系重合性組成物の重合硬化により生成するアクリル系樹脂硬化物が取り出される出口部分に至るまで、1つの連続した空間(加熱室)をなしている。
The present invention is described in detail below.
The present invention supplies an acrylic polymerizable composition containing an unsaturated monomer mainly composed of methyl methacrylate and a thermal polymerization initiator to a molding space that continuously moves forward in a hot-air circulating heating furnace. This is a continuous process for producing a cured acrylic resin that is polymerized and cured into an acrylic resin cured product while moving in a hot air circulating heating furnace, and the acrylic resin cured product is continuously removed from the heated air circulating heating furnace. is there.
The "hot air circulation type heating furnace" used in the present invention continuously introduces hot air of a predetermined temperature into the furnace, and at the same time continuously removes gas from the furnace, thereby circulating hot air in the furnace, It refers to a heating furnace in which the atmospheric temperature in the furnace is maintained at or close to the temperature of hot air introduced into the furnace.
The internal space of the hot air circulation type heating furnace used in the present invention is not partitioned into a plurality of chambers, and the acrylic polymerizable composition enters the hot air circulation type heating furnace from the inlet portion where the hot air circulation type heating furnace enters. One continuous space (heating chamber) is formed up to the exit portion where the cured acrylic resin produced by polymerization and curing is taken out.

本発明では、1つの連続した空間(加熱室)からなる熱風循環式加熱炉内に、所定の温度(Ta)(℃)に調整された熱風を導入する(吹き込む)と共に、当該熱風循環式加熱炉の所定の場所から熱風循環式加熱炉(空間)内の気体(熱風)を取り出し、取り出した気体の温度を前記温度(Ta)に調整した後に熱風循環式加熱炉内に再導入する。
熱風循環式加熱炉に連続的に供給されたアクリル系重合性組成物は、熱風循環式加熱炉内を連続的に移動(前進)しながら、熱風循環式加熱炉内を循環している熱風によって重合硬化して、アクリル系樹脂硬化物となる。
In the present invention, hot air adjusted to a predetermined temperature (Ta) (° C.) is introduced (blown) into a hot air circulation type heating furnace composed of one continuous space (heating chamber), and the hot air circulation type heating is performed. The gas (hot air) in the hot air circulating heating furnace (space) is taken out from a predetermined place of the furnace, and after the temperature of the extracted gas is adjusted to the temperature (Ta), it is reintroduced into the hot air circulating heating furnace.
The acrylic polymerizable composition continuously supplied to the hot air circulating heating furnace is moved (advanced) continuously in the hot air circulating heating furnace by the hot air circulating in the hot air circulating heating furnace. Polymerized and cured to obtain a cured acrylic resin.

本発明では、上記した方法でアクリル系樹脂硬化物を連続的に製造するに当たって、アクリル系重合性組成物中に含有させる熱重合開始剤として、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも10〜60℃低い10時間半減期温度を有する熱重合開始剤を用いる。すなわち、本発明では、10時間半減期温度が、[Ta−60(℃)]〜[Ta−10(℃)]の範囲内の温度である熱重合開始剤を用いる。
熱重合開始剤として、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも10〜60℃低い10時間半減期温度を有する熱重合開始剤を使用することによって、アクリル系樹脂硬化物の重合硬化率の低下、重合硬化反応の制御不良、得られるアクリル系樹脂硬化物における発泡や物性低下、重合硬化の緩慢化に伴う生産性の低下などを生ずることなく、十分に重合硬化していて、物性、外観などに優れるアクリル系樹脂硬化物を生産性良く連続的に製造することができる。
In the present invention, in the continuous production of the acrylic resin cured product by the method described above, the temperature of the hot air (Ta) introduced into the hot air circulation heating furnace as the thermal polymerization initiator to be contained in the acrylic polymerizable composition. ) A thermal polymerization initiator having a 10-hour half-life temperature that is 10 to 60 ° C. lower than (° C.) is used. That is, in the present invention, a thermal polymerization initiator having a 10-hour half-life temperature within the range of [Ta-60 (° C.)] to [Ta-10 (° C.)] is used.
By using a thermal polymerization initiator having a 10-hour half-life temperature that is 10-60 ° C. lower than the temperature (Ta) (° C.) of the hot air introduced into the hot-air circulating heating furnace as the thermal polymerization initiator, an acrylic resin Fully polymerized and cured without causing a decrease in the polymerization curing rate of the cured product, poor control of the polymerization and curing reaction, foaming and physical properties in the resulting acrylic resin cured product, and a decrease in productivity due to slow polymerization curing. Thus, a cured acrylic resin having excellent physical properties and appearance can be continuously produced with high productivity.

アクリル系重合性組成物中に含有させる熱重合開始剤の10時間半減期温度が、[Ta−10(℃)]よりも高いと、熱重合開始剤の分解温度が高くなり過ぎて、熱風循環式加熱炉内での熱重合開始剤の熱分解速度が緩慢になり、重合硬化に長い時間を要するようになるため、アクリル系樹脂硬化物を生産性良く連続製造することができなくなる。一方、熱重合開始剤の10時間半減期温度が、[Ta−60(℃)]よりも低いと、熱重合開始剤が低温で分解し易くなり、熱重合開始剤およびそれを含有するアクリル系重合性組成物の保管や取り扱いが難しくなるばかりでなく、熱風循環式加熱炉内で熱重合開始剤の加熱分解が急激に進んで、アクリル系樹脂硬化物に発泡が生じたり、重合硬化が十分に行われなくなる。
本発明では、熱重合開始剤として、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも15〜50℃低い10時間半減期温度を有する熱重合開始剤を用いることが好ましく、前記熱風の温度(Ta)(℃)よりも20〜40℃低い10時間半減期温度を有する熱重合開始剤を用いることがより好ましい。
If the 10-hour half-life temperature of the thermal polymerization initiator contained in the acrylic polymerizable composition is higher than [Ta-10 (° C.)], the decomposition temperature of the thermal polymerization initiator becomes too high, and hot air circulation occurs. Since the thermal decomposition rate of the thermal polymerization initiator in the heating furnace becomes slow and a long time is required for the polymerization and curing, the acrylic resin cured product cannot be continuously produced with high productivity. On the other hand, when the 10-hour half-life temperature of the thermal polymerization initiator is lower than [Ta-60 (° C.)], the thermal polymerization initiator is easily decomposed at a low temperature, and the thermal polymerization initiator and an acrylic type containing the thermal polymerization initiator Not only is the storage and handling of the polymerizable composition difficult, the thermal decomposition of the thermal polymerization initiator proceeds rapidly in the hot air circulating heating furnace, foaming occurs in the cured acrylic resin, and the polymerization curing is sufficient. Will not be done.
In the present invention, as the thermal polymerization initiator, it is preferable to use a thermal polymerization initiator having a 10-hour half-life temperature that is 15 to 50 ° C. lower than the temperature (Ta) (° C.) of the hot air introduced into the hot-air circulating heating furnace. It is more preferable to use a thermal polymerization initiator having a 10-hour half-life temperature that is 20 to 40 ° C. lower than the temperature (Ta) (° C.) of the hot air.

本明細書でいう「熱重合開始剤の10時間半減期温度」とは、熱重合開始剤分子が熱分解して10時間後に当初の半分の数に減ずる温度を指す。つまり、同じ重合温度においては、10時間半減期温度の高い重合開始剤ほどその分解速度が遅く、重合反応の速度も遅くなる。
「熱重合開始剤の10時間半減期温度」については、既に色々の文献に記載されていて公知であり、本発明では、非特許文献1に記載されている「熱重合開始剤の10時間半減期温度」の値に基づいて、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と熱重合開始剤の10時間半減期温度との差を求め、10時間半減期温度が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも10〜60℃低いもの、好ましくは15〜50℃低いもの、より好ましくは20〜40℃低いものを使用する。
As used herein, “10-hour half-life temperature of thermal polymerization initiator” refers to a temperature at which the thermal polymerization initiator molecule is thermally decomposed and reduced to the original half after 10 hours. That is, at the same polymerization temperature, the higher the 10-hour half-life temperature, the slower the decomposition rate and the slower the polymerization reaction rate.
The “10-hour half-life temperature of the thermal polymerization initiator” has already been described in various documents and is known. In the present invention, the “10-hour half-life of the thermal polymerization initiator” is described in Non-Patent Document 1. Based on the value of the “period temperature”, the difference between the temperature (Ta) (° C.) of the hot air introduced into the hot-air circulating heating furnace and the 10-hour half-life temperature of the thermal polymerization initiator is determined, and the 10-hour half-life temperature is the hot air The thing of 10-60 degreeC lower than the temperature (Ta) (degreeC) of the hot air introduce | transduced into a circulation type heating furnace, Preferably the thing 15-50 degreeC lower, More preferably, the thing 20-40 degreeC lower is used.

本発明で用いるアクリル系重合性組成物では、10時間半減期温度が本発明で規定する上記した範囲内にある熱重合開始剤の1種類のみを使用してもよいし、または2種以上を組み合わせて使用してもよい。
また、場合によっては、10時間半減期温度が本発明で規定する上記した範囲内にある熱重合開始剤と、10時間半減期温度が本発明で規定する上記した範囲外の熱重合開始剤を組み合わせて使用することもできる。
In the acrylic polymerizable composition used in the present invention, only one kind of thermal polymerization initiator having a 10-hour half-life temperature within the above-mentioned range defined in the present invention may be used, or two or more kinds may be used. You may use it in combination.
In some cases, a thermal polymerization initiator having a 10-hour half-life temperature within the range defined in the present invention and a thermal polymerization initiator having a 10-hour half-life temperature outside the range defined by the present invention are included. It can also be used in combination.

アクリル系重合性組成物における熱重合開始剤の含有量は、重合硬化反応を円滑に行わせるために、アクリル系重合性組成物に含まれるメタクリル酸メチルを主体とする不飽和単量体の全質量に基づいて、通常、0.01〜3質量%であることが好ましく、0.03〜2質量%であることがより好ましい。   The content of the thermal polymerization initiator in the acrylic polymerizable composition is such that all unsaturated monomers mainly composed of methyl methacrylate contained in the acrylic polymerizable composition are contained in order to facilitate the polymerization and curing reaction. Usually, it is preferably 0.01 to 3% by mass, and more preferably 0.03 to 2% by mass based on the mass.

熱風循環式加熱炉に導入する熱風の温度は、アクリル系重合性組成物の組成、熱風循環式加熱炉内でのアクリル系重合性組成物やアクリル系樹脂硬化物の移動速度、熱風循環式加熱炉の規模、製造するアクリル系樹脂硬化物の厚さや幅などのサイズ、柄などに応じて異なり得るが、アクリル系重合性組成物の重合硬化が円滑に且つ十分に行われる点、アクリル系樹脂硬化物の生産性などの点から、30〜120℃の範囲内の温度であることが好ましく、40〜90℃の範囲内の温度であることがより好ましい。
熱風循環式加熱炉の導入する熱風の温度は、前記した温度範囲のうちの一定の温度にすることが、熱風循環式加熱炉内の雰囲気温度の制御を円滑に且つ簡単に行える点から好ましい。
The temperature of the hot air introduced into the hot air circulation heating furnace is the composition of the acrylic polymerizable composition, the moving speed of the acrylic polymerizable composition or the cured acrylic resin in the hot air circulation heating furnace, the hot air circulation heating. Depending on the scale of the furnace, the thickness and width of the cured acrylic resin to be produced, the pattern, etc., the acrylic resin can be smoothly and sufficiently polymerized and cured, the acrylic resin In view of productivity of the cured product, the temperature is preferably within a range of 30 to 120 ° C, and more preferably within a range of 40 to 90 ° C.
The temperature of the hot air introduced into the hot air circulation heating furnace is preferably a constant temperature within the above-mentioned temperature range from the viewpoint that the atmosphere temperature in the hot air circulation heating furnace can be controlled smoothly and easily.

熱風循環式加熱炉内の雰囲気温度は、熱風循環式加熱炉に供給された初期段階におけるアクリル系重合性組成物による熱の吸収、熱重合開始剤の分解や重合などに伴う発熱などによって、熱風循環式加熱炉内の全領域にわたって必ずしも完全に同じ温度になっているとは限らない。本発明では、熱風循環式加熱炉内の全領域における雰囲気温度(Tb)(℃)を、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)−10(℃)]と、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)+10(℃)]の範囲内の温度に維持することが好ましく、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)−5(℃)]と、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)+5(℃)]の範囲内の温度に維持することがより好ましい。
熱風循環式加熱炉内の全領域における雰囲気温度を前記した温度範囲に維持することで、アクリル系重合性組成物の重合硬化が斑なくスムーズに行われて、高品質のアクリル系樹脂硬化物を得ることができる。
熱風循環式加熱炉内の全領域における雰囲気温度を前記した温度範囲に維持する方法としては、例えば、熱風循環式加熱炉内での雰囲気温度の分布状態に応じて熱風循環式加熱炉の複数箇所に温度(Ta)(℃)の熱風の導入部を設けると共に、熱風循環式加熱炉の複数箇所に熱風循環式加熱炉内の空気(熱風)の取り出し部を設けて、熱風循環式加熱炉内で熱風を循環させる方法、熱風循環式加熱炉への熱風の導入量や熱風循環式加熱炉からの気体の取り出し量を制御する方法、それらを組み合わせる方法などを挙げることができる。
The atmospheric temperature in the hot air circulating heating furnace is determined by the heat absorption by the acrylic polymerizable composition in the initial stage supplied to the hot air circulating heating furnace, the heat generated by the decomposition or polymerization of the thermal polymerization initiator, etc. The temperature is not necessarily completely the same over the entire region in the circulating heating furnace. In the present invention, the atmospheric temperature (Tb) (° C.) in the entire region in the hot air circulation heating furnace is set as [temperature of hot air introduced into the hot air circulation heating furnace (Ta) (° C.) − 10 (° C.)], It is preferable to maintain the temperature within the range of [temperature of hot air introduced into hot air circulating heating furnace (Ta) (° C.) + 10 (° C.)], and [temperature of hot air introduced into hot air circulating heating furnace (Ta) (° C.) − 5 (° C.)] and [temperature of hot air introduced into the hot air circulating heating furnace (Ta) (° C.) + 5 (° C.)] are more preferably maintained.
By maintaining the atmospheric temperature in the entire region in the hot-air circulating heating furnace within the above-mentioned temperature range, the polymerization and curing of the acrylic polymerizable composition is smoothly performed without unevenness, and a high-quality acrylic resin cured product is obtained. Obtainable.
As a method of maintaining the atmospheric temperature in the entire region in the hot air circulation heating furnace in the above-described temperature range, for example, a plurality of locations of the hot air circulation heating furnace according to the distribution state of the atmospheric temperature in the hot air circulation heating furnace The hot air circulating heating furnace is provided with a hot air circulating heating furnace at a plurality of locations in the hot air circulating heating furnace. And a method of circulating hot air, a method of controlling the amount of hot air introduced into the hot air circulation heating furnace, a gas extraction amount from the hot air circulation heating furnace, a method of combining them, and the like.

本発明の方法にしたがってアクリル系樹脂硬化物を連続的に製造すると、熱風循環式加熱炉内でのアクリル系重合性組成物およびアクリル系樹脂硬化物の品温は、一般に図1に示すような温度履歴となる。
具体的に説明すると、図1に示すように、熱風循環式加熱炉の入口から連続的に供給されたアクリル系重合性組成物は、熱風循環式加熱炉内を前進するにつれて熱風循環式加熱炉内の加熱気体(熱風)によって加熱されてその品温が徐々に上昇して熱風循環式加熱炉に導入される熱風の温度(Ta)(℃)にまで達し、その際に昇温に伴って熱重合開始剤が分解して重合硬化が進行して重合熱を発生するためアクリル系重合性組成物またはアクリル系樹脂硬化物の品温は、熱風循環式加熱炉に導入される熱風の温度(熱風循環式加熱炉の雰囲気温度)よりも高いピーク温度にまでなり、その後アクリル系樹脂硬化物の品温は熱風循環式加熱炉内の雰囲気温度を下限とした温度まで徐々に下がりながら熱風循環式加熱炉の出口に到達する。
When the acrylic resin cured product is continuously produced according to the method of the present invention, the product temperature of the acrylic polymerizable composition and the acrylic resin cured product in the hot air circulating heating furnace is generally as shown in FIG. It becomes temperature history.
More specifically, as shown in FIG. 1, the acrylic polymerizable composition continuously supplied from the inlet of the hot air circulating heating furnace has a hot air circulating heating furnace as it advances through the hot air circulating heating furnace. The product temperature is gradually increased by the heated gas (hot air) inside and reaches the temperature (Ta) (° C) of the hot air introduced into the hot-air circulating heating furnace. Since the thermal polymerization initiator is decomposed and polymerization curing proceeds to generate heat of polymerization, the product temperature of the acrylic polymerizable composition or acrylic resin cured product is the temperature of the hot air introduced into the hot air circulating heating furnace ( The atmospheric temperature of the hot air circulation heating furnace reaches a higher peak temperature, and then the product temperature of the cured acrylic resin is gradually lowered to a temperature lower than the lower limit of the atmospheric temperature in the hot air circulation heating furnace. Reach the exit of the furnace.

本発明においては、アクリル系重合性組成物が熱風循環式加熱炉の入口に到達した時点からアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達するまでの時間を(A)とし、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達した時点から重合硬化物が熱風循環式加熱炉の出口に到達するまでの時間を(B)としたときに、(A)/(B)=1〜3[すなわち(A)の時間が(B)の時間の1〜3倍]になるようにして重合硬化を行うことが好ましく、(A)/(B)=1.5〜2[(A)が(B)の1.5〜2倍]になるようにして重合硬化を行うことがより好ましい。
前記(A)と(B)の時間の長さの比[(A)/(B)]を前記した範囲にすることによって、十分に重合硬化されていて物性および外観に優れるアクリル系樹脂硬化物を、熱エネルギー効率を良好に維持しながら、生産性良く製造することができる。
前記(A)と(B)の時間の長さの比[(A)/(B)]を前記した範囲にするためには、アクリル系重合性組成物に含有する熱重合開始剤の種類(10時間半減期温度)、その配合量、熱風循環式加熱炉内に導入する熱風の温度、熱風循環式加熱炉内の雰囲気温度、熱風循環式加熱炉内でのアクリル系重合性組成物およびアクリル系樹脂硬化物の移動速度などを調整すればよい。
In the present invention, the temperature of the hot air introduced into the hot air circulation heating furnace from the time when the acrylic polymerizable composition reaches the inlet of the hot air circulation heating furnace, the product temperature of the acrylic polymerizable composition or its polymerized cured product. (Ta) The time required to reach the same temperature as (° C.) is (A), and the temperature of the hot air introduced into the hot air circulation heating furnace (Ta) (Ta) ( (A) / (B) = 1 to 3 [i.e., (B), where (B) is the time from when the temperature reaches the same temperature as when the polymerization cured product reaches the outlet of the hot-air circulating heating furnace. It is preferable to carry out the polymerization and curing so that the time of A) is 1 to 3 times the time of (B), and (A) / (B) = 1.5 to 2 [(A) is (B) It is more preferable to carry out the polymerization and curing so as to be 1.5 to 2 times larger than the above.
By setting the ratio of the time lengths (A) and (B) [(A) / (B)] to the above-described range, the cured acrylic resin is sufficiently polymerized and cured and has excellent physical properties and appearance. Can be manufactured with good productivity while maintaining good thermal energy efficiency.
In order to set the ratio of the length of time (A) and (B) [(A) / (B)] to the above-mentioned range, the kind of thermal polymerization initiator contained in the acrylic polymerizable composition ( 10-hour half-life temperature), its blending amount, the temperature of the hot air introduced into the hot air circulation heating furnace, the ambient temperature in the hot air circulation heating furnace, the acrylic polymerizable composition and the acrylic in the hot air circulation heating furnace The moving speed of the cured resin may be adjusted.

前記した(A)/(B)の比が前記した範囲から外れて、(A)に相当する時間が長くなり過ぎると、熱風循環式加熱炉内の昇温、重合の進行が緩慢で生産性に乏しく、しかも重合開始剤による硬化性が乏しくなるため、後工程でポストキュアが必要になる。しかも、(B)に相当する時間が相対的に短いため、熱風循環式加熱炉内での(B)に相当する領域での雰囲気温度が低くなり、(B)に相当する領域から取り出した気体(熱風)を温度(Ta)(℃)の熱風にして熱風循環式加熱炉に再循環させる際に当該気体を温度(Ta)(℃)まで加熱するために多くの熱エネルギーが必要になる。
一方、前記した(A)/(B)の比が前記した範囲から外れて、(A)に相当する時間が短くなり過ぎると、アクリル系重合性組成物またはアクリル系樹脂硬化物がピーク温度に達して反応が完了したにも拘わらず、熱風循環式加熱炉での滞在時間(冷却時間)を必要以上に長く採ることになり、アクリル系樹脂硬化物の生産性が低下し易い。
ここで、本明細書でいう「アクリル系重合性組成物またはアクリル系樹脂硬化物の品温」とは、アクリル系重合性組成物自体またはアクリル系樹脂硬化物自体の温度をいい、アクリル系重合性組成物またはアクリル系樹脂硬化物の中心部分の温度を測定することによって求めることができる。例えば、アクリル系重合性組成物またはアクリル系樹脂硬化物が方形の横断面を有する連続した板状物である場合には、その方形をなす横断面における2つの対角線の交点が中心となるから当該交点部分の温度を中心温度として測定すればよい。
If the ratio of (A) / (B) described above deviates from the above range and the time corresponding to (A) becomes too long, the temperature rise in the hot air circulating heating furnace and the progress of the polymerization are slow and the productivity is increased. In addition, since the curability due to the polymerization initiator is poor, post-cure is necessary in a later step. Moreover, since the time corresponding to (B) is relatively short, the ambient temperature in the region corresponding to (B) in the hot-air circulating heating furnace is lowered, and the gas taken out from the region corresponding to (B) A large amount of heat energy is required to heat the gas to the temperature (Ta) (° C.) when the hot air is heated to the temperature (Ta) (° C.) and recirculated to the hot air circulation heating furnace.
On the other hand, if the ratio of (A) / (B) is out of the above range and the time corresponding to (A) becomes too short, the acrylic polymerizable composition or the cured acrylic resin reaches the peak temperature. Despite the completion of the reaction, the residence time (cooling time) in the hot air circulating heating furnace is taken longer than necessary, and the productivity of the cured acrylic resin is likely to be lowered.
As used herein, “the product temperature of the acrylic polymerizable composition or the cured acrylic resin” refers to the temperature of the acrylic polymerizable composition itself or the cured acrylic resin itself. It can obtain | require by measuring the temperature of the center part of an adhesive composition or acrylic resin hardened | cured material. For example, when the acrylic polymerizable composition or the acrylic resin cured product is a continuous plate-like product having a square cross section, the intersection of two diagonal lines in the cross section forming the square is the center. What is necessary is just to measure the temperature of an intersection part as center temperature.

本発明のアクリル系樹脂硬化物の連続製造方法では、アクリル系重合性組成物が熱風循環式加熱炉の入口から供給され、重合硬化されてアクリル系樹脂硬化物として熱風循環式加熱炉の出口から取り出されるまでの時間[前記した(A)と(B)の合計時間]は、アクリル系重合性組成物の組成、製造するアクリル系樹脂硬化物のサイズや形状、銘柄、熱風循環式加熱炉に導入する熱風の温度、熱風循環式加熱炉内の雰囲気温度、熱風循環式加熱炉内でのアクリル系重合性組成物およびアクリル系樹脂硬化物の移動速度、アクリル系重合性組成物を流延する成形空間(アクリル系重合性組成物を入れる容器)などによって異なり得るが、得られるアクリル系樹脂硬化物の品質、生産性などの点から、一般的に20〜100分、特に30〜60分程度であることが好ましい。
また、熱風循環式加熱炉内におけるアクリル系重合性組成物およびアクリル系樹脂硬化物の移動速度(前進速度)は、通常、0.05〜2m/分、特に0.1〜1m/分程度であることがアクリル系重合性組成物の重合硬化を十分に且つ円滑に行うために好ましい。
In the continuous production method of the cured acrylic resin of the present invention, the acrylic polymerizable composition is supplied from the inlet of the hot air circulation type heating furnace, polymerized and cured as an acrylic resin cured product from the outlet of the hot air circulation type heating furnace. The time until removal [the total time of (A) and (B) described above] is the composition of the acrylic polymerizable composition, the size and shape of the cured acrylic resin to be produced, the brand, and the hot air circulation heating furnace. The temperature of the hot air to be introduced, the atmospheric temperature in the hot air circulation heating furnace, the moving speed of the acrylic polymerizable composition and the cured acrylic resin in the hot air circulation heating furnace, and casting the acrylic polymerizable composition Although it may vary depending on the molding space (a container in which an acrylic polymerizable composition is placed), it is generally 20 to 100 minutes, particularly 30 to 60 in terms of the quality and productivity of the resulting cured acrylic resin. It is preferable that a degree.
Moreover, the moving speed (advance speed) of the acrylic polymerizable composition and the cured acrylic resin in the hot air circulating heating furnace is usually 0.05 to 2 m / min, particularly about 0.1 to 1 m / min. It is preferable for the acrylic polymerizable composition to be sufficiently and smoothly polymerized and cured.

本発明の方法を行うに当たっては、熱風循環式加熱炉における熱風の循環方式は特に制限されず、熱風循環式加熱炉内の全領域における雰囲気温度の温度差をできるだけ少なく維持することができ、しかも熱風循環式加熱炉での熱風循環のための熱エネルギー効率をできるだけ高く保ち得る方法であればいずれの方式を採用してもよい。
特に、熱風循環式加熱炉の入口とアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度と同じ温度に達するまでの間の区域(EA)[上記した(A)の時間に相当する区域]に熱風循環式加熱炉からの気体取り出し部を設けると共に、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度と同じ温度に達する箇所と熱風循環式加熱炉の出口までの間の区域(EB)[上記した(B)の時間に相当する区域]に熱風循環式加熱炉からの気体取り出し部を設け、区域(EA)および区域(EB)のそれぞれに設けた気体取り出し部から取り出した気体を混合して混合気体とし、その混合気体を熱風循環式加熱炉に導入する熱風の温度(Ta)に調温して熱風循環式加熱炉に導入する方式が好ましく採用される。かかる方式を採用することによって、区域(EA)における気体取り出し部から取り出された温度の低下した気体[一般に熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも低温の気体]が、区域(EB)における気体取り出し部から取り出された温度の高い気体[一般に熱風循環式加熱炉に導入する熱風の温度(Ta)よりも高温の気体]によって加熱されるため、両方の気体を混合してなる混合気体の温度(Tmix)(℃)が、熱風循環式加熱炉に導入する熱風の温度(Ta)と極めて近い温度になり、当該混合気体を、熱風循環式加熱炉に導入(循環)する温度(Ta)になるまで加熱して調温する際に要する熱エネルギーが極めて少なくてすみ、熱エネルギー効率が極めて高いものとなる。
In carrying out the method of the present invention, the hot air circulation system in the hot air circulation heating furnace is not particularly limited, and the temperature difference of the ambient temperature in the entire region in the hot air circulation heating furnace can be kept as small as possible. Any method may be employed as long as the heat energy efficiency for hot air circulation in the hot air circulation heating furnace can be kept as high as possible.
In particular, the area between the up product temperature convection inlet and an acrylic polymerizable composition of the furnace or a cured polymer reaches the same temperature as the temperature of the hot air introduced into the hot air circulation type heating furnace (E A) [Area corresponding to the time of (A) described above] is provided with a gas take-out part from the hot air circulation heating furnace, and the temperature of the acrylic polymerizable composition or its polymerized cured product is introduced into the hot air circulation heating furnace. Gas from the hot air circulating heating furnace in the area (E B ) [the area corresponding to the time of (B) described above] between the point where the temperature reaches the same temperature as the hot air temperature and the outlet of the hot air circulating heating furnace The temperature of the hot air which mixes the gas taken out from the gas extraction part provided in each of the section (E A ) and the section (E B ) into a mixed gas and introduces the mixed gas into the hot-air circulating heating furnace (Ta) temperature control and hot air circulation Method for introducing into the furnace is preferably used. By adopting such a method, the area reduced gas [general hot air introduced into the hot air circulation type heating furnace temperature of the temperature taken from the gas take-out section in the (E A) (Ta) ( ℃) cold gas than ] Is heated by a high-temperature gas extracted from the gas extraction section in the section (E B ) [generally, a gas having a temperature higher than the temperature (Ta) of the hot air introduced into the hot-air circulating heating furnace]. The temperature (T mix ) (° C.) of the mixed gas obtained by mixing the gas is very close to the temperature (Ta) of the hot air introduced into the hot air circulation heating furnace, and the mixed gas is used as the hot air circulation heating furnace. The heat energy required to heat and adjust the temperature until reaching the temperature (Ta) to be introduced (circulated) into the heat exchanger is very small, and the heat energy efficiency is extremely high.

本発明では、熱風循環式加熱炉の区域(EA)および区域(EB)のそれぞれにおける気体取り出し部の位置や数、熱風循環式加熱炉に設ける熱風導入部の位置や数、熱風循環式加熱炉の規模(大きさ)、装置の保温性などを調整することによって、区域(EA)および区域(EB)のそれぞれから取り出した気体を混合してなる混合気体の温度(Tmix)(℃)と、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)との差が、5℃以下、さらには4℃以下、特に3℃以下になるようにすることが好ましい。 In the present invention, a hot-air circulating position and number of the gas extraction unit in each of the zones of the furnace (E A) and area (E B), the position and the number of hot air introduction portion provided in the hot air circulation type heating oven, a hot air circulation type Adjusting the scale (size) of the heating furnace, the heat retention of the apparatus, etc., the temperature of the mixed gas (T mix ) that is obtained by mixing the gas extracted from each of the zone (E A ) and zone (E B ) It is preferable that the difference between (° C.) and the temperature (Ta) (° C.) of the hot air introduced into the hot air circulating heating furnace is 5 ° C. or less, further 4 ° C. or less, and particularly 3 ° C. or less.

限定されるものではないが、本発明の方法で好ましく採用される熱風循環式加熱炉における熱風の循環方式としては、図2に例示するものを挙げることができる。
図2において、1は熱風循環式加熱炉、2は熱風循環式加熱炉の入口、3は熱風循環式加熱炉の出口、4はコンベアなどの連続搬送手段、5はアクリル系重合性組成物またはアクリル系樹脂硬化物、6a、6b、6cおよび6dは熱風循環式加熱炉における熱風導入部、7a、7b、7cおよび7dは熱風循環式加熱炉における気体(熱風)取り出し部、8aおよび8bはポンプなどの気体循環装置、9aおよび9bは熱交換器を示す。
図2に示す装置では、熱風循環式加熱炉の上部と下部のそれぞれに、熱風の導入部6aと6bおよび6cと6dを2個ずつ設けると共に、熱風循環式加熱炉の上部と下部のそれぞれに気体(熱風)の取り出し部7aと7bおよび7cと7dを2個ずつ設けてある。そして、熱風の導入部6aと6cおよび気体の取り出し部7aと7cは上記した区域(EA)に設けてあり、熱風の導入部6bと6dおよび気体の取り出し部7bと7dは上記した区域(EB)に設けてある。
図2の装置では、熱風導入部6a、6b、6cおよび6dから熱風循環式加熱炉内に導入された熱風が、熱風循環式加熱炉内を十分に加熱する前に、そのまま気体取り出し部7a、7b、7cおよび7dから取り出されてしまうことのないように、熱風導入部6a、6b、6cおよび6dと、気体取り出し部7a、7b、7cおよび7dとの相互の配置位置を考慮する必要がある。
Although not limited, as a hot air circulation system in a hot air circulation type heating furnace preferably employed in the method of the present invention, the one exemplified in FIG. 2 can be exemplified.
In FIG. 2, 1 is a hot-air circulating heating furnace, 2 is an inlet of the hot-air circulating heating furnace, 3 is an outlet of the hot-air circulating heating furnace, 4 is a continuous conveying means such as a conveyor, and 5 is an acrylic polymerizable composition or Acrylic resin cured product, 6a, 6b, 6c and 6d are hot air introduction parts in the hot air circulation heating furnace, 7a, 7b, 7c and 7d are gas (hot air) extraction parts in the hot air circulation heating furnace, and 8a and 8b are pumps Gas circulation devices such as 9a and 9b indicate heat exchangers.
In the apparatus shown in FIG. 2, two hot air introduction portions 6a and 6b and two 6c and 6d are provided in the upper and lower portions of the hot air circulating heating furnace, respectively, and in the upper and lower portions of the hot air circulating heating furnace. Two take-out portions 7a and 7b and 7c and 7d for gas (hot air) are provided. The extraction portion 7a and 7c of the inlet portion 6a and 6c and gas hot air is provided with the above-mentioned areas (E A), extraction unit 7b and 7d of the inlet portion 6b and 6d and gas hot air above the area ( E B ).
In the apparatus of FIG. 2, before the hot air introduced into the hot air circulation heating furnace from the hot air introduction parts 6a, 6b, 6c and 6d sufficiently heats the hot air circulation heating furnace, the gas extraction part 7a, It is necessary to consider the mutual arrangement position of the hot air introduction parts 6a, 6b, 6c and 6d and the gas extraction parts 7a, 7b, 7c and 7d so that they are not taken out from 7b, 7c and 7d. .

図2に示す装置では、区域(EA)の上部に設けた気体の取り出し部7aから取り出された温度の低下した気体[一般に熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも温度の低い気体]は、区域(EB)の上部に設けた気体の取り出し部7bから取り出された温度の高くなった気体[一般に熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも温度の高い気体]と混合されて混合気体となった後に、気体循環装置8aによって熱交換器9aに送られ、熱交換器9aで熱風循環式加熱炉1に導入される熱風の温度(Ta)に調温されて(通常は加熱調温)、熱風導入部6aおよび6bから熱風循環式加熱炉に再度導入(循環)される。
また、熱風循環式加熱炉の下部に設けた、気体の取り出し部7cから取り出された温度の低下した気体[一般に熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも温度の低い気体]は、区域(EB)の下部に設けた気体の取り出し部7dから取り出された温度の高くなった気体[一般に熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも温度の高い気体]と混合されて混合気体となった後に、気体循環装置8bによって熱交換器9bに送られ、熱交換器9bで熱風循環式加熱炉1に導入される熱風の温度(Ta)に調温されて(通常は加熱調温)、熱風導入部6cおよび6cから熱風循環式加熱炉に再度導入(循環)される。
In the apparatus shown in FIG. 2, zones reduced gas [general hot air introduced into the hot air circulation type heating furnace temperature of the temperature taken from the take-out portion 7a of the gas is provided over the (E A) (Ta) ( ℃) The gas having a lower temperature than the gas is a gas having a high temperature taken out from the gas take-out section 7b provided in the upper part of the section (E B ) [generally, the temperature (Ta) of hot air introduced into the hot air circulation heating furnace. After being mixed with (a gas having a temperature higher than (° C.)] to become a mixed gas, the hot air is sent to the heat exchanger 9a by the gas circulation device 8a and introduced into the hot air circulation heating furnace 1 by the heat exchanger 9a The temperature is adjusted to the temperature (Ta) (usually heating temperature control), and is again introduced (circulated) from the hot air introduction sections 6a and 6b into the hot air circulation type heating furnace.
Further, a gas with a lowered temperature taken out from the gas take-out part 7c provided at the lower part of the hot air circulating heating furnace [generally, the temperature is higher than the temperature (Ta) (° C.) of hot air introduced into the hot air circulating heating furnace. The lower gas] is a gas with a higher temperature taken out from the gas take-out section 7d provided at the lower part of the section (E B ) [generally from the temperature (Ta) (° C.) of hot air introduced into the hot-air circulating furnace. Is mixed with the gas having a high temperature] to be a mixed gas, which is then sent to the heat exchanger 9b by the gas circulation device 8b and introduced into the hot air circulation heating furnace 1 by the heat exchanger 9b (Ta ) (Usually heating temperature control), and is again introduced (circulated) from the hot air introduction sections 6c and 6c to the hot air circulation type heating furnace.

図2に示す装置を用いる場合は、熱風循環式加熱炉から取り出される気体を再利用・循環させて、極めて高い熱エネルギー効率でアクリル系樹脂硬化物を生産性良く製造することができる。
図2の装置では、熱風循環式加熱炉の上部と下部のそれぞれに熱風導入部を2カ所ずつ設け、熱風循環式加熱炉の上部と下部のそれぞれに気体(熱風)の取り出し部を2カ所ずつ設けているが、本発明で使用する装置は図2の装置に限定されるものではなく、熱風の導入部および気体(熱風)の取り出し部の数を図2におけるよりも多くしてもよい。
また、図2の装置では、熱風循環式加熱炉の上部からの熱風の導入および気体(熱風)の取り出しと、熱風循環式加熱炉の下部からの熱風の導入および気体(熱風)の取り出しを、2個の気体循環装置8aおよび8bと2個の熱交換器9aおよび9bを使用して行うようにしているが、それに限定されるものではなく、例えば、熱風循環式加熱炉の上部からの熱風の導入および気体(熱風)の取り出しと、熱風循環式加熱炉の下部からの熱風の導入および気体(熱風)の取り出しを1個の気体循環装置と1個の熱交換器を使用して行うようにしても構わない。
また、熱風循環式加熱炉内の気体(通常は空気)がアクリル系重合性組成物から生ずる成分などによって汚れたときに、循環する熱風をきれいなものとするために、熱風循環式加熱炉外の熱風循環経路に新たな気体(空気)を取り入れ得るようなシステムを採用してもよい。
When the apparatus shown in FIG. 2 is used, the acrylic resin cured product can be produced with extremely high thermal energy efficiency and high productivity by reusing and circulating the gas taken out from the hot-air circulating heating furnace.
In the apparatus shown in FIG. 2, two hot air introduction parts are provided at each of the upper and lower parts of the hot air circulation heating furnace, and two gas (hot air) extraction parts are provided at the upper and lower parts of the hot air circulation heating furnace, respectively. Although provided, the apparatus used in the present invention is not limited to the apparatus shown in FIG. 2, and the number of hot air introduction parts and gas (hot air) extraction parts may be larger than in FIG. 2.
Moreover, in the apparatus of FIG. 2, introduction of hot air from the upper part of the hot air circulation type heating furnace and removal of gas (hot air), introduction of hot air from the lower part of the hot air circulation type heating furnace and extraction of gas (hot air), However, the present invention is not limited to this. For example, hot air from the upper part of the hot-air circulating heating furnace is used, but the two gas-circulation devices 8a and 8b and the two heat exchangers 9a and 9b are used. And introduction of gas (hot air) and introduction of hot air from the lower part of the hot air circulation type heating furnace and removal of gas (hot air) using one gas circulation device and one heat exchanger It doesn't matter.
In addition, when the gas (usually air) in the hot air circulation heating furnace is contaminated by components generated from the acrylic polymerizable composition, the hot air circulating outside the hot air circulation heating furnace is made clean. You may employ | adopt the system which can take in new gas (air) to a hot-air circulation path.

本発明の方法を行うに当たっては、アクリル系重合性組成物を、熱風循環式加熱炉内を連続移動する成形空間に供給して熱風循環式加熱炉内を移動させながら重合硬化させてアクリル系樹脂硬化物にし、そのアクリル系樹脂硬化物を熱風循環式加熱炉から連続的に取り出すことのできる方式や装置であればいずれも採用でき、特に制限されず、アクリル系樹脂硬化物の連続製造技術において従来から採用されている方式や装置を採用することができる。
例えば、(1)熱風循環式加熱炉内を連続的に前進する1個のエンドレスベルト上に長尺フィルムを順次供給載置すると共に両サイドにリテーナーを配置して上部の開放した凹溝状の連続した成形空間を形成し、その成形空間にアクリル系重合性組成物を注入し熱風循環式加熱炉内を前進移動させながら重合硬化する方式、(2)熱風循環式加熱炉内を連続的に前進する上下に所定の間隔をあけて配置した2個のエンドレスベルトの間の両サイドにリテーナー(堰)を配置して方形断面を有する連続した包囲された成形空間を形成し、その成形空間にアクリル系重合性組成物を注入し熱風循環式加熱炉内を前進移動させがら重合硬化する方式、(3)前記(2)の方式において、2個のエンドレスベルトとサイドリテーナーで形成される成形空間の内面に長尺フィルムを配置した方式;(4)熱風循環式加熱炉内を連続的に前進移動するエンドレスベルト上に、所定の有限の成形空間(キャビティ)を有する複数の型を載せて連続的に前進移動させ、それぞれの型内にアクリル系重合性組成物を充填して熱風循環式加熱炉内を前進移動させながら重合硬化する方式などを挙げることができる。
熱風循環式加熱炉から取り出したアクリル系樹脂硬化物は、室温まで冷却し、長尺のアクリル系樹脂硬化物は用途などに応じて、必要に応じて適当なサイズに切断して、また非常長尺のアクリル系樹脂硬化物はそのままのサイズで、保存、流通、販売、二次加工することができる。
In carrying out the method of the present invention, an acrylic polymerizable composition is supplied to a molding space that continuously moves in a hot air circulation type heating furnace, and is polymerized and cured while moving in the hot air circulation type heating furnace, and then an acrylic resin. Any method or apparatus can be used as long as it is a cured product and the acrylic resin cured product can be continuously taken out from the hot-air circulating heating furnace, and is not particularly limited. In the continuous production technology of the acrylic resin cured product Conventionally employed methods and devices can be employed.
For example, (1) a long film is sequentially supplied and placed on one endless belt that continuously advances in a hot-air circulating heating furnace, and retainers are arranged on both sides so that the upper groove is opened in a concave groove shape. A method of forming a continuous molding space, injecting an acrylic polymerizable composition into the molding space, and polymerizing and curing it while moving forward in the hot air circulating heating furnace, (2) continuously in the hot air circulating heating furnace A retainer (weir) is arranged on both sides between two endless belts arranged at a predetermined interval above and below to form a continuous enclosed molding space having a square cross section, and in the molding space A method in which an acrylic polymerizable composition is injected and polymerized and cured while moving forward in a hot-air circulating heating furnace. (3) In the method (2), a molding formed by two endless belts and a side retainer. (4) A plurality of dies having a predetermined finite molding space (cavity) are placed on an endless belt that continuously moves forward in a hot-air circulating heating furnace. Examples thereof include a method in which the resin is continuously moved forward, filled with an acrylic polymerizable composition in each mold, and polymerized and cured while being moved forward in a hot air circulation type heating furnace.
The acrylic resin cured product taken out from the hot air circulation type heating furnace is cooled to room temperature, and the long acrylic resin cured product is cut into an appropriate size as required according to the application, etc. The scale acrylic resin cured product can be stored, distributed, sold, and secondary-processed in the same size.

本発明で用いるアクリル系重合性組成物が含有する「メタクリル酸メチルを主体とする不飽和単量体」とは、アクリル系重合性組成物に含まれる不飽和単量体の全質量(合計質量)に基づいて、メタクリル酸メチルを50質量%以上の割合で含有する不飽和単量体をいう。本発明で用いるアクリル系重合性組成物は、アクリル系重合性組成物に含まれる不飽和単量体の全質量に基づいて、メタクリル酸メチルを60質量%以上の割合で含有していることが好ましく、70質量%以上の割合で含有していることがより好ましい。アクリル系重合性組成物に含まれる不飽和単量体の全質量に基づいて、メタクリル酸メチルを前記した割合で含有していることによって、耐候性に優れ、しかも高級感のあるアクリル系樹脂硬化物を得ることができる。   The “unsaturated monomer mainly composed of methyl methacrylate” contained in the acrylic polymerizable composition used in the present invention means the total mass (total mass) of unsaturated monomers contained in the acrylic polymerizable composition. ) Based on unsaturated monomers containing 50% by weight or more of methyl methacrylate. The acrylic polymerizable composition used in the present invention may contain methyl methacrylate in a proportion of 60% by mass or more based on the total mass of unsaturated monomers contained in the acrylic polymerizable composition. Preferably, it is contained in a proportion of 70% by mass or more. Based on the total mass of unsaturated monomers contained in the acrylic polymerizable composition, the acrylic resin cures with excellent weather resistance and high-class feeling by containing methyl methacrylate in the above-mentioned proportion. You can get things.

本発明で用いるアクリル系重合性組成物は、メタクリル酸メチルと共に他の不飽和単量体を、アクリル系重合性組成物に含まれる不飽和単量体の全質量に基づいて、50質量%以下の割合で含有していてもよく、他の不飽和単量体の含有量は不飽和単量体の全質量に基づいて40質量%以下であることが好ましく、70質量%以下であることがより好ましい。   The acrylic polymerizable composition used in the present invention contains 50% by mass or less of other unsaturated monomers together with methyl methacrylate based on the total mass of unsaturated monomers contained in the acrylic polymerizable composition. The content of the other unsaturated monomer is preferably 40% by mass or less, and preferably 70% by mass or less based on the total mass of the unsaturated monomer. More preferred.

他の不飽和単量体の種類は特に限定されず、メタクリル酸メチルと共重合し得る不飽和単量体であればいずれでもよく、具体例として、1分子中の炭素原子数が1〜18の一価アルコールまたは一価フェノールとアクリル酸とのエステル、1分子中の炭素原子数が2〜18の一価アルコールまたは一価フェノールとメタクリル酸とのエステル、1分子中の炭素原子数が2〜4の二価アルコールとアクリル酸またはメタクリル酸とのモノエステル、アクリル酸、メタクリル酸、アクリロニトリル、アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、塩化ビニル、塩化ビニリデン、弗化ビニリデン、エチレン、無水マレイン酸、マレイン酸、フマル酸、ブタジエン、イソプレン、グリシジル(メタ)アクリレート等の一官能性不飽和単量体;(メタ)アクリル酸とエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,3−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、テトラメチロールメタン、ジメチロールエタン、トリメチロールエタン、ジメチロールプロパン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールとの多価エステル、アリル(メタ)アクリレート、ジビニルベンゼン、トリアリルイソシアヌレート等の多官能性不飽和単量体;等をあげることができ、これらの1種または2種以上を用いることができる。   The type of the other unsaturated monomer is not particularly limited and may be any unsaturated monomer that can be copolymerized with methyl methacrylate. As a specific example, the number of carbon atoms in one molecule is 1-18. Monohydric alcohol or ester of monohydric phenol and acrylic acid, ester of monohydric alcohol or monohydric phenol and methacrylic acid having 2 to 18 carbon atoms in one molecule, carbon atom number of 2 in one molecule Monoester of dihydric alcohol of ~ 4 with acrylic acid or methacrylic acid, acrylic acid, methacrylic acid, acrylonitrile, acrylamide, styrene, α-methylstyrene, vinyl acetate, vinyl chloride, vinylidene chloride, vinylidene fluoride, ethylene, anhydrous Monofunctional unsaturation such as maleic acid, maleic acid, fumaric acid, butadiene, isoprene, glycidyl (meth) acrylate (Meth) acrylic acid and ethylene glycol, polyethylene glycol, propylene glycol, 1,3-butanediol, neopentyl glycol, 1,6-hexanediol, tetramethylolmethane, dimethylolethane, trimethylolethane, dimethylol Polyfunctional unsaturated monomers such as polyvalent esters with polyhydric alcohols such as propane, trimethylolpropane, pentaerythritol and dipentaerythritol, allyl (meth) acrylate, divinylbenzene and triallyl isocyanurate; 1 type, or 2 or more types of these can be used.

特に、重合硬化して得られるアクリル系樹脂硬化物の耐熱性、耐汚染性などが向上する点から、メタクリル酸メチルと共に、多官能性不飽和単量体を少量併用することが望ましい。多官能性不飽和単量体の種類としては、上記したものを使用し得るが、とりわけエチレングリコールジメタクリレート、1,3−ブチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレートなどが好ましい。アクリル系重合性組成物における多官能性不飽和単量体の含有量は、アクリル系重合性組成物に含まれる不飽和単量体の全質量に基づいて、0.05〜5質量%が好ましく、0.1〜4質量%がより好ましい。多官能性不飽和単量体の含有量が前記範囲よりも少ないと、重合硬化して得られるアクリル系樹脂硬化物の耐熱性、耐汚染性などが不足する場合があり、一方前記範囲よりも多いと、重合硬化して得られるアクリル系樹脂硬化物が硬くなり過ぎて、加工時の曲げ抵抗が大きくなって曲げ加工性が悪化する傾向がある。   In particular, it is desirable to use a small amount of a polyfunctional unsaturated monomer together with methyl methacrylate from the viewpoint of improving the heat resistance and stain resistance of the cured acrylic resin obtained by polymerization and curing. As the types of polyfunctional unsaturated monomers, those described above can be used, and in particular, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, and the like. preferable. The content of the polyfunctional unsaturated monomer in the acrylic polymerizable composition is preferably 0.05 to 5% by mass based on the total mass of the unsaturated monomer contained in the acrylic polymerizable composition. 0.1 to 4% by mass is more preferable. When the content of the polyfunctional unsaturated monomer is less than the above range, the acrylic resin cured product obtained by polymerization and curing may be insufficient in heat resistance, stain resistance, etc. If the amount is too large, the cured acrylic resin obtained by polymerization and curing tends to be too hard, the bending resistance during processing increases, and the bending workability tends to deteriorate.

本発明で用いるアクリル系重合性組成物は、有機重合性成分(有機重合体成分)としてメタクリル酸メチルを主体とする不飽和単量体のみを含有し、既に重合している有機重合体を含有していなくてもよいし、またはメタクリル酸メチルを主体とする不飽和単量体と共に、アクリル系重合性組成物の粘度調節などのためにメタクリル酸メチルに由来する構造単位から主としてなるアクリル系重合体を必要に応じて溶解含有していてもよい。
アクリル系重合性組成物がアクリル系重合体を含有する場合は、1種類のアクリル系重合体のみを含有してもよいし、組成や分子量分布などを異にする2種以上のアクリル系重合体を含有してもよい。
メタクリル酸メチルを主体とする不飽和単量体と共にアクリル系重合体を含有するアクリル系重合性組成物は、例えば、ビーズ状やペレット状などのアクリル系重合体をメタクリル酸メチルを主体とする不飽和単量体に直接溶解させる方法、メタクリル酸メチルを主体とする不飽和単量体を予め低い重合率まで重合させておく方法などを挙げることができる。
The acrylic polymerizable composition used in the present invention contains only an unsaturated monomer mainly composed of methyl methacrylate as an organic polymerizable component (organic polymer component), and contains an already polymerized organic polymer. Or an acrylic monomer mainly composed of a structural unit derived from methyl methacrylate for adjusting the viscosity of the acrylic polymerizable composition together with an unsaturated monomer mainly composed of methyl methacrylate. The coalescence may be dissolved and contained as necessary.
When the acrylic polymerizable composition contains an acrylic polymer, it may contain only one kind of acrylic polymer, or two or more kinds of acrylic polymers having different compositions and molecular weight distributions. It may contain.
An acrylic polymerizable composition containing an acrylic polymer together with an unsaturated monomer mainly composed of methyl methacrylate is, for example, an acrylic polymer composed mainly of methyl methacrylate. Examples thereof include a method of directly dissolving in a saturated monomer and a method of previously polymerizing an unsaturated monomer mainly composed of methyl methacrylate to a low polymerization rate.

アクリル系重合性組成物が、メタクリル酸メチルを主体とする不飽和単量体と共にアクリル系重合体を含有する場合は、アクリル系重合体の含有量は、メタクリル酸メチルを主体とする単量体とアクリル系重合体の合計質量に基づいて、5〜40質量%であることが好ましく、15〜30質量%であることがより好ましい。
アクリル系重合性組成物中に前記した範囲内の量でアクリル系重合体を含有させることによって、アクリル系重合性組成物の粘度を板状体などの製造に適した粘度に調節することができる。アクリル系重合性組成物中でのアクリル系重合体の含有量が前記範囲よりも多くなると、重合硬化して得られるアクリル系樹脂硬化物の外観不良、物性低下などを生じ易くなる。
In the case where the acrylic polymerizable composition contains an acrylic polymer together with an unsaturated monomer mainly composed of methyl methacrylate, the content of the acrylic polymer is a monomer mainly composed of methyl methacrylate. And based on the total mass of the acrylic polymer, 5 to 40% by mass is preferable, and 15 to 30% by mass is more preferable.
By including the acrylic polymer in an amount within the above-mentioned range in the acrylic polymerizable composition, the viscosity of the acrylic polymerizable composition can be adjusted to a viscosity suitable for production of a plate-like body. . When the content of the acrylic polymer in the acrylic polymerizable composition is larger than the above range, poor appearance of the cured acrylic resin obtained by polymerization and curing, deterioration of physical properties, and the like are likely to occur.

本発明で用いるアクリル系重合性組成物は、無機粉末を含有していてもよいし、または含有しなくてもよい。無機粉末を含有すると、重合硬化して得られるアクリル系樹脂硬化物の耐熱性や硬度が高くなる。さらに、無機粉末を含有するアクリル系重合性組成物を重合硬化することで、大理石様のアクリル系樹脂硬化物(アクリル系樹脂人工大理石)を製造することができる。一方、アクリル系重合性組成物が無機粉末を含有しない場合は、一般に透明なアクリル系樹脂硬化物が得られる。
本発明の連続製造方法は、無機粉末を含有するアクリル系重合性組成物を用いるアクリル系樹脂人工大理石の連続製造技術として特に適している。
The acrylic polymerizable composition used in the present invention may or may not contain an inorganic powder. When the inorganic powder is contained, the heat resistance and hardness of the cured acrylic resin obtained by polymerization and curing are increased. Furthermore, a marble-like cured acrylic resin (acrylic resin artificial marble) can be produced by polymerizing and curing an acrylic polymerizable composition containing an inorganic powder. On the other hand, when the acrylic polymerizable composition does not contain an inorganic powder, a transparent acrylic resin cured product is generally obtained.
The continuous production method of the present invention is particularly suitable as a continuous production technique for an acrylic resin artificial marble using an acrylic polymerizable composition containing an inorganic powder.

アクリル系重合性組成物が無機粉末を含有する場合は、メタクリル酸メチルを主体とする不飽和単量体に不溶で、その重合硬化を阻害しない無機粉末であればいずれも使用でき、特に制限はなく、具体例としては、水酸化アルミニウム、酸化アルミニウム、炭酸カルシウム、珪酸カルシウム、アルミン酸カルシウム、硫酸バリウム、硫酸カルシウム、水酸化マグネシウム、シリカ、タルク、クレーなどを挙げることができ、これらの1種または2種以上を用いることができる。前記したうちでも、高級感のあるアクリル系樹脂硬化物が得られる点から、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、シリカが好ましく用いられ、水酸化アルミニウムがより好ましく用いられる。   When the acrylic polymerizable composition contains an inorganic powder, any inorganic powder that is insoluble in an unsaturated monomer mainly composed of methyl methacrylate and does not inhibit the polymerization and curing can be used. Specific examples include aluminum hydroxide, aluminum oxide, calcium carbonate, calcium silicate, calcium aluminate, barium sulfate, calcium sulfate, magnesium hydroxide, silica, talc, clay, and the like. Or 2 or more types can be used. Among the above, aluminum hydroxide, magnesium hydroxide, barium sulfate, and silica are preferably used, and aluminum hydroxide is more preferably used from the viewpoint of obtaining a high-quality acrylic resin cured product.

アクリル系重合性組成物が無機粉末を含有する場合は、その含有量はアクリル系樹脂硬化物に要求される性能や外観、色調などに応じて異なり得るが、一般的には、メタクリル酸メチルを主体とする不飽和単量体と無機粉末の合計質量に基づいて、80〜20質量%が好ましく、70〜40質量%がより好ましい。無機粉末を含有しないか、または無機粉末の含有量が前記範囲よりも少ないアクリル系重合性組成物から得られるアクリル系樹脂硬化物は、無機粉末を前記範囲で含有するものに比べて、耐熱性、硬度などが低くなる傾向があり、また大理石様を示さなくなる。一方、アクリル系重合性組成物における無機粉末の含有量が前記範囲よりも多いと、アクリル系樹脂重合原料混合物をスラリー化できずに混合が困難となり、しかも得られるアクリル系樹脂硬化物の強度などが低下する。   When the acrylic polymerizable composition contains an inorganic powder, its content may vary depending on the performance, appearance, color tone, etc. required for the acrylic resin cured product. Based on the total mass of the unsaturated monomer and the inorganic powder as a main component, 80 to 20% by mass is preferable, and 70 to 40% by mass is more preferable. A cured acrylic resin obtained from an acrylic polymerizable composition that does not contain inorganic powder or has an inorganic powder content less than the above range is more resistant to heat than those containing an inorganic powder in the above range. , There is a tendency for the hardness and the like to be low, and it does not show marble-like. On the other hand, if the content of the inorganic powder in the acrylic polymerizable composition is more than the above range, the acrylic resin polymerization raw material mixture cannot be slurried and becomes difficult to mix, and the strength of the resulting cured acrylic resin, etc. Decreases.

本発明で用いるアクリル系重合性組成物は、装飾効果のより大きな大理石や花崗岩などの模様を有するアクリル系樹脂硬化物を得るために、上記した無機粉末と共に、必要に応じて所定の粒径や色調を有する粒状体や破砕粒子を含有することができる。
また、本発明で用いるアクリル系重合性組成物は、必要に応じて、燐酸エステル系やシラン系などのカップリング剤、ステアリン酸などの離型剤、染顔料、補強材、改質剤、安定剤、紫外線吸収剤、難燃化剤、重合調節剤、抗菌剤、耐衝撃性改良剤などの各種添加剤の1種または2種以上を含有することができる。
In order to obtain an acrylic resin cured product having a pattern such as marble or granite having a greater decorative effect, the acrylic polymerizable composition used in the present invention, together with the above-described inorganic powder, has a predetermined particle size or Granules and crushed particles having a color tone can be contained.
In addition, the acrylic polymerizable composition used in the present invention includes a coupling agent such as phosphate ester or silane, a release agent such as stearic acid, a dye / pigment, a reinforcing material, a modifier, and a stabilizer as necessary. 1 type, or 2 or more types of various additives, such as an agent, a ultraviolet absorber, a flame retardant, a polymerization regulator, an antibacterial agent, and an impact modifier.

以下に、本発明を実施例などによって具体的に説明するが、本発明は以下の実施例に何ら限定されない。なお、以下の実施例および比較例において、アクリル系重合性組成物の反応率、アクリル系重合性組成物およびアクリル系樹脂硬化物の品温の測定、並びに上記した(A)の時間[アクリル系重合性組成物が熱風循環式加熱炉の入口に到達した時間からアクリル系重合性組成物またはアクリル系樹脂硬化物の品温が熱風循環式加熱炉に導入した熱風の温度(Ta)(℃)と同じ温度に達するまでに要した時間]および上記(B)の時間[アクリル系重合性組成物またはアクリル系樹脂硬化物の品温が、熱風循環式加熱炉に導入した熱風の温度(Ta)(℃)と同じ温度に達した時間から熱風循環式加熱炉の出口に到達するまでに要した時間]の測定は以下のようにして求めた。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to the following examples. In the following Examples and Comparative Examples, the reaction rate of the acrylic polymerizable composition, the measurement of the product temperature of the acrylic polymerizable composition and the cured acrylic resin, and the time (A) described above [acrylic The temperature of the hot air introduced into the hot-air circulating heating furnace from the time when the polymerizable composition reaches the inlet of the hot-air circulating heating furnace (Ta) (° C) The time required to reach the same temperature as above] and the time of (B) above [the temperature of the hot air introduced into the hot air circulating heating furnace (Ta) when the product temperature of the acrylic polymerizable composition or acrylic resin cured product is The measurement of the time required to reach the outlet of the hot-air circulating heating furnace from the time when the temperature reached the same temperature as (° C.) was determined as follows.

(1)アクリル系重合性組成物の反応率:
アクリル系樹脂硬化物の一部(Wa)を試料として採取してジクロロメタンで溶解し、そのジクロロメタン溶液をガスクロマトグラフィー(島津製作所製「GC−14A」)で分析して、試料に含まれる未反応の単量体量を測定し、下記の数式によりアクリル系重合性組成物の反応率を求めた。

アクリル系重合性組成物の反応率(%)=[1−{Wc÷(Wa×Wb)}]×100

[式中、Waは採取した試料の質量(g)、Wbはアクリル系重合性組成物における全単量体の含有率、Wcは試料中に含まれていた未反応の単量体の質量(g)を示す。]
(1) Reaction rate of acrylic polymerizable composition:
A part (Wa) of the cured acrylic resin is sampled and dissolved in dichloromethane, and the dichloromethane solution is analyzed by gas chromatography (“GC-14A” manufactured by Shimadzu Corporation). The amount of the monomer was measured, and the reaction rate of the acrylic polymerizable composition was determined by the following mathematical formula.

Reaction rate (%) of acrylic polymerizable composition = [1− {Wc ÷ (Wa × Wb)}] × 100

[Wa is the mass (g) of the sample collected, Wb is the content of all monomers in the acrylic polymerizable composition, and Wc is the mass of the unreacted monomer contained in the sample ( g). ]

(2)アクリル系重合性組成物およびアクリル系樹脂硬化物の品温:
コンベアベルト上(凹溝状の成形空間)に流延したアクリル系重合性組成物の中心(コンベアベルトの進行方向に直角な流延物の方形横断面における2つの対角線の交点)に、横河電機株式会社製のハイブリッドレコーダーに接続した熱電対を挿入し、熱風循環式加熱炉の入口から出口に至る全移動経路にわたって、熱風循環式加熱炉内を移動するアクリル系重合性組成物およびその重合硬化物(アクリル系樹脂硬化物)の温度を経時的に測定した。
(2) Product temperature of acrylic polymerizable composition and acrylic resin cured product:
At the center of the acrylic polymerizable composition cast on the conveyor belt (concave groove-shaped forming space) (the intersection of two diagonal lines in the rectangular cross section of the cast perpendicular to the direction of travel of the conveyor belt), Yokogawa Acrylic polymerizable composition that moves through the hot air circulating heating furnace through the entire moving path from the inlet to the outlet of the hot air circulating heating furnace by inserting a thermocouple connected to a hybrid recorder manufactured by Denki Co., Ltd. and its polymerization The temperature of the cured product (acrylic resin cured product) was measured over time.

(3)(A)の時間および(B)の時間:
上記(2)で経時的に測定したアクリル系重合性組成物およびアクリル系樹脂硬化物の品温をグラフに描き、そのグラフから(A)の時間および(B)の時間を求めた。なお、その際に、アクリル系樹脂硬化物が熱風循環式加熱炉の出口に到達した時間は、熱風循環式加熱炉の長さ(m)をアクリル系重合性組成物またはアクリル系樹脂硬化物の熱風循環式加熱炉内での移動速度(m/分)で除して求めた。
(3) Time of (A) and time of (B):
The product temperatures of the acrylic polymerizable composition and the cured acrylic resin measured over time in (2) above were drawn on a graph, and the time (A) and the time (B) were determined from the graph. At that time, the time when the cured acrylic resin reached the outlet of the hot-air circulating heating furnace is the length (m) of the hot-air circulating heating furnace of the acrylic polymerizable composition or the cured acrylic resin. It was obtained by dividing by the moving speed (m / min) in the hot air circulation type heating furnace.

《実施例1》
(1) 図2に示す装置を使用してアクリル系樹脂硬化物を製造した(熱風循環式加熱炉1における入口2から出口3までの距離=10m)。なお、アクリル系樹脂硬化物の連続製造装置としては、コンベア4の上に離型フィルムを載せ、両サイドに堰を配置して上部の開放した凹溝状の成形空間(凹溝の内寸;幅×高さ=100cm×2cm)を形成したものを使用した。
(2) メタクリル酸メチル(MMA)285質量部、メタクリル樹脂(PMMA、株式会社クラレ製「パラビーズ」)100質量部、1,3−ブチレングリコールジメタクリレート(BG)15質量部、水酸化アルミニウム粉末(昭和電工株式会社製「ハイジライト」)600質量部を混合し、真空下で脱気して混合物を調製した。
Example 1
(1) A cured acrylic resin was produced using the apparatus shown in FIG. 2 (distance from the inlet 2 to the outlet 3 in the hot-air circulating heating furnace 1 = 10 m). In addition, as an apparatus for continuously producing an acrylic resin cured product, a mold release film is placed on the conveyor 4, weirs are arranged on both sides, and an open groove-shaped molding space (inner dimension of the groove; What formed width x height = 100 cm x 2 cm was used.
(2) 285 parts by mass of methyl methacrylate (MMA), 100 parts by mass of methacrylic resin (PMMA, “Parabeads” manufactured by Kuraray Co., Ltd.), 15 parts by mass of 1,3-butylene glycol dimethacrylate (BG), aluminum hydroxide powder ( 600 parts by weight of “Hijilite” manufactured by Showa Denko KK were mixed and degassed under vacuum to prepare a mixture.

(3) 上記(2)で得られた混合物の温度を30℃に調節した後、定量ポンプでインラインミキサーに5.5kg/分の供給速度で連続的に投入し、同時にターシャリーブチルパーオキシネオデカノエート(熱重合開始剤、日本油脂株式会社製「パーブチルND」、10時間半減期温度=46.4℃)を混合物1kg当たり8gの割合で投入して混合して高粘度液状のアクリル系重合性組成物を調製し、当該アクリル系重合性組成物を液厚が11mmになるようにして前記した連続製造装置の成形空間に、熱風循環式加熱炉の入口2の直前の位置で供給して板状に流延させ、コンベア4の移動速度0.33m/分の条件下に熱風循環式加熱炉1内を連続移動させて重合硬化してアクリル系樹脂硬化物を製造した。なお、アクリル系重合性組成物の品温は、熱風循環式加熱炉1に入る直前に32℃まで昇温していた。
このアクリル系樹脂硬化物の製造操作を行うに当たっては、熱風導入部6a、6b、6cおよび6dから温度80℃の熱風を熱風循環式加熱炉1内に予め導入すると共に、気体(熱風)の取り出し部7a、7b、7cおよび7dから熱風循環式加熱炉1内の気体を熱風の導入量と同じ量で取り出して熱風循環式加熱炉1内に熱風を循環させて、熱風循環式加熱炉1内の雰囲気温度を予め78℃±2℃に調整しておき、そのようにして温度調整した熱風循環式加熱炉1内にアクリル系重合性組成物を入口2から供給し、熱風循環式加熱炉1内を0.33m/分の移動速度で出口3へと移動させて重合硬化を行った。
(3) After adjusting the temperature of the mixture obtained in (2) above to 30 ° C., it is continuously fed into the in-line mixer at a feed rate of 5.5 kg / min with a metering pump, and at the same time tertiary butyl peroxyneo Decanoate (thermal polymerization initiator, “Perbutyl ND” manufactured by Nippon Oil & Fats Co., Ltd., 10 hour half-life temperature = 46.4 ° C.) is charged at a rate of 8 g per 1 kg of the mixture and mixed to obtain a highly viscous liquid acrylic system A polymerizable composition is prepared, and the acrylic polymerizable composition is supplied to the molding space of the continuous production apparatus at a position immediately before the inlet 2 of the hot-air circulating heating furnace so that the liquid thickness becomes 11 mm. Then, it was cast into a plate shape and continuously moved in the hot-air circulating heating furnace 1 under the condition of a moving speed of the conveyor 4 of 0.33 m / min to polymerize and cure to produce an acrylic resin cured product. The product temperature of the acrylic polymerizable composition was raised to 32 ° C. immediately before entering the hot-air circulating heating furnace 1.
In performing the manufacturing operation of this acrylic resin cured product, hot air having a temperature of 80 ° C. is introduced into the hot air circulation heating furnace 1 from the hot air introduction parts 6a, 6b, 6c and 6d in advance and the gas (hot air) is taken out. The gas in the hot air circulation heating furnace 1 is taken out from the parts 7a, 7b, 7c and 7d in the same amount as the amount of hot air introduced, and hot air is circulated in the hot air circulation heating furnace 1, Was previously adjusted to 78 ° C. ± 2 ° C., and the acrylic polymerizable composition was supplied from the inlet 2 into the hot-air circulating heating furnace 1 thus adjusted in temperature, and the hot-air circulating heating furnace 1 The inside was moved to the outlet 3 at a moving speed of 0.33 m / min to perform polymerization curing.

(4) この実施例1のアクリル系樹脂硬化物の連続製造操作においては、下記の表1に示すように、アクリル系重合性組成物は、熱風循環式加熱炉1内で加熱されて徐々に温度が上昇し、17分後に80℃に達し、19分後に141℃(ピーク温度)に達し、その後徐々に温度が低下し、30分後に103℃で熱風循環式加熱炉から取り出した。
その結果、時間(A)と時間(B)の比(A)/(B)は1.3であった。また、得られたアクリル系樹脂硬化物の反応率は99.7%であり、十分に重合硬化がなされており、しかも気泡の発生もなく、外観的にも良好であった。
(5) また、アクリル系樹脂硬化物の連続製造時に、熱風循環式加熱炉1の気体(熱風)の取り出し部7a、7b、7cおよび7dから取り出した後に混合した混合気体(気体循環装置8aおよび8bによって熱交換器9aおよび9bに送る前の混合気体)の温度を測定した結果、平均温度が78.4℃であり、熱風循環式加熱炉1内に導入する熱風の温度80℃に極めて近いものであった。その結果、当該混合気体を熱交換器9aおよび9bで80℃に加熱調温して熱風循環式加熱炉に再循環する際の熱エネルギーの使用量が極めて少なくてすみ、熱エネルギー効率に優れていた。
(4) In the continuous production operation of the cured acrylic resin of Example 1, as shown in Table 1 below, the acrylic polymerizable composition is gradually heated in the hot air circulation heating furnace 1. The temperature rose and reached 80 ° C. after 17 minutes, reached 141 ° C. (peak temperature) after 19 minutes, and then gradually decreased. After 30 minutes, it was taken out from the hot air circulating heating furnace at 103 ° C.
As a result, the ratio (A) / (B) of time (A) to time (B) was 1.3. Moreover, the reaction rate of the obtained acrylic resin cured product was 99.7%, and was sufficiently cured by polymerization. Furthermore, no bubbles were generated and the appearance was good.
(5) Further, during continuous production of the cured acrylic resin, a mixed gas (gas circulation device 8a and gas mixture mixed after taking out from the gas (hot air) take-out portions 7a, 7b, 7c and 7d of the hot-air circulating heating furnace 1 is used. As a result of measuring the temperature of the mixed gas before being sent to the heat exchangers 9a and 9b by 8b, the average temperature is 78.4 ° C., which is very close to the temperature of the hot air introduced into the hot air circulating heating furnace 1 80 ° C. It was a thing. As a result, the amount of heat energy used when the mixed gas is heated and adjusted to 80 ° C. with the heat exchangers 9a and 9b and recirculated to the hot-air circulating heating furnace is extremely small, and the heat energy efficiency is excellent. It was.

《実施例2》
(1) 実施例1の(2)と同じ配合および操作を採用して混合物を調製し、その温度を30℃に調節した後、定量ポンプでインラインミキサーに5.5kg/分で連続的に投入し、同時にビス(4−ターシャリーブチルシクロヘキシル)パーオキシジカーボネート(熱重合開始剤、化薬アクゾ社製「パーカドックス16」、10時間半減期温度=44℃)を混合物1kg当たり6gの割合で投入して混合してアクリル系重合性組成物を調製し、当該アクリル系重合性組成物を液厚が11mmになるようにして実施例1で使用したのと同じ連続製造装置の成形空間に、熱風循環式加熱炉の入口2の直前の位置で供給して板状に流延させ、コンベア4の移動速度0.33m/分の条件下に熱風循環式加熱炉1内を連続移動させて重合硬化してアクリル系樹脂硬化物を製造した。なお、アクリル系重合性組成物の品温は、熱風循環式加熱炉1に入る直前に34℃まで昇温していた。
このアクリル系樹脂硬化物の製造操作を行うに当たっては、熱風導入部6a、6b、6cおよび6dから温度70℃の熱風を熱風循環式加熱炉1内に予め導入すると共に、気体(熱風)の取り出し部7a、7b、7cおよび7dから熱風循環式加熱炉1内の気体を熱風の導入量と同じ量で取り出して熱風循環式加熱炉1内に熱風を循環させて、熱風循環式加熱炉1内の雰囲気温度を予め68℃±2℃に調整しておき、そのようにして温度調整した熱風循環式加熱炉1内にアクリル系重合性組成物を入口2から供給し、熱風循環式加熱炉1内を0.33m/分の移動速度で出口3へと移動させて重合硬化を行った。
Example 2
(1) A mixture was prepared by adopting the same composition and operation as in (2) of Example 1, the temperature was adjusted to 30 ° C., and then continuously fed to an in-line mixer at 5.5 kg / min with a metering pump. At the same time, bis (4-tertiarybutylcyclohexyl) peroxydicarbonate (thermal polymerization initiator, “Perkadox 16” manufactured by Kayaku Akzo Co., Ltd., 10 hour half-life temperature = 44 ° C.) at a rate of 6 g per 1 kg of the mixture Into the molding space of the same continuous production apparatus used in Example 1 to prepare an acrylic polymerizable composition by charging and mixing, the acrylic polymerizable composition was used in Example 1 with a liquid thickness of 11 mm, It is supplied at a position immediately before the inlet 2 of the hot air circulation heating furnace and cast into a plate shape, and is continuously moved in the hot air circulation heating furnace 1 under the condition that the conveyor 4 moves at a speed of 0.33 m / min. Hardened A ril-based resin cured product was produced. The product temperature of the acrylic polymerizable composition was raised to 34 ° C. immediately before entering the hot-air circulating heating furnace 1.
In performing the manufacturing operation of this acrylic resin cured product, hot air having a temperature of 70 ° C. is introduced into the hot air circulation heating furnace 1 from the hot air introduction parts 6a, 6b, 6c and 6d in advance and the gas (hot air) is taken out. The gas in the hot air circulation heating furnace 1 is taken out from the parts 7a, 7b, 7c and 7d in the same amount as the amount of hot air introduced, and hot air is circulated in the hot air circulation heating furnace 1, Is adjusted in advance to 68 ° C. ± 2 ° C., and the acrylic polymerizable composition is supplied from the inlet 2 into the hot-air circulating heating furnace 1 adjusted in temperature as described above, and the hot-air circulating heating furnace 1 The inside was moved to the outlet 3 at a moving speed of 0.33 m / min to perform polymerization curing.

(2) 上記(1)のアクリル系樹脂硬化物の連続製造においては、下記の表1に示すように、アクリル系重合性組成物は、熱風循環式加熱炉1内で加熱されて徐々に温度が上昇し、20分後に70℃に達し、22分後に147℃(ピーク温度)に達し、その後徐々に温度が低下し、30分後に110℃で熱風循環式加熱炉から取り出した。
その結果、時間(A)と時間(B)の比(A)/(B)は2.0であった。また、得られたアクリル系樹脂硬化物の反応率は99.6%であり、十分に重合硬化がなされており、しかも気泡の発生もなく、外観的にも良好であった。
(3) また、アクリル系樹脂硬化物の連続製造時に、熱風循環式加熱炉1の気体(熱風)の取り出し部7a、7b、7cおよび7dから取り出した後に混合した混合気体(気体循環装置8aおよび8bによって熱交換器9aおよび9bに送る前の混合気体)の温度を測定した結果、平均温度が69.2℃であり、熱風循環式加熱炉1内に導入する熱風の温度70℃に極めて近く、当該混合気体を熱交換器9aおよび9bで70℃に加熱調温して熱風循環式加熱炉に再循環する際の熱エネルギーの使用量が極めて少量ですみ、熱エネルギー効率に極めて優れていた。
(2) In the continuous production of the cured acrylic resin of the above (1), as shown in Table 1 below, the acrylic polymerizable composition is heated in the hot air circulation heating furnace 1 and gradually heated. The temperature rose to 70 ° C. after 20 minutes, reached 147 ° C. (peak temperature) after 22 minutes, then gradually decreased, and was taken out from the hot air circulating heating furnace at 110 ° C. after 30 minutes.
As a result, the ratio (A) / (B) of time (A) to time (B) was 2.0. Further, the reaction rate of the obtained cured acrylic resin was 99.6%, and was sufficiently polymerized and cured, and no bubbles were generated, and the appearance was good.
(3) Also, during the continuous production of the cured acrylic resin, the mixed gas (the gas circulation device 8a and the mixed gas) taken out from the gas take-out portions 7a, 7b, 7c and 7d of the hot air circulation heating furnace 1 (hot air) As a result of measuring the temperature of the mixed gas before being sent to the heat exchangers 9a and 9b by 8b, the average temperature is 69.2 ° C., which is very close to the temperature of hot air 70 ° C. introduced into the hot air circulating heating furnace 1 The amount of heat energy used for heating and adjusting the mixed gas to 70 ° C. in the heat exchangers 9a and 9b and recirculating it to the hot-air circulation type heating furnace is very small, and the heat energy efficiency is extremely excellent. .

《実施例3》
(1) 実施例1の(2)と同じ配合および操作を採用して混合物を調製し、その混合物100質量部に対して黒顔料(山陽化成株式会社製「ソプロトナーBK」)を1質量部の割合で添加して黒色混合物を調製した。
(2) 上記(1)で調製した黒色混合物を用いて、実施例1の(3)と同じ操作を採用して、黒色のアクリル系重合性組成物の調製およびアクリル系樹脂硬化物を連続製造を行った。なお、この実施例3では、アクリル系重合性組成物の品温は、熱風循環式加熱炉1に入る直前に31℃まで昇温していた。
Example 3
(1) A mixture was prepared by employing the same formulation and operation as in (2) of Example 1, and 1 part by weight of black pigment (“Sopro Toner BK” manufactured by Sanyo Chemical Co., Ltd.) was added to 100 parts by weight of the mixture. A black mixture was prepared by adding in proportions.
(2) Using the black mixture prepared in (1) above, the same operation as in (1) of Example 1 was employed to prepare a black acrylic polymerizable composition and continuously produce a cured acrylic resin. Went. In Example 3, the product temperature of the acrylic polymerizable composition was raised to 31 ° C. immediately before entering the hot-air circulating heating furnace 1.

(3) 上記(2)のアクリル系樹脂硬化物の連続製造においては、下記の表1に示すように、アクリル系重合性組成物は、熱風循環式加熱炉1内で加熱されて徐々に温度が上昇し、18分後に80℃に達し、20分後に140℃(ピーク温度)に達し、その後徐々に温度が低下し、32分後に101℃で熱風循環式加熱炉から取り出した。
その結果、時間(A)と時間(B)の比(A)/(B)は1.3であった。また、得られたアクリル系樹脂硬化物の反応率は99.6%であり、十分に重合硬化がなされており、しかも気泡の発生もなく、外観的にも良好であった。
(4) また、アクリル系樹脂硬化物の連続製造時に、熱風循環式加熱炉1の気体(熱風)の取り出し部7a、7b、7cおよび7dから取り出した後に混合した混合気体(気体循環装置8aおよび8bによって熱交換器9aおよび9bに送る前の混合気体)の温度を測定した結果、平均温度が77.9℃であり、熱風循環式加熱炉1内に導入する熱風の温度80℃に近く、当該混合気体を熱交換器9aおよび9bで80℃に加熱調温して熱風循環式加熱炉に再循環する際の熱エネルギーの使用量が少量ですみ、熱エネルギー効率に優れていた。
(3) In the continuous production of the cured acrylic resin of the above (2), as shown in Table 1 below, the acrylic polymerizable composition is heated in the hot air circulation heating furnace 1 and gradually heated. The temperature rose to 80 ° C. after 18 minutes, reached 140 ° C. (peak temperature) after 20 minutes, gradually decreased in temperature, and was taken out from the hot air circulating heating furnace at 101 ° C. after 32 minutes.
As a result, the ratio (A) / (B) of time (A) to time (B) was 1.3. Further, the reaction rate of the obtained cured acrylic resin was 99.6%, and was sufficiently polymerized and cured, and no bubbles were generated, and the appearance was good.
(4) Further, during continuous production of the cured acrylic resin, a mixed gas (gas circulation device 8a and gas mixture mixed after taking out from the gas (hot air) take-out portions 7a, 7b, 7c and 7d of the hot air circulating heating furnace 1 is used. As a result of measuring the temperature of the mixed gas before being sent to the heat exchangers 9a and 9b by 8b, the average temperature is 77.9 ° C., which is close to the temperature of 80 ° C. of the hot air introduced into the hot-air circulating heating furnace 1, A small amount of heat energy was used when the mixed gas was heated to 80 ° C. with the heat exchangers 9a and 9b and recirculated to the hot-air circulating heating furnace, and the heat energy efficiency was excellent.

《実施例4》
(1) 実施例1の(2)と同じ配合および操作を採用して混合物を調製し、その混合物100質量部に白顔料(大日精化株式会社製「AT K−39(B)」)1質量部を混合して白色混合物を調製し、その白色混合物を用いて、実施例1の(3)と同じ操作を行って白色のアクリル系樹脂硬化物を連続的に製造した。この白色のアクリル系樹脂硬化物をロールミルで粉砕し、粉砕物を篩にかけて、粒径0.1〜2.4mmの白色破砕粒子を製造した。
(2) 実施例3の(2)で得られた黒色のアクリル系樹脂硬化物をロールミルで粉砕し、この粉砕物を篩にかけて、粒径0.1〜2.4mmの黒色破砕粒子を製造した。
(3) 実施例1の(2)と同じ配合および操作を採用して混合物を調製し、その混合物100質量部に対して、上記(1)で得られた白色破砕粒子を2質量部および上記(2)で得られた黒色破砕粒子を8質量部の割合で添加して、白色破砕粒子と黒色破砕粒子を含有する混合物を調製した。
(4) 上記(3)で調製した白色破砕粒子と黒色破砕粒子を含有する混合物を用いて、実施例1の(3)と同じ操作を採用して、アクリル系重合性組成物の調製およびアクリル系樹脂硬化物の連続製造を行った。なお、この実施例4では、アクリル系重合性組成物の品温は、熱風循環式加熱炉1に入る直前に31℃まで昇温していた。
Example 4
(1) A mixture was prepared by employing the same composition and operation as in (2) of Example 1, and white pigment (“AT K-39 (B)” manufactured by Dainichi Seika Co., Ltd.) 1 was added to 100 parts by mass of the mixture. A white mixture was prepared by mixing parts by mass, and the white acrylic resin cured product was continuously produced using the white mixture by performing the same operation as (3) of Example 1. The white acrylic resin cured product was pulverized with a roll mill, and the pulverized product was sieved to produce white crushed particles having a particle size of 0.1 to 2.4 mm.
(2) The black acrylic resin cured product obtained in (2) of Example 3 was pulverized with a roll mill, and the pulverized product was sieved to produce black crushed particles having a particle size of 0.1 to 2.4 mm. .
(3) The same formulation and operation as in (2) of Example 1 were adopted to prepare a mixture, and with respect to 100 parts by mass of the mixture, 2 parts by mass of the white crushed particles obtained in (1) above and the above The black crushed particles obtained in (2) were added at a rate of 8 parts by mass to prepare a mixture containing white crushed particles and black crushed particles.
(4) Using the mixture containing white crushed particles and black crushed particles prepared in (3) above, the same operation as in (1) of Example 1 was employed to prepare an acrylic polymerizable composition and acrylic Continuous production of a cured resin was carried out. In Example 4, the product temperature of the acrylic polymerizable composition was raised to 31 ° C. immediately before entering the hot air circulating heating furnace 1.

(5) 上記(4)のアクリル系樹脂硬化物の連続製造においては、下記の表1に示すように、アクリル系重合性組成物は、熱風循環式加熱炉1内で加熱されて徐々に温度が上昇し、15分後に80℃に達し、17分後に148℃(ピーク温度)に達し、その後徐々に温度が低下し、29分後に105℃で熱風循環式加熱炉から取り出した。
その結果、時間(A)と時間(B)の比(A)/(B)は1.1であった。また、得られたアクリル系樹脂硬化物の反応率は99.7%であり、十分に重合硬化がなされており、しかも気泡の発生もなく、外観的にも良好であった。
(6) また、アクリル系樹脂硬化物の連続製造時に、熱風循環式加熱炉1の気体(熱風)の取り出し部7a、7b、7cおよび7dから取り出した後に混合した混合気体(気体循環装置8aおよび8bによって熱交換器9aおよび9bに送る前の混合気体)の温度を測定した結果、平均温度が78.8℃であり、熱風循環式加熱炉1内に導入する熱風の温度80℃に極めて近く、当該混合気体を熱交換器9aおよび9bで80℃に加熱調温して熱風循環式加熱炉に再循環する際の熱エネルギーの使用量が少量ですみ、熱エネルギー効率に優れていた。
(5) In the continuous production of the cured acrylic resin of the above (4), as shown in Table 1 below, the acrylic polymerizable composition is heated in the hot air circulating heating furnace 1 and gradually heated. The temperature rose to 80 ° C. after 15 minutes, reached 148 ° C. (peak temperature) after 17 minutes, then gradually decreased, and after 29 minutes, it was taken out from the hot-air circulating heating furnace at 105 ° C.
As a result, the ratio (A) / (B) of time (A) to time (B) was 1.1. Moreover, the reaction rate of the obtained acrylic resin cured product was 99.7%, and was sufficiently cured by polymerization. Furthermore, no bubbles were generated and the appearance was good.
(6) Also, during continuous production of the acrylic resin cured product, a mixed gas (gas circulation device 8a and gas mixture) mixed after being taken out from the gas take-out portions 7a, 7b, 7c and 7d of the hot-air circulating heating furnace 1 (hot air) As a result of measuring the temperature of the mixed gas before being sent to the heat exchangers 9a and 9b by 8b, the average temperature is 78.8 ° C., which is very close to the temperature of hot air 80 ° C. introduced into the hot air circulating heating furnace 1 The amount of heat energy required for heating and adjusting the temperature of the mixed gas to 80 ° C. in the heat exchangers 9a and 9b and recirculating it to the hot-air circulating heating furnace was small, and the heat energy efficiency was excellent.

《比較例1》
(1) 実施例1の(2)と同じ配合および操作を採用して混合物を調製し、その温度を30℃に調節した後、定量ポンプでインラインミキサーに2.9kg/分で連続的に投入し、同時にラウロイルパーオキサイド(熱重合開始剤、日本油脂株式会社製「パーロイルL」、10時間半減期温度=61.6℃)を混合物1kg当たり8gの割合で投入して混合してアクリル系重合性組成物を調製し、当該アクリル系重合性組成物を液厚が11mmになるようにして実施例1で使用したのと同じ連続製造装置の成形空間に、熱風循環式加熱炉の入口2の直前の位置で供給して板状に流延させ、コンベア4の移動速度0.18m/分の条件下に熱風循環式加熱炉1内を連続移動させて重合硬化してアクリル系樹脂硬化物を製造した。なお、アクリル系重合性組成物の品温は、熱風循環式加熱炉1に入る直前に31℃まで昇温していた。
このアクリル系樹脂硬化物の製造操作を行うに当たっては、熱風導入部6a、6b、6cおよび6dから温度70℃の熱風を熱風循環式加熱炉1内に予め導入すると共に、気体(熱風)の取り出し部7a、7b、7cおよび7dから熱風循環式加熱炉1内の気体を熱風の導入量と同じ量で取り出して熱風循環式加熱炉1内に熱風を循環させて、熱風循環式加熱炉1内の雰囲気温度を予め68℃±2℃に調整しておき、そのようにして温度調整した熱風循環式加熱炉1内にアクリル系重合性組成物を入口2から供給し、熱風循環式加熱炉1内を0.18m/分の移動速度で出口3へと移動させて重合硬化を行った。
<< Comparative Example 1 >>
(1) A mixture was prepared by adopting the same composition and operation as in (2) of Example 1, the temperature was adjusted to 30 ° C., and then continuously fed to an in-line mixer at 2.9 kg / min with a metering pump. At the same time, lauroyl peroxide (thermal polymerization initiator, “Perroyl L” manufactured by Nippon Oil & Fats Co., Ltd., 10 hour half-life temperature = 61.6 ° C.) was added at a rate of 8 g per 1 kg of the mixture and mixed to produce acrylic polymerization. In the molding space of the same continuous production apparatus used in Example 1 so that the liquid thickness is 11 mm, the acrylic polymerizable composition is placed in the inlet 2 of the hot-air circulating heating furnace. It is supplied at the immediately preceding position and cast into a plate shape, and is continuously moved in the hot air circulating heating furnace 1 under the condition of a moving speed of the conveyor 4 of 0.18 m / min to polymerize and cure the acrylic resin cured product. Manufactured. The product temperature of the acrylic polymerizable composition was raised to 31 ° C. immediately before entering the hot-air circulating heating furnace 1.
In performing the manufacturing operation of this acrylic resin cured product, hot air having a temperature of 70 ° C. is introduced into the hot air circulation heating furnace 1 from the hot air introduction parts 6a, 6b, 6c and 6d in advance and the gas (hot air) is taken out. The gas in the hot air circulation heating furnace 1 is taken out from the parts 7a, 7b, 7c and 7d in the same amount as the amount of hot air introduced, and hot air is circulated in the hot air circulation heating furnace 1, Is adjusted in advance to 68 ° C. ± 2 ° C., and the acrylic polymerizable composition is supplied from the inlet 2 into the hot-air circulating heating furnace 1 adjusted in temperature as described above, and the hot-air circulating heating furnace 1 The inside was moved to the outlet 3 at a moving speed of 0.18 m / min to carry out polymerization curing.

(2) 上記(1)のアクリル系樹脂硬化物の連続製造においては、下記の表1に示すように、アクリル系重合性組成物は、熱風循環式加熱炉1内で加熱されて徐々に温度が上昇し、43分後に70℃に達し、48分後に122℃(ピーク温度)に達し、その後徐々に温度が低下し、56分後に91℃で熱風循環式加熱炉から取り出した。
その結果、時間(A)と時間(B)の比(A)/(B)は3.3であった。また、得られたアクリル系樹脂硬化物の反応率は92.9%であり、実施例1〜4に比べて反応率が低かった。
(3) また、アクリル系樹脂硬化物の連続製造時に、熱風循環式加熱炉1の気体(熱風)の取り出し部7a、7b、7cおよび7dから取り出した後に混合した混合気体(気体循環装置8aおよび8bによって熱交換器9aおよび9bに送る前の混合気体)の温度を測定した結果、平均温度が61.8℃であり、熱風循環式加熱炉1内に導入する熱風の温度70℃にするために常に加熱が必要で、熱エネルギーの使用量が実施例1〜4に比べて大幅に多く、実施例1〜4に比べて熱エネルギー効率が劣っていた。
(2) In the continuous production of the cured acrylic resin of the above (1), as shown in Table 1 below, the acrylic polymerizable composition is heated in the hot air circulation heating furnace 1 and gradually heated. The temperature rose to 70 ° C. after 43 minutes, reached 122 ° C. (peak temperature) after 48 minutes, gradually decreased in temperature, and was taken out from the hot air circulation heating furnace at 91 ° C. after 56 minutes.
As a result, the ratio (A) / (B) of time (A) to time (B) was 3.3. Moreover, the reaction rate of the obtained acrylic resin hardened | cured material was 92.9%, and the reaction rate was low compared with Examples 1-4.
(3) Also, during the continuous production of the cured acrylic resin, the mixed gas (the gas circulation device 8a and the mixed gas) taken out from the gas take-out portions 7a, 7b, 7c and 7d of the hot air circulation heating furnace 1 (hot air) As a result of measuring the temperature of the mixed gas before being sent to the heat exchangers 9a and 9b by 8b, the average temperature is 61.8 ° C., so that the temperature of the hot air introduced into the hot air circulating heating furnace 1 is 70 ° C. However, the amount of heat energy used was much larger than those of Examples 1 to 4, and the heat energy efficiency was inferior to Examples 1 to 4.

《比較例2》
(1) 実施例1の(2)と同じ配合および操作を採用して混合物を調製し、その温度を30℃に調節した後、定量ポンプでインラインミキサーに1.6kg/分で連続的に投入し、同時にラウロイルパーオキサイド(熱重合開始剤、日本油脂株式会社製「パーロイルL」、10時間半減期温度=61.6℃)を混合物1kg当たり8gの割合で投入して混合してアクリル系重合性組成物を調製し、当該アクリル系重合性組成物を液厚が11mmになるようにして実施例1で使用したのと同じ連続製造装置の成形空間に、熱風循環式加熱炉の入口2の直前の位置で供給して板状に流延させ、コンベア4の移動速度0.10m/分の条件下に熱風循環式加熱炉1内を連続移動させて重合硬化してアクリル系樹脂硬化物を製造した。なお、アクリル系重合性組成物の品温は、熱風循環式加熱炉1に入る直前に33℃まで昇温していた。
このアクリル系樹脂硬化物の製造操作を行うに当たっては、熱風導入部6a、6b、6cおよび6dから温度70℃の熱風を熱風循環式加熱炉1内に予め導入すると共に、気体(熱風)の取り出し部7a、7b、7cおよび7dから熱風循環式加熱炉1内の気体を熱風の導入量と同じ量で取り出して熱風循環式加熱炉1内に熱風を循環させて、熱風循環式加熱炉1内の雰囲気温度を予め68℃±2℃に調整しておき、そのようにして温度調整した熱風循環式加熱炉1内にアクリル系重合性組成物を入口2から供給し、熱風循環式加熱炉1内を0.10m/分の移動速度で出口3へと移動させて重合硬化を行った。
<< Comparative Example 2 >>
(1) A mixture was prepared by adopting the same composition and operation as in (2) of Example 1, the temperature was adjusted to 30 ° C., and then continuously fed into an in-line mixer at 1.6 kg / min with a metering pump. At the same time, lauroyl peroxide (thermal polymerization initiator, “Perroyl L” manufactured by Nippon Oil & Fats Co., Ltd., 10 hour half-life temperature = 61.6 ° C.) was added at a rate of 8 g per 1 kg of the mixture and mixed to produce acrylic polymerization. In the molding space of the same continuous production apparatus used in Example 1 so that the liquid thickness is 11 mm, the acrylic polymerizable composition is placed in the inlet 2 of the hot-air circulating heating furnace. It is supplied at the immediately preceding position and cast into a plate shape, and continuously moves in the hot-air circulating heating furnace 1 under the condition of a moving speed of the conveyor 4 of 0.10 m / min to polymerize and cure the acrylic resin cured product. Manufactured. The product temperature of the acrylic polymerizable composition was raised to 33 ° C. immediately before entering the hot-air circulating heating furnace 1.
In performing the manufacturing operation of this acrylic resin cured product, hot air having a temperature of 70 ° C. is introduced into the hot air circulation heating furnace 1 from the hot air introduction parts 6a, 6b, 6c and 6d in advance and the gas (hot air) is taken out. The gas in the hot air circulation heating furnace 1 is taken out from the parts 7a, 7b, 7c and 7d in the same amount as the amount of hot air introduced, and hot air is circulated in the hot air circulation heating furnace 1, Is adjusted in advance to 68 ° C. ± 2 ° C., and the acrylic polymerizable composition is supplied from the inlet 2 into the hot-air circulating heating furnace 1 adjusted in temperature as described above, and the hot-air circulating heating furnace 1 The inside was moved to the outlet 3 at a moving speed of 0.10 m / min to perform polymerization curing.

(2) 上記(1)のアクリル系樹脂硬化物の連続製造においては、下記の表1に示すように、アクリル系重合性組成物は、熱風循環式加熱炉1内で加熱されて徐々に温度が上昇し、45分後に70℃に達し、50分後に120℃(ピーク温度)に達し、その後徐々に温度が低下し、105分後に72℃で熱風循環式加熱炉から取り出した。
その結果、時間(A)と時間(B)の比(A)/(B)は0.8であった。また、得られたアクリル系樹脂硬化物の反応率は93.3%であり、実施例1〜4に比べて反応率が低かった。
(3) また、アクリル系樹脂硬化物の連続製造時に、熱風循環式加熱炉1の気体(熱風)の取り出し部7a、7b、7cおよび7dから取り出した後に混合した混合気体(気体循環装置8aおよび8bによって熱交換器9aおよび9bに送る前の混合気体)の温度を測定した結果、平均温度が62.5℃であり、熱風循環式加熱炉1内に導入する熱風の温度70℃にするために常に加熱する必要があり、熱エネルギーの使用量が実施例1〜4に比べて大幅に多く、実施例1〜4に比べて熱エネルギー効率が劣っていた。
(2) In the continuous production of the cured acrylic resin of the above (1), as shown in Table 1 below, the acrylic polymerizable composition is heated in the hot air circulation heating furnace 1 and gradually heated. The temperature rose to 70 ° C. after 45 minutes, reached 120 ° C. (peak temperature) after 50 minutes, gradually decreased in temperature, and taken out from the hot air circulating heating furnace at 72 ° C. after 105 minutes.
As a result, the ratio (A) / (B) of time (A) to time (B) was 0.8. Moreover, the reaction rate of the obtained acrylic resin hardened | cured material was 93.3%, and the reaction rate was low compared with Examples 1-4.
(3) Also, during the continuous production of the cured acrylic resin, the mixed gas (the gas circulation device 8a and the mixed gas) taken out from the gas take-out portions 7a, 7b, 7c and 7d of the hot air circulation heating furnace 1 (hot air) As a result of measuring the temperature of the mixed gas before being sent to the heat exchangers 9a and 9b by 8b, the average temperature is 62.5 ° C., so that the temperature of the hot air introduced into the hot air circulating heating furnace 1 is 70 ° C. The amount of heat energy used was much larger than those of Examples 1 to 4, and the heat energy efficiency was inferior to Examples 1 to 4.

《比較例3》
(1) 実施例1の(2)と同じ配合および操作を採用して混合物を調製し、その温度を30℃に調節した後、定量ポンプでインラインミキサーに5.7kg/分で連続的に投入し、同時にジイソブチリルパーオキサイド(熱重合開始剤、日本油脂株式会社製「パーロイルIB」、10時間半減期温度=32.7℃)を混合物1kg当たり8gの割合で投入して混合してアクリル系重合性組成物を調製し、当該アクリル系重合性組成物を液厚が11mmになるようにして実施例1で使用したのと同じ連続製造装置の成形空間に、熱風循環式加熱炉の入口2の直前の位置で供給して板状に流延させ、コンベア4の移動速度0.34m/分の条件下に熱風循環式加熱炉1内を連続移動させて重合硬化してアクリル系樹脂硬化物を製造しようとしたところ、アクリル系重合性組成物の品温が、熱風循環式加熱炉1に入る直前に48℃まで上昇し、その後増粘して流延不可能となり、アクリル系樹脂硬化物を連続的に製造することができなかった。
<< Comparative Example 3 >>
(1) A mixture was prepared by adopting the same composition and operation as in (2) of Example 1, the temperature was adjusted to 30 ° C., and then continuously fed to an in-line mixer at 5.7 kg / min with a metering pump. At the same time, diisobutyryl peroxide (thermal polymerization initiator, “Perroyl IB” manufactured by NOF Corporation, 10-hour half-life temperature = 32.7 ° C.) was added at a rate of 8 g per 1 kg of the mixture and mixed. A polymerizable composition was prepared, and the acrylic polymerizable composition was introduced into the molding space of the same continuous production apparatus used in Example 1 so that the liquid thickness was 11 mm. Is supplied at a position just before the plate and cast into a plate shape, and is continuously moved in the hot-air circulating heating furnace 1 under the condition of a moving speed of the conveyor 4 of 0.34 m / min. Tried to manufacture However, the temperature of the acrylic polymerizable composition rises to 48 ° C. just before entering the hot-air circulating heating furnace 1, then thickens and becomes impossible to cast, and continuously produces a cured acrylic resin. I couldn't.

Figure 0004938432
Figure 0004938432

本発明による場合は、アクリル系樹脂硬化物を、構造の簡単な熱風循環式加熱炉を用いて、複雑な温度管理や温度制御を要することなく、十分に重合硬化していて物性および外観に優れるアクリル系樹脂硬化物を簡単に且つ生産性良く製造することができるので、本発明はアクリル系樹脂人工大理石をはじめとする種々のアクリル系樹脂硬化物の連続製造方法として極めて有用である。   In the case of the present invention, the acrylic resin cured product is sufficiently polymerized and cured using a hot air circulation type heating furnace with a simple structure without requiring complicated temperature control and temperature control, and has excellent physical properties and appearance. Since the cured acrylic resin can be easily produced with good productivity, the present invention is extremely useful as a continuous production method for various cured acrylic resins including acrylic resin artificial marble.

熱風循環式加熱炉内でのアクリル系重合性組成物およびアクリル系樹脂硬化物の品温の履歴を示す図である。It is a figure which shows the log | history of the product temperature of the acrylic polymerizable composition and acrylic resin hardened | cured material in a hot-air circulation type heating furnace. 本発明で好ましく使用し得る、アクリル系樹脂硬化物の連続製造装置(熱風循環式加熱炉)の一例を示す図である。It is a figure which shows an example of the continuous manufacturing apparatus (hot air circulation type heating furnace) of the acrylic resin hardened | cured material which can be preferably used by this invention.

符号の説明Explanation of symbols

1 熱風循環式加熱炉
2 熱風循環式加熱炉の入口
3 熱風循環式加熱炉の出口
4 コンベアなどの連続搬送手段
5 アクリル系重合性組成物またはアクリル系樹脂硬化物
6a 熱風導入部
6b 熱風導入部
6c 熱風導入部
6d 熱風導入部
7a 気体(熱風)取り出し部
7b 気体(熱風)取り出し部
7c 気体(熱風)取り出し部
8d 気体(熱風)取り出し部
8a ポンプなどの気体循環装置
8b、ポンプなどの気体循環装置
9a 熱交換器
9b 熱交換器
DESCRIPTION OF SYMBOLS 1 Hot-air circulation heating furnace 2 Hot-air circulation heating furnace inlet 3 Hot-air circulation heating furnace outlet 4 Continuous conveyance means, such as a conveyor 5 Acrylic polymerizable composition or acrylic resin cured product 6a Hot-air introduction part 6b Hot-air introduction part 6c Hot air introduction part 6d Hot air introduction part 7a Gas (hot air) extraction part 7b Gas (hot air) extraction part 7c Gas (hot air) extraction part 8d Gas (hot air) extraction part 8a Gas circulation device 8b such as a pump, gas circulation such as a pump Device 9a Heat exchanger 9b Heat exchanger

Claims (7)

メタクリル酸メチルを主体とする不飽和単量体および熱重合開始剤を含有するアクリル系重合性組成物を、熱風循環式加熱炉内を連続的に前進移動する成形空間に供給して重合硬化させてアクリル系樹脂硬化物を連続的に製造する方法であって、
前記熱重合開始剤として、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)よりも10〜60℃低い10時間半減期温度を有する熱重合開始剤を用い;且つ、
アクリル系重合性組成物が熱風循環式加熱炉の入口に到達した時点からアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達するまでの時間を(A)とし、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達した時点から重合硬化物が熱風循環式加熱炉の出口に到達するまでの時間を(B)としたときに、(A)/(B)=1〜3になるようにして熱風循環式加熱炉内でアクリル系重合性組成物を重合硬化させる;
ことを特徴とするアクリル系樹脂硬化物の連続製造方法。
An acrylic polymerizable composition containing an unsaturated monomer mainly composed of methyl methacrylate and a thermal polymerization initiator is supplied to a molding space that continuously moves forward in a hot-air circulating heating furnace and polymerized and cured. A method for continuously producing a cured acrylic resin,
As the thermal polymerization initiator, a thermal polymerization initiator having a 10-hour half-life temperature that is 10 to 60 ° C. lower than the temperature (Ta) (° C.) of hot air introduced into the hot-air circulating heating furnace ; and
Hot air temperature (Ta) (° C.) at which the temperature of the acrylic polymerizable composition or its polymerized cured product is introduced into the hot-air circulating heating furnace from the time when the acrylic polymerizable composition reaches the inlet of the hot-air circulating heating furnace ) Is the same temperature as the temperature (Ta) (° C.) of hot air introduced into the hot air circulation heating furnace, where the temperature until reaching the same temperature as in (A) is (A). When the time from when the polymerization hardened material reaches the outlet of the hot air circulation heating furnace to (B) is taken as (A) / (B) = 1-3, the hot air circulation type Polymerizing and curing the acrylic polymerizable composition in a heating furnace;
A method for continuously producing a cured acrylic resin, characterized in that:
熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)が30〜120℃の範囲内の一定の温度である請求項1に記載の連続製造方法。   The continuous production method according to claim 1, wherein the temperature (Ta) (° C) of the hot air introduced into the hot air circulation heating furnace is a constant temperature within a range of 30 to 120 ° C. 熱風循環式加熱炉内の雰囲気温度(Tb)(℃)を、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)−10(℃)]と、[熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)+10(℃)]の範囲内の温度に維持する請求項1または2に記載の連続製造方法。   The atmospheric temperature (Tb) (° C.) in the hot air circulating heating furnace is changed to [temperature of hot air introduced into the hot air circulating heating furnace (Ta) (° C.) − 10 (° C.)] and [hot air circulating heating furnace The continuous production method according to claim 1 or 2, wherein the temperature is maintained within a range of the temperature of hot air to be introduced (Ta) (° C) + 10 (° C)]. 熱風循環式加熱炉の入口とアクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達するまでの間の区域(EA)に熱風循環式加熱炉からの気体取り出し部を設けると共に、アクリル系重合性組成物またはその重合硬化物の品温が熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)と同じ温度に達する箇所と熱風循環式加熱炉の出口までの間の区域(EB)に熱風循環式加熱炉からの気体取り出し部を設け、区域(EA)および区域(EB)のそれぞれに設けた気体取り出し部から取り出した気体を混合して混合気体とし、当該混合気体を熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)に調温して熱風循環式加熱炉に導入する請求項1〜3のいずれか1項に記載の連続製造方法。 The area between the inlet of the hot-air circulating furnace and the temperature of the acrylic polymerizable composition or its polymerized cured product reaches the same temperature as the temperature (Ta) (° C) of the hot air introduced into the hot-air circulating furnace (E A ) is provided with a gas outlet from the hot air circulation heating furnace, and the temperature of the hot air introduced into the hot air circulation heating furnace (Ta) (° C.) ) Is provided in the area (E B ) between the point where the same temperature is reached and the outlet of the hot-air circulating heating furnace to the outlet of the hot-air circulating heating furnace, and the area (E A ) and the area (E B ) The gas extracted from the gas extraction unit provided in each is mixed to make a mixed gas, and the mixed gas is adjusted to the temperature (Ta) (° C.) of hot air introduced into the hot-air circulating heating furnace, and the hot-air circulating heating furnace The description in any one of claims 1 to 3 introduced into The continuous manufacturing method. 区域(EA)および区域(EB)のそれぞれに設けた気体取り出し部から取り出した気体を混合してなる混合気体の温度(Tmix)(℃)と、熱風循環式加熱炉に導入する熱風の温度(Ta)(℃)との差が、5℃以下である請求項に記載の連続製造方法。 The temperature (T mix ) (° C) of the mixed gas obtained by mixing the gas extracted from the gas extraction section provided in each of the section (E A ) and the section (E B ), and hot air introduced into the hot-air circulating heating furnace The continuous production method according to claim 4 , wherein the difference from the temperature (Ta) (° C.) is 5 ° C. or less. アクリル系重合性組成物が、無機粉末を更に含有するアクリル樹脂系人工大理石製造用のアクリル系重合性組成物である請求項1〜のいずれか1項に記載の連続製造方法。 The continuous production method according to any one of claims 1 to 5 , wherein the acrylic polymerizable composition is an acrylic polymerizable composition for producing an acrylic resin-based artificial marble further containing an inorganic powder. 板状のアクリル系樹脂硬化物を製造する請求項1〜のいずれか1項に記載の連続製造方法。 The continuous manufacturing method of any one of Claims 1-6 which manufactures plate-shaped acrylic resin hardened | cured material.
JP2006335796A 2006-12-13 2006-12-13 Continuous production method of cured acrylic resin Expired - Fee Related JP4938432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335796A JP4938432B2 (en) 2006-12-13 2006-12-13 Continuous production method of cured acrylic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335796A JP4938432B2 (en) 2006-12-13 2006-12-13 Continuous production method of cured acrylic resin

Publications (3)

Publication Number Publication Date
JP2008144108A JP2008144108A (en) 2008-06-26
JP2008144108A5 JP2008144108A5 (en) 2009-11-12
JP4938432B2 true JP4938432B2 (en) 2012-05-23

Family

ID=39604638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335796A Expired - Fee Related JP4938432B2 (en) 2006-12-13 2006-12-13 Continuous production method of cured acrylic resin

Country Status (1)

Country Link
JP (1) JP4938432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388149B2 (en) * 2014-02-12 2018-09-12 日立化成株式会社 Hard coating resin composition for refractive index adjustment film, cured film and multilayer film using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045209B2 (en) * 1976-07-20 1985-10-08 住友化学工業株式会社 Continuous polymerization method
KR0180646B1 (en) * 1997-02-01 1999-03-20 김인환 Continuous manufacturing method of acrylic resin artificial marble
JPH10218912A (en) * 1997-02-03 1998-08-18 Kuraray Co Ltd Manufacture of resin composition

Also Published As

Publication number Publication date
JP2008144108A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US20060293449A1 (en) Solid filler containing polymerizable compositions, articles formed thereby and methods of formation
KR0180646B1 (en) Continuous manufacturing method of acrylic resin artificial marble
KR100232546B1 (en) (meth)acrylic syrup process for preparing the same, and process for preparing molding material containing (meth)acrylic syrup
US20140121291A1 (en) Radiation Curable Polymers
US20110178228A1 (en) Resin syrup, artificial marble containing a hardened form of the resin syrup, and a production method for the same
TWI791844B (en) Articles prepared using curable compositions based on polymerizable ionic species
JP2009544793A (en) Method for producing resin composition for artificial marble chip having high specific gravity and high refractive index
JP2024012411A (en) Foaming of blowing agent-containing polymers through use of microwaves
TW201412781A (en) Method for producing (meth) acrylic resin composition
JP4938432B2 (en) Continuous production method of cured acrylic resin
KR100521621B1 (en) Method for continuously producing artificial marble and apparatus therefor
EP2011632A2 (en) Process for manufacturing aggregate slabs by means of microwave irradiation and resulting aggregate slabs
JPH02160648A (en) Composition for molding polymethacrylate-based artificial marble
KR20210112461A (en) Method for manufacturing artficial marble
KR20140063522A (en) Low-emission fibre-matrix material curable thermally by radical polymerization
JP2009298038A (en) Manufacturing method of acrylic cultured marble
US6462103B1 (en) Formation of three dimensional burls in a filled acrylic solid surface material
JP2548953B2 (en) Method for producing plastic molded article having scratch-resistant matte surface
RU2809086C2 (en) Foaming of polymers containing foaming agent by using microwave radiation
KR100235415B1 (en) Process for methacrylate polymer concrete mix
KR102200962B1 (en) Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material prepared by the same
JPH03285854A (en) Acrylic artificial marble and its production
JPH10219069A (en) Production of resin composition
CN101434754A (en) Thick solid surface laminate product and method of making same
JPH06287394A (en) Thickening acrylate premix and artificial acrylate marble produced therefrom

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4938432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees