JP4937179B2 - Sludge supply method and sludge treatment system - Google Patents

Sludge supply method and sludge treatment system Download PDF

Info

Publication number
JP4937179B2
JP4937179B2 JP2008101506A JP2008101506A JP4937179B2 JP 4937179 B2 JP4937179 B2 JP 4937179B2 JP 2008101506 A JP2008101506 A JP 2008101506A JP 2008101506 A JP2008101506 A JP 2008101506A JP 4937179 B2 JP4937179 B2 JP 4937179B2
Authority
JP
Japan
Prior art keywords
sludge
layer
dehydrated
belt conveyor
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008101506A
Other languages
Japanese (ja)
Other versions
JP2009248039A (en
Inventor
伸一 澤田
季男 吉田
和宏 黒山
恒樹 山内
慶一 林
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2008101506A priority Critical patent/JP4937179B2/en
Publication of JP2009248039A publication Critical patent/JP2009248039A/en
Application granted granted Critical
Publication of JP4937179B2 publication Critical patent/JP4937179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、汚泥を脱水して得られた脱水汚泥と、該脱水汚泥を乾燥処理して得られた乾燥汚泥とを燃焼炉にて同時に燃焼処理する汚泥処理システムにおいて、脱水汚泥と乾燥汚泥を偏りなく燃焼炉に投入することができ、安定した燃焼を可能とした汚泥供給方法及び汚泥処理システムに関する。   The present invention relates to a sludge treatment system for simultaneously treating a dewatered sludge obtained by dewatering sludge and a dry sludge obtained by drying the dewatered sludge in a combustion furnace. The present invention relates to a sludge supply method and a sludge treatment system that can be put into a combustion furnace without bias and enable stable combustion.

従来、下水処理場、し尿処理場、廃水処理設備等から排出される汚泥の処理には、燃焼処理が多く用いられている。燃焼処理に際して、汚泥は含水率が高いため脱水処理して脱水汚泥として、或いは脱水した後に乾燥処理して乾燥汚泥として燃焼炉に投入される。一般に、脱水汚泥は80〜90%の含水率を有しており、汚泥を燃焼処理する際にはその前段で乾燥処理を行うことが望ましい。しかし、高含水率の脱水汚泥を乾燥処理するためには大きな熱エネルギが必要とされコストが嵩む上、受け入れる汚泥量によっては乾燥機を大型化しなければならない場合がある。また、汚泥処理システムにおける乾燥処理は、燃焼炉から排出される燃焼排ガスの廃熱を利用することが多いが、この場合、利用できる熱エネルギに限界があり、常時脱水汚泥の全量を乾燥処理することは困難である。   Conventionally, combustion treatment is often used for treatment of sludge discharged from sewage treatment plants, human waste treatment plants, wastewater treatment facilities, and the like. At the time of the combustion treatment, the sludge has a high water content, so that it is dehydrated and processed as dehydrated sludge, or after being dehydrated and dried, the sludge is fed into the combustion furnace. In general, dehydrated sludge has a moisture content of 80 to 90%, and when the sludge is subjected to a combustion treatment, it is desirable to perform a drying treatment at a preceding stage. However, in order to dry a high moisture content dewatered sludge, a large amount of heat energy is required and the cost increases. In addition, depending on the amount of sludge received, the dryer may have to be enlarged. In addition, the drying treatment in the sludge treatment system often uses the waste heat of the flue gas discharged from the combustion furnace. In this case, there is a limit to the heat energy that can be used, and the entire amount of dehydrated sludge is always dried. It is difficult.

そこで、脱水汚泥の一部を乾燥処理し、脱水汚泥と乾燥汚泥を燃焼炉に供給して同時に燃焼処理する方法が提案、実用化されている。図7に従来の汚泥処理システムの構成を示す。同図では、一例として燃焼炉に循環流動層炉60を用いた構成につき示している。脱水汚泥貯留手段51から供給される脱水汚泥52は、その一部を乾燥機53に導入し、該乾燥機53で乾燥処理する。残りの脱水汚泥52はコンベア55により搬送され、循環流動層炉60に設けられた投入ホッパ又は2軸フィーダ等の汚泥投入部61から炉内に投入される。同時に、乾燥機53で乾燥処理して得られた乾燥汚泥54はコンベア56で搬送され、循環流動層炉60の汚泥投入部61から炉内に投入される。循環流動層炉60では、一次空気及び二次空気の供給により、投入された汚泥と流動媒体を混合撹拌しながら燃焼する。前記循環流動層炉60で炉内脱硫を行う際には、ライザ62の上部或いはシールポット63等へ脱硫材を単独で投入していた。   Therefore, a method of drying a part of the dewatered sludge, supplying the dehydrated sludge and the dried sludge to the combustion furnace, and simultaneously burning them has been proposed and put into practical use. FIG. 7 shows the configuration of a conventional sludge treatment system. In the figure, as an example, a configuration using a circulating fluidized bed furnace 60 as a combustion furnace is shown. Part of the dewatered sludge 52 supplied from the dewatered sludge storage means 51 is introduced into the dryer 53 and dried by the dryer 53. The remaining dewatered sludge 52 is transported by a conveyor 55 and is introduced into the furnace from a sludge inlet 61 such as a charging hopper or a biaxial feeder provided in the circulating fluidized bed furnace 60. At the same time, the dried sludge 54 obtained by drying with the dryer 53 is transported by the conveyor 56 and charged into the furnace from the sludge charging section 61 of the circulating fluidized bed furnace 60. In the circulating fluidized bed furnace 60, the supplied sludge and the fluid medium are combusted while being mixed and stirred by supplying primary air and secondary air. When performing in-furnace desulfurization in the circulating fluidized bed furnace 60, a desulfurization material was put alone into the upper portion of the riser 62 or the seal pot 63.

また、特許文献1(特開平11−316013号公報)には、脱水汚泥を造粒乾燥機で水分10%以下まで造粒乾燥した後、汚泥混合機に乾燥汚泥粒と造粒乾燥前の脱水汚泥を投入してこれらを混合し、汚泥粒の水分を50〜70%に調整して流動床式焼却炉に投入し、燃焼させる方法が開示されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 11-316013), after dewatered sludge is granulated and dried to a water content of 10% or less with a granulating dryer, the dried sludge particles and dehydrated before granulation drying are dried in a sludge mixer. A method is disclosed in which sludge is introduced and mixed to adjust the water content of the sludge particles to 50 to 70%, and then introduced into a fluidized bed incinerator for combustion.

特開平11−316013号公報Japanese Patent Laid-Open No. 11-316013

上記したように、脱水汚泥と乾燥汚泥を同時に燃焼炉で燃焼処理する場合、脱水汚泥と乾燥汚泥を個々に燃焼炉の汚泥投入部に投入すると、一方が大量に投入され他方が殆ど投入されなかったり、脱水汚泥が塊状になって投入され炉内に水分濃度の偏りが生じたりして、燃焼が不安定になってしまうという問題があった。
また、従来は燃焼炉内に脱硫材を投入する際には、汚泥とは分離して投入していた。汚泥と混合する場合も、脱硫材を燃焼炉の汚泥投入部に投入しており、このため汚泥と脱硫材の混合が悪かった。
As described above, when dewatered sludge and dried sludge are burned simultaneously in a combustion furnace, when dehydrated sludge and dry sludge are individually charged into the sludge input section of the combustion furnace, one is charged in large quantities and the other is hardly charged. In addition, there is a problem that dehydration sludge is put in a lump and the moisture concentration is biased in the furnace, resulting in unstable combustion.
Conventionally, when a desulfurizing material is introduced into the combustion furnace, it is separated from the sludge. Also when mixing with sludge, the desulfurization material was thrown into the sludge input part of the combustion furnace, and the mixing of the sludge and the desulfurization material was poor.

一方、特許文献1では、脱水汚泥と乾燥汚泥を混合した後に焼却炉に投入する構成としており、脱水汚泥と乾燥汚泥の混合状態は良好となるが、汚泥混合機を新たに設置しなければならず、装置コスト及び動力コストが増大してしまう。また、脱水汚泥の乾燥に造粒乾燥機を用いているため、脱水汚泥を10%以下まで乾燥させるには動力及び消費熱量が大きくなり、また処理能力が小さいため大量の汚泥を受け入れることが困難で、大型の燃焼炉には適していなかった。
従って、本発明は上記従来技術の問題点に鑑み、簡単な装置構成で且つ低コストで以って、脱水汚泥と乾燥汚泥を偏りなく燃焼炉に投入することができ、安定した燃焼を可能とした汚泥供給方法及び汚泥処理システムを提供することを目的とする。
On the other hand, in Patent Document 1, the dewatered sludge and the dried sludge are mixed and then introduced into the incinerator, and the mixed state of the dehydrated sludge and the dried sludge is good, but a sludge mixer must be newly installed. Therefore, the apparatus cost and the power cost increase. In addition, since a granulating dryer is used to dry the dewatered sludge, the power and heat consumption are large to dry the dehydrated sludge to 10% or less, and it is difficult to accept a large amount of sludge because the processing capacity is small. Therefore, it was not suitable for a large-sized combustion furnace.
Therefore, in view of the above-mentioned problems of the prior art, the present invention allows the dehydrated sludge and the dried sludge to be fed into the combustion furnace without bias with a simple apparatus configuration and at a low cost, enabling stable combustion. An object is to provide a sludge supply method and a sludge treatment system.

そこで、本発明はかかる課題を解決するために、
汚泥を脱水して得られた脱水汚泥と、該脱水汚泥を乾燥処理して得られた乾燥汚泥とを燃焼炉に搬送し、前記脱水汚泥と前記乾燥汚泥をともに前記燃焼炉内に供給する汚泥供給方法において、
前記脱水汚泥をベルトコンベア上に供給するとともに、該脱水汚泥の供給位置より汚泥搬送方向下流側で、前記ベルトコンベア上の脱水汚泥層上方から前記乾燥汚泥を供給し、脱水汚泥層と乾燥汚泥層が積層された状態にてこれらの汚泥を前記燃焼炉に搬送して炉内に供給することを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
Sludge obtained by dewatering sludge and dried sludge obtained by drying the dehydrated sludge are transferred to a combustion furnace, and both the dehydrated sludge and the dried sludge are supplied into the combustion furnace. In the supply method,
The dehydrated sludge is supplied onto a belt conveyor, and the dried sludge is supplied from above the dehydrated sludge layer on the belt conveyor on the downstream side in the sludge transport direction from the dehydrated sludge supply position. These sludges are transported to the combustion furnace and supplied into the furnace in a state of being laminated.

本発明によれば、脱水汚泥と乾燥汚泥を異なる位置で同一ベルトコンベア上に落下させ、脱水汚泥層と乾燥汚泥層が積層した状態として汚泥を燃焼炉に供給するようにしたため、どちらか一方の汚泥が集中して炉内に投入されることがなく、燃焼炉にて安定した燃焼が可能となる。
また、先に含水率の高い脱水汚泥をベルトコンベア上に載置しているため、後から供給する乾燥汚泥が脱水汚泥の水分により吸着して保持され、コンベアの振動によっても乾燥汚泥が偏ったりすることなく円滑に搬送することが可能である。
さらに、新たに汚泥混合機等の装置を設置することなく既存の設備を改良するのみで実施できるためコスト低減が可能で、またベルトコンベアで汚泥を搬送する構成としているため大量の汚泥が搬送でき処理能力を高く維持できる。
According to the present invention, the dewatered sludge and the dried sludge are dropped on the same belt conveyor at different positions, and the sludge is supplied to the combustion furnace in a state where the dehydrated sludge layer and the dried sludge layer are laminated. The sludge is not concentrated and put into the furnace, and stable combustion is possible in the combustion furnace.
In addition, since dehydrated sludge with a high water content is placed on the belt conveyor first, the dried sludge supplied later is adsorbed and held by the moisture of the dehydrated sludge, and the dried sludge is also biased by the vibration of the conveyor. It is possible to convey smoothly without doing.
Furthermore, the cost can be reduced because it can be implemented simply by improving existing facilities without installing a new device such as a sludge mixer, and a large amount of sludge can be transported because it is configured to transport sludge with a belt conveyor. High processing capacity can be maintained.

また、前記脱水汚泥の供給位置と前記乾燥汚泥の供給位置の間で、前記ベルトコンベア上の脱水汚泥層上方から脱硫材を供給し、前記脱水汚泥層と前記乾燥汚泥層の間に脱硫材層を挟持させたことを特徴とする。
これにより、脱水汚泥層と脱硫材層と乾燥汚泥層が層状になったまま燃焼炉に投入されるため、何れか1つが集中して炉内に投入されることがなく、燃焼の安定化が可能である。また、汚泥と脱硫材が混ざったまま炉内に投入されるため、脱硫材は炉下部まで到達する。そのため、炉内滞留時間が長くなり脱硫効率が向上する。
また、脱硫材層は、脱水汚泥層と乾燥汚泥層に挟まれて汚泥投入部に投入されるため、脱硫材が飛散することが少なくなる。さらに、飛散した脱硫材が燃焼炉の汚泥投入部内面に付着し、汚泥の流動性を阻害することで生じるアーチングを回避することができる。
また、ベルトコンベア上には脱水汚泥が無い部分も存在し、この部分では脱硫材がコンベア上に直接載るため、次回コンベア上に脱水汚泥を供給する時は、コンベアとの間に脱硫材が介在することとなり、汚泥を燃焼炉に投入する際にコンベアから剥がれ易くなる。
Further, a desulfurization material layer is supplied from above the dewatered sludge layer on the belt conveyor between the dehydrated sludge supply position and the dry sludge supply position, and a desulfurization material layer is provided between the dewatered sludge layer and the dry sludge layer. It is characterized by sandwiching.
Thereby, since the dehydrated sludge layer, the desulfurization material layer, and the dried sludge layer are put into the combustion furnace in a layered state, any one of them is not put into the furnace in a concentrated manner, and the combustion is stabilized. Is possible. Moreover, since the sludge and the desulfurization material are mixed and put into the furnace, the desulfurization material reaches the lower part of the furnace. For this reason, the residence time in the furnace becomes longer and the desulfurization efficiency is improved.
Further, since the desulfurization material layer is sandwiched between the dehydrated sludge layer and the dried sludge layer, the desulfurization material is less scattered. Further, arching caused by the scattered desulfurized material adhering to the inner surface of the sludge input portion of the combustion furnace and inhibiting the fluidity of the sludge can be avoided.
In addition, there is a part where there is no dewatered sludge on the belt conveyor, and desulfurized material is placed directly on the conveyor in this part, so when dehydrated sludge is supplied on the next conveyor, desulfurized material is interposed between the conveyor and the conveyor. Therefore, when the sludge is put into the combustion furnace, it is easily peeled off from the conveyor.

さらに、前記乾燥汚泥の供給位置より汚泥搬送方向下流側で、前記ベルトコンベア上の乾燥汚泥層上方から脱硫材を供給し、前記脱水汚泥層と前記乾燥汚泥層の上方に脱硫材層を形成させたことを特徴とする。
これにより、脱水汚泥層と乾燥汚泥層と脱硫材層が層状になったまま燃焼炉に投入されるため、何れか1つが集中して炉内に投入されることがなく、燃焼の安定化が可能である。また、汚泥と脱硫材が混ざったまま炉内に投入されるため脱硫材は炉下部まで到達し、脱硫効率が向上する。
また、ベルトコンベア上には脱水汚泥、乾燥汚泥が無い部分も存在し、この部分では脱硫材がコンベア上に直接載るため、次回コンベア上に脱水汚泥を供給する時は、コンベアとの間に脱硫材が介在することとなり、汚泥を燃焼炉に投入する際にコンベアから剥がれ易くなる。
Further, a desulfurization material is supplied from above the dry sludge layer on the belt conveyor on the downstream side in the sludge transport direction from the dry sludge supply position, and a desulfurization material layer is formed above the dehydrated sludge layer and the dry sludge layer. It is characterized by that.
As a result, since the dehydrated sludge layer, the dried sludge layer, and the desulfurization material layer are put into the combustion furnace in a layered state, any one of them is not put into the furnace in a concentrated manner, and the combustion is stabilized. Is possible. Further, since the sludge and the desulfurization material are mixed and put into the furnace, the desulfurization material reaches the lower part of the furnace, and the desulfurization efficiency is improved.
In addition, there is a part on the belt conveyor where there is no dewatered sludge and dry sludge. In this part, the desulfurized material is placed directly on the conveyor, so the next time dehydrated sludge is supplied onto the conveyor, it is desulfurized between the conveyor. The material will intervene and it will be easy to peel off from the conveyor when the sludge is put into the combustion furnace.

また、脱水汚泥を貯留する脱水汚泥貯留手段と、該脱水汚泥貯留手段からの脱水汚泥の一部が導入され、該脱水汚泥を乾燥処理する乾燥機と、汚泥を搬送するベルトコンベアと、該ベルトコンベアで搬送された汚泥が投入され、該汚泥を燃焼処理する燃焼炉とを備えた汚泥処理システムにおいて、
前記ベルトコンベアは、汚泥搬送方向上流側から順に、前記脱水汚泥貯留手段からの脱水汚泥のうち前記乾燥機に導入されない脱水汚泥が供給される脱水汚泥供給部と、前記乾燥機からの乾燥汚泥が供給される乾燥汚泥供給部とを有し、該ベルトコンベア上に、脱水汚泥層とその上方に乾燥汚泥層とが積層されるようにしたことを特徴とする。
Also, dewatered sludge storage means for storing dehydrated sludge, a dryer in which a part of the dehydrated sludge from the dehydrated sludge storage means is introduced, a drying machine for drying the dehydrated sludge, a belt conveyor for conveying the sludge, and the belt In the sludge treatment system provided with a combustion furnace in which the sludge transported by the conveyor is charged and the sludge is burnt,
The belt conveyor includes, in order from the upstream side in the sludge conveyance direction, a dehydrated sludge supply unit to which dehydrated sludge that is not introduced into the dryer is supplied among the dehydrated sludge from the dehydrated sludge storage means, and the dried sludge from the dryer. And a dehydrated sludge layer and a dried sludge layer stacked thereon. The dehydrated sludge layer is provided on the belt conveyor.

さらに、前記ベルトコンベアは、前記脱水汚泥供給部と前記乾燥汚泥供給部の間に脱硫材を供給する脱硫材供給部が設けられ、前記脱水汚泥層と前記乾燥汚泥層の間に脱硫材層を挟持させたことを特徴とする。
さらにまた、前記ベルトコンベアは、前記乾燥汚泥供給部より汚泥搬送方向下流側に脱硫材を供給する脱硫材供給部が設けられ、前記脱水汚泥層と前記乾燥汚泥層の上方に脱硫材層を形成させたことを特徴とする。
Further, the belt conveyor is provided with a desulfurization material supply unit for supplying a desulfurization material between the dewatered sludge supply unit and the dry sludge supply unit, and a desulfurization material layer is provided between the dewatered sludge layer and the dry sludge layer. It is characterized by being clamped.
Furthermore, the belt conveyor is provided with a desulfurization material supply unit that supplies desulfurization material downstream from the dry sludge supply unit in the sludge conveyance direction, and forms a desulfurization material layer above the dewatered sludge layer and the dry sludge layer. It was made to be characterized.

以上記載のごとく本発明によれば、簡単な装置構成で且つ低コストで以って、脱水汚泥と乾燥汚泥を偏りなく燃焼炉に投入することができ、燃焼炉にて安定した燃焼が可能となる。即ち、脱水汚泥と乾燥汚泥を異なる位置で同一ベルトコンベア上に落下させ、脱水汚泥層と乾燥汚泥層が積層した状態として汚泥を燃焼炉に供給するようにしたため、どちらか一方の汚泥が集中して炉内に投入されることがなく、燃焼炉にて安定した燃焼が可能となる。   As described above, according to the present invention, the dehydrated sludge and the dried sludge can be input to the combustion furnace without bias with a simple apparatus configuration and at a low cost, and stable combustion is possible in the combustion furnace. Become. That is, dewatered sludge and dried sludge are dropped on the same belt conveyor at different positions, and the sludge is supplied to the combustion furnace in a state where the dehydrated sludge layer and the dried sludge layer are laminated, so either one of the sludge concentrates. Therefore, stable combustion is possible in the combustion furnace.

また、脱水汚泥の供給位置と乾燥汚泥の供給位置の間で脱硫材を供給することにより、脱水汚泥層と脱硫材層と乾燥汚泥層が層状になって燃焼炉に投入されるため、汚泥と脱硫材が混ざったまま炉内に投入されて脱硫材が炉下部まで到達し、炉内滞留時間が長くなり脱硫効率が向上する。さらに、脱硫材層は、脱水汚泥層と乾燥汚泥層に挟まれて燃焼炉の汚泥投入部に投入されるため、脱硫材が飛散することが少なくなる。
さらに、乾燥汚泥の供給位置より汚泥搬送方向下流側にて脱硫材を供給することにより、脱水汚泥層と脱硫材層と乾燥汚泥層が層状になって燃焼炉に投入されるため、汚泥と脱硫材が混ざったまま炉内に投入されて脱硫材が炉下部まで到達し、炉内滞留時間が長くなり脱硫効率が向上する。
In addition, by supplying the desulfurized material between the dehydrated sludge supply position and the dry sludge supply position, the dehydrated sludge layer, the desulfurized material layer, and the dry sludge layer are layered and fed into the combustion furnace. The desulfurized material is introduced into the furnace while being mixed, and the desulfurized material reaches the lower part of the furnace, so that the residence time in the furnace becomes longer and the desulfurization efficiency is improved. Furthermore, since the desulfurization material layer is sandwiched between the dewatered sludge layer and the dried sludge layer, the desulfurization material is less scattered.
Furthermore, by supplying desulfurization material downstream of the sludge supply direction from the dry sludge supply position, the dewatered sludge layer, desulfurization material layer, and dry sludge layer are layered and fed into the combustion furnace. The material is mixed into the furnace and the desulfurized material reaches the lower part of the furnace, so that the residence time in the furnace becomes longer and the desulfurization efficiency is improved.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施形態の処理対象となる汚泥は、下水汚泥、し尿処理汚泥、廃水処理汚泥等の汚泥である。以下に示す実施形態では、一例として循環流動層炉を備えた構成につき説明するがこれに限定されるものではなく、他にも気泡流動層炉、ストーカ式焼却炉、ロータリーキルン式焼却炉等のように、汚泥を燃焼処理することができる各種燃焼炉を用いることが可能である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
The sludge to be treated in the present embodiment is sludge such as sewage sludge, human waste treatment sludge, wastewater treatment sludge and the like. In the embodiment described below, a configuration including a circulating fluidized bed furnace will be described as an example, but the present invention is not limited to this. Other examples include a bubble fluidized bed furnace, a stoker type incinerator, and a rotary kiln type incinerator. Moreover, it is possible to use various combustion furnaces capable of burning sludge.

図1に本発明の第1実施形態に係る汚泥処理システムの概略構成図を示す。同図に示すように汚泥処理システムは、汚泥を脱水処理した脱水汚泥が貯留され、該脱水汚泥を適宜供給する脱水汚泥貯留手段1と、該貯留手段1からの脱水汚泥2の一部が導入され、該脱水汚泥2を乾燥処理する乾燥機3と、前記貯留手段1からの脱水汚泥のうち乾燥機3に導入されない脱水汚泥2及び該乾燥機3からの乾燥汚泥4を搬送するベルトコンベア10と、該ベルトコンベア10にて搬送された汚泥が投入され、この汚泥を燃焼処理する循環流動層炉20とを備える。   FIG. 1 shows a schematic configuration diagram of a sludge treatment system according to the first embodiment of the present invention. As shown in the figure, in the sludge treatment system, dewatered sludge obtained by dewatering sludge is stored, and dehydrated sludge storage means 1 for supplying the dehydrated sludge as appropriate, and part of the dewatered sludge 2 from the storage means 1 is introduced. A dryer 3 for drying the dewatered sludge 2, a belt conveyor 10 for conveying the dewatered sludge 2 that is not introduced into the dryer 3 among the dewatered sludge from the storage means 1 and the dried sludge 4 from the dryer 3. And a circulating fluidized bed furnace 20 in which the sludge transported by the belt conveyor 10 is charged and the sludge is combusted.

前記乾燥機3は、脱水汚泥2を所定含水率まで乾燥処理する装置であり、循環流動層炉20から排出される燃焼排ガスの熱を用いて汚泥を乾燥処理する。勿論、熱量の不足分は外部熱源を用いてもよいし、全熱量を外部熱源によりまかなってもよい。該乾燥機3は、投入された汚泥を撹拌しながら加熱して乾燥させる。加熱方式は間接加熱、直接加熱の何れでもよい。例えば、脱水汚泥2の含水率が80〜90%程度の時、乾燥機3で乾燥処理することにより含水率75%以下の乾燥汚泥4とする。   The dryer 3 is a device for drying the dehydrated sludge 2 to a predetermined moisture content, and drying the sludge using the heat of the combustion exhaust gas discharged from the circulating fluidized bed furnace 20. Of course, an external heat source may be used for the shortage of heat, or the total heat may be covered by an external heat source. The dryer 3 is heated and dried while stirring the sludge that has been charged. The heating method may be either indirect heating or direct heating. For example, when the moisture content of the dewatered sludge 2 is about 80 to 90%, the dried sludge 4 having a moisture content of 75% or less is obtained by drying with the dryer 3.

前記循環流動層炉20は、炉底に充填されたけい砂等の流動媒体が流動化して形成される流動層21aとその上方に位置するフリーボード21bを有するライザ21と、該ライザ21の上部に接続され、フリーボード21bから吹き上げられた流動媒体を捕集するとともに、流動媒体を分離した燃焼排ガスを排ガスダクトへ排出するサイクロン27と、ダウンカマを介してサイクロン27に接続され、炉内未燃ガスのサイクロン27への吹き抜けを防止するシールポット28と、シールポット28に貯留された流動媒体をライザ21に返送する流動媒体戻し管29と、を備える。   The circulating fluidized bed furnace 20 includes a riser 21 having a fluidized bed 21a formed by fluidizing a fluid medium such as silica sand filled in the furnace bottom, a free board 21b positioned above the fluidized bed 21a, and an upper portion of the riser 21. Is connected to the cyclone 27 that collects the fluid medium blown up from the free board 21b and discharges the combustion exhaust gas separated from the fluid medium to the exhaust gas duct, and is connected to the cyclone 27 via a downcomer to unburn the furnace. A seal pot 28 that prevents the gas from blowing through the cyclone 27 and a fluid medium return pipe 29 that returns the fluid medium stored in the seal pot 28 to the riser 21 are provided.

ライザ21の炉壁には汚泥投入部22が設けられている。該汚泥投入部22は、投入ホッパより受け入れた汚泥を、供給フィーダにより定量ずつ炉内に投入する構成を備える。
ライザ21の底部には一次空気導入口23が設けられている。一次ブロワ24によって該一次空気導入口23から一次空気が導入され、流動媒体を流動化して流動層21aを形成している。該流動層21a上方のライザ炉壁には、二次空気導入口25が設けられている。二次ブロワ26によって該二次空気導入口25から導入される二次空気によりフリーボード21bの空塔速度が維持されるとともに、燃焼排ガス中の未燃分が燃焼される。
The furnace wall of the riser 21 is provided with a sludge input part 22. The sludge charging unit 22 has a configuration in which the sludge received from the charging hopper is quantitatively charged into the furnace by a supply feeder.
A primary air inlet 23 is provided at the bottom of the riser 21. Primary air is introduced from the primary air inlet 23 by the primary blower 24, and the fluidized medium is fluidized to form a fluidized bed 21a. A secondary air inlet 25 is provided in the riser furnace wall above the fluidized bed 21a. The secondary air introduced from the secondary air inlet 25 by the secondary blower 26 maintains the superficial velocity of the free board 21b and burns the unburned components in the combustion exhaust gas.

前記ベルトコンベア10は、無端状コンベアベルトが張設され、ベルト載置面に落下する汚泥を受け止めて下流側に搬送する周知の装置である。該ベルトコンベア10は、図1に示すように循環流動層炉20側に向けて高くなるように傾斜させて配置してもよいし、水平に配置してもよい。また好適には、汚泥から発生する臭気ガスが外部に漏出しないように、該ベルトコンベア10を略密閉状にし、負圧に維持するとよい。   The belt conveyor 10 is a well-known device in which an endless conveyor belt is stretched, receives sludge falling on the belt placement surface, and conveys it downstream. As shown in FIG. 1, the belt conveyor 10 may be disposed so as to be inclined toward the circulating fluidized bed furnace 20 or may be disposed horizontally. Preferably, the belt conveyor 10 is substantially sealed and maintained at a negative pressure so that odor gas generated from sludge does not leak to the outside.

該ベルトコンベア10は、汚泥搬送方向上流側から順に、脱水汚泥貯留手段1からの脱水汚泥2が供給される脱水汚泥供給部と、乾燥機3からの乾燥汚泥4が供給される乾燥汚泥供給部とを有する。最初に脱水汚泥2がベルトコンベア10上に供給され、脱水汚泥2の上から乾燥汚泥4が供給される。これにより、図2に示すようにベルトコンベア10上には、脱水汚泥層2とその上方に乾燥汚泥層4とが積層された状態となる。尚、図2は図1のA部を示す側断面図である。2層に積層された汚泥は同時に循環流動層炉20の汚泥投入部22に投入され、ライザ21内に供給される。   The belt conveyor 10 includes a dewatered sludge supply unit to which the dehydrated sludge 2 from the dewatered sludge storage means 1 is supplied and a dry sludge supply unit to which the dry sludge 4 from the dryer 3 is supplied in order from the upstream side in the sludge conveyance direction. And have. First, the dewatered sludge 2 is supplied onto the belt conveyor 10, and the dried sludge 4 is supplied from above the dehydrated sludge 2. As a result, the dewatered sludge layer 2 and the dried sludge layer 4 are laminated on the belt conveyor 10 as shown in FIG. 2 is a side sectional view showing a part A of FIG. The sludge laminated in two layers is simultaneously supplied to the sludge input portion 22 of the circulating fluidized bed furnace 20 and supplied into the riser 21.

本実施形態によれば、脱水汚泥2と乾燥汚泥4を異なる位置で同一ベルトコンベア10上に落下させ、脱水汚泥層2と乾燥汚泥層4が積層した状態として循環流動層炉20に供給するようにしたため、汚泥投入部22からライザ21内に汚泥が切り出される際、どちらか一方の汚泥が集中して炉内に投入されることがなく、燃循環流動層炉20にて安定した燃焼が可能となる。
また、先に含水率の高い脱水汚泥2をベルトコンベア10上に載置しているため、後から供給する乾燥汚泥4が脱水汚泥2の水分により吸着して保持され、コンベア10の振動によっても乾燥汚泥4が偏ったりすることなく円滑に搬送することが可能である。
さらに、本実施形態では、新たに汚泥混合機等の装置を設置することなく既存の設備を改良するのみで実施できるためコスト低減が可能で、またベルトコンベア10で汚泥を搬送する構成としているため大量の汚泥が搬送でき処理能力を高く維持できる。
According to the present embodiment, the dewatered sludge 2 and the dried sludge 4 are dropped on the same belt conveyor 10 at different positions, and the dehydrated sludge layer 2 and the dried sludge layer 4 are supplied to the circulating fluidized bed furnace 20 as being laminated. Therefore, when sludge is cut into the riser 21 from the sludge inlet 22, either one of the sludge is not concentrated and charged into the furnace, and stable combustion is possible in the fuel circulation fluidized bed furnace 20. It becomes.
In addition, since the dewatered sludge 2 having a high water content is placed on the belt conveyor 10 first, the dried sludge 4 supplied later is adsorbed and held by the moisture of the dewatered sludge 2, and the vibration of the conveyor 10 is also retained. The dried sludge 4 can be smoothly conveyed without being biased.
Furthermore, in this embodiment, since it can be implemented only by improving existing facilities without newly installing a device such as a sludge mixer, the cost can be reduced, and the belt conveyor 10 is configured to convey the sludge. A large amount of sludge can be conveyed and the processing capacity can be maintained high.

図3に本発明の第2実施形態に係る汚泥処理システムの概略構成図を示す。尚、以下の第2及び第3実施形態において、上記した第1実施形態と同様の構成についてはその詳細な説明を省略する。
図3に示すように第2実施形態では、ベルトコンベア10に、脱水汚泥貯留手段1からの脱水汚泥2が供給される脱水汚泥供給部と、乾燥機3からの乾燥汚泥4が供給される乾燥汚泥供給部との間に、脱硫材6を供給する脱硫材供給部を設けた構成としている。該脱硫材供給部では、脱硫材ホッパ5から供給される脱硫材6が落下するようになっている。該脱硫材6は粒状又は粉体状であることが好ましく、具体的には、石灰石(CaCO)や消石灰(Ca(OH))、ドロマイト(CaCO・MgCO)等が用いられる。
これにより図4に示すごとく、ベルトコンベア10上は、脱水汚泥層2と乾燥汚泥層4の間に脱硫材層6が挟持された積層状態となる。尚、図4は図3のB部を示す側断面図である。
FIG. 3 shows a schematic configuration diagram of a sludge treatment system according to the second embodiment of the present invention. In the following second and third embodiments, detailed description of the same configurations as those of the first embodiment described above will be omitted.
As shown in FIG. 3, in the second embodiment, the belt conveyor 10 is supplied with the dehydrated sludge supply unit to which the dehydrated sludge 2 from the dehydrated sludge storage means 1 and the dried sludge 4 from the dryer 3 is supplied. A desulfurization material supply unit for supplying the desulfurization material 6 is provided between the sludge supply unit and the sludge supply unit. In the desulfurization material supply unit, the desulfurization material 6 supplied from the desulfurization material hopper 5 falls. The desulfurization material 6 is preferably granular or powdery, and specifically, limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), dolomite (CaCO 3 .MgCO 3 ), or the like is used.
As a result, as shown in FIG. 4, the belt conveyor 10 is in a laminated state in which the desulfurized material layer 6 is sandwiched between the dehydrated sludge layer 2 and the dried sludge layer 4. 4 is a side sectional view showing a portion B of FIG.

本実施形態によれば、脱水汚泥層2と脱硫材層6と乾燥汚泥層4が層状になって循環流動層炉20の汚泥投入部22に投入されるため、何れか1つが集中して炉内に投入されることがなく、燃焼の安定化が可能である。また、汚泥と脱硫材6が混ざったまま炉内に投入されるため、脱硫材6は炉下部まで到達する。そのため、炉内滞留時間が長くなり脱硫効率が向上する。
また、脱硫材層6は、脱水汚泥層2と乾燥汚泥層4に挟まれて汚泥投入部22に投入されるため、脱硫材6が飛散することが少なくなる。さらに、飛散した脱硫材6が汚泥投入部22の内面に付着し、汚泥の流動性を阻害することで生じるアーチングを回避することができる。
さらにまた、ベルトコンベア10上には脱水汚泥2が無い部分も存在し、この部分では脱硫材6がコンベア10上に直接載るため、次回コンベア10上に脱水汚泥2を供給する時は、コンベア10との間に脱硫材6が介在することとなり、汚泥を汚泥投入部22に投入する際にコンベア10から剥がれ易くなる。
According to the present embodiment, since the dewatered sludge layer 2, the desulfurization material layer 6, and the dried sludge layer 4 are layered and fed into the sludge charging section 22 of the circulating fluidized bed furnace 20, any one of them is concentrated. It is not thrown into the inside, and combustion can be stabilized. Further, since the sludge and the desulfurization material 6 are mixed and put into the furnace, the desulfurization material 6 reaches the lower part of the furnace. For this reason, the residence time in the furnace becomes longer and the desulfurization efficiency is improved.
Further, since the desulfurization material layer 6 is sandwiched between the dehydrated sludge layer 2 and the dried sludge layer 4 and is input to the sludge input part 22, the desulfurization material 6 is less likely to be scattered. Further, arching caused by the scattered desulfurized material 6 adhering to the inner surface of the sludge charging portion 22 and inhibiting the fluidity of the sludge can be avoided.
Furthermore, there is a portion where the dewatered sludge 2 is not present on the belt conveyor 10, and the desulfurized material 6 is directly placed on the conveyor 10 in this portion. Therefore, when the dewatered sludge 2 is supplied onto the conveyor 10 next time, the conveyor 10 The desulfurization material 6 is interposed between the two and the sludge is easily peeled off from the conveyor 10 when the sludge is charged into the sludge charging portion 22.

図5に本発明の第3実施形態に係る汚泥処理システムの概略構成図を示す。図5に示すように第3実施形態では、ベルトコンベア10に、脱水汚泥貯留手段1からの脱水汚泥2が供給される脱水汚泥供給部と、乾燥機3からの乾燥汚泥4が供給される乾燥汚泥供給部とが設けられるとともに、乾燥汚泥供給部より下流側に、脱硫材6を供給する脱硫材供給部を設けた構成としている。該脱硫材供給部には、脱硫材ホッパ5から供給される脱硫材6が落下するようになっている。脱硫材6は、比較的粒径が大きく飛散しにくいものが適している。
これにより図6に示すごとく、ベルトコンベア10上には、脱水汚泥層2と乾燥汚泥層4が積層した上に、さらに脱硫材層6が形成された状態となる。尚、図6は図5のC部を示す側断面図である。
FIG. 5 shows a schematic configuration diagram of a sludge treatment system according to the third embodiment of the present invention. As shown in FIG. 5, in the third embodiment, the dewatered sludge supply unit to which the dewatered sludge 2 from the dewatered sludge storage unit 1 is supplied and the dry sludge 4 from the dryer 3 are supplied to the belt conveyor 10. A sludge supply unit is provided, and a desulfurization material supply unit that supplies the desulfurization material 6 is provided downstream of the dry sludge supply unit. The desulfurization material 6 supplied from the desulfurization material hopper 5 falls to the desulfurization material supply unit. As the desulfurization material 6, a material having a relatively large particle size and hardly scattered is suitable.
As a result, as shown in FIG. 6, the dewatered sludge layer 2 and the dried sludge layer 4 are laminated on the belt conveyor 10, and the desulfurized material layer 6 is further formed. FIG. 6 is a side sectional view showing a portion C in FIG.

本実施形態によれば、脱水汚泥層2と乾燥汚泥層4と脱硫材層6とが層状になって循環流動層炉20の汚泥投入部22に投入されるため、何れか1つが集中して炉内に投入されることがなく、燃焼の安定化が可能である。また、汚泥と脱硫材6が混ざったまま炉内に投入されるため、脱硫材6は炉下部まで到達する。そのため、炉内滞留時間が長くなり脱硫効率が向上する。
さらにまた、ベルトコンベア10上には脱水汚泥2、乾燥汚泥4が無い部分も存在し、この部分では脱硫材6がコンベア上に直接載るため、次回コンベア10上に脱水汚泥2を供給する時は、コンベア10との間に脱硫材6が介在することとなり、汚泥を汚泥投入部に投入する際にコンベア10から剥がれ易くなる。
According to the present embodiment, the dewatered sludge layer 2, the dried sludge layer 4 and the desulfurization material layer 6 are layered and fed into the sludge throwing portion 22 of the circulating fluidized bed furnace 20, so any one of them is concentrated. Combustion can be stabilized without being charged into the furnace. Further, since the sludge and the desulfurization material 6 are mixed and put into the furnace, the desulfurization material 6 reaches the lower part of the furnace. For this reason, the residence time in the furnace becomes longer and the desulfurization efficiency is improved.
Furthermore, there is a portion where the dewatered sludge 2 and the dried sludge 4 are not present on the belt conveyor 10, and the desulfurized material 6 is directly placed on the conveyor in this portion, so the next time the dehydrated sludge 2 is supplied onto the conveyor 10. The desulfurization material 6 is interposed between the conveyor 10 and the sludge is easily peeled off from the conveyor 10 when the sludge is charged into the sludge charging section.

本発明は、簡単な装置構成で且つ低コストで以って、脱水汚泥と乾燥汚泥を偏りなく燃焼炉に投入することができ、燃焼炉にて安定した燃焼が可能となるため、循環流動層炉、気泡流動層炉、ストーカ式焼却炉、ロータリーキルン式焼却炉等の燃焼炉を備えた汚泥処理システムに幅広く適用可能である。   In the present invention, since the dehydrated sludge and the dried sludge can be introduced to the combustion furnace without bias with a simple apparatus configuration and at a low cost, stable combustion is possible in the combustion furnace. It can be widely applied to sludge treatment systems equipped with combustion furnaces such as furnaces, bubble fluidized bed furnaces, stoker-type incinerators, and rotary kiln-type incinerators.

本発明の第1実施形態に係る汚泥処理システムの概略構成図である。1 is a schematic configuration diagram of a sludge treatment system according to a first embodiment of the present invention. 図1のA部を示す側断面図である。It is a sectional side view which shows the A section of FIG. 本発明の第2実施形態に係る汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system which concerns on 2nd Embodiment of this invention. 図3のB部を示す側断面図である。It is a sectional side view which shows the B section of FIG. 本発明の第3実施形態に係る汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system which concerns on 3rd Embodiment of this invention. 図5のC部を示す側断面図である。It is a sectional side view which shows the C section of FIG. 従来の汚泥処理システムの概略構成図である。It is a schematic block diagram of the conventional sludge processing system.

符号の説明Explanation of symbols

1 脱水汚泥貯留手段
2 脱水汚泥
3 乾燥機
4 乾燥汚泥
5 脱硫材ホッパ
6 脱硫材
10 ベルトコンベア
20 循環流動層炉
21 ライザ
22 汚泥投入ホッパ
23 一次空気導入口
25 二次空気導入口
27 サイクロン
28 シールポット
DESCRIPTION OF SYMBOLS 1 Dewatered sludge storage means 2 Dehydrated sludge 3 Dryer 4 Dry sludge 5 Desulfurization material hopper 6 Desulfurization material 10 Belt conveyor 20 Circulating fluidized bed furnace 21 Riser 22 Sludge input hopper 23 Primary air introduction port 25 Secondary air introduction port 27 Cyclone 28 Seal pot

Claims (6)

汚泥を脱水して得られた脱水汚泥と、該脱水汚泥を乾燥処理して得られた乾燥汚泥とを燃焼炉に搬送し、前記脱水汚泥と前記乾燥汚泥をともに前記燃焼炉内に供給する汚泥供給方法において、
前記脱水汚泥をベルトコンベア上に供給するとともに、該脱水汚泥の供給位置より汚泥搬送方向下流側で、前記ベルトコンベア上の脱水汚泥層上方から前記乾燥汚泥を供給し、脱水汚泥層と乾燥汚泥層が積層された状態にてこれらの汚泥を前記燃焼炉に搬送して炉内に供給することを特徴とする汚泥供給方法。
Sludge obtained by dewatering sludge and dried sludge obtained by drying the dehydrated sludge are transferred to a combustion furnace, and both the dehydrated sludge and the dried sludge are supplied into the combustion furnace. In the supply method,
The dehydrated sludge is supplied onto a belt conveyor, and the dried sludge is supplied from above the dehydrated sludge layer on the belt conveyor on the downstream side in the sludge transport direction from the dehydrated sludge supply position. The sludge supply method characterized by conveying these sludge to the said combustion furnace in the state laminated | stacked, and supplying in a furnace.
前記脱水汚泥の供給位置と前記乾燥汚泥の供給位置の間で、前記ベルトコンベア上の脱水汚泥層上方から脱硫材を供給し、前記脱水汚泥層と前記乾燥汚泥層の間に脱硫材層を挟持させたことを特徴とする請求項1記載の汚泥供給方法。   A desulfurization material is supplied from above the dewatered sludge layer on the belt conveyor between the dehydrated sludge supply position and the dry sludge supply position, and the desulfurized material layer is sandwiched between the dehydrated sludge layer and the dry sludge layer. The sludge supply method according to claim 1, wherein the sludge is supplied. 前記乾燥汚泥の供給位置より汚泥搬送方向下流側で、前記ベルトコンベア上の乾燥汚泥層上方から脱硫材を供給し、前記脱水汚泥層と前記乾燥汚泥層の上方に脱硫材層を形成させたことを特徴とする請求項1記載の汚泥供給方法。   The desulfurization material layer is formed above the dehydrated sludge layer and the dry sludge layer by supplying the desulfurization material from above the dry sludge layer on the belt conveyor on the downstream side in the sludge conveyance direction from the supply position of the dry sludge. The sludge supply method according to claim 1. 脱水汚泥を貯留する脱水汚泥貯留手段と、該脱水汚泥貯留手段からの脱水汚泥の一部が導入され、該脱水汚泥を乾燥処理する乾燥機と、汚泥を搬送するベルトコンベアと、該ベルトコンベアで搬送された汚泥が投入され、該汚泥を燃焼処理する燃焼炉とを備えた汚泥処理システムにおいて、
前記ベルトコンベアは、汚泥搬送方向上流側から順に、前記脱水汚泥貯留手段からの脱水汚泥のうち前記乾燥機に導入されない脱水汚泥が供給される脱水汚泥供給部と、前記乾燥機からの乾燥汚泥が供給される乾燥汚泥供給部とを有し、該ベルトコンベア上に、脱水汚泥層とその上方に乾燥汚泥層とが積層されるようにしたことを特徴とする汚泥処理システム。
In the dewatered sludge storage means for storing the dehydrated sludge, a part of the dehydrated sludge from the dehydrated sludge storage means is introduced, a dryer for drying the dehydrated sludge, a belt conveyor for conveying the sludge, and the belt conveyor In the sludge treatment system provided with a combustion furnace in which the transported sludge is input and the sludge is burnt,
The belt conveyor includes, in order from the upstream side in the sludge conveyance direction, a dehydrated sludge supply unit to which dehydrated sludge that is not introduced into the dryer is supplied among the dehydrated sludge from the dehydrated sludge storage means, and the dried sludge from the dryer. A sludge treatment system comprising: a dried sludge supply unit to be supplied, wherein a dehydrated sludge layer and a dried sludge layer are stacked on the belt conveyor.
前記ベルトコンベアは、前記脱水汚泥供給部と前記乾燥汚泥供給部の間に脱硫材を供給する脱硫材供給部が設けられ、前記脱水汚泥層と前記乾燥汚泥層の間に脱硫材層を挟持させたことを特徴とする請求項4記載の汚泥処理システム。   The belt conveyor includes a desulfurization material supply unit that supplies a desulfurization material between the dewatered sludge supply unit and the dry sludge supply unit, and sandwiches the desulfurization material layer between the dewatered sludge layer and the dry sludge layer. The sludge treatment system according to claim 4, wherein 前記ベルトコンベアは、前記乾燥汚泥供給部より汚泥搬送方向下流側に脱硫材を供給する脱硫材供給部が設けられ、前記脱水汚泥層と前記乾燥汚泥層の上方に脱硫材層を形成させたことを特徴とする請求項4記載の汚泥処理システム。   The belt conveyor is provided with a desulfurization material supply unit for supplying a desulfurization material downstream from the dry sludge supply unit in the sludge conveyance direction, and a desulfurization material layer is formed above the dewatered sludge layer and the dry sludge layer. The sludge treatment system according to claim 4.
JP2008101506A 2008-04-09 2008-04-09 Sludge supply method and sludge treatment system Active JP4937179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101506A JP4937179B2 (en) 2008-04-09 2008-04-09 Sludge supply method and sludge treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101506A JP4937179B2 (en) 2008-04-09 2008-04-09 Sludge supply method and sludge treatment system

Publications (2)

Publication Number Publication Date
JP2009248039A JP2009248039A (en) 2009-10-29
JP4937179B2 true JP4937179B2 (en) 2012-05-23

Family

ID=41309219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101506A Active JP4937179B2 (en) 2008-04-09 2008-04-09 Sludge supply method and sludge treatment system

Country Status (1)

Country Link
JP (1) JP4937179B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675284B2 (en) * 2010-11-10 2015-02-25 三菱重工環境・化学エンジニアリング株式会社 Sludge fluidized bed incineration plant and sludge incineration method
CN103322772B (en) * 2013-06-18 2015-04-22 华南理工大学 Drying device of cyclonic spouted fluidized bed
CN103435249B (en) * 2013-09-07 2015-02-18 浙江大学 Sludge drying gas generator and control method for inhibiting emission of dioxin in flue gas
CN110002181A (en) * 2019-01-25 2019-07-12 中国联合工程有限公司 A kind of sewage sludge storage and structure for conveying
CN116495949B (en) * 2023-04-03 2024-01-16 日照城投环境科技集团有限公司 Automatic treatment device for municipal sludge

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989921A (en) * 1982-11-11 1984-05-24 Nippon Kokan Kk <Nkk> Sludge feeding method in sludge incinerator system with drying machine
JPS59167627A (en) * 1983-03-14 1984-09-21 Osaka Gas Co Ltd Automatic control procedure for industrial waste material melting furnace
JPS6146813A (en) * 1984-08-10 1986-03-07 Yoshinobu Matsumoto Temperature controlling method in fluidized bed incinerator facility
JPH06190399A (en) * 1992-12-28 1994-07-12 Chugai Ro Co Ltd Method and equipment for treating dehydrated sludge
JPH06218394A (en) * 1993-01-28 1994-08-09 Mitsubishi Heavy Ind Ltd Method of sintering soil conditioner using construction sludge as raw material
JPH06300238A (en) * 1993-04-16 1994-10-28 Fuji Electric Co Ltd Controller of mixed sludge incinerator
JPH10165992A (en) * 1996-12-16 1998-06-23 Hitachi Zosen Corp Method for resource recovery of sludge
JPH10180299A (en) * 1996-12-24 1998-07-07 Mitsubishi Materials Corp Method for improving handling of high water content sludge
JPH1163458A (en) * 1997-08-12 1999-03-05 Takuma Co Ltd Method for processing sludge by incineration
JP3774803B2 (en) * 1998-05-07 2006-05-17 日立造船株式会社 Sludge incineration method
JP2004093018A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Incineration system
JP2004337806A (en) * 2003-05-19 2004-12-02 Clay Baan Gijutsu Kenkyusho:Kk Calcination furnace for dehydrating, fumigating and carbonizing high water content sludge
JP2005180726A (en) * 2003-12-16 2005-07-07 Mitsubishi Heavy Ind Ltd Ash and slug property management device, and ash melting disposal facility and its method

Also Published As

Publication number Publication date
JP2009248039A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4937179B2 (en) Sludge supply method and sludge treatment system
US4429643A (en) Apparatus and method for treating sewage sludge
KR101911213B1 (en) Method of reducing sulfur dioxide content in flue gas emanating from a circulating fluidized bed boiler plant
JP5048573B2 (en) Sludge treatment method and treatment system
JP6565097B2 (en) Organic waste processing apparatus and processing method
JP2017006824A5 (en)
JP6678263B2 (en) Organic waste treatment apparatus and treatment method
JP5269631B2 (en) N2O emission suppression combustion apparatus and N2O emission suppression method
JP6840271B2 (en) Sludge treatment method and cement manufacturing system
CN107143864A (en) A kind of technique of full combustion slime circulating fluidized bed boiler burning sludge
JP2005098673A (en) Method of removing sulfur in fluid bed device and desulfurizing agent
JP3225372B2 (en) Sludge dehydration drying incineration system
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
JP2002243124A (en) Waste material incinerating method using circulated fluidized bed type furnace and device thereof
JP2003206164A (en) Method and apparatus for converting combustible material into fuel
TW202108257A (en) Sludge processing method and cement manufacturing system
JP5425958B2 (en) Sludge treatment method and treatment system
JP6554985B2 (en) Operating method and operating apparatus for pressurized circulating fluidized furnace
JP2010249386A (en) Waste supply device and waste disposal system
JPS5812927A (en) Method for incinerating sludge
JP3913236B2 (en) Circulating fluidized furnace and operation method thereof
JPS5981414A (en) Bed height controlling device of fluidized bed
JP2010008040A (en) Sulfur content eliminating method and desulfurizer for fluidized bed apparatus
JP2005221195A (en) Method for treating organic waste and device therefor
JP2005239521A (en) Method and apparatus for burning cellulose-based material

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150