JP4935273B2 - Method for producing polyimide-coated fiber - Google Patents

Method for producing polyimide-coated fiber Download PDF

Info

Publication number
JP4935273B2
JP4935273B2 JP2006260940A JP2006260940A JP4935273B2 JP 4935273 B2 JP4935273 B2 JP 4935273B2 JP 2006260940 A JP2006260940 A JP 2006260940A JP 2006260940 A JP2006260940 A JP 2006260940A JP 4935273 B2 JP4935273 B2 JP 4935273B2
Authority
JP
Japan
Prior art keywords
curing
polyimide
furnace
fiber
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006260940A
Other languages
Japanese (ja)
Other versions
JP2008081335A (en
Inventor
航 千葉
孝春 佐藤
司明 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006260940A priority Critical patent/JP4935273B2/en
Publication of JP2008081335A publication Critical patent/JP2008081335A/en
Application granted granted Critical
Publication of JP4935273B2 publication Critical patent/JP4935273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

本発明は、走行するファイバにポリイミド樹脂をコーティングするポリイミド被覆ファイバの製造方法に関する。   The present invention relates to a method for producing a polyimide-coated fiber in which a traveling fiber is coated with a polyimide resin.

ファイバにポリイミド樹脂をコーティングして高温での使用を可能とするポリイミド被覆ファイバが知られている。また、このファイバなどの線状体にポリイミド樹脂をコーティングする被覆方法として、例えば特許文献1に記載の方法も知られている。   There is known a polyimide-coated fiber that can be used at a high temperature by coating a fiber with a polyimide resin. As a coating method for coating a linear body such as a fiber with a polyimide resin, for example, a method described in Patent Document 1 is also known.

このポリイミド樹脂の被覆方法では、図5に示すように、ポリイミド樹脂を供給する供給装置101と、この供給装置101から送り出されるポリイミド樹脂を線状体100に被覆するコーティング装置102と、被覆したポリイミド樹脂を硬化させる硬化炉103と、硬化炉103内へ不活性ガスを送り込むガス供給装置104と、図示外の巻取り機などを備えた装置を用い、硬化炉103の温度を500℃以上とし、硬化炉103内を不活性ガスの雰囲気として、線状体100にポリイミド樹脂を被覆している。
特開昭63−1489号公報(図5)
In this polyimide resin coating method, as shown in FIG. 5, a supply device 101 for supplying a polyimide resin, a coating device 102 for coating the linear body 100 with a polyimide resin delivered from the supply device 101, and a coated polyimide Using a curing furnace 103 for curing the resin, a gas supply device 104 for sending an inert gas into the curing furnace 103, and a device including a winder (not shown), the temperature of the curing furnace 103 is set to 500 ° C. or more, The linear body 100 is covered with a polyimide resin by setting the inside of the curing furnace 103 as an inert gas atmosphere.
Japanese Unexamined Patent Publication No. 63-1489 (FIG. 5)

ところで、このポリイミド被覆ファイバでは、耐熱性に優れたポリイミド樹脂から脱溶剤及びポリイミド化の硬化反応により、ポリイミド樹脂がファイバに被覆される。ところが、この被覆の際には、ポリイミド樹脂に溶剤が多く含まれていることから、加熱して溶剤を除去して硬化させるために、十分な加熱が必要である。つまり、得られるポリイミド被覆の品質は、硬化度及び残留溶剤の量的な影響を受ける。このため、良好な被覆状態とするには、最適な温度条件で硬化させることが必要となる。   By the way, in this polyimide-coated fiber, the polyimide resin is coated on the fiber by a solvent-removing and polyimide-forming curing reaction from a polyimide resin having excellent heat resistance. However, since the polyimide resin contains a large amount of solvent at the time of this coating, sufficient heating is required to heat and remove the solvent and cure. That is, the quality of the resulting polyimide coating is affected by the degree of cure and the amount of residual solvent. For this reason, in order to obtain a good covering state, it is necessary to cure under optimum temperature conditions.

ところが、従来の装置では、効率的な溶剤の揮発、硬化を促す構成になっていない。このため、ポリイミド樹脂を、外部応力による特性への影響を受け易いファイバに被覆した場合、硬化不良により被覆表面状態が粘性を持ち、ファイバ伝送特性が不良となる虞がある。これは、単独の硬化炉(限られた硬化領域)では、ボリイミド硬化時に高い温度で硬化させることができない、即ち残留溶剤が残らないような硬化(温度付加)ができないので、溶剤の揮発・硬化が不十分なまま、ポリイミド被覆が形成されることになる。また、残留溶剤により泡が発生することがあり、外観不良やファイバ特性の劣化をもたらす可能性がある。   However, the conventional apparatus is not configured to promote efficient volatilization and curing of the solvent. For this reason, when a polyimide resin is coated on a fiber that is easily affected by characteristics due to external stress, the coated surface state may become viscous due to poor curing, and the fiber transmission characteristics may be poor. This is because a single curing furnace (limited curing region) cannot be cured at a high temperature at the time of polyimide curing, that is, it cannot be cured (temperature addition) so that residual solvent does not remain. The polyimide coating will be formed with insufficient. In addition, bubbles may be generated by the residual solvent, which may cause poor appearance and deterioration of fiber characteristics.

本発明の目的は、ファイバ伝送特性に悪影響をもたらすことがなく、しかも製造速度を遅延させることなく良好な被覆状態を実現することができるとともに、外観不良をもたらすことのないポリイミド被覆ファイバの製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a polyimide-coated fiber that does not adversely affect fiber transmission characteristics, can realize a good coating state without delaying the production speed, and does not cause poor appearance. Is to provide.

本発明のポリイミド被覆ファイバの製造方法は、線引きされたガラスファイバにポリイミド樹脂を被覆して硬化するポリイミド硬化工程において、前記ポリイミド樹脂の硬化を抑えた状態で前記ポリイミド樹脂に含まれる溶剤の殆どを揮発させる揮発プロセスと、残った溶剤を揮発させるとともに前記ポリイミド樹脂の硬化を促進させる仮硬化プロセスと、仮硬化後、残った溶剤が殆ど残らない状態になるように揮発させるとともに前記ポリイミド樹脂の硬化を完全になるよう促進させる本硬化プロセスとを有し、前記各プロセスでの処理は、異なる硬化炉を用いて行うとともに、前記各硬化炉での加熱温度は、前記プロセスの順で高くなるように、温度勾配をもたせることを特徴としている。 The polyimide-coated fiber manufacturing method of the present invention is a polyimide curing step in which a drawn glass fiber is coated with a polyimide resin and cured, and most of the solvent contained in the polyimide resin is suppressed in a state where curing of the polyimide resin is suppressed. A volatilization process for volatilizing, a temporary curing process for volatilizing the remaining solvent and accelerating the curing of the polyimide resin, and after the temporary curing, volatilizing so that almost no remaining solvent remains, and curing the polyimide resin And a main curing process that accelerates the process to complete, and the treatment in each of the processes is performed using different curing furnaces, and the heating temperature in each of the curing furnaces is increased in the order of the processes. It is characterized by having a temperature gradient .

また、本発明のポリイミド被覆ファイバの製造方法は、前記各硬化炉の炉内での加熱温度を、入線側が低く出線側が高くなるように、温度勾配を持たせることが好ましい。   In the method for producing a polyimide-coated fiber of the present invention, it is preferable that the heating temperature in each of the curing furnaces is given a temperature gradient so that the incoming line side is low and the outgoing line side is high.

また、本発明のポリイミド被覆ファイバの製造方法において、前記本硬化プロセスで用いる硬化炉は、該炉内を不活性ガス雰囲気とするとともに、前記炉内の酸素濃度を100ppm以下とすることが好ましい。   In the method for producing a polyimide-coated fiber of the present invention, it is preferable that the curing furnace used in the main curing process has an inert gas atmosphere in the furnace and an oxygen concentration in the furnace of 100 ppm or less.

また、本発明のポリイミド被覆ファイバの製造方法において、前記ポリイミド硬化工程は、前記一連のプロセスを少なくとも2回以上繰り返して行うことが好ましい。   In the method for producing a polyimide-coated fiber of the present invention, the polyimide curing step is preferably performed by repeating the series of processes at least twice.

本発明によれば、溶剤を十分に蒸発させることができるので、ファイバ伝送特性に悪影響をもたらすことがなく、外観不良を招くことがないポリイミド被覆ファイバの製造方法を提供できる。   According to the present invention, since the solvent can be sufficiently evaporated, it is possible to provide a method for producing a polyimide-coated fiber that does not adversely affect fiber transmission characteristics and does not cause poor appearance.

以下、本発明の好適な実施形態について、添付図面を参照しながら詳細に説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係るポリイミド被覆ファイバの製造方法を実施する被覆装置を示すものであり、このポリイミド被覆ファイバの被覆装置10は、コーティング装置11と、第1の硬化炉12と、第2の硬化炉13と、第3の硬化炉14と、これらの硬化炉12、13、14の間でファイバをガイドするガイドローラ15とを備える。コーティング装置11は、線引き後の走行中のガラスファイバ1に対して、ポリイミド樹脂を被覆する。第1〜第3の硬化炉12〜14は、ポリイミド樹脂を加熱するものであり、電気炉で構成される。なお、揮発プロセスとなる第1の硬化炉としては、揮発成分を回収できる吸排気を有した熱風炉が好ましい。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.
(First embodiment)
FIG. 1 shows a coating apparatus for carrying out a method for producing a polyimide-coated fiber according to a first embodiment of the present invention. This polyimide-coated fiber coating apparatus 10 includes a coating apparatus 11 and a first curing. A furnace 12, a second curing furnace 13, a third curing furnace 14, and a guide roller 15 for guiding the fiber between these curing furnaces 12, 13, 14 are provided. The coating apparatus 11 coats the polyimide resin on the running glass fiber 1 after drawing. The 1st-3rd hardening furnaces 12-14 heat a polyimide resin, and are comprised with an electric furnace. In addition, as a 1st hardening furnace used as a volatilization process, the hot stove which has the intake / exhaust which can collect | recover a volatile component is preferable.

このうち、第1の硬化炉12では、[表1]に記載のように、ポリイミド硬化工程のうち、最初のプロセスである揮発プロセスを行う。即ち、ポリイミド樹脂の硬化を抑えた状態でポリイミド樹脂に多く含まれる溶剤、例えばNメチル−2−ピロリドンなどの溶剤の殆どを揮発させる(これを「揮発プロセス」とよぶ)ため、所定の設定温度Tに加熱するものである。
次に行う硬化プロセスでは、溶剤がポリイミド樹脂に残留しないように段階的に効率的に硬化させるため、硬化プロセスを2つに分ける。このため、第2の硬化炉13では、前半の硬化プロセス(これを「仮硬化プロセス」とよぶ)を行う。このプロセスは、残った溶剤を揮発させるとともに、ポリイミド樹脂の硬化を促進させるためのプロセスである。このため、所定の設定温度Tに加熱する。一方、第3の硬化炉14では、硬化プロセスの後半を行う(これを「本硬化プロセス」とよぶ)。このプロセスは、残った溶剤が殆ど残らない状態になるように揮発させるとともにポリイミド樹脂の硬化を完全になるように促進させるためのプロセスである。このため、所定の設定温度Tに加熱する。なお、これらの硬化炉12〜14では、各設定温度T〜Tの値が順に高くなっている。つまり、各硬化炉は、徐々に高い温度に(T<T<T)設定してある。
Among these, in the 1st hardening furnace 12, as described in [Table 1], the volatilization process which is the first process is performed among polyimide hardening processes. That is, in order to volatilize most of the solvent such as N-methyl-2-pyrrolidone contained in the polyimide resin in a state in which the curing of the polyimide resin is suppressed (this is called a “volatilization process”), a predetermined set temperature is set. it is intended to heat to T 1.
In the next curing process, the curing process is divided into two in order to cure efficiently in stages so that the solvent does not remain in the polyimide resin. For this reason, in the second curing furnace 13, the first half curing process (this is referred to as “temporary curing process”) is performed. This process is a process for volatilizing the remaining solvent and promoting the curing of the polyimide resin. Therefore, heating to a predetermined set temperature T 2. On the other hand, in the third curing furnace 14, the latter half of the curing process is performed (this is referred to as “main curing process”). This process is a process for volatilizing the remaining solvent so that it hardly remains, and for promoting the complete curing of the polyimide resin. Therefore, heating to a predetermined set temperature T 3. In these curing oven 12 to 14, the value of the setting temperature T 1 through T 3 becomes successively higher. That is, each curing furnace is set to a gradually higher temperature (T 1 <T 2 <T 3 ).

また、これら第1〜第3の硬化炉12〜14では、それぞれの硬化炉ごとに、炉内部に温度勾配を持たせており、ポリイミド樹脂に多く含まれる溶剤を段階的な温度付加により効率よく硬化させることで、ポリイミド被覆したファイバ2を製造する。   Moreover, in these 1st-3rd hardening furnaces 12-14, the temperature gradient is given to the inside of each furnace for each hardening furnace, and the solvent contained much in a polyimide resin is efficiently by stepwise temperature addition. The polyimide-coated fiber 2 is manufactured by curing.

このため、第1の硬化炉12内では、50℃の温度勾配を与える。即ち、第1の硬化炉12では、入線側である硬化炉上部での温度をT−25℃、出線側である硬化炉下部での温度をT+25℃に設定する。 For this reason, a temperature gradient of 50 ° C. is given in the first curing furnace 12. That is, in the first curing oven 12, to set the temperature in the curing oven top is the incoming line side T 1 -25 ° C., the temperature in the curing oven bottom is outgoing line side T 1 + 25 ° C..

一方、第2の硬化炉13内でも、同様の温度勾配、つまり50℃の温度勾配を与える。即ち、入線側である上部での温度をT−25℃、出線側である下部での温度をT+25℃に設定する。 On the other hand, a similar temperature gradient, that is, a temperature gradient of 50 ° C. is also given in the second curing furnace 13. That is, the temperature at the upper part on the incoming line side is set to T 2 -25 ° C., and the temperature at the lower part on the outgoing line side is set to T 2 + 25 ° C.

さらに、第3の硬化炉14内でも、同様に50℃の温度勾配を与える。即ち、入線側である上部での温度をT−25℃、出線側である下部での温度をT+25℃に設定する。なお、この第3の硬化炉14では、酸素などの流入を防止するため、炉内に不活性ガス(例えばNなど)を供給するのが好ましい。 Further, a temperature gradient of 50 ° C. is similarly applied in the third curing furnace 14. That is, the temperature at the upper part on the incoming line side is set to T 3 -25 ° C., and the temperature at the lower part on the outgoing line side is set to T 3 + 25 ° C. In the third curing furnace 14, it is preferable to supply an inert gas (for example, N 2 ) into the furnace in order to prevent inflow of oxygen or the like.

Figure 0004935273
Figure 0004935273

次に、本実施形態のポリイミド被覆ファイバの製造方法について説明する。
線引き後のガラスファイバ1には、初めに、図1に示すように、コーティング装置11でポリイミド樹脂を被覆する。次に、被覆後の裸ファイバ1は、第1の硬化炉12、第2の硬化炉13、第3の硬化炉14を順次通過していく。このとき、硬化炉12〜14は、プロセス順に温度上昇するように、硬化炉間に温度勾配を持たせてある。さらに、各炉内でも、上部(裸ファイバ1の入線側)と下部(裸ファイバ1の出線側)で、それぞれ温度勾配を持たせている。従って、第1の硬化炉12〜第3の硬化炉14を通過するにつれて、加熱温度が次第に増大するような加熱処理が行える。これにより、効率的な溶剤の揮発・硬化を図ることができる。その結果、残留溶剤をなくした良好なポリイミド被覆ファイバが得られる。
Next, the manufacturing method of the polyimide coated fiber of this embodiment is demonstrated.
First, the glass fiber 1 after drawing is coated with a polyimide resin by a coating apparatus 11 as shown in FIG. Next, the coated bare fiber 1 sequentially passes through the first curing furnace 12, the second curing furnace 13, and the third curing furnace 14. At this time, the curing furnaces 12 to 14 have a temperature gradient between the curing furnaces so that the temperature rises in the order of the processes. Further, even in each furnace, temperature gradients are provided at the upper part (the incoming line side of the bare fiber 1) and the lower part (the outgoing line side of the bare fiber 1). Therefore, heat treatment can be performed in which the heating temperature gradually increases as it passes through the first curing furnace 12 to the third curing furnace 14. Thereby, volatilization and hardening of an efficient solvent can be aimed at. As a result, a good polyimide-coated fiber with no residual solvent is obtained.

従って、ポリイミド硬化工程では、(I)溶剤を揮発させる揮発プロセス、(II)溶剤を硬化させる仮硬化プロセス、(III)本硬化プロセス、をそれぞれ別の硬化用炉12〜14を用いて行うため、十分に加熱し硬化させることができる。換言すれば、ポリイミド樹脂を段階的に効率よく硬化させることができ、残留溶剤をなくすことができる。これにより、気泡の発生を阻止した良好なポリイミド被覆ファイバ2が得られる。なお、この気泡が混入していると、クラッドに歪みなどを発生してファイバに側圧等が発生し伝送特性が落ちることがある。   Therefore, in the polyimide curing step, (I) a volatilization process for volatilizing the solvent, (II) a temporary curing process for curing the solvent, and (III) a main curing process are performed using separate curing furnaces 12 to 14. Can be sufficiently heated and cured. In other words, the polyimide resin can be efficiently cured step by step, and the residual solvent can be eliminated. Thereby, the favorable polyimide covering fiber 2 which prevented generation | occurrence | production of a bubble is obtained. If these bubbles are mixed in, the cladding may be distorted and a lateral pressure or the like may be generated in the fiber, which may deteriorate the transmission characteristics.

しかも、本実施形態では、各硬化炉12〜14の設定温度が順次増大するように温度勾配を持たせてあるだけでなく、各硬化炉12〜14の炉内部にも、それぞれ入線側よりも出線側を高くした温度勾配を持たせてある。このため、更に効率的な溶剤の揮発・硬化を促し、残留溶剤をなくすことができ、なお一層良好なポリイミド被覆ファイバが得られる。   Moreover, in the present embodiment, not only is the temperature gradient provided so that the set temperatures of the respective curing furnaces 12 to 14 are sequentially increased, but also inside the furnaces of the respective curing furnaces 12 to 14, respectively, than the incoming line side. A temperature gradient with a high outgoing line is provided. For this reason, further effective volatilization / curing of the solvent can be promoted, the residual solvent can be eliminated, and an even better polyimide-coated fiber can be obtained.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。なお、本実施形態において、第1の実施形態と同一部分には同一符号を付して重複説明を避ける。
図2は、本発明の第2の実施形態に係るポリイミド被覆ファイバの製造方法を実施する被覆装置20を示すものである。このポリイミド被覆ファイバの被覆装置20では、ポリイミド塗布工程とポリイミド硬化工程と、を都合3度繰り返すようになっており、第1〜第3のコーティング装置21〜23と、第1の硬化炉24及び25と、第2の硬化炉26と、第3の硬化炉27と、これらの硬化炉24〜27の間で裸ファイバ1の走行をガイドするガイドローラ15、28、29とを備える。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals to avoid redundant description.
FIG. 2 shows a coating apparatus 20 for carrying out the method for producing a polyimide-coated fiber according to the second embodiment of the present invention. In this polyimide-coated fiber coating apparatus 20, the polyimide coating process and the polyimide curing process are repeated three times for convenience, the first to third coating apparatuses 21 to 23, the first curing furnace 24, and 25, a second curing furnace 26, a third curing furnace 27, and guide rollers 15, 28, and 29 that guide the travel of the bare fiber 1 between these curing furnaces 24 to 27.

第1〜第3のコーティング装置21〜23は、ポリイミド樹脂を3層に塗布することで、最終的に厚い状態にポリイミド被覆させるため、3個のものから構成する。即ち、これらのコーティング装置21〜23は、ポリイミド塗布後に通過する各硬化炉24〜27において溶剤を完全に取除くため、それぞれの装置21〜23ではポリイミド樹脂を比較的薄く塗布し、溶剤を確実に蒸発させることができる。   The 1st-3rd coating apparatuses 21-23 are comprised from three things in order to make polyimide coating finally in a thick state by apply | coating a polyimide resin to 3 layers. That is, since these coating devices 21 to 23 completely remove the solvent in each of the curing furnaces 24 to 27 that pass after the polyimide application, each of the devices 21 to 23 applies the polyimide resin relatively thinly to ensure the solvent. Can be evaporated.

第1〜第3の硬化炉24〜27は、第1の実施形態と同様の構成であり、それぞれ、ポリイミド樹脂をTからTで加熱する電気炉で構成する。但し、本実施形態では、第1の実施形態と異なり、第1の硬化炉は、2つのもので構成されているが、ともに同じ温度設定である。なお、第1の硬化炉24の方は、第1層目での揮発プロセスにのみ使用し、第1の硬化炉25の方は、第2層目及び第3層目での揮発プロセスに使用する。 The first to third curing furnaces 24 to 27 have the same configuration as that of the first embodiment, and are each configured by an electric furnace that heats the polyimide resin from T 1 to T 3 . However, in the present embodiment, unlike the first embodiment, the first curing furnace is composed of two things, but both have the same temperature setting. The first curing furnace 24 is used only for the volatilization process in the first layer, and the first curing furnace 25 is used for the volatilization process in the second layer and the third layer. To do.

なお、最終硬化炉である第3の硬化炉27では、酸素の流入によるポリイミド樹脂の酸化を防止するため、図示外の供給装置で炉内に不活性ガス(例えばNなど)を供給する。即ち、本実施形態では、ポリイミド樹脂の酸化劣化を防ぐため、最終硬化炉27内部を不活性ガスの雰囲気としている。この不活性ガスを供給することで、第3の硬化炉27の内部を、酸素濃度を100ppm以下とする。 In the third curing furnace 27 as the final curing furnace, an inert gas (for example, N 2 ) is supplied into the furnace by a supply device (not shown) in order to prevent oxidation of the polyimide resin due to the inflow of oxygen. That is, in the present embodiment, the interior of the final curing furnace 27 is set to an inert gas atmosphere in order to prevent oxidative degradation of the polyimide resin. By supplying this inert gas, the inside of the third curing furnace 27 is brought to an oxygen concentration of 100 ppm or less.

次に、本実施形態に係るポリイミド被覆ファイバの製造方法について、図2及び図3を参照しながら説明する。
〔1〕線引き直後のガラスファイバ1に、初めに、図2に示すように、第1のコーティング装置21で第1層目となるポリイミド樹脂を被覆する(第1ステップS1)。〔2〕次に、被覆後のファイバは、第1の硬化炉24、第2の硬化炉26、第3の硬化炉27を順次通過していく。ここで、前述したように、硬化炉24、26、27では、硬化炉間に温度勾配を持たせており、さらに、各炉内では上部と下部で温度勾配を持たせている。従って、第1の硬化炉24〜第3の硬化炉27を通過するにつれて、加熱温度が次第に増大するような加熱処理が行われる(第2ステップS2〜第4ステップS4)。このようにして、第1層目のポリイミド樹脂は、最終硬化炉である第3の硬化炉27で本硬化させる(第4ステップS4)。
Next, a method for producing a polyimide-coated fiber according to this embodiment will be described with reference to FIGS.
[1] First, as shown in FIG. 2, the glass fiber 1 immediately after drawing is coated with a first layer of polyimide resin by the first coating device 21 (first step S1). [2] Next, the coated fiber sequentially passes through the first curing furnace 24, the second curing furnace 26, and the third curing furnace 27. Here, as described above, in the curing furnaces 24, 26, and 27, a temperature gradient is provided between the curing furnaces, and further, a temperature gradient is provided at the upper part and the lower part in each furnace. Accordingly, heat treatment is performed such that the heating temperature gradually increases as it passes through the first curing furnace 24 to the third curing furnace 27 (second step S2 to fourth step S4). In this way, the first layer of polyimide resin is fully cured in the third curing furnace 27, which is the final curing furnace (fourth step S4).

〔3〕その後、ガイドローラ29Eのガイドにより、同図中でみて上方向に進行路が転換され、さらにガイドローラ28B、28Cを経て、第2のコーティング装置22で第2層目となるポリイミド樹脂を被覆する(第5ステップS5)。〔4〕次に、前回と同様に、第2の硬化炉26、第3の硬化炉27を順次通過していき、加熱温度が次第に増大するような加熱処理が行われる(第6ステップS6〜第8ステップS8)。このようにして、第2層目のポリイミド樹脂を最終硬化炉である第3の硬化炉27で本硬化させる(第8ステップS8)。
〔5〕その後、同様に、ガイドローラ29Eのガイドにより、同図中でみて上方向に進行路が転換され、第3層目について、第2層目と同様の塗布・硬化プロセスが行われる(第9ステップS9〜第12ステップS12)。このようにして、ファイバ心線2に対して、第3層目のポリイミド樹脂を最終硬化炉である第3の硬化炉27で本硬化させたならば(第12ステップS12)、ガイドローラ29E通過後に、同図中右方向の進行路に移動させ、最終的には図示外の巻き取り機で巻き取る。
[3] Thereafter, the guide path of the guide roller 29E is changed to the upward direction as viewed in the figure, and further passes through the guide rollers 28B and 28C, and then the polyimide resin which becomes the second layer in the second coating device 22 (5th step S5). [4] Next, similarly to the previous time, heat treatment is performed so that the heating temperature gradually increases through the second curing furnace 26 and the third curing furnace 27 (sixth step S6 to S6). Eighth step S8). In this way, the second-layer polyimide resin is fully cured in the third curing furnace 27 as the final curing furnace (eighth step S8).
[5] After that, similarly, the guide path of the guide roller 29E changes the traveling path upward as viewed in the figure, and the third layer is subjected to the same coating and curing process as the second layer ( Ninth step S9 to twelfth step S12). In this way, if the third-layer polyimide resin is main-cured in the third curing furnace 27 as the final curing furnace with respect to the fiber core wire 2 (12th step S12), it passes through the guide roller 29E. Later, it is moved to the traveling path in the right direction in the figure, and finally wound up by a winder not shown.

従って、本実施形態によれば、図3に示すように、本プロセスを3回繰り返し行い(第1ステップS1〜第12ステップS12)、被覆層を厚肉化することで、強度を向上させる。また、本プロセスを複数回行うことで、硬化処理を行う領域を自在に増やせることから、製造速度上昇できる。さらに、厚肉化により良好な被覆偏心も得られる。   Therefore, according to the present embodiment, as shown in FIG. 3, the process is repeated three times (first step S1 to twelfth step S12), and the coating layer is thickened to improve the strength. In addition, by performing this process a plurality of times, it is possible to freely increase the region where the curing process is performed, so that the manufacturing speed can be increased. Furthermore, good coating eccentricity can be obtained by increasing the thickness.

また、本実施形態では、最終硬化炉である第3の硬化炉27で、炉内に不活性ガス(例えばNなど)を供給するため、良好なポリイミド被覆表面が得られる。これにより、酸化による劣化時に発生する被覆表面の粘性、即ちファイバ心線2同士のまとわりによる不均一な応力付与を防ぐことができる。従って、伝送損失が低減された良好な伝送特性のポリイミド被覆ファイバ2が得られる。 Further, in the present embodiment, in the third curing oven 27 which is the final curing oven, for supplying an inert gas (e.g., N 2) in the furnace, good polyimide coating surface. As a result, it is possible to prevent the application of non-uniform stress due to the viscosity of the coating surface generated during degradation due to oxidation, that is, the fiber cores 2 are bundled together. Therefore, the polyimide-coated fiber 2 having good transmission characteristics with reduced transmission loss can be obtained.

実施例1について、図2及び図3を参照しながら説明する。
本実施例では、図2に示すポリイミド被覆ファイバの被覆装置を用いて、純石英のコアとフッ素を添加したクラッドを持つファイバに対して、第2の実施形態と同じ方法でポリイミド被覆を行った。即ち、外径125μmの上記ファイバに、ポリイミド3層コートを行い、外径170μmのポリイミド被覆ファイバを製造した。なお、ポリイミド樹脂には、パイラインPI−2525を使用した。また、硬化温度は、第1の硬化炉24、25が200〜250度、第2の硬化炉26が250〜300度、第3の硬化炉27が450〜500度とした。また、最終加熱炉である第3の硬化炉27には、不活性ガスであるNを送り込み、炉内をNガス雰囲気とした。
Example 1 will be described with reference to FIGS. 2 and 3.
In this example, a polyimide-coated fiber coating apparatus shown in FIG. 2 was used to coat a fiber having a pure quartz core and a fluorine-added cladding in the same manner as in the second embodiment. . That is, the above-mentioned fiber having an outer diameter of 125 μm was coated with three layers of polyimide to produce a polyimide-coated fiber having an outer diameter of 170 μm. Piline PI-2525 was used as the polyimide resin. The curing temperatures were 200 to 250 degrees for the first curing furnaces 24 and 25, 250 to 300 degrees for the second curing furnace 26, and 450 to 500 degrees for the third curing furnace 27. Moreover, N 2 which is an inert gas was fed into the third curing furnace 27 which is the final heating furnace, and the inside of the furnace was made an N 2 gas atmosphere.

このような条件下でN流量を変化させ、最終炉内酸素濃度を下記に示す表2のように変化させ、それぞれの酸素濃度でのファイバの伝送損失を測定して比較した。その結果、図4のようなグラフが得られた。 Under such conditions, the N 2 flow rate was changed, the final furnace oxygen concentration was changed as shown in Table 2 below, and the fiber transmission loss at each oxygen concentration was measured and compared. As a result, a graph as shown in FIG. 4 was obtained.

Figure 0004935273
Figure 0004935273

図4から、本発明の方法により被覆されたファイバによれば、伝送損失の低い良好なファイバが得ることが分かった。特に、表2に示すように、酸素濃度を100ppm以下とすることで、さらに伝損失が低い、さらに良好なファイバが得られることが確認できた。   FIG. 4 shows that the fiber coated by the method of the present invention provides a good fiber with low transmission loss. In particular, as shown in Table 2, it was confirmed that by setting the oxygen concentration to 100 ppm or less, a further excellent fiber with lower transmission loss can be obtained.

次に、実施例2について、図2を参照しながら説明する。
本実施例では、実施例1と同様に、図2に示すポリイミド被覆ファイバの被覆装置を用いて、第2の実施形態と同じ方法でファイバにポリイミド被覆した。
特に本実施例では、ポリイミド被覆した被覆部分の肉厚化による効果を確認するため、外径160μm及び170μmの2種類のポリイミド被覆ファイバを製造し、それぞれ荷重負荷(伸び1%)による断線頻度を調べる実験を行って比較してみた。その結果を[表3]に示す。
Next, Example 2 will be described with reference to FIG.
In this example, as in Example 1, the polyimide-coated fiber was coated on the fiber by the same method as in the second embodiment using the polyimide-coated fiber coating apparatus shown in FIG.
In particular, in this example, in order to confirm the effect of thickening the coating portion coated with polyimide, two types of polyimide-coated fibers with outer diameters of 160 μm and 170 μm were manufactured, and the frequency of disconnection due to load load (1% elongation) was determined. An experiment was conducted to compare them. The results are shown in [Table 3].

Figure 0004935273
Figure 0004935273

この[表3]の結果から、厚肉化によって断線頻度を減少できるとの知見が得られた。   From the results of [Table 3], it was found that the disconnection frequency can be reduced by increasing the thickness.

なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。   The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.

本発明のポリイミド被覆ファイバの製造方法によれば、ファイバ伝送特性に悪影響をもたらすことがなく、しかも製造速度を遅延させることなく良好な被覆状態を実現することができるとともに、外観不良を引き起こすことのないポリイミド被覆ファイバを製造できる効果を有し、の高温下で使用するファイバ等に有用である。   According to the method for producing a polyimide-coated fiber of the present invention, a good coating state can be realized without adversely affecting the fiber transmission characteristics and without delaying the production speed, and an appearance defect can be caused. This has the effect of producing a non-polyimide coated fiber, and is useful for fibers used at high temperatures.

本発明の第1の実施形態に係るポリイミド被覆ファイバの製造方法が用いられるファイバ製造装置の要部を示す説明図である。It is explanatory drawing which shows the principal part of the fiber manufacturing apparatus with which the manufacturing method of the polyimide coating fiber which concerns on the 1st Embodiment of this invention is used. 本発明の第2の実施形態に係るポリイミド被覆ファイバの製造方法が用いられるファイバ製造装置の要部を示す説明図である。It is explanatory drawing which shows the principal part of the fiber manufacturing apparatus with which the manufacturing method of the polyimide coating fiber which concerns on the 2nd Embodiment of this invention is used. 本発明の第2の実施形態に係るポリイミド被覆ファイバの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the polyimide coating fiber which concerns on the 2nd Embodiment of this invention. 本発明の実施例1に係る実験結果を示す伝送損失と最終硬化炉内酸素濃度の相関図である。It is a correlation diagram of the transmission loss which shows the experimental result which concerns on Example 1 of this invention, and oxygen concentration in a final curing furnace. 従来のポリイミド被覆ファイバの製造装置の被覆部及び硬化部を示す説明図である。It is explanatory drawing which shows the coating part and hardening part of the manufacturing apparatus of the conventional polyimide coating fiber.

符号の説明Explanation of symbols

1 ガラスファイバ
2 ポリイミド被覆ファイバ
10、20 ポリイミド被覆ファイバの被覆装置
11 コーティング装置
12、24、25 第1の硬化炉
13、26 第2の硬化炉
14、27 第3の硬化炉
15、28、29 ガイドローラ
21〜23 第1〜第3のコーティング装置
DESCRIPTION OF SYMBOLS 1 Glass fiber 2 Polyimide coated fiber 10, 20 Coating apparatus of polyimide coated fiber 11 Coating apparatus 12, 24, 25 First curing furnace 13, 26 Second curing furnace 14, 27 Third curing furnace 15, 28, 29 Guide rollers 21-23 First to third coating devices

Claims (4)

線引きされたガラスファイバにポリイミド樹脂を被覆して硬化するポリイミド硬化工程において、
前記ポリイミド樹脂の硬化を抑えた状態で前記ポリイミド樹脂に含まれる溶剤の殆どを揮発させる揮発プロセスと、残った溶剤を揮発させるとともに前記ポリイミド樹脂の硬化を促進させる仮硬化プロセスと、仮硬化後、残った溶剤が殆ど残らない状態になるように揮発させるとともに前記ポリイミド樹脂の硬化を完全になるよう促進させる本硬化プロセスとを有し、
前記各プロセスでの処理は、異なる硬化炉を用いて行うとともに、前記各硬化炉での加熱温度は、前記プロセスの順で高くなるように、温度勾配をもたせることを特徴とするポリイミド被覆ファイバの製造方法。
In the polyimide curing process in which the drawn glass fiber is coated with a polyimide resin and cured,
A volatilization process that volatilizes most of the solvent contained in the polyimide resin while suppressing the curing of the polyimide resin, a temporary curing process that volatilizes the remaining solvent and accelerates the curing of the polyimide resin, and after temporary curing, And a main curing process that volatilizes the remaining solvent so that it hardly remains and accelerates the curing of the polyimide resin to be complete.
The process in each of the processes is performed using different curing furnaces, and the heating temperature in each of the curing furnaces has a temperature gradient so as to increase in the order of the processes . Production method.
前記各硬化炉の炉内での加熱温度は、入線側が低く出線側が高くなるように、温度勾配を持たせることを特徴とする請求項1に記載のポリイミド被覆ファイバの製造方法。 2. The method for producing a polyimide-coated fiber according to claim 1, wherein the heating temperature in each of the curing furnaces has a temperature gradient such that the incoming line side is low and the outgoing line side is high. 前記本硬化プロセスで用いる硬化炉は、該炉内を不活性ガス雰囲気とするとともに、前記炉内の酸素濃度を100ppm以下とすることを特徴とする請求項1または2に記載のポリイミド被覆ファイバの製造方法。 Curing oven used in the curing process, the inside of the furnace with an inert gas atmosphere, the polyimide coated fiber according to claim 1 or 2, characterized in that the oxygen concentration in the furnace and 100ppm or less Production method. 前記ポリイミド硬化工程は、前記一連のプロセスを少なくとも2回以上繰り返して行うことを特徴とする請求項1から3のいずれか1項に記載のポリイミド被覆ファイバの製造方法。 The said polyimide hardening process repeats the said series of processes at least twice or more , The manufacturing method of the polyimide coated fiber of any one of Claim 1 to 3 characterized by the above-mentioned.
JP2006260940A 2006-09-26 2006-09-26 Method for producing polyimide-coated fiber Expired - Fee Related JP4935273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260940A JP4935273B2 (en) 2006-09-26 2006-09-26 Method for producing polyimide-coated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260940A JP4935273B2 (en) 2006-09-26 2006-09-26 Method for producing polyimide-coated fiber

Publications (2)

Publication Number Publication Date
JP2008081335A JP2008081335A (en) 2008-04-10
JP4935273B2 true JP4935273B2 (en) 2012-05-23

Family

ID=39352558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260940A Expired - Fee Related JP4935273B2 (en) 2006-09-26 2006-09-26 Method for producing polyimide-coated fiber

Country Status (1)

Country Link
JP (1) JP4935273B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877330B2 (en) * 2009-01-13 2012-02-15 住友電気工業株式会社 Optical fiber manufacturing method
JP5568956B2 (en) * 2009-10-29 2014-08-13 住友電気工業株式会社 Optical fiber manufacturing method and optical fiber
US9063268B2 (en) * 2010-02-24 2015-06-23 Corning Incorporated Dual coated optical fibers and methods for forming the same
CN113292256B (en) * 2021-06-18 2024-01-09 江苏华能电缆股份有限公司 Polyimide coating process for resisting high temperature and hydrogen loss on surface of optical fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138561A (en) * 1984-07-31 1986-02-24 ビソカ スコラ チエミチコ−テクノロジチカ Method and device for manufacturing flexible quartz capillary-tube chromatography column
JPS61132545A (en) * 1984-11-30 1986-06-20 Nitto Electric Ind Co Ltd Coating material for optical glass fiber
JPH0649181B2 (en) * 1986-06-23 1994-06-29 住友電気工業株式会社 Method for producing polyimide-coated linear body
JPS63230541A (en) * 1987-03-16 1988-09-27 Mitsubishi Cable Ind Ltd Production of quartz glass system light transmitting product
JP2587682B2 (en) * 1988-05-30 1997-03-05 三菱電線工業株式会社 Manufacturing method of glass based optical fiber

Also Published As

Publication number Publication date
JP2008081335A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4935273B2 (en) Method for producing polyimide-coated fiber
WO2019156127A1 (en) Oriented electromagnetic steel sheet and production method therefor
US9096464B2 (en) Method and apparatus for manufacturing optical fiber
JP2013187029A (en) Method for manufacturing insulated electric wire having bubble therein
EP3394331B1 (en) Process for gas phase surface treatment
JP2014103045A (en) Insulation wire and its manufacturing method
US20170067141A1 (en) Method and system for treating a steel tubing with a coating to resist corrosion
KR20100122097A (en) Process for heat-treating and coating a component and component produced by the process
JPH0313563B2 (en)
CN104756372A (en) Diffusion barrier layer for cans
CN115417592B (en) Temperature-resistant optical fiber, and preparation method and preparation equipment thereof
KR102463834B1 (en) Method of carbonitriding process for metal products
JP5568956B2 (en) Optical fiber manufacturing method and optical fiber
CN110819903A (en) Steel wire and steel wire rod having excellent kink characteristics, and method for producing same
JP2019127624A (en) Production method of steel member
KR102433704B1 (en) Method for the heat treatment of a steel reinforcement element for tyres
JP2004134324A (en) Manufacturing method of painted electric wire
JP2004052048A (en) Method for producing oil-tempered wire
WO2021182418A1 (en) Method for manufacturing insulated electric wire, and apparatus for manufacturing insulated electric wire
KR20160124812A (en) Method for heat treatment with continuous cooling of a steel reinforcement element for tyres
CN114035266B (en) Small-diameter optical fiber and preparation method thereof
JP2019127623A (en) Production method of steel member
CN103958720A (en) Carbonitriding method having a final nitridation step during temperature decrease
JPS631489A (en) Preparation of polyimide coated wire material
JPH01278435A (en) Production of glass-based optical fiber

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees