JP4877330B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method Download PDF

Info

Publication number
JP4877330B2
JP4877330B2 JP2009005037A JP2009005037A JP4877330B2 JP 4877330 B2 JP4877330 B2 JP 4877330B2 JP 2009005037 A JP2009005037 A JP 2009005037A JP 2009005037 A JP2009005037 A JP 2009005037A JP 4877330 B2 JP4877330 B2 JP 4877330B2
Authority
JP
Japan
Prior art keywords
heating furnace
resin
fiber
volatilization
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009005037A
Other languages
Japanese (ja)
Other versions
JP2010163298A (en
Inventor
圭省 森田
慎治 長谷川
保 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009005037A priority Critical patent/JP4877330B2/en
Publication of JP2010163298A publication Critical patent/JP2010163298A/en
Application granted granted Critical
Publication of JP4877330B2 publication Critical patent/JP4877330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

本発明は、線引きされたガラスファイバの周囲に溶剤を含む樹脂組成物を塗布し、さらに揮発用加熱炉内を通して加熱して溶剤を揮発させた後、硬化用加熱炉内を通して加熱して樹脂組成物を硬化させて樹脂被覆層を形成することで、被覆付きの光ファイバを製造する方法に関する。   In the present invention, a resin composition containing a solvent is applied around the drawn glass fiber, and further heated through a volatilization heating furnace to volatilize the solvent, and then heated through a curing heating furnace to form a resin composition. The present invention relates to a method of manufacturing a coated optical fiber by curing a product to form a resin coating layer.

光ファイバの樹脂被覆層として、紫外線硬化型樹脂や熱硬化型樹脂を用いることが一般に知られており、例えば、熱硬化型樹脂で樹脂被覆層を形成する場合には、線引きされたガラスファイバの周囲に溶剤を含む樹脂組成物を塗布し、加熱炉内を通して加熱して溶剤を揮発させるとともに樹脂組成物を硬化させる。   As a resin coating layer of an optical fiber, it is generally known to use an ultraviolet curable resin or a thermosetting resin. For example, when a resin coating layer is formed of a thermosetting resin, a drawn glass fiber A resin composition containing a solvent is applied to the surroundings and heated through a heating furnace to volatilize the solvent and cure the resin composition.

また、耐熱性に優れた熱硬化型樹脂としてはポリイミド樹脂が知られており、走行する線状体にポリイミド樹脂を被覆する方法も知られている(例えば、特許文献1参照)。   Moreover, a polyimide resin is known as a thermosetting resin excellent in heat resistance, and a method of coating a traveling linear body with a polyimide resin is also known (see, for example, Patent Document 1).

特許文献1に記載されたポリイミド樹脂の被覆方法では、図4に示すように、ポリイミド樹脂を供給する供給装置101と、この供給装置101から送り出されるポリイミド樹脂を線状体100に被覆するコーティング装置102と、被覆したポリイミド樹脂を硬化させる硬化炉103と、硬化炉103内へ不活性ガスを送り込むガス供給装置104と、図示外の巻取り機などを備えた装置を用い、硬化炉103の温度を500℃以上とし、硬化炉103内を不活性ガスの雰囲気として、線状体100にポリイミド樹脂を被覆している。   In the polyimide resin coating method described in Patent Document 1, as shown in FIG. 4, a supply device 101 that supplies polyimide resin and a coating device that coats the linear body 100 with the polyimide resin delivered from the supply device 101. 102, a curing furnace 103 that cures the coated polyimide resin, a gas supply device 104 that sends an inert gas into the curing furnace 103, and a device that includes a winder (not shown) and the like. Is set to 500 ° C. or higher, and the inside of the curing furnace 103 is set to an inert gas atmosphere so that the linear body 100 is coated with a polyimide resin.

特開昭63−1489号公報Japanese Patent Laid-Open No. 63-1489

ところで、ポリイミド樹脂を被覆した光ファイバでは、耐熱性に優れたポリイミド樹脂(ポリイミド樹脂組成物)から脱溶剤及びイミド化の硬化反応により、ポリイミド樹脂がガラスファイバに被覆される。ところが、この被覆の際には、ポリイミド樹脂に溶剤が多く含まれていることから、加熱して溶剤を除去して硬化させるために、十分な加熱が必要である。つまり、得られるポリイミド被覆の品質は、硬化度及び残留溶剤の量的な影響を受ける。このため、良好な被覆状態とするには、最適な温度条件で硬化させることが必要となる。   By the way, in an optical fiber coated with a polyimide resin, the glass resin is coated with the polyimide resin by a solvent removal and imidization curing reaction from a polyimide resin (polyimide resin composition) having excellent heat resistance. However, since the polyimide resin contains a large amount of solvent at the time of this coating, sufficient heating is required to heat and remove the solvent and cure. That is, the quality of the resulting polyimide coating is affected by the degree of cure and the amount of residual solvent. For this reason, in order to obtain a good covering state, it is necessary to cure under optimum temperature conditions.

また、光ファイバの品質を良好にするためには、ガラスファイバに対して周方向に均一にポリイミド樹脂を被覆することが要求される。均一な被覆厚とするためには、ガラスファイバに樹脂を塗布するダイスの調整も重要であるが、塗布したポリイミド樹脂の組成物は溶剤が揮発する際に収縮するため、ダイスの調整だけでは硬化後のポリイミド樹脂の形状を調整することが難しく、被覆厚が周方向で不均一になりやすかった。   Further, in order to improve the quality of the optical fiber, it is required to uniformly coat the glass fiber with the polyimide resin in the circumferential direction. In order to achieve a uniform coating thickness, it is also important to adjust the die for applying resin to the glass fiber. However, since the applied polyimide resin composition shrinks when the solvent volatilizes, it can be cured only by adjusting the die. It was difficult to adjust the shape of the subsequent polyimide resin, and the coating thickness was likely to be uneven in the circumferential direction.

被覆厚が周方向で不均一であると、被覆厚が薄い側の強度が低下し、スクリーニング時の破断強度が著しく低下してしまう。例えば油井用途等では、一連長に長い光ファイバが必要であるが、破断強度が低下すると長い光ファイバを得ることが難しくなってしまう。   If the coating thickness is not uniform in the circumferential direction, the strength on the side where the coating thickness is thin is lowered, and the breaking strength during screening is significantly reduced. For example, in oil well applications, etc., a long optical fiber is required for a series length, but when the breaking strength is reduced, it becomes difficult to obtain a long optical fiber.

そこで、本発明の目的は、ガラスファイバの周囲に塗布した樹脂組成物に対して溶剤の揮発及び樹脂の硬化を十分に行い、なおかつ周方向に均一な厚さで被覆層を形成することができる光ファイバの製造方法を提供することにある。   Therefore, an object of the present invention is to sufficiently volatilize the solvent and cure the resin with respect to the resin composition applied around the glass fiber, and to form a coating layer with a uniform thickness in the circumferential direction. An object of the present invention is to provide a method for manufacturing an optical fiber.

上記課題を解決することのできる本発明に係る光ファイバの製造方法は、線引きされたガラスファイバの周囲に溶剤を含む樹脂組成物を塗布し、さらに揮発用加熱炉内を通して加熱して前記溶剤を揮発させた後、硬化用加熱炉内を通して加熱して前記樹脂組成物を硬化させて樹脂被覆層を形成する光ファイバの製造方法であって、
前記揮発用加熱炉における樹脂付きファイバ軸方向の加熱温度分布として、
「TAVE1>T>TAVE2」の関係を満たすことを特徴とする。
但し、
AVE1:0≦L≦Lの区間での長手方向の平均温度(揮発用加熱炉入口をL=0とする)
AVE2:L≦L≦Lの区間での長手方向の平均温度(揮発用加熱炉全長をLとする)
:溶剤沸点
=k×Vf(Vf:線引き速度、k:定数)。
The method for producing an optical fiber according to the present invention that can solve the above-mentioned problem is that a resin composition containing a solvent is applied around the drawn glass fiber, and further heated through a volatilization heating furnace to remove the solvent. It is a method for producing an optical fiber that is volatilized and then heated through a curing furnace to cure the resin composition to form a resin coating layer,
As the heating temperature distribution in the axial direction of the fiber with resin in the heating furnace for volatilization,
It is characterized by satisfying the relationship of “T AVE1 > T 0 > T AVE2 ”.
However,
T AVE1 : Average temperature in the longitudinal direction in the section of 0 ≦ L ≦ L 0 (L = 0 is set as the volatilization furnace inlet)
T AVE2 : Average temperature in the longitudinal direction in the section of L 0 ≦ L ≦ L 1 (the total length of the volatile heating furnace is L 1 )
T 0 : Solvent boiling point L 0 = k × Vf (Vf: drawing speed, k: constant).

本発明に係る光ファイバの製造方法において、前記揮発用加熱炉の下流側であって前記硬化用加熱炉の上流側における前記樹脂付きファイバの外径をモニタして、モニタした外径測定値と予め設定した外径目標値との偏差に応じて前記揮発用加熱炉の加熱温度を調整することが好ましい。   In the optical fiber manufacturing method according to the present invention, the outer diameter of the resin-coated fiber is monitored on the downstream side of the volatilization heating furnace and on the upstream side of the curing heating furnace, It is preferable to adjust the heating temperature of the volatilization heating furnace in accordance with a deviation from a preset outer diameter target value.

本発明に係る光ファイバの製造方法において、前記ガラスファイバの外径と、前記樹脂付きファイバを前記揮発用加熱炉に通す前後の外径をそれぞれ測定して、それらにより塗布した前記樹脂組成物の体積変化率を算出し、前記体積変化率が前記樹脂組成物中の前記溶剤の含有割合以上となるように、前記外径目標値を設定することが好ましい。   In the method for producing an optical fiber according to the present invention, the outer diameter of the glass fiber and the outer diameter before and after passing the resin-coated fiber through the heating furnace for volatilization are measured, and the resin composition applied by them is measured. It is preferable to calculate the volume change rate and set the outer diameter target value so that the volume change rate is equal to or higher than the content ratio of the solvent in the resin composition.

本発明に係る光ファイバの製造方法において、前記揮発用加熱炉における前記樹脂付きファイバ軸方向の加熱温度を複数領域でそれぞれ調整可能であり、前記外径測定値と前記外径目標値との偏差に応じて前記揮発用加熱炉における最も出口側の領域の加熱温度を調整することが好ましい。   In the optical fiber manufacturing method according to the present invention, the heating temperature in the axial direction of the resin-attached fiber in the heating furnace for volatilization can be adjusted in a plurality of regions, respectively, and the deviation between the outer diameter measurement value and the outer diameter target value Accordingly, it is preferable to adjust the heating temperature in the most outlet side region in the volatile heating furnace.

本発明に係る光ファイバの製造方法において、前記揮発用加熱炉の少なくとも0≦L≦Lの区間では、前記樹脂付きファイバを周方向に均一に加熱することが好ましい。 In the optical fiber manufacturing method according to the present invention, it is preferable that the resin-coated fiber is uniformly heated in the circumferential direction in at least a section of 0 ≦ L ≦ L 0 of the volatilization heating furnace.

本発明に係る光ファイバの製造方法において、前記樹脂付きファイバと前記揮発用加熱炉における加熱部材を、前記樹脂付きファイバの中心軸を回転軸として相対的に回転させることが好ましい。   In the optical fiber manufacturing method according to the present invention, it is preferable that the resin-coated fiber and the heating member in the volatilization heating furnace are relatively rotated with a central axis of the resin-coated fiber as a rotation axis.

本発明に係る光ファイバの製造方法において、前記加熱部材が、炉心管と、前記炉心管を昇温させる発熱部材とを含む構成の場合には、前記樹脂付きファイバを、前記樹脂付きファイバの中心軸を回転軸として、前記炉心管または前記発熱部材に対して相対的に回転させることが好ましい。   In the method of manufacturing an optical fiber according to the present invention, when the heating member includes a core tube and a heating member that raises the temperature of the core tube, the resin-coated fiber is the center of the resin-coated fiber. It is preferable to rotate the shaft relative to the core tube or the heat generating member with the shaft as a rotation shaft.

本発明によれば、線引きされたガラスファイバの周囲に溶剤を含む樹脂組成物を塗布した後、まず揮発用加熱炉内を通して加熱して溶剤を揮発させる。そして、さらにその後、硬化用加熱炉内を通して加熱して樹脂組成物を硬化させて樹脂被覆層を形成する。このように、塗布した樹脂組成物に対して溶剤の揮発及び樹脂の硬化をそれぞれ専用の加熱炉を用いて行うため、溶剤の揮発を十分に行うことができるとともに、その後の硬化も十分に行うことができる。さらに、揮発用加熱炉は、線引き速度によって変動する入口から所定の箇所までの加熱温度を溶剤の沸点温度より高くし、それ以降の出口までの加熱温度を溶剤の沸点温度未満とすることで、入口側で樹脂組成物中の溶剤を揮発させやすくするとともに出口側で樹脂組成物の過加熱による発泡を防ぐことができ、その効果として、溶剤の揮発及び樹脂の硬化を十分に行って均一の被覆厚とし、破断強度を向上させることができる。   According to the present invention, after applying a resin composition containing a solvent around the drawn glass fiber, the solvent is first volatilized by heating through a heating furnace for volatilization. Then, after that, the resin composition is cured by heating through a curing furnace to form a resin coating layer. Thus, since the solvent volatilization and the resin curing are performed on the applied resin composition using the dedicated heating furnace, the solvent volatilization can be sufficiently performed, and the subsequent curing is also sufficiently performed. be able to. Furthermore, the heating furnace for volatilization makes the heating temperature from the inlet that varies depending on the drawing speed to a predetermined location higher than the boiling temperature of the solvent, and the heating temperature to the outlet after that is less than the boiling temperature of the solvent. It is possible to easily volatilize the solvent in the resin composition on the inlet side and prevent foaming due to overheating of the resin composition on the outlet side. As an effect, the solvent is sufficiently evaporated and the resin is sufficiently cured to be uniform. The coating thickness can be increased to improve the breaking strength.

本発明に係る光ファイバの製造方法を実施する被覆装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the coating | coated apparatus which enforces the manufacturing method of the optical fiber which concerns on this invention. (a)は図1に示した揮発用加熱炉を拡大して示した構成図であり、(b)はその加熱温度分布の一例である。(A) is the block diagram which expanded and showed the heating furnace for volatilization shown in FIG. 1, (b) is an example of the heating temperature distribution. 図1に示したガイドローラの一例の上面図である。It is a top view of an example of the guide roller shown in FIG. 従来のポリイミド被覆ファイバの製造装置の被覆部及び硬化部を示す説明図である。It is explanatory drawing which shows the coating part and hardening part of the manufacturing apparatus of the conventional polyimide coating fiber.

以下、本発明に係る光ファイバの製造方法の実施形態の例を、図面を参照しつつ説明する。
図1は、本実施形態の光ファイバの製造方法を実施する製造装置を示す概略図である。
この製造装置10は、光ファイバ用ガラス母材(図示省略)を加熱して線引きして形成されたガラスファイバ1が鉛直下方向に走行しているパスラインに設けられており、樹脂塗布用のダイス11と、揮発用加熱炉12と、硬化用加熱炉13とを備えている。また、パスラインにおけるダイス11の上流側、ダイス11の下流側であって揮発用加熱炉12の上流側、揮発用加熱炉12の下流側であって硬化用加熱炉13の上流側、硬化用加熱炉13の下流側、のそれぞれの位置には、発光器と受光器を組み合わせてなる外径測定器14,15,16,19が設けられている。そして、被覆装置10は、外径測定器14,15,16,19の測定値に応じて揮発用加熱炉12の加熱温度を調整するための制御部18を備えている。なお、外径測定器15は、ダイス11の下流側近接位置と揮発用加熱炉12の上流側近接位置との2箇所に分けて配置しても良く、外径測定器16は、揮発用加熱炉12の下流側近接位置と硬化用加熱炉13の上流側近接位置との2箇所に分けて配置しても良いが、本実施形態ではそれぞれ1箇所ずつ設けている。なお、外径測定器14,15では線引き開始時のみ外径をモニタすればよいので、線引き開始後に常時モニタする必要はなく、省略することも可能である。
Hereinafter, an example of an embodiment of an optical fiber manufacturing method according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing a manufacturing apparatus for carrying out the optical fiber manufacturing method of the present embodiment.
The manufacturing apparatus 10 is provided on a pass line in which a glass fiber 1 formed by heating and drawing an optical fiber glass base material (not shown) is running vertically downward, and is used for resin coating. A die 11, a volatilization heating furnace 12, and a curing heating furnace 13 are provided. Further, the upstream side of the die 11 in the pass line, the downstream side of the die 11 and upstream of the volatile heating furnace 12, the downstream side of the volatile heating furnace 12 and the upstream side of the curing heating furnace 13, At respective positions on the downstream side of the heating furnace 13, outer diameter measuring devices 14, 15, 16, and 19 that are a combination of a light emitter and a light receiver are provided. And the coating | coated apparatus 10 is provided with the control part 18 for adjusting the heating temperature of the volatilization heating furnace 12 according to the measured value of the outer diameter measuring device 14,15,16,19. The outer diameter measuring device 15 may be divided into two locations, the downstream proximity position of the die 11 and the upstream proximity position of the volatilization heating furnace 12, and the outer diameter measurement device 16 may be a heating for volatilization. Although it may be divided into two locations, the downstream proximity position of the furnace 12 and the upstream proximity position of the curing heating furnace 13, one location is provided in this embodiment. The outer diameter measuring devices 14 and 15 only need to monitor the outer diameter only at the start of drawing, so it is not necessary to always monitor after starting the drawing and can be omitted.

ダイス11は、線引きされたガラスファイバ1の周囲に溶剤を含む樹脂組成物を塗布するものである。ここで用いる樹脂組成物としては、ポリイミド樹脂組成物やエステルイミド樹脂組成物が挙げられ、これらに含まれる溶剤としては、例えばNメチル−2−ピロドリンが例示できる。ダイス11に形成された樹脂塗布用の穴の中心が、走行するガラスファイバ1の中心軸と一致するように配置されており、ダイス11を通過したガラスファイバ1の周囲には、その周方向に略均一に樹脂組成物が塗布される。   The die 11 is for applying a resin composition containing a solvent around the drawn glass fiber 1. Examples of the resin composition used here include a polyimide resin composition and an ester imide resin composition, and examples of the solvent contained therein include N-methyl-2-pyrodrine. The center of the hole for resin coating formed in the die 11 is arranged so as to coincide with the central axis of the traveling glass fiber 1, and the periphery of the glass fiber 1 that has passed through the die 11 is arranged in the circumferential direction. The resin composition is applied substantially uniformly.

揮発用加熱炉12は、ダイス11の鉛直下方向に設けられ、ガラスファイバ1の周囲に樹脂組成物が塗布されたファイバ(樹脂付きファイバ)1aを挿通させて加熱するものであり、ファイバ1aの樹脂組成物から溶剤を揮発させる。図2(a)に示すように、揮発用加熱炉12は、縦方向に複数(本実施形態では3つ)の短円筒形状の加熱部材であるヒータ(発熱部材)20a,20b,20cを有しており、その内側には共通の円筒形状の炉心管21(加熱部材)を有している。揮発用加熱炉12は、ヒータ20a,20b,20c及び炉心管21がそれぞれ円筒形状でありその中心にファイバ1aを挿通させて加熱するようになっている。
また、ヒータを複数段構造としたことにより、揮発用加熱炉12内におけるファイバ1aの軸方向の加熱温度を複数領域でそれぞれ調整可能である。
なお、炉心管21は、熱伝達率及び熱伝導率が高く、なおかつ溶剤の揮発成分により腐食しない材質であることが望ましく、例えばアルミを用いると良く、その他の材質としては、カーボン、石英、銅などでも良い。
The volatilization heating furnace 12 is provided in a vertically downward direction of the die 11, and inserts and heats a fiber (fiber with resin) 1 a coated with a resin composition around the glass fiber 1. The solvent is volatilized from the resin composition. As shown in FIG. 2 (a), the volatilization heating furnace 12 has a plurality of (three in the present embodiment) heaters (heating members) 20a, 20b, and 20c that are short cylindrical heating members in the vertical direction. It has a common cylindrical core tube 21 (heating member) inside thereof. In the heating furnace 12 for volatilization, the heaters 20a, 20b, 20c and the furnace core tube 21 are each cylindrical, and are heated by inserting the fiber 1a through the center thereof.
Further, since the heater has a multi-stage structure, the heating temperature in the axial direction of the fiber 1a in the volatile heating furnace 12 can be adjusted in a plurality of regions.
The core tube 21 is preferably made of a material having a high heat transfer coefficient and a high heat conductivity and is not corroded by the volatile components of the solvent. For example, aluminum may be used, and other materials include carbon, quartz, copper. Etc.

揮発用加熱炉12の出口(下端)側には、排気部22が接続されており、炉心管21内の気体が所定の排気量で排気される。また、排気部22では、揮発用加熱炉12から排気された気体内の溶剤濃度を測定し、その測定値に基づき排気量を調整することができる。排気部22の下流側には、排気した気体に含まれる溶剤の揮発成分を適切に処理することが可能な処理部(図示省略)が接続されている。
また、排気部22による排気に伴い、揮発用加熱炉12の炉心管21内の空間には、ファイバ1aが送られてくる入口側(炉心管21の上端開口部)から空気が自然導入される。すなわち、揮発用加熱炉12内で樹脂組成物が加熱されて揮発した溶剤の揮発成分は排気部22により排気され、新しい空気が入口側から導入されることで、揮発用加熱炉12内の気体が揮発成分で飽和することが防がれる。
なお、排気部22を入口側に設けて出口側から空気を導入する構成であっても良い。
An exhaust unit 22 is connected to the outlet (lower end) side of the volatilization heating furnace 12, and the gas in the furnace core tube 21 is exhausted at a predetermined exhaust amount. Further, the exhaust unit 22 can measure the solvent concentration in the gas exhausted from the volatilization heating furnace 12 and adjust the exhaust amount based on the measured value. A processing unit (not shown) that can appropriately process the volatile components of the solvent contained in the exhausted gas is connected to the downstream side of the exhaust unit 22.
In addition, air is naturally introduced into the space in the core tube 21 of the volatilization heating furnace 12 from the inlet side (the upper end opening of the core tube 21) through which the fiber 1 a is sent along with the exhaust by the exhaust unit 22. . That is, the volatile component of the solvent volatilized by heating the resin composition in the volatilization heating furnace 12 is exhausted by the exhaust unit 22 and new air is introduced from the inlet side, whereby the gas in the volatilization heating furnace 12 is obtained. Is prevented from being saturated with volatile components.
In addition, the structure which introduce | transduces air from the exit side by providing the exhaust part 22 in the entrance side may be sufficient.

なお、揮発用加熱炉12の長手方向(ファイバ軸方向)の加熱温度(炉心管温度)分布は、図2(b)に示すように、ファイバ1aの入口側で炉内の平均加熱温度が溶剤の沸点温度T(例えば、202℃)以上となる領域を形成し、それ以外の領域では溶剤の沸点温度未満とする。揮発用加熱炉12の長手方向の位置をLとし、炉の入口をL=0、炉の出口をL=L、線引き速度Vfと炉の加熱構造や炉内の雰囲気ガス等により決まる定数kとの積(k×Vf)によって求められる位置をLとした場合、0≦L≦Lの区間での長手方向の平均温度TAVE1とL≦L≦Lの区間での長手方向の平均温度TAVE2が、「TAVE1>T>TAVE2」の関係を満たすようにしている。なお、TAVE1とTAVE2は次式(1),(2)により定義される。 The heating temperature (core tube temperature) distribution in the longitudinal direction (fiber axis direction) of the volatile heating furnace 12 is such that the average heating temperature in the furnace is the solvent at the inlet side of the fiber 1a as shown in FIG. A region having a boiling point temperature T 0 (for example, 202 ° C.) or higher is formed, and in other regions, it is lower than the boiling point temperature of the solvent. The longitudinal position of the volatile heating furnace 12 is L, the furnace inlet is L = 0, the furnace outlet is L = L 1 , the constant k determined by the drawing speed Vf, the furnace heating structure, the atmosphere gas in the furnace, and the like. longitudinal in the product if the position obtained by the (k × Vf) was set to L 0, 0LL longitudinal average temperature T AVE1 and L 0LL 1 interval at 0 section of the Average temperature T AVE2 satisfies the relationship of “T AVE1 > T 0 > T AVE2 ”. T AVE1 and T AVE2 are defined by the following expressions (1) and (2).

Figure 0004877330
Figure 0004877330

揮発用加熱炉12の入口側では外気が導入されるので、ファイバ1aを素早く温度上昇させることが難しい。このため、入口側の加熱温度を溶剤の沸点温度以上としておくことで、樹脂組成物中の溶剤を揮発させやすくなる。また、入口側以外の領域で加熱温度を溶剤の沸点温度未満とすることで、樹脂組成物の過加熱による発泡を防ぐことができる。   Since outside air is introduced at the inlet side of the volatilization heating furnace 12, it is difficult to quickly raise the temperature of the fiber 1a. For this reason, it becomes easy to volatilize the solvent in a resin composition by making the heating temperature of an entrance side more than the boiling point temperature of a solvent. Moreover, the foaming by the overheating of a resin composition can be prevented by making heating temperature into the area | regions other than an entrance side below the boiling point temperature of a solvent.

また、ダイス11における樹脂組成物の温度は50℃程度とする必要があるため、揮発用加熱炉12に入る時のファイバ1aの温度は比較的低く、揮発用加熱炉12の入口側で加熱温度が溶剤の沸点温度であっても、樹脂組成物は発泡しない。そして、上記のように入口側で溶剤の沸点温度以上の加熱温度の領域を形成することで、溶剤の揮発効率が向上する。   Further, since the temperature of the resin composition in the die 11 needs to be about 50 ° C., the temperature of the fiber 1a when entering the volatile heating furnace 12 is relatively low, and the heating temperature at the inlet side of the volatile heating furnace 12 Even if is the boiling point temperature of the solvent, the resin composition does not foam. And the volatilization efficiency of a solvent improves by forming the area | region of the heating temperature more than the boiling point temperature of a solvent on the entrance side as mentioned above.

硬化用加熱炉13は、揮発用加熱炉12の鉛直下方向に設けられており、揮発用加熱炉12と同様にヒータ及び炉心管を有する構成である。硬化用加熱炉13は、揮発用加熱炉12により溶剤が十分に揮発されたファイバ1bを、揮発用加熱炉12より高い温度で加熱して、樹脂組成物を硬化させるものである。なお、ここでいう硬化とは、ポリイミド樹脂組成物やエステルイミド樹脂組成物がイミド化することである。これにより、ガラスファイバ1の周囲に樹脂(ポリイミド樹脂やエステルイミド樹脂等)の被覆層が形成された光ファイバ1cが製造される。   The curing heating furnace 13 is provided vertically below the volatilization heating furnace 12 and has a configuration including a heater and a core tube similar to the volatilization heating furnace 12. The curing heating furnace 13 cures the resin composition by heating the fiber 1b in which the solvent is sufficiently volatilized by the volatilization heating furnace 12 at a temperature higher than that of the volatilization heating furnace 12. In addition, hardening here is that a polyimide resin composition and an ester imide resin composition imidize. Thereby, the optical fiber 1c in which the coating layer of resin (polyimide resin, ester imide resin or the like) is formed around the glass fiber 1 is manufactured.

硬化用加熱炉13を通過した光ファイバ1cは、その後、硬化用加熱炉13の鉛直下方向に設けられたガイドローラ17により走行方向が変更され、巻き取り側に向けて案内される。
なお、樹脂被覆層を2層、3層など複数層形成する場合には、硬化用加熱炉13を通過した光ファイバ1cは再度ダイス11(もしくは別のダイス)へ導入される。
After that, the optical fiber 1c that has passed through the curing heating furnace 13 is changed in the traveling direction by a guide roller 17 provided vertically below the curing heating furnace 13, and is guided toward the winding side.
In the case of forming a plurality of resin coating layers such as two layers or three layers, the optical fiber 1c that has passed through the curing heating furnace 13 is again introduced into the die 11 (or another die).

次に、本実施形態の光ファイバの製造方法について説明する。なお、図1に示した被覆装置10を用いた場合を一例として説明する。
まず、線引き開始とともに、ガラスファイバ1を図1の被覆装置10のパスラインに通すとともに、ダイス11に樹脂組成物を供給してガラスファイバ1の周囲に樹脂組成物を塗布する。
Next, the manufacturing method of the optical fiber of this embodiment is demonstrated. In addition, the case where the coating | coated apparatus 10 shown in FIG. 1 is used is demonstrated as an example.
First, with the start of drawing, the glass fiber 1 is passed through the pass line of the coating apparatus 10 in FIG. 1, and the resin composition is supplied to the die 11 to apply the resin composition around the glass fiber 1.

樹脂組成物が塗布されたファイバ1aは揮発用加熱炉12内で加熱され、樹脂組成物中の溶剤が揮発される。その際、揮発用加熱炉12の加熱温度分布は図2(b)に示したように設定する。また、被覆開始時には、所定の被覆外径を得るための加熱温度調整を行う。
最終的に得られる光ファイバ1cの外径は、ダイス11によりガラスファイバ1に塗布された直後の樹脂組成物の外径に対して、樹脂組成物から溶剤が揮発して体積が減少した分と硬化反応による収縮分だけ小さくなる。そのため、ダイス11を通す前のガラスファイバ1の外径D、樹脂組成物が塗布されて揮発用加熱炉12を通す前のファイバ1aの外径D、揮発用加熱炉12を通した後のファイバ1bの外径D、に基づいて次式(3)により算出される体積変化率Δが、樹脂組成物中の溶剤の含有割合(例えば75体積%)以上となるように、ファイバ1bの外径Dの外径目標値を設定する。
体積変化率Δ(%)=1−{(D −D )/(D −D )}×100 …(3)
The fiber 1a coated with the resin composition is heated in the volatilization heating furnace 12, and the solvent in the resin composition is volatilized. At that time, the heating temperature distribution of the volatile heating furnace 12 is set as shown in FIG. At the start of coating, the heating temperature is adjusted to obtain a predetermined coating outer diameter.
The outer diameter of the optical fiber 1c finally obtained is that the volume of the resin composition is reduced by volatilization of the solvent with respect to the outer diameter of the resin composition immediately after being applied to the glass fiber 1 by the die 11. The shrinkage is reduced by the curing reaction. Therefore, the outer diameter D 0 of the glass fiber 1 prior to passing the die 11, the outer diameter D 1 of the previous fiber 1a which resin composition is applied through a volatile heating furnace 12, after passing through the volatilization heating furnace 12 The fiber 1b is adjusted so that the volume change rate Δ calculated by the following equation (3) based on the outer diameter D 2 of the fiber 1b is equal to or higher than the solvent content (for example, 75% by volume) in the resin composition. setting the outer diameter target value of the outer diameter D 2 of the.
Volume change rate Δ (%) = 1 − {(D 2 2 −D 0 2 ) / (D 1 2 −D 0 2 )} × 100 (3)

被覆開始時には、ダイス11を通す前のガラスファイバ1の外径Dを外径測定器14により測定し、樹脂組成物が塗布されて揮発用加熱炉12を通す前のファイバ1aの外径Dを外径測定器15により測定し、揮発用加熱炉12を通した後のファイバ1bの外径Dを外径測定器16により測定し、前記式(3)により算出される体積変化率Δが、樹脂組成物中の溶剤の含有割合以上となるように、なおかつファイバ1bの外径Dが、設定した外径目標値となるように、揮発用加熱炉12の加熱温度を調整する。例えば、外径測定値が外径目標値より大きい場合には、溶剤の揮発に伴う樹脂組成物の収縮が少ないと判断できるため、揮発用加熱炉12の加熱温度を上昇させる。 At the start of coating, the outer diameter D 0 of the glass fiber 1 before passing through the die 11 is measured by the outer diameter measuring device 14, and the outer diameter D of the fiber 1 a before applying the resin composition and passing through the heating furnace 12 for volatilization. 1 was measured by the outer diameter measuring device 15, the outer diameter D 2 of the fiber 1b after passing through the volatilization heating furnace 12 is measured by the outer diameter measuring device 16, the volume change rate calculated by the equation (3) Δ is such that the above content of the solvent in the resin composition, yet the outer diameter D 2 of the fiber 1b is, so that the outer diameter target value set, to adjust the heating temperature of the volatile heating furnace 12 . For example, when the outer diameter measurement value is larger than the outer diameter target value, it can be determined that the shrinkage of the resin composition accompanying the volatilization of the solvent is small, so the heating temperature of the volatilization heating furnace 12 is increased.

なお、加熱温度の調整は、全てのヒータ20a,20b,20cの温度調整により行なっても良いが、揮発用加熱炉12の出口側で温度変化に対する外径変化量が多くなる傾向があるため、揮発用加熱炉12の出口側の温度調整(すなわちヒータ20cの温度調整)だけでも効果的である。   In addition, although adjustment of heating temperature may be performed by temperature adjustment of all the heaters 20a, 20b, and 20c, since the outer diameter change amount with respect to temperature change tends to increase on the outlet side of the volatile heating furnace 12, Even temperature adjustment on the outlet side of the volatilization heating furnace 12 (that is, temperature adjustment of the heater 20c) is effective.

被覆開始時に加熱温度の調整を行った後は、揮発用加熱炉12を通過したファイバ1bの外径を外径測定器16によりモニタして、モニタした外径測定値と予め設定した外径目標値との偏差に応じて、揮発用加熱炉12の加熱温度の調整を行う。これにより、樹脂組成物中の溶剤の揮発が十分に行われた光ファイバ1cを安定して製造することができる。また、硬化用加熱炉13を通過した光ファイバ1cの外径を外径測定器19によりモニタして、得られた光ファイバ1cの外径がチェックされる。   After adjusting the heating temperature at the start of coating, the outer diameter of the fiber 1b that has passed through the volatilization heating furnace 12 is monitored by the outer diameter measuring device 16, and the monitored outer diameter measurement value and the preset outer diameter target are monitored. The heating temperature of the volatilization heating furnace 12 is adjusted according to the deviation from the value. Thereby, the optical fiber 1c in which the solvent in the resin composition is sufficiently volatilized can be stably manufactured. Further, the outer diameter of the optical fiber 1c that has passed through the curing furnace 13 is monitored by the outer diameter measuring device 19, and the outer diameter of the obtained optical fiber 1c is checked.

また、揮発用加熱炉12内の気体内の溶剤濃度、または、排気部22内の気体内の溶剤濃度を測定し、その測定値に基づき揮発用加熱炉12からの排気量を調整してもよい。それにより、揮発用加熱炉12内の気体が揮発成分で飽和することを防いで、揮発効率を良好な状態に維持することができる。   Further, the solvent concentration in the gas in the volatile heating furnace 12 or the solvent concentration in the gas in the exhaust unit 22 is measured, and the exhaust amount from the volatile heating furnace 12 is adjusted based on the measured value. Good. Thereby, it is possible to prevent the gas in the volatilization heating furnace 12 from being saturated with volatile components, and to maintain the volatilization efficiency in a good state.

そして、揮発用加熱炉12は、線引き速度によって変動するファイバ1aの入口から所定の箇所までの平均加熱温度を溶剤の沸点温度T以上とし、それ以降の出口までの加熱温度を溶剤の沸点温度未満としている。さらに、揮発用加熱炉12の長手方向の位置0≦L≦Lの区間での長手方向の平均温度TAVE1(前記式(1)参照)とL≦L≦Lの区間での長手方向の平均温度TAVE2(前記式(2)参照)が、「TAVE1>T>TAVE2」の関係を満たすようにしている。これにより、入口側で樹脂組成物中の溶剤を揮発させやすくし、なおかつ出口側で樹脂組成物の過加熱による発泡を防ぎつつ、溶剤の揮発及び樹脂の硬化を十分に行って周方向に均一の被覆厚とすることができる。 The volatiles heating furnace 12, the average heating temperature of the inlet of the fiber 1a which varies with drawing speed to a predetermined position and the boiling point of the solvent temperature T 0 or more, the boiling temperature of the solvent heating temperature up later exit Less than. Further, the longitudinal average temperature T AVE1 (refer to the above formula (1)) in the section of the longitudinal position 0 ≦ L ≦ L 0 of the volatilization heating furnace 12 and the length in the section of L 0 ≦ L ≦ L 1. The direction average temperature T AVE2 (see the above formula (2)) satisfies the relationship of “T AVE1 > T 0 > T AVE2 ”. This facilitates volatilization of the solvent in the resin composition on the inlet side, and prevents the foaming due to overheating of the resin composition on the outlet side, and sufficiently evaporates the solvent and cures the resin to make it uniform in the circumferential direction. The coating thickness can be as follows.

また、揮発用加熱炉12は、加熱部材であるヒータ20a,20b,20c及び炉心管21がそれぞれ円筒形状でありその中心にファイバ1aを挿通させて加熱するようになっているため、ファイバ1aを周方向に均一に加熱して、溶剤の揮発量を周方向で均一にすることができる。揮発用加熱炉12により溶剤が十分になおかつ周方向に均一に揮発されたファイバ1bは、硬化用加熱炉13によって樹脂組成物が十分に硬化され、ガラスファイバ1の周囲に均一かつ所望の厚さの樹脂被覆層が形成される。このように、光ファイバ1cにおける樹脂被覆層の厚さを周方向で均一にすることができる。なお、少なくとも0≦L≦Lの区間において周方向に均一に加熱することができれば、均一な厚さの樹脂被覆層を形成することができる。 In the volatile heating furnace 12, the heaters 20 a, 20 b, 20 c and the furnace tube 21, which are heating members, are each cylindrical and heated by inserting the fiber 1 a into the center thereof. By heating uniformly in the circumferential direction, the volatilization amount of the solvent can be made uniform in the circumferential direction. The fiber 1b in which the solvent is sufficiently volatilized in the volatilization heating furnace 12 and uniformly in the circumferential direction, the resin composition is sufficiently cured by the curing heating furnace 13, and the glass fiber 1 has a uniform and desired thickness. The resin coating layer is formed. Thus, the thickness of the resin coating layer in the optical fiber 1c can be made uniform in the circumferential direction. Incidentally, if it is possible to uniformly heat the circumferential direction at least 0 ≦ L ≦ L 0 of the section, it is possible to form a resin coating layer of uniform thickness.

さらに、樹脂被覆層の厚さを周方向で均一にするためには、ファイバ1aの中心軸を回転軸として、炉心管21またはヒータ20aに対して相対的に回転させることが好ましく、揮発用加熱炉12内のファイバ1aと揮発用加熱炉12を、ファイバ1aの中心軸を回転軸として相対的に回転させると良い。例えば、図3に示すように、ガイドローラ17のガイド面17aの断面を円弧状としておき、このガイドローラ17を図3中の矢印に示すように揺動させることで、ガイドされる光ファイバ1cの中心軸を移動させることなく回転させて、揮発用加熱炉12内のファイバ1aをその中心軸を回転軸として回転させることができる。また、ファイバ1aを回転させずに、炉心管21またはヒータ20aの少なくとも一方を、ファイバ1aの中心軸を回転軸として、ファイバ1aに対して相対的に回転させても良い。   Furthermore, in order to make the thickness of the resin coating layer uniform in the circumferential direction, it is preferable to rotate the fiber 1a relative to the furnace tube 21 or the heater 20a with the central axis of the fiber 1a as the rotation axis. The fiber 1a in the furnace 12 and the volatilization heating furnace 12 may be rotated relatively with the central axis of the fiber 1a as the rotation axis. For example, as shown in FIG. 3, the cross section of the guide surface 17a of the guide roller 17 is arcuate, and the guide roller 17 is swung as shown by the arrow in FIG. The fiber 1a in the volatilization heating furnace 12 can be rotated with the central axis as a rotation axis. Further, without rotating the fiber 1a, at least one of the core tube 21 or the heater 20a may be rotated relative to the fiber 1a with the central axis of the fiber 1a as the rotation axis.

揮発用加熱炉12の長手方向(ファイバ軸方向)の加熱温度(炉心管温度)分布を一定とし、線引きの速度を変えた場合の実施例と比較例を示す。なお、良否の判断は、スクリーニング時(=1%歪負荷)の破断頻度(破断1回あたりの平均長さ、表2では平均破断長さと記載)に基づいて行う。
炉内温度分布を表1に示し、線速Vfを変更した結果を表2に示す。なお、炉の長さL=1mであり、表1の位置Lは、炉の入口(L=0)からの距離である。また、定数k=0.1である。
An example and a comparative example in which the heating temperature (core tube temperature) distribution in the longitudinal direction (fiber axis direction) of the volatilization heating furnace 12 is made constant and the drawing speed is changed will be shown. The quality is judged based on the rupture frequency (average length per rupture, described as average rupture length in Table 2) at the time of screening (= 1% strain load).
The temperature distribution in the furnace is shown in Table 1, and the results of changing the linear velocity Vf are shown in Table 2. The length L 1 of the furnace is 1 m, and the position L in Table 1 is a distance from the furnace inlet (L = 0). The constant k = 0.1.

Figure 0004877330
Figure 0004877330

Figure 0004877330
Figure 0004877330

溶剤の沸点温度Tは202℃であり、0≦L≦Lの区間での長手方向の平均温度TAVE1とL≦L≦Lの区間での長手方向の平均温度TAVE2が、「TAVE1>T>TAVE2」の関係を満たすのは、線速Vf=4〜6(m/min)の場合であり、平均破断長さは3.5km以上である。これに対して、「TAVE1>T>TAVE2」の関係を満たしていない線速Vf=3,8(m/min)の場合では、平均破断長さは0.9km以下であり、前記関係を満たしている場合と満たしていない場合では、明らかな結果の差が見られる。 The boiling temperature T 0 of the solvent is 202 ℃, 0 ≦ L ≦ L longitudinal average temperature T AVE1 and L 0 ≦ L ≦ L longitudinal average temperature T AVE2 in the interval 1 in the interval of 0, The relationship “T AVE1 > T 0 > T AVE2 ” is satisfied when the linear velocity Vf = 4 to 6 (m / min), and the average breaking length is 3.5 km or more. On the other hand, in the case of the linear velocity Vf = 3, 8 (m / min) that does not satisfy the relationship of “T AVE1 > T 0 > T AVE2 ”, the average breaking length is 0.9 km or less, There is a clear difference between the results when the relationship is met and when it is not.

線引きの速度を一定とし、揮発用加熱炉12の長手方向の加熱温度分布を変えた場合の実施例と比較例を示す。良否の判断は、実施例1と同様である。
4種類の各炉内温度分布を表3に示し、炉内温度分布を変更した結果を表4に示す。なお、炉の長さL=1mであり、表3の位置Lは、炉の入口(L=0)からの距離である。また、定数k=0.1である。線速Vfは5(m/min)である。
Examples and comparative examples in which the drawing speed is constant and the heating temperature distribution in the longitudinal direction of the volatilization heating furnace 12 is changed are shown. The determination of pass / fail is the same as in the first embodiment.
Table 3 shows the four types of furnace temperature distributions, and Table 4 shows the results of changing the furnace temperature distributions. The length L 1 of the furnace is 1 m, and the position L in Table 3 is a distance from the furnace inlet (L = 0). The constant k = 0.1. The linear velocity Vf is 5 (m / min).

Figure 0004877330
Figure 0004877330

Figure 0004877330
Figure 0004877330

溶剤の沸点温度Tは202℃であり、0≦L≦Lの区間での長手方向の平均温度TAVE1とL≦L≦Lの区間での長手方向の平均温度TAVE2が、「TAVE1>T>TAVE2」の関係を満たすのは、温度分布1と4の場合であり、平均破断長さは3.9km以上である。これに対して、「TAVE1>T>TAVE2」の関係を満たしていない温度分布2と3の場合では、平均破断長さは0.8kmであり、前記関係を満たしている場合と満たしていない場合では、明らかな結果の差が見られる。 The boiling temperature T 0 of the solvent is 202 ℃, 0 ≦ L ≦ L longitudinal average temperature T AVE1 and L 0 ≦ L ≦ L longitudinal average temperature T AVE2 in the interval 1 in the interval of 0, The relationship of “T AVE1 > T 0 > T AVE2 ” is satisfied in the case of the temperature distributions 1 and 4, and the average break length is 3.9 km or more. On the other hand, in the case of temperature distributions 2 and 3 that do not satisfy the relationship of “T AVE1 > T 0 > T AVE2 ”, the average fracture length is 0.8 km, and the case where the relationship is satisfied is satisfied. If not, there is a clear difference in results.

このように、実施例1,2に示したように、「TAVE1>T>TAVE2」の関係を満たすことにより、満たしていない従来の例に対してスクリーニング断線頻度を大きく改善できることがわかり、溶剤の揮発を十分に行い良好な樹脂被覆層を形成できるといえる。 Thus, as shown in Examples 1 and 2, it can be seen that satisfying the relationship of “T AVE1 > T 0 > T AVE2 ” can greatly improve the frequency of screening disconnection compared to the conventional example that does not satisfy the relationship. It can be said that a satisfactory resin coating layer can be formed by sufficiently evaporating the solvent.

1 ガラスファイバ
1c 光ファイバ
10 被覆装置
11 ダイス
12 揮発用加熱炉
13 硬化用加熱炉
14,15,16,19 外径測定器
17 ガイドローラ
18 制御部
22 排気部
DESCRIPTION OF SYMBOLS 1 Glass fiber 1c Optical fiber 10 Coating | coated apparatus 11 Dies 12 Heating furnace for volatilization 13 Heating furnace for hardening 14, 15, 16, 19 Outer diameter measuring device 17 Guide roller 18 Control part 22 Exhaust part

Claims (7)

線引きされたガラスファイバの周囲に溶剤を含む樹脂組成物を塗布し、さらに揮発用加熱炉内を通して加熱して前記溶剤を揮発させた後、硬化用加熱炉内を通して加熱して前記樹脂組成物を硬化させて樹脂被覆層を形成する光ファイバの製造方法であって、
前記揮発用加熱炉における樹脂付きファイバ軸方向の加熱温度分布として、
「TAVE1>T>TAVE2」の関係を満たすことを特徴とする光ファイバの製造方法。
但し、
AVE1:0≦L≦Lの区間での長手方向の平均温度(揮発用加熱炉入口をL=0とする)
AVE2:L≦L≦Lの区間での長手方向の平均温度(揮発用加熱炉全長をLとする)
:溶剤沸点
=k×Vf(Vf:線引き速度、k:定数)。
A resin composition containing a solvent is applied around the drawn glass fiber, and further heated through a volatilization heating furnace to volatilize the solvent, and then heated through a curing heating furnace to obtain the resin composition. A method of manufacturing an optical fiber that is cured to form a resin coating layer,
As the heating temperature distribution in the axial direction of the fiber with resin in the heating furnace for volatilization,
An optical fiber manufacturing method satisfying a relationship of “T AVE1 > T 0 > T AVE2 ”.
However,
T AVE1 : Average temperature in the longitudinal direction in the section of 0 ≦ L ≦ L 0 (L = 0 is set as the volatilization furnace inlet)
T AVE2 : Average temperature in the longitudinal direction in the section of L 0 ≦ L ≦ L 1 (the total length of the volatile heating furnace is L 1 )
T 0 : Solvent boiling point L 0 = k × Vf (Vf: drawing speed, k: constant).
前記揮発用加熱炉の下流側であって前記硬化用加熱炉の上流側における前記樹脂付きファイバの外径をモニタして、
モニタした外径測定値と予め設定した外径目標値との偏差に応じて前記揮発用加熱炉の加熱温度を調整することを特徴とする請求項1に記載の光ファイバの製造方法。
Monitor the outer diameter of the resin-attached fiber on the downstream side of the volatile heating furnace and on the upstream side of the curing furnace,
2. The method of manufacturing an optical fiber according to claim 1, wherein the heating temperature of the volatilization heating furnace is adjusted according to a deviation between the monitored outer diameter measurement value and a preset outer diameter target value.
前記ガラスファイバの外径と、前記樹脂付きファイバを前記揮発用加熱炉に通す前後の外径をそれぞれ測定して、それらにより塗布した前記樹脂組成物の体積変化率を算出し、
前記体積変化率が前記樹脂組成物中の前記溶剤の含有割合以上となるように、前記外径目標値を設定することを特徴とする請求項2に記載の光ファイバの製造方法。
Measure the outer diameter of the glass fiber and the outer diameter before and after passing the resin-attached fiber through the volatilization heating furnace, and calculate the volume change rate of the resin composition applied by them,
The optical fiber manufacturing method according to claim 2, wherein the outer diameter target value is set so that the volume change rate is equal to or greater than the content ratio of the solvent in the resin composition.
前記揮発用加熱炉における前記樹脂付きファイバ軸方向の加熱温度を複数領域でそれぞれ調整可能であり、
前記外径測定値と前記外径目標値との偏差に応じて前記揮発用加熱炉における最も出口側の領域の加熱温度を調整することを特徴とする請求項2または3に記載の光ファイバの製造方法。
The heating temperature in the axial direction of the resin-attached fiber in the heating furnace for volatilization can be adjusted respectively in a plurality of regions,
4. The optical fiber according to claim 2, wherein a heating temperature of a region at the most outlet side in the volatile heating furnace is adjusted according to a deviation between the outer diameter measurement value and the outer diameter target value. Production method.
前記揮発用加熱炉の少なくとも0≦L≦Lの区間では、前記樹脂付きファイバを周方向に均一に加熱することを特徴とする請求項1から4の何れか一項に記載の光ファイバの製造方法。 5. The optical fiber according to claim 1, wherein the resin-coated fiber is uniformly heated in a circumferential direction in at least a section of 0 ≦ L ≦ L 0 of the volatilization heating furnace. Production method. 前記樹脂付きファイバと前記揮発用加熱炉における加熱部材を、前記樹脂付きファイバの中心軸を回転軸として相対的に回転させることを特徴とする請求項5に記載の光ファイバの製造方法。   6. The optical fiber manufacturing method according to claim 5, wherein the resin-attached fiber and the heating member in the volatilization heating furnace are relatively rotated with a central axis of the resin-attached fiber as a rotation axis. 前記加熱部材は、炉心管と、前記炉心管を昇温させる発熱部材とを含み、
前記樹脂付きファイバを、前記樹脂付きファイバの中心軸を回転軸として、前記炉心管または前記発熱部材に対して相対的に回転させることを特徴とする請求項5に記載の光ファイバの製造方法。
The heating member includes a core tube, and a heating member that raises the temperature of the core tube,
6. The method of manufacturing an optical fiber according to claim 5, wherein the fiber with resin is rotated relative to the core tube or the heat generating member with a central axis of the fiber with resin as a rotation axis.
JP2009005037A 2009-01-13 2009-01-13 Optical fiber manufacturing method Expired - Fee Related JP4877330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005037A JP4877330B2 (en) 2009-01-13 2009-01-13 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005037A JP4877330B2 (en) 2009-01-13 2009-01-13 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2010163298A JP2010163298A (en) 2010-07-29
JP4877330B2 true JP4877330B2 (en) 2012-02-15

Family

ID=42579785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005037A Expired - Fee Related JP4877330B2 (en) 2009-01-13 2009-01-13 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4877330B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649181B2 (en) * 1986-06-23 1994-06-29 住友電気工業株式会社 Method for producing polyimide-coated linear body
JPS63222048A (en) * 1987-03-12 1988-09-14 Showa Electric Wire & Cable Co Ltd Production of optical fiber core wire or optical fiber unit
JP4935273B2 (en) * 2006-09-26 2012-05-23 住友電気工業株式会社 Method for producing polyimide-coated fiber

Also Published As

Publication number Publication date
JP2010163298A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
KR950000625B1 (en) Process and furnace for heat application
CN109153591B (en) Heating apparatus and method for glass tube manufacturing
CN109641777A (en) The manufacturing method of optical fiber
JP4482954B2 (en) Optical fiber manufacturing method
JP4877330B2 (en) Optical fiber manufacturing method
JPWO2019124033A1 (en) Manufacturing method of glass roving, composite material and glass roving
JP2004155610A (en) Process and apparatus for manufacturing optical fiber
CN111117103A (en) Reinforced wire rod for fused deposition molding and preparation method thereof
US20110174020A1 (en) Optical fiber manufacturing method
JP2019072963A (en) Manufacturing apparatus and manufacturing method of unidirectional prepreg tape
EP3368263B1 (en) Device for impregnation and curing of continuous fibers with resin
JP2000335935A (en) Apparatus and method for producing optical fiber
JP5568956B2 (en) Optical fiber manufacturing method and optical fiber
WO2019182060A1 (en) Optical fiber manufacturing method and manufacturing device
JP4124672B2 (en) Method and apparatus for producing polytetrafluoroethylene porous membrane
JP6516107B2 (en) Coating apparatus, coating method and method of producing enameled wire
JP3430987B2 (en) Manufacturing method of optical fiber
JP2009122229A (en) Metal coating optical fiber and manufacturing method of the same
JP3193694B2 (en) Manufacturing method for tubular objects
JP2003522705A (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
JP4356154B2 (en) Optical fiber manufacturing method and manufacturing apparatus
CN109836054B (en) Resin coating device for optical fiber and method for manufacturing optical fiber
JP2019031035A (en) Production method of heat shrinkable tube
JP2006321687A (en) Method and apparatus for manufacturing optical fiber wire
JP3985138B2 (en) Method and apparatus for manufacturing a quartz glass tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4877330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees