JP4935221B2 - Monolith catalyst production method - Google Patents

Monolith catalyst production method Download PDF

Info

Publication number
JP4935221B2
JP4935221B2 JP2006203028A JP2006203028A JP4935221B2 JP 4935221 B2 JP4935221 B2 JP 4935221B2 JP 2006203028 A JP2006203028 A JP 2006203028A JP 2006203028 A JP2006203028 A JP 2006203028A JP 4935221 B2 JP4935221 B2 JP 4935221B2
Authority
JP
Japan
Prior art keywords
catalyst
monolith
slurry
catalyst particles
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006203028A
Other languages
Japanese (ja)
Other versions
JP2008029910A (en
Inventor
健二 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006203028A priority Critical patent/JP4935221B2/en
Publication of JP2008029910A publication Critical patent/JP2008029910A/en
Application granted granted Critical
Publication of JP4935221B2 publication Critical patent/JP4935221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、触媒粒子を担持したモノリス触媒の製造方法に関する。 The present invention relates to a method of manufacturing a monolithic catalysts carrying the catalyst particles.

従来の排気ガス浄化用モノリス触媒の製造方法に用いられる、モノリス担体の外周部セル内への目詰め方法としては、種々のものが提案されている(例えば、特許文献1参照)。特許文献1では、モノリス担体の外周部セルに目詰め用スラリーを充填し焼成後、触媒成分を担持する方法が開示されている。かかる方法によれば、排ガスが流れない外周部への触媒が担持されるのを回避できるため、貴金属量の使用低減につながる。しかし、製造後のモノリス触媒で問題となる排気抵抗を十分に低減できるかどうかは不明である。
特開平6−63422号公報
Various methods for clogging the monolith carrier into the outer peripheral cell used in the conventional method for producing a monolith catalyst for exhaust gas purification have been proposed (see, for example, Patent Document 1). Patent Document 1 discloses a method in which a slurry for filling is filled in a peripheral cell of a monolith carrier, and after firing, a catalyst component is supported. According to such a method, it is possible to avoid the catalyst being carried on the outer peripheral portion where the exhaust gas does not flow, which leads to a reduction in the amount of noble metal used. However, it is unclear whether the exhaust resistance, which is a problem with the manufactured monolith catalyst, can be sufficiently reduced.
JP-A-6-63422

本発明は、上記従来の課題を解決することを目的とする。すなわち、本発明は、触媒の使用量を低減させながら、低い排気抵抗を維持できるモノリス触媒およびその製造方法を提供することを目的とする。   The object of the present invention is to solve the above-described conventional problems. That is, an object of the present invention is to provide a monolith catalyst that can maintain low exhaust resistance while reducing the amount of catalyst used, and a method for producing the same.

上記課題は、以下の本発明により解決することができる。すなわち、本発明は、モノリス基材に設けられた複数のセルの少なくとも片方の端部から距離t以内の領域に触媒粒子が存在せず、それ以外の領域に触媒粒子が存在し、前記距離tが3mm以上15mm以下であることを特徴とするモノリス触媒である。 The above problems can be solved by the present invention described below. That is, the present invention does not exist at least touch from one end portion in the region within the distance t medium particles of a plurality of cells provided at the monolith substrate, the catalyst particles are present in the other regions, the distance t is 3 mm or more and 15 mm or less, It is a monolith catalyst characterized by the above-mentioned.

上記のような触媒粒子が存在しない領域を設けることで、端部にまで触媒粒子が存在する場合に比べて、排気抵抗を低くすることができる。セルの両端部(排気ガスの入口および出口)では、ガスの流れが乱流になっており、このような領域に触媒粒子が存在すると排気抵抗が上昇してしまうものと考えられる。そこで、本発明では、少なくとも片方の端部、好ましくは、セル両端部の一定領域に触媒粒子が存在しない領域を設けることで、低い排気抵抗を維持している。また、一定領域に触媒粒子が存在しない領域があることで、使用する触媒量を低減させることができる。   By providing the region where the catalyst particles do not exist as described above, it is possible to reduce the exhaust resistance as compared with the case where the catalyst particles exist up to the end. At both ends of the cell (exhaust gas inlet and outlet), the gas flow is turbulent, and it is considered that the exhaust resistance increases if catalyst particles exist in such a region. Therefore, in the present invention, a low exhaust resistance is maintained by providing a region where catalyst particles do not exist in at least one end, preferably a fixed region at both ends of the cell. In addition, since there is a region where the catalyst particles do not exist in a certain region, the amount of catalyst used can be reduced.

前記触媒粒子の粒径は30〜200μmである。好ましくは、50〜150μmとすることで、粒子導入時にセルの目詰まりがなく、図1に示すような触媒層を形成することができる。   The catalyst particles have a particle size of 30 to 200 μm. Preferably, by setting the thickness to 50 to 150 μm, there is no clogging of cells when particles are introduced, and a catalyst layer as shown in FIG. 1 can be formed.

また、本発明は、モノリス基材に設けられた複数のセル内に接着用スラリーを導入し、前記セルの少なくとも片方の端部から距離tの領域に接着用スラリーを除去する溶媒を塗布した後、触媒粒子を前記セル内に導入し、前記距離tが3mm以上15mm以下であることを特徴とするモノリス触媒の製造方法である。 In the present invention, the adhesive slurry is introduced into a plurality of cells provided on the monolith substrate, and a solvent for removing the adhesive slurry is applied to a region at a distance t from at least one end of the cell. , introducing catalyst particles into the cell, the distance t is method for producing a monolithic catalyst according to claim der Rukoto least 15mm below 3 mm.

さらに、本発明は、触媒粒子を含有する接着用スラリーを、モノリス基材に設けられた複数のセル内に導入し、前記セルの少なくとも片方の端部から距離tの領域にある接着用スラリーを除去する溶媒を塗布し、前記距離tが3mm以上15mm以下であることを特徴とするモノリス触媒の製造方法である。 Furthermore, the present invention introduces an adhesive slurry containing catalyst particles into a plurality of cells provided on a monolith substrate, and an adhesive slurry in a region at a distance t from at least one end of the cell. the solvent is removed and the coating, the distance t is method for producing a monolithic catalyst according to claim der Rukoto least 15mm below 3 mm.

上記2つの本発明の製造方法によれば、一定領域に触媒粒子が存在しない領域を効率よく形成することができるため、触媒(特に貴金属)の使用量を低減させながら、低い排気抵抗を維持できるモノリス触媒の製造に最適である。   According to the above two production methods of the present invention, it is possible to efficiently form a region where catalyst particles do not exist in a certain region, so that low exhaust resistance can be maintained while reducing the amount of catalyst (especially noble metal) used. Ideal for the production of monolithic catalysts.

本発明によれば、触媒の使用量を低減させながら、低い排気抵抗を維持できるモノリス触媒およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the monolith catalyst which can maintain low exhaust resistance, reducing the usage-amount of a catalyst, and its manufacturing method can be provided.

[モノリス触媒]
図1に例示するように、本発明のモノリス触媒1は、モノリス基材2に設けられた複数のセル3内に、触媒粒子4が接着用スラリー5を介して担持されている。そして、当該触媒粒子4は、セル3の両端部のそれぞれからの距離tが3mm以内には存在していない。触媒粒子が存在する触媒担持領域が、両端部のそれぞれから3mm以内の領域に存在すると、低い排気抵抗を維持できなくなる。また、両端部にまで触媒粒子が存在しなくとも、3mmを超える領域から存在すれば、実用上問題ないレベルの触媒活性を得ることができる。距離tは、低い排気抵抗と良好な触媒活性とを両立させる観点から、3〜15mmであることが好ましく、5〜10mmであることがより好ましい。
[Monolith catalyst]
As illustrated in FIG. 1, in the monolith catalyst 1 of the present invention, catalyst particles 4 are supported via a bonding slurry 5 in a plurality of cells 3 provided on a monolith substrate 2. The catalyst particles 4 do not exist within a distance t of 3 mm from each of both end portions of the cell 3. If the catalyst-carrying region where the catalyst particles are present is present in a region within 3 mm from each of both ends, low exhaust resistance cannot be maintained. Moreover, even if there is no catalyst particle at both ends, if it exists from a region exceeding 3 mm, it is possible to obtain a level of catalytic activity that is practically acceptable. The distance t is preferably 3 to 15 mm and more preferably 5 to 10 mm from the viewpoint of achieving both low exhaust resistance and good catalytic activity.

なお、セルの排気ガス入口部および出口部は、乱流となっていると考えられるが、特に、入口部ではその影響が大きいと考えられる。従って、入口部から触媒担持領域の端部までの距離tは、出口部から触媒担持領域の端部までの距離tよりも大きいことが好ましい。具体的には、距離tと距離tとの差(t−t)が2〜10mmであることが好ましく、2〜5mmであることがより好ましい。 In addition, although it is thought that the exhaust-gas inlet part and outlet part of a cell become a turbulent flow, it is thought that the influence is large especially in an inlet part. Therefore, it is preferable that the distance t 1 from the inlet portion to the end portion of the catalyst supporting region is larger than the distance t 2 from the outlet portion to the end portion of the catalyst supporting region. Specifically, the difference (t 1 −t 2 ) between the distance t 1 and the distance t 2 is preferably 2 to 10 mm, and more preferably 2 to 5 mm.

触媒粒子の粒径は30〜200μmであることが好ましく、50〜150μmであることがより好ましい。50〜150μmであることで、粒子導入時にセルの目詰まりがなく、図1に示すような触媒層を形成することができる。触媒粒子の形状は、球形であることが好ましい。   The particle size of the catalyst particles is preferably 30 to 200 μm, more preferably 50 to 150 μm. When the particle diameter is 50 to 150 μm, there is no clogging of cells when particles are introduced, and a catalyst layer as shown in FIG. 1 can be formed. The shape of the catalyst particles is preferably spherical.

触媒粒子は、排ガス浄化処理に有効なものであれば特に限定されない。例えば、排ガス浄化処理用の触媒粒子の場合、担体としてはアルミナ、シリカ、セリア、ジルコニア、チタニア等で、触媒金属としては、Pt、Rh、Pdといったものを使用することが好ましい。   The catalyst particles are not particularly limited as long as they are effective for exhaust gas purification treatment. For example, in the case of catalyst particles for exhaust gas purification treatment, it is preferable to use alumina, silica, ceria, zirconia, titania or the like as the carrier and Pt, Rh, Pd as the catalyst metal.

触媒粒子をセル内に固定(担持)するための接着用スラリーとして、無機バインダーとしては酸化物系ゾル、有機バインダーとしてはPVA、水溶性接着剤の混合接着剤に先の担体用無機酸化物微粉末を分散させたもの使用することができる。また、モノリス基材としては、例えば、コージェライト、SiCのような材質からなり、セルの開口は0.7〜1.5mm、セル長さはモノリス基材の長手方向と同一で50〜200mm(具体的には、100mm程度)となっている。モノリス基材の形状は特に限定されず、円柱形、角柱形など種々の形状を採用することができる。   As an adhesive slurry for fixing (supporting) the catalyst particles in the cell, an oxide-based sol as an inorganic binder, PVA as an organic binder, a mixed adhesive of water-soluble adhesive, and an inorganic oxide fine particle for a carrier. A powder in which powder is dispersed can be used. Moreover, as a monolith base material, it consists of materials, such as a cordierite and SiC, for example, the cell opening is 0.7-1.5 mm, and the cell length is the same as the longitudinal direction of a monolith base material, and 50-200 mm ( Specifically, it is about 100 mm. The shape of the monolith substrate is not particularly limited, and various shapes such as a cylindrical shape and a prismatic shape can be adopted.

なお、本発明のモノリス触媒は、セル両端部の一定領域に触媒粒子が存在しない領域があるため、振動や外部からの衝撃を受けた場合でも、触媒粒子が脱落する可能性が低い。これは、より内側に触媒粒子が存在することで、外部からの力の影響が小さくなるためと考えられる。   In the monolith catalyst of the present invention, since there is a region where the catalyst particles do not exist in a certain region at both ends of the cell, the possibility that the catalyst particles fall off even when subjected to vibration or external impact is low. This is presumably because the influence of external force is reduced by the presence of catalyst particles on the inner side.

[モノリス触媒の製造方法]
本発明のモノリス触媒の製造方法としては、第1の製造方法および第2の製造方法が挙げられる。以下、これらについて説明する。
[Production method of monolithic catalyst]
As a manufacturing method of the monolith catalyst of this invention, the 1st manufacturing method and the 2nd manufacturing method are mentioned. Hereinafter, these will be described.

(第1の製造方法)
本発明のモノリス触媒の第1の製造方法は、まず、モノリス基材に設けられた複数のセル内に接着用スラリーを導入する。その後、セルの少なくとも片方の端部(好ましくは両端部のそれぞれ)から距離tの領域に接着用スラリーを除去する溶媒を塗布する。塗布後、触媒粒子をセル内に導入し、接着用スラリーを介してこれをセル上に接着して、本発明のモノリス触媒を製造する。ここで、距離tは3mm以上15mm以下とされる。
(First manufacturing method)
In the first method for producing a monolith catalyst of the present invention, first, an adhesive slurry is introduced into a plurality of cells provided on a monolith substrate. Thereafter, a solvent for removing the slurry for adhesion is applied to a region at a distance t from at least one end (preferably each of both ends) of the cell. After coating, the catalyst particles are introduced into the cell, and this is adhered onto the cell via an adhesive slurry to produce the monolith catalyst of the present invention. Here, the distance t is 3 mm or more and 15 mm or less.

複数のセル内に接着用スラリーを導入するには、図2に示すように、まず、セル3が形成された一方の面が上面となるように容器6’内にモノリス基材2を装填する。その後、上側に容器6を設置する。この状態で、接着用スラリー5を容器6に投入する。投入された接着用スラリー5は、セル3内を通過することで、その一部がセル内壁面に付着することになる。   In order to introduce the slurry for adhesion into a plurality of cells, as shown in FIG. 2, first, the monolith substrate 2 is loaded into the container 6 ′ so that one surface on which the cells 3 are formed becomes the upper surface. . Thereafter, the container 6 is installed on the upper side. In this state, the bonding slurry 5 is put into the container 6. A part of the charged slurry 5 for adhesion adheres to the inner wall surface of the cell by passing through the cell 3.

セル3の両端部のそれぞれから距離tまでの領域接着用スラリーを除去するには、適当な大きさの容器に接着用スラリーを溶解する溶媒(例えば、水)を投入しておき、当該溶媒中にモノリス基材の一端部を距離t浸漬(塗布)する。浸漬後、他方の端部を距離t溶媒中に浸漬する。浸漬時間は、接着用スラリーと溶媒との親和性にもよるが、3分程度とすることが好ましい。また、必要に応じて、溶媒を加温しておいてもよい。 In order to remove the adhesive slurry in the region from each of both ends of the cell 3 to the distance t, a solvent (for example, water) that dissolves the adhesive slurry is put into an appropriately sized container, and the solvent One end of the monolith substrate is immersed (applied) at a distance t . After the immersion, the other end is immersed in a solvent at a distance t . The immersion time is preferably about 3 minutes, although it depends on the affinity between the adhesive slurry and the solvent. Moreover, you may heat a solvent as needed.

塗布後のモノリス基材は、セルの両端部のそれぞれから距離t未満の領域に接着用スラリーが存在しないため、当該領域には、触媒粒子が担持されることはない。触媒粒子の導入方法としては、例えば、モノリスの下端を閉じ、モノリスを回転または振動させながら上端より導入し、その後、上端から、または、下端を開放し余分な粒子を排出すればよい。 Since the monolith substrate after application does not have the slurry for adhesion in a region less than the distance t from each of both end portions of the cell, catalyst particles are not supported in the region. As a method for introducing the catalyst particles, for example, the lower end of the monolith is closed, the monolith is introduced from the upper end while rotating or vibrating, and then the upper end or the lower end is opened to discharge excess particles.

触媒粒子を導入した後は、300〜600℃で焼成し、必要に応じて水素還元処理を施して、モノリス触媒を製造する。   After introducing the catalyst particles, firing is performed at 300 to 600 ° C., and hydrogen reduction treatment is performed as necessary to produce a monolithic catalyst.

(第2の製造方法)
本発明のモノリス触媒の第2製造方法は、まず、触媒粒子を含有する接着用スラリーを、モノリス基材に設けられた複数のセル内に導入する。導入後、セルの少なくとも片方の端部(好ましくは両端部のそれぞれ)から距離tの領域にある接着用スラリーを除去する溶媒を塗布して、本発明のモノリス触媒を製造する。ここで、距離tは3mm以上15mm以下とされる。
(Second manufacturing method)
In the second method for producing a monolith catalyst according to the present invention, first, a slurry for adhesion containing catalyst particles is introduced into a plurality of cells provided on a monolith substrate. After the introduction, the monolith catalyst of the present invention is manufactured by applying a solvent that removes the slurry for adhesion in a region at a distance t from at least one end (preferably both ends) of the cell. Here, the distance t is 3 mm or more and 15 mm or less.

接着用スラリーに含有される触媒粒子は、10〜50質量%とすることが好ましく、20〜30質量%とすることがより好ましい。モノリス基材の複数のセル内に、触媒粒子含有の接着用スラリーを導入するには、第1の製造方法と同様に、図2に示す装置を使用すればよい。導入後は、第1の製造方法と同様にして、セルの両端部のそれぞれから距離tの領域にある接着用スラリーを除去する溶媒を塗布し、モノリス触媒を製造する。当該製造方法によれば、触媒粒子と接着用スラリーとを同時に導入するため、工程を簡略化できるメリットがある。 The catalyst particles contained in the adhesive slurry are preferably 10 to 50% by mass, and more preferably 20 to 30% by mass. In order to introduce the slurry for adhesion containing catalyst particles into the plurality of cells of the monolith substrate, the apparatus shown in FIG. 2 may be used as in the first production method. After the introduction, in the same manner as in the first production method, a solvent for removing the slurry for adhesion in the region at a distance t from each of both ends of the cell is applied to produce a monolith catalyst. According to the manufacturing method, since the catalyst particles and the slurry for adhesion are introduced simultaneously, there is an advantage that the process can be simplified.

第1の製造方法および第2の製造方法では共に、接着用スラリーや溶媒を再利用することができる。例えば、図2に示すような装置で使用された接着用スラリーで、付着に寄与しなかったものは、容器の下方に溜まるが、これを接着用スラリーとして再び使用することができる。また、溶媒で接着用スラリー等を除去した後も、除去された接着用スラリー等と溶媒とを分離することで、それぞれを再利用することができる。このように本発明の製造方法は、廃棄物ゼロにも寄与できるメリットがある。   In both the first manufacturing method and the second manufacturing method, the adhesive slurry and the solvent can be reused. For example, an adhesive slurry used in an apparatus as shown in FIG. 2 that does not contribute to adhesion accumulates below the container, but can be used again as an adhesive slurry. Further, even after removing the bonding slurry and the like with a solvent, each of them can be reused by separating the removed bonding slurry and the solvent. Thus, the production method of the present invention has an advantage that it can contribute to zero waste.

以下、参考例により本発明を具体的に説明する。
参考例1]
(触媒粒子の製造)
γ−アルミナ微粉末(平均粒径0.4μm)を造粒した後、篩い分けにより分級を行って平均粒径100μm(粒径50〜120μm)のアルミナ粒子を得た。塩化白金酸を前駆体として、含浸法にてアルミナ粒子上に白金を担持し、450℃で焼成後、触媒粒子(Pt:1質量%)を製造した。
Hereinafter, the present invention will be specifically described with reference examples .
[ Reference Example 1]
(Manufacture of catalyst particles)
After granulating γ-alumina fine powder (average particle size 0.4 μm), classification was performed by sieving to obtain alumina particles having an average particle size of 100 μm (particle size 50 to 120 μm). Using chloroplatinic acid as a precursor, platinum was supported on alumina particles by an impregnation method, and calcined at 450 ° C. to produce catalyst particles (Pt: 1% by mass).

(接着用スラリーの製造)
γ−アルミナ微粉末(平均粒径0.4μm)50gと、イオン交換水600gとを混合し、さらに、アルミナゾル(日産化学株式会社製のアルミナゾルAS−200)を、当該アルミナゾルがアルミナ微粉末およびイオン交換水に対し5質量%となるように混合して、接着用スラリーを製造した。
(Manufacture of slurry for bonding)
50 g of γ-alumina fine powder (average particle size 0.4 μm) and 600 g of ion-exchanged water are mixed, and further, alumina sol (Alumina sol AS-200 manufactured by Nissan Chemical Co., Ltd.) is mixed. Mixing was performed so as to be 5% by mass with respect to the exchanged water to produce an adhesive slurry.

(接着用スラリーの塗布および一部除去)
コージェライト質のモノリス基材(直径:103mm、長さ:105mm、セル密度:400セル/inch、セルの開口:1.1mm)を準備した。このモノリス基材のセルが形成されている一方の面を上面として、当該上面から接着用スラリーを全量導入(塗布)した。その後、余剰の接着用スラリーを除去するために、エアーでブローを行った。
(Application of adhesive slurry and partial removal)
A cordierite monolith substrate (diameter: 103 mm, length: 105 mm, cell density: 400 cells / inch 2 , cell opening: 1.1 mm) was prepared. With one surface on which the cells of the monolith substrate were formed as the upper surface, the entire amount of the slurry for adhesion was introduced (applied) from the upper surface. Then, in order to remove the surplus bonding slurry, air was blown.

セルが形成されている一方の面を下面とし、セルの端部から3mmの深さまで水に浸漬し接着用スラリーを除去した。その後反転して、上部からエアーブローを行った。次に、他方の面が下面となるようにして、上記と同様に、セルの端部から3mmの深さまで水に浸漬し接着用スラリーを除去しエアーブローを行った。   One surface on which the cell was formed was used as the lower surface, and the slurry for adhesion was removed by dipping in water to a depth of 3 mm from the end of the cell. Thereafter, it was inverted and air blow was performed from the top. Next, in the same manner as described above, the other surface was the lower surface, and was immersed in water to a depth of 3 mm from the end of the cell to remove the slurry for adhesion, and air blowing was performed.

(触媒粒子の導入)
接着用スラリーを一部除去した上記モノリス基材の各セル内に、触媒粒子をモノリスの下端をゴム板で封止して試験管ミキサーで加振しながら触媒粒子をセルいっぱいに投入し、その後ゴム板を除去し余分な粒子を排出することにより導入した。触媒粒子は、接着用スラリーを介して固定化され、接着用スラリーのない場所(両端部のそれぞれから3mmまでの領域)には、触媒粒子は存在しなかった。触媒粒子を固定化した後、120℃で乾燥を行い、500℃で焼成を行ってモノリス触媒を製造した。
上記のような製造方法により、さらに29個のモノリス触媒を製造した。
(Introduction of catalyst particles)
In each cell of the monolith substrate from which a part of the slurry for adhesion has been removed, the catalyst particles are filled into the cell while the lower end of the monolith is sealed with a rubber plate and vibrated with a test tube mixer. It was introduced by removing the rubber plate and discharging excess particles. The catalyst particles were fixed via the adhesive slurry, and no catalyst particles existed in the place where there was no adhesive slurry (a region from each of both ends to 3 mm). After immobilizing the catalyst particles, the catalyst particles were dried at 120 ° C. and calcined at 500 ° C. to produce a monolith catalyst.
In addition, 29 monolith catalysts were produced by the production method as described above.

製造したモノリス触媒について、それぞれの触媒量を測定し平均値を算出したところ70gであり、最大値は73g、最小値は68gであった。なお、触媒粒子を固定化した後の取り扱いでは、当該触媒粒子の脱落(剥離)は無かった。   About the manufactured monolith catalyst, when each catalyst amount was measured and the average value was computed, it was 70g, the maximum value was 73g and the minimum value was 68g. In the handling after fixing the catalyst particles, the catalyst particles did not fall off (peel).

参考例2〜5
触媒粒子の存在しない領域を、両端部のそれぞれから5mmまでの領域(参考例2)、10mmまでの領域(参考例3)、15mmまでの領域(参考例4)、20mmまでの領域(参考例5)とした以外は、参考例1と同様にしてモノリス触媒30個を製造した。なお、触媒粒子を固定化した後の取り扱いでは、いずれの参考例でも、当該触媒粒子の脱落は無かった。
[ Reference Examples 2 to 5 ]
The area where the catalyst particles do not exist is the area up to 5 mm from each end ( Reference Example 2), the area up to 10 mm ( Reference Example 3), the area up to 15 mm ( Reference Example 4), and the area up to 20 mm ( Reference Example ). 30 monolith catalysts were produced in the same manner as in Reference Example 1 except that 5) was used. In the handling after the catalyst particles were fixed, the catalyst particles did not fall off in any of the reference examples .

[比較例1,2]
触媒粒子の存在しない領域を、両端部のそれぞれから0mm(比較例1)、2mmまでの領域(比較例2)とした以外は、参考例1と同様にしてモノリス触媒30個を製造した。なお、触媒粒子を固定化した後の取り扱いでは、いずれの比較例でも、下記表1の通り、当該触媒粒子の脱落が見られた。
[Comparative Examples 1 and 2]
Thirty monolith catalysts were produced in the same manner as in Reference Example 1 except that the area where the catalyst particles were not present was changed to 0 mm (Comparative Example 1) and 2 mm (Comparative Example 2) from both ends. In addition, in the handling after immobilizing the catalyst particles, as shown in Table 1 below, dropping of the catalyst particles was observed in any of the comparative examples.

[評価]
(触媒活性の比較)
排気量2リットルのガソリンエンジンの排気ガスを参考例1〜5および比較例1,2の各30個のモノリス触媒のセル中へ通過させて、触媒のエージング処理を行った。この際、触媒入口のガス温度は850℃とした。次に、同じエンジンで、触媒入口のガス温度を250℃から450℃まで上昇(昇温速度:10℃/min)させ、入口および出口のそれぞれのHC濃度を測定し、これらの濃度から平均HC浄化率(=(入口HC濃度−出口HC濃度)/入口HC濃度)を算出した。そして、HC浄化率が50%となる温度を求めた。結果を下記表1に示す。
[Evaluation]
(Comparison of catalytic activity)
Exhaust gas from a gasoline engine with a displacement of 2 liters was passed through the 30 monolith catalyst cells of Reference Examples 1 to 5 and Comparative Examples 1 and 2 to perform aging treatment of the catalyst. At this time, the gas temperature at the catalyst inlet was 850 ° C. Next, with the same engine, the gas temperature at the catalyst inlet was increased from 250 ° C. to 450 ° C. (temperature increase rate: 10 ° C./min), and the HC concentrations at the inlet and outlet were measured. The purification rate (= (inlet HC concentration−outlet HC concentration) / inlet HC concentration) was calculated. The temperature at which the HC purification rate was 50% was determined. The results are shown in Table 1 below.

(触媒の排気抵抗)
室温(25℃)で、5m/minの流量での空気を、参考例1〜5および比較例1,2のモノリス触媒のセル中へ通過させて、空気を通過させる前後の差圧を測定し、これを排気抵抗(圧損)とした。結果を下記表1に示す。
(Exhaust resistance of catalyst)
At room temperature (25 ° C.), air at a flow rate of 5 m 3 / min is passed through the cells of the monolith catalysts of Reference Examples 1 to 5 and Comparative Examples 1 and 2, and the differential pressure before and after the air is passed is measured. This was defined as exhaust resistance (pressure loss). The results are shown in Table 1 below.

Figure 0004935221
Figure 0004935221

上記表1より、参考例1〜5のモノリス触媒では、浄化性能を発揮する温度のばらつきが小さく、触媒特性において各ロット間が安定していることがわかる。また、圧損は、触媒粒子の存在しない領域がセルの端部から大きくなるに伴い低くなっており、いずれの参考例でも圧損は低かった。なお、圧損は、3.5を超えると出力低下、燃費悪化といった問題が発生しやすい。 From the above Table 1, it can be seen that in the monolith catalysts of Reference Examples 1 to 5 , the variation in temperature at which the purification performance is exhibited is small, and the lots are stable in the catalyst characteristics. Further, the pressure loss was reduced as the area where the catalyst particles were not present increased from the end of the cell, and the pressure loss was low in any of the reference examples . When the pressure loss exceeds 3.5, problems such as a decrease in output and a deterioration in fuel consumption are likely to occur.

本発明のモノリス触媒を例示する概略断面図である。It is a schematic sectional drawing which illustrates the monolith catalyst of this invention. モノリス基材のセルに接着用スラリーを投入させる状態を示す説明断面図である。It is explanatory sectional drawing which shows the state which throws the slurry for adhesion | attachment into the cell of a monolith base material.

符号の説明Explanation of symbols

1・・・モノリス触媒
2・・・モノリス基材
3・・・セル
4・・・触媒粒子
5・・・接着用スラリー
6・・・容器(上側)
6’・・・容器(下側)
t・・・距離
DESCRIPTION OF SYMBOLS 1 ... Monolith catalyst 2 ... Monolith base material 3 ... Cell 4 ... Catalyst particle 5 ... Slurry for adhesion 6 ... Container (upper side)
6 '... container (lower side)
t ... distance

Claims (1)

触媒粒子を含有する接着用スラリーを、モノリス基材に設けられた複数のセル内に導入し、前記セルの少なくとも片方の端部から距離tの領域にある接着用スラリーを除去する溶媒を塗布し、前記距離tが3mm以上15mm以下であることを特徴とするモノリス触媒の製造方法。   The slurry for adhesion containing catalyst particles is introduced into a plurality of cells provided on the monolith substrate, and a solvent for removing the slurry for adhesion in the region at a distance t from at least one end of the cell is applied. The method for producing a monolithic catalyst, wherein the distance t is 3 mm or more and 15 mm or less.
JP2006203028A 2006-07-26 2006-07-26 Monolith catalyst production method Expired - Fee Related JP4935221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203028A JP4935221B2 (en) 2006-07-26 2006-07-26 Monolith catalyst production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203028A JP4935221B2 (en) 2006-07-26 2006-07-26 Monolith catalyst production method

Publications (2)

Publication Number Publication Date
JP2008029910A JP2008029910A (en) 2008-02-14
JP4935221B2 true JP4935221B2 (en) 2012-05-23

Family

ID=39119885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203028A Expired - Fee Related JP4935221B2 (en) 2006-07-26 2006-07-26 Monolith catalyst production method

Country Status (1)

Country Link
JP (1) JP4935221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498450B (en) * 2012-11-22 2015-09-01 Nat Applied Res Laboratories Closed flow channel reaction tank system for manufacturing catalyst or support material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583626A (en) * 1981-06-27 1983-01-10 Toyota Motor Corp Monolithic catalyst for cleaning exhaust gas
JPS6118439A (en) * 1984-07-04 1986-01-27 Toyota Motor Corp Manufacture of monolithic catalyst
JPS61185339A (en) * 1985-02-13 1986-08-19 Toyota Motor Corp Method for supporting catalytic metal of monolithic catalyst for purifying exhaust gas
JP3281087B2 (en) * 1993-02-10 2002-05-13 日本碍子株式会社 Exhaust gas purification catalyst
JP2003193820A (en) * 2001-09-13 2003-07-09 Hitachi Metals Ltd Ceramic honeycomb filter
JP3879988B2 (en) * 2002-05-08 2007-02-14 トヨタ自動車株式会社 Exhaust gas purification catalyst and production method thereof
JP4426381B2 (en) * 2004-06-15 2010-03-03 日本碍子株式会社 Honeycomb structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008029910A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP5150719B2 (en) Method for introducing a catalyst coating into the pores of a ceramic honeycomb flow body
JP5447758B2 (en) Method for coating a wall flow filter with a coating composition
US8278236B2 (en) Method for catalytically coating ceramic honeycomb bodies
JP4516017B2 (en) Ceramic honeycomb structure
EP1839748B1 (en) Honeycomb catalytic body
JP4275406B2 (en) Catalyst support filter
JP4216174B2 (en) COATING MATERIAL, CERAMIC HONEYCOMB STRUCTURE, AND ITS MANUFACTURING METHOD
JP5697299B2 (en) Catalytic converter
JP6572675B2 (en) Exhaust gas purification catalyst
US20070140928A1 (en) Low pressure drop coated diesel exhaust filter
JPWO2007026844A1 (en) Honeycomb catalyst body, precoat carrier for manufacturing honeycomb catalyst body, and method for manufacturing honeycomb catalyst body
JP5775512B2 (en) Honeycomb filter and method for manufacturing honeycomb filter
WO2007026806A1 (en) Honeycomb catalyst body and process for producing the same
JP2004300951A (en) Catalyst-carrying filter, exhaust emission control system using the same, and catalyst body
JPH09173866A (en) Diesel exhaust gas purifying filter
JPH09220423A (en) Diesel exhaust gas purifying filter and production thereof
JP2003334457A (en) Catalyst body and its manufacturing method
WO2001068219A1 (en) Ceramic filter and filter device
JP2004330118A (en) Filter for clarifying exhaust gas
JP4935221B2 (en) Monolith catalyst production method
JP5227617B2 (en) Honeycomb filter
JP5232368B2 (en) Honeycomb structure for slurry coating
JP2007136357A (en) Manufacturing method of catalyst for purification of exhaust gas
JP3879988B2 (en) Exhaust gas purification catalyst and production method thereof
JP2007275709A (en) Wash coat slurry and method for manufacturing exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4935221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees