JP4933904B2 - Composite material having optical anisotropy and method for manufacturing electronic device - Google Patents

Composite material having optical anisotropy and method for manufacturing electronic device Download PDF

Info

Publication number
JP4933904B2
JP4933904B2 JP2007009459A JP2007009459A JP4933904B2 JP 4933904 B2 JP4933904 B2 JP 4933904B2 JP 2007009459 A JP2007009459 A JP 2007009459A JP 2007009459 A JP2007009459 A JP 2007009459A JP 4933904 B2 JP4933904 B2 JP 4933904B2
Authority
JP
Japan
Prior art keywords
magnetic field
optical
composite material
particles
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007009459A
Other languages
Japanese (ja)
Other versions
JP2008176065A (en
Inventor
太一 上村
雅夫 杉谷
一幸 小島
幹彦 壷内
昌哉 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Chemical and Co Ltd
Original Assignee
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Chemical and Co Ltd filed Critical Kyoritsu Chemical and Co Ltd
Priority to JP2007009459A priority Critical patent/JP4933904B2/en
Publication of JP2008176065A publication Critical patent/JP2008176065A/en
Application granted granted Critical
Publication of JP4933904B2 publication Critical patent/JP4933904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material having predetermined optical characteristics such as optical rotation property, reflection characteristics of energy rays and others without having a complicated manufacturing process, and to provide an electronic device using the composite material. <P>SOLUTION: The method for manufacturing a composite material having predetermined optical anisotropy such as optical rotation, polarization property and others includes steps of dispersing particles having predetermined optical characteristics such as optical rotation, reflection characteristics of energy rays and others in a substance having fluidity that can be solidified, applying at least either a magnetic field or an electric field to the particles to align and solidifying the substance. The electronic device uses the above composite material. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、旋光性やエネルギー線反射特性を始めとする所定の光学特性を有する粒子が配向することにより、旋光性や偏光性を始めとする所定の光学異方性が発現している複合材料を製造する方法、及びそのような複合材料を用いた電子装置を製造する方法に関する。   The present invention relates to a composite material in which predetermined optical anisotropy such as optical rotation and polarization is developed by orienting particles having predetermined optical characteristics such as optical rotation and energy ray reflection characteristics. And a method of manufacturing an electronic device using such a composite material.

異方性、特に光学異方性を有する材料として、例えば、従来から、旋光性を有する結晶として知られる水晶や、旋光性を有する分子を配向させた樹脂(例えば、特許文献2および3参照)や、旋光性を有する結晶を樹脂中に配向させた複合材料(例えば、特許文献4参照)などが提案されている。   As materials having anisotropy, particularly optical anisotropy, for example, conventionally known crystals as optically-rotating crystals and resins having oriented optically-rotating molecules (see, for example, Patent Documents 2 and 3) In addition, a composite material in which crystals having optical activity are oriented in a resin (see, for example, Patent Document 4) has been proposed.

また、このような旋光性を有する材料を用いた電子装置として、例えば、液晶ディスプレイ用の光学補償板(例えば、非特許文献1参照)が提案されている。
特願2004−285401(P2004−285401) 特願2005−97090(P2005−97090) 特願2003−394375(P2003−394375) よくわかる最新ディスプレイ技術の基本と仕組み、西久保靖彦著、株式会社秀和システム出版、2003年12月
In addition, as an electronic device using such a material having optical rotation, for example, an optical compensator for a liquid crystal display (see, for example, Non-Patent Document 1) has been proposed.
Japanese Patent Application No. 2004-285401 (P2004-285401) Japanese Patent Application No. 2005-97090 (P2005-97090) Japanese Patent Application No. 2003-394375 (P2003-394375) Basics and mechanism of the latest display technology well understood, written by Akihiko Nishikubo, Hidekazu System Publishing Co., Ltd., December 2003

しかし、旋光性を有する材料として水晶などの光学結晶を用いる場合には、大きいものを得るのは難しくまた高価であるため、実際に用いることは困難である。また、特許文献1に記載された方法は、高分子が液晶性を示す温度範囲で配向させる必要があるため、温度のコントロールを正確に行う必要があり、工業的には製造が困難である。また、特許文献2に記載された方法は、超臨界状態で分子を配向させる必要があり、試料の作製に高温高圧が必要になるので、工業的には製造が困難である。また、特許文献3に記載された方法では、延伸した方向に対してしか結晶を配向できず、得られた旋光性を有する材料を所望のデバイスに直接形成することは困難であり、張り合わせる工程が別途必要になる。従って、製造コストが高くなるという問題を有する。   However, when an optical crystal such as quartz is used as a material having optical rotation, it is difficult to obtain a large crystal and it is difficult to actually use it. Moreover, since the method described in Patent Document 1 needs to be aligned in a temperature range where the polymer exhibits liquid crystallinity, it is necessary to accurately control the temperature, and it is difficult to manufacture industrially. In addition, the method described in Patent Document 2 requires molecules to be oriented in a supercritical state, and high temperature and high pressure are required for the preparation of the sample, which makes it difficult to manufacture industrially. Further, in the method described in Patent Document 3, crystals can be oriented only with respect to the stretched direction, and it is difficult to directly form the obtained optically-rotating material on a desired device. Is required separately. Therefore, there is a problem that the manufacturing cost is increased.

一方、非特許文献1には、さまざまな製造方法で作製された光学フィルムを光学補償板として応用される例が挙げられているが、フィルムをガラス基板に張り合わせる工程が必要であり、製造工程が複雑で、製造コストが高くなるという問題点を有する。   On the other hand, Non-Patent Document 1 gives an example in which an optical film produced by various manufacturing methods is applied as an optical compensator, but a process of attaching the film to a glass substrate is necessary, and the manufacturing process However, the manufacturing cost is high.

従って、本発明の目的は、上記の課題を解決して、複雑な製造工程を有さず、光学的な異方性の方向を自由にコントロールできる旋光性や偏光性を始めとする所定の光学異方性を有する複合材料を製造する方法を提供し、またその技術を用いた電子装置を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide a predetermined optical system such as optical rotation and polarization that can freely control the direction of optical anisotropy without a complicated manufacturing process. It is an object of the present invention to provide a method of manufacturing a composite material having anisotropy and to provide an electronic device using the technique.

本発明者らは、上記問題を解決するために鋭意研究を行った結果、流動性がある材料中に浮遊させた、旋光性やエネルギー線反射特性を始めとする所定の光学特性を有する微粒子(以下、「光学特性粒子」という)を、磁場及び電場の少なくとも一方を用いて所望の方向に配向させることを知見し、本発明を完成させるに至った。更に、ループ状の支持体間に成型した膜中に分散させた微粒子を、磁場及び電場の少なくとも一方を用いて所望の方向に配向させることにより、ナノレベルの薄さの旋光性や偏光性を始めとする所定の光学異方性を有するフィルムを作製できることを知見し、本発明を完成させるに至った。
更に、これら微粒子を磁場配向させる際に、電子装置の位置合わせを同時に行えることを知見し、本発明を完成させるに至った。
As a result of intensive studies to solve the above problems, the present inventors have found that fine particles having predetermined optical characteristics such as optical rotation and energy ray reflection characteristics suspended in a fluid material (see FIG. Hereinafter, the inventors have found that the “optically characteristic particles” are oriented in a desired direction using at least one of a magnetic field and an electric field, and have completed the present invention. Furthermore, by aligning the fine particles dispersed in the film formed between the loop-shaped supports in a desired direction using at least one of a magnetic field and an electric field, the optical rotation and polarization of nano-level thinness can be achieved. It was discovered that a film having a predetermined optical anisotropy at the beginning could be produced, and the present invention was completed.
Furthermore, when these fine particles are magnetically oriented, it has been found that the electronic device can be aligned at the same time, and the present invention has been completed.

本発明の旋光性や偏光特性を始めとする所定の光学異方性を有する複合材料(以下、「光学異方性複合材料」という)の製造方法の1つの実施態様は、固化可能な流動性を有する物質中に分散させた磁化率及び/または誘電率に異方性がある光学特性粒子を、静磁場及び静電場の少なくとも一方を用いて、最も磁場または電場配向しやすい方向に光学特性粒子を配向させ(図1参照)、次いで流動性を有する物質を固化させることによって、固化後の複合材料に旋光性や偏光性を始めとする所定の光学異方性を付与することを特徴とする。   One embodiment of the method for producing a composite material having predetermined optical anisotropy including the optical rotation and polarization characteristics of the present invention (hereinafter referred to as “optically anisotropic composite material”) is solidified fluidity. An optical characteristic particle having anisotropy in magnetic susceptibility and / or dielectric constant dispersed in a substance having an optical characteristic particle in a direction in which the magnetic field or the electric field is most easily aligned using at least one of a static magnetic field and an electrostatic field (See FIG. 1), and then solidifying a material having fluidity to give predetermined optical anisotropy such as optical rotation and polarization to the solidified composite material .

本発明の光学異方性複合材料の製造方法のその他の実施態様は、固化可能な流動性を有する物質中に分散させた磁化率及び/または誘電率に異方性がある光学特性粒子を、回転磁場及び回転電場の少なくとも一方を用いることにより、その回転軸方向に最も磁場または電場配向しにくい方向に粒子を配向させ(図2参照)、次いで流動性を有する物質を固化させることによって、硬化後の複合材料に旋光性や偏光特性を始めとする所定の光学異方性を付与することを特徴とする。   According to another embodiment of the method for producing an optically anisotropic composite material of the present invention, optically characteristic particles having anisotropy in magnetic susceptibility and / or dielectric constant dispersed in a substance having fluidity that can be solidified are obtained. By using at least one of a rotating magnetic field and a rotating electric field, the particles are oriented in the direction in which the magnetic field or electric field is most difficult to be oriented in the direction of the rotation axis (see FIG. 2), and then the material having fluidity is solidified. It is characterized by imparting predetermined optical anisotropy including optical rotation and polarization characteristics to the later composite material.

本発明の光学異方性複合材料の製造方法のもう一つの実施態様は、固化可能な流動性を有する物質中に分散させた磁化率及び/または誘電率に異方性がある光学特性粒子を、回転磁場または回転電場の少なくとも一方を用いる場合において、回転速度が1回転のうち1/4回転で速く、次の1/4回転で遅く、次の1/4回転で速く、次の1/4回転で連続的に遅くなるような周期的に回転速度が時間変動する磁場及び/または電場を用いることによって、その回転軸方向である最も磁場または電場配向しにくい方向に粒子を配向させると同時に、回転が遅くなる方向である最も磁場または電場で配向しやすい方向に粒子を配向させ(図3参照)、次いで流動性を有する物質を固化させることによって、硬化後の複合材料に旋光性または偏光特性を始めとする所定の光学異方性を付与することを特徴とする。   In another embodiment of the method for producing an optically anisotropic composite material of the present invention, there is provided an optical characteristic particle having anisotropy in magnetic susceptibility and / or dielectric constant dispersed in a solidified fluid material. In the case of using at least one of a rotating magnetic field and a rotating electric field, the rotation speed is fast at 1/4 rotation out of one rotation, slow at the next 1/4 rotation, fast at the next 1/4 rotation, By using a magnetic field and / or an electric field whose rotation speed periodically varies so as to be continuously slowed by four rotations, the particles are oriented in the direction that is most difficult to orient the magnetic field or electric field that is the direction of the rotation axis. , By rotating the particles in the direction in which rotation is slowest, the direction in which they are most likely to be aligned in a magnetic field or electric field (see FIG. 3), and then solidifying the flowable substance, Places including characteristics It is characterized by imparting a constant optical anisotropy.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、固化可能な流動性を有する物質中に分散させた磁化率及び/または誘電率に異方性がある光学特性粒子を回転磁場及び/または回転電場を用いることによって、その回転軸方向である最も磁場または電場配向しにくい方向に粒子を配向させ、次いで回転磁場及び/または回転電場による配向が緩和しないうちに、その回転軸に直交する方向から静磁場及び/または静電場を印加することによって、光学特性粒子の最も磁場または電場配向しにくい軸を回転軸方向に配向させ、最も磁場または電場配向しやすい軸を静磁場または静電場を印加した方向に配向させ、次いで流動性を有する物質を固化させることによって、硬化後の複合材料に旋光性や偏光性を始めとする所定の光学異方性を付与することを特徴とする。   In another embodiment of the method for producing an optically anisotropic composite material of the present invention, optically characteristic particles having anisotropy in magnetic susceptibility and / or dielectric constant dispersed in a solidifiable fluid substance are rotated. By using the magnetic field and / or the rotating electric field, the particles are oriented in the direction of the rotation axis that is most difficult to orient the magnetic field, and the rotation axis before the orientation by the rotating magnetic field and / or the rotating electric field is not relaxed. By applying a static magnetic field and / or electrostatic field from a direction perpendicular to the axis, the axis of the optical characteristic particle that is most difficult to orient in the magnetic field is oriented in the direction of the rotation axis, and the axis that is most easily oriented to the magnetic field or electric field is oriented in the static magnetic field or By aligning the electrostatic field in the applied direction and then solidifying the material with fluidity, the cured composite material has a predetermined optical property such as optical rotation and polarization. Characterized in that it imparts isotropic.

ここで、磁気異方性とは、外部磁場によって励起される磁化に対して物質内で異方性を有することをさし、磁場内では磁気的相互作用によりトルクを発生し、よりエネルギー的に安定な方向に回転する。また、誘電率異方性も同様であり、誘電率異方性とは、外部電場によって励起される分極に対して物質内で異方性を有することをさし、電場内では電気的相互作用によりトルクを発生し、よりエネルギー的に安定な方向に回転する。この場合、分子構造に異方性を有する物質は、磁気的及び電気的にも異方性を有し、例えば、延伸して作った繊維は分子鎖が延伸方向に並んでいるため、繊維方向(//)とそれに垂直な方向(⊥)では、磁化率及び誘電率が異なる。つまり、磁気異方性及び誘電率異方性を有する物質は、物質内の電子状態に異方性があり、上述したような繊維の場合、延伸した方向に分子が並ぶことで、結合を通じた電子の分布に異方性が生じる。   Here, magnetic anisotropy means that there is anisotropy in a substance with respect to magnetization excited by an external magnetic field, and torque is generated by magnetic interaction in the magnetic field, resulting in more energy. Rotates in a stable direction. The same applies to dielectric anisotropy. Dielectric anisotropy refers to anisotropy in a substance with respect to polarization excited by an external electric field. Generates torque and rotates in a more energetically stable direction. In this case, the substance having anisotropy in the molecular structure also has anisotropy both magnetically and electrically. For example, in the fiber made by stretching, the molecular chain is aligned in the stretching direction. The magnetic susceptibility and dielectric constant differ between (//) and the direction perpendicular to it (垂直). In other words, a substance having magnetic anisotropy and dielectric anisotropy has anisotropy in the electronic state in the substance, and in the case of the fiber as described above, molecules are aligned in the stretched direction, and the bond is made through the bond. Anisotropy occurs in the electron distribution.

また、結晶構造に異方性を有する物質も電子状態に異方性を有するため磁場及び電場内で配向する。さらに、磁気的及び電気的な異方性が無い場合でも、物質の形状に異方性を有する場合は配向する。本発明では、このような物質も、異方性を有する物質(部材、材料)と定義する。また、これ以外にも、粘土や、グラファイトなどの層状化合物も磁気及び誘電率異方性が大きい物質として例示でき、適切な磁場または電場を印加することによって、任意の方向に部材を駆動することができる。また、透明な粘土層状化合物間に有機物をインターカレーションした複合材料も、複合後の有機物の異方性を加味した磁化率や誘電率の異方性に対応した方向に配向させることができる。   In addition, substances having anisotropy in the crystal structure also have anisotropy in the electronic state, and therefore are oriented in a magnetic field and an electric field. Further, even when there is no magnetic and electrical anisotropy, the material is oriented if it has anisotropy. In the present invention, such a substance is also defined as a substance (member, material) having anisotropy. In addition, laminar compounds such as clay and graphite can be exemplified as substances having large magnetic and dielectric anisotropy, and a member is driven in an arbitrary direction by applying an appropriate magnetic field or electric field. Can do. In addition, a composite material in which an organic substance is intercalated between transparent clay layered compounds can also be oriented in a direction corresponding to the magnetic susceptibility and dielectric anisotropy in consideration of the anisotropy of the organic substance after the composite.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、磁化率の異方性がある材料に対して磁場の強度や印加方向を変える手段として、例えば、電磁石を用いる方法がある。この場合、電磁石に加える電流量を変更したり、磁化率の異方性がある材料に対する電磁石の位置を変更したり、複数の電磁石が発生する磁場強度を可変にしたりすることによって、磁場の強度や印加方向を変更することができる。   Other embodiments of the method for producing an optically anisotropic composite material of the present invention include a method using an electromagnet as a means for changing the strength and application direction of a magnetic field with respect to a material having anisotropy in magnetic susceptibility, for example. . In this case, the strength of the magnetic field can be changed by changing the amount of current applied to the electromagnet, changing the position of the electromagnet with respect to a material having anisotropy in magnetic susceptibility, or changing the strength of the magnetic field generated by multiple electromagnets. And the application direction can be changed.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、誘電率の異方性がある材料に対して電場の強度や印加方向を変える手段として、二つの導体間に電圧をかける方法がある。この場合、電極には、各種金属の他、半導体や透明電極材料を用いることができる。特に、表示装置に用いる場合には、透明電極を用いることが好ましい。この場合、電極に加える電圧を変更したり、誘電率の異方性がある材料に対する電極の位置を変更したり、複数の電極が発生する電場の強度を可変にしたりすることによって、電場の強度や印加方向を変更することができる。   According to another embodiment of the method for producing an optically anisotropic composite material of the present invention, a voltage is applied between two conductors as a means for changing the strength and application direction of an electric field for a material having dielectric anisotropy. There is a way. In this case, a semiconductor and a transparent electrode material other than various metals can be used for the electrode. In particular, when used in a display device, it is preferable to use a transparent electrode. In this case, the electric field strength can be changed by changing the voltage applied to the electrode, changing the position of the electrode relative to the material with dielectric anisotropy, or changing the strength of the electric field generated by multiple electrodes. And the application direction can be changed.

以上のように、上述した各種の配向を固化可能な流動性物質中で行い、次いで硬化させることによって、旋光性や偏光特性を始めとする所定の光学異方性を有する光学異方性複合材料を製造することができる。   As described above, an optically anisotropic composite material having predetermined optical anisotropy such as optical rotation and polarization characteristics is obtained by performing the above-described various orientations in a flowable substance that can be solidified and then curing. Can be manufactured.

本発明の固化可能な流動性物質はあらゆるものを使用することができ、例えば、液体や流動性を有する粉体等が挙げられ、その形態に適した固化方法が選ばれる。粉体の場合は圧着や焼成などで固化するタイプが利用でき、液体は溶融した固体を冷却固化させたり、固体が溶けた溶液の溶媒を蒸散させることにより固化させたり、エポキシ樹脂やアクリル樹脂などの反応性を有する樹脂を重合固化させて利用することができる。本明細書で例示した流動性のある物質の他にも、固化可能な流動性のある物質であるならば、あらゆる物質が適応可能である。   Any solidifiable fluid substance of the present invention can be used. Examples thereof include liquids and fluid powders, and a solidification method suitable for the form is selected. In the case of powder, a type that solidifies by pressure bonding or baking can be used, and the liquid can be solidified by cooling and solidifying the molten solid, or by evaporating the solvent of the solution in which the solid is dissolved, epoxy resin, acrylic resin, etc. It is possible to use a resin having the reactivity of In addition to the fluid material exemplified herein, any material that can be solidified is applicable.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、流動性のある物質がエネルギー線硬化型樹脂であることを特徴とする。この場合、エネルギー線としては、アルファー線、陽子線、中性子線などの粒子線やベータ線のような電子線、ガンマ線やエックス線や紫外線のような電磁波などが例示できる。   Another embodiment of the method for producing an optically anisotropic composite material of the present invention is characterized in that the fluid substance is an energy beam curable resin. In this case, examples of energy rays include particle rays such as alpha rays, proton rays, and neutron rays, electron rays such as beta rays, electromagnetic waves such as gamma rays, X rays, and ultraviolet rays.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、磁化率の異方性、誘電率の異方性、またはその大きさが小さいために、熱的外乱に打ち勝って実質磁場及び/または電場で配向できない粒子に、異方性を有する物質を付着させることによって、磁場及び/または電場による配向を可能にすることを特徴とする。   In another embodiment of the method for producing an optically anisotropic composite material of the present invention, the magnetic anisotropy, the dielectric anisotropy, or the magnitude thereof is small, so that the thermal magnetic field is overcome and the real magnetic field is overcome. And / or by attaching a substance having anisotropy to a particle that cannot be oriented by an electric field, thereby enabling orientation by a magnetic field and / or an electric field.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、実質配向できない粒子が金属性のナノ粒子であって、このナノ粒子表面に配向付着した保護分子の磁化率及び/または誘電率の異方性によって、磁場及び/または電場で配向させることを特徴とする。   In another embodiment of the method for producing an optically anisotropic composite material of the present invention, the particles that cannot be substantially oriented are metallic nanoparticles, and the magnetic susceptibility and / or dielectric of the protective molecules oriented and attached to the surface of the nanoparticles. It is characterized by being oriented by a magnetic field and / or an electric field by anisotropy of the rate.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、ループ上の支持体の間に光学特性粒子を含む固化可能な液体の膜を張り、この膜を固化させる前に、磁場及び電場の少なくとも一方を印加して、この光学特性粒子を配向させることによって、旋光性や偏光性を始めとする所定の光学異方性を有する極薄材料を製造することを特徴とする。また、基板上に塗膜を形成し、塗膜中の光学特性粒子を配向させると、基板と光学特性粒子との間の相互作用で配向が阻害される場合があるが、ループ上の支持体の間に張られた膜中で行う場合には、そのような阻害が低減される。   Another embodiment of the method for producing an optically anisotropic composite material of the present invention is to apply a solidifiable liquid film containing optically characteristic particles between supports on a loop and to solidify the film before solidifying the film. In addition, by applying at least one of an electric field and orienting the optical characteristic particles, an ultrathin material having a predetermined optical anisotropy including optical rotation and polarization is manufactured. In addition, when a coating film is formed on a substrate and the optical characteristic particles in the coating film are oriented, the orientation may be hindered by the interaction between the substrate and the optical characteristic particles. When carried out in a membrane stretched between, such inhibition is reduced.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、ループ上の支持体の間に光学特性粒子を含む固化可能な液体の膜を張り、この膜を固化させる前に、磁場及び電場の少なくとも一方を印加して、この光学特性粒子を配向させることによって、旋光性や偏光性を始めとする所定の光学異方性を有する極薄材料を製造する方法のうち、光学特性粒子が、この光学特性粒子の表面に配向付着させた磁化率及び/または誘電率の異方性により配向するタイプであることを特徴とする。特に、光学特性粒子が導電性を有する場合、得られる膜は異方導電性材料、異方熱伝導性材料、異方光学材料として使用することができる。   Another embodiment of the method for producing an optically anisotropic composite material of the present invention is to apply a solidifiable liquid film containing optically characteristic particles between supports on a loop and to solidify the film before solidifying the film. Among the methods for producing an ultrathin material having predetermined optical anisotropy such as optical rotation and polarization by applying at least one of an electric field and orienting the optical property particles, the optical property particles Is a type that is oriented by anisotropy of magnetic susceptibility and / or dielectric constant that is oriented and adhered to the surface of the optical characteristic particle. In particular, when the optical property particles have conductivity, the obtained film can be used as an anisotropic conductive material, an anisotropic heat conductive material, and an anisotropic optical material.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、光学特性粒子を分散させた流動性物質を透明基板上に直接塗布し、次いで磁場及び電場の少なくとも一方を印加して、この光学特性粒子を配向させ、次いで固化させることにより、直接、旋光性や偏光性を始めとする所定の光学異方性を有する層を透明基板上に形成することを特徴とする。   In another embodiment of the method for producing an optically anisotropic composite material of the present invention, a flowable material in which optically characteristic particles are dispersed is directly applied on a transparent substrate, and then at least one of a magnetic field and an electric field is applied, The optical characteristic particles are oriented and then solidified to directly form a layer having predetermined optical anisotropy including optical rotation and polarization on a transparent substrate.

本発明の光学特性粒子のうち、旋光性を有する粒子は屈折率の異方性を有するが、粒子の2以上の屈折率のうち、最も固化した流動性物質の屈折率と近い屈折率を示す軸方向を、使用時に光が入射してくる方向に配向させることにより、光散乱を低減させることができる。   Of the optical property particles of the present invention, the optically-rotating particles have refractive index anisotropy, but exhibit a refractive index close to the refractive index of the most solidified fluid substance among the two or more refractive indexes of the particles. Light scattering can be reduced by orienting the axial direction in the direction in which light enters during use.

本発明の旋光性を有する材料のうち、旋光性を有する複合材料の製造方法のその他の実施態様は、旋光性を有する粒子の異方性屈折率の最も小さい値が可視光線領域で1.65以下であり、粒子を分散させる樹脂と屈折率が近いことにより光散乱を低減させることを特徴とする。   Among the materials having optical activity of the present invention, other embodiments of the method for producing a composite material having optical activity are such that the smallest value of the anisotropic refractive index of the particles having optical activity is 1.65 or less in the visible light region. There is a feature that light scattering is reduced by having a refractive index close to that of the resin in which particles are dispersed.

本発明の旋光性を有する複合材料の製造方法のその他の実施態様は、旋光性を有する粒子として、炭酸カルシウム、炭酸ストロンチウム、炭酸コバルト、炭酸バリウム、炭酸マンガン、炭酸マグネシウム、のいずれか一つであることを特徴とする。   In another embodiment of the method for producing a composite material having optical activity of the present invention, the particles having optical activity are any one of calcium carbonate, strontium carbonate, cobalt carbonate, barium carbonate, manganese carbonate, and magnesium carbonate. It is characterized by being.

本発明の光学異方性複合材料の製造方法のその他の実施態様は、実質配向できない粒子が金属性のナノ粒子で、このナノ粒子表面に配向付着した保護分子の磁化率及び/または誘電率の異方性によって、磁場及び電場の少なくとも一方により配向させることを特徴とし、この金属粒子がプレート形状であって、光反射型の偏光性を示すことを特徴とする。   In another embodiment of the method for producing an optically anisotropic composite material according to the present invention, the particles that cannot be substantially oriented are metallic nanoparticles, and the magnetic susceptibility and / or dielectric constant of the protective molecules oriented and attached to the surface of the nanoparticles are measured. It is characterized in that it is oriented by at least one of a magnetic field and an electric field depending on anisotropy, and the metal particles are plate-shaped and exhibit a light reflection type polarization property.

本発明の電子装置の製造方法の実施態様は、上述した各種手法で製造した光学異方性複合材料を用いることを特徴とする。   An embodiment of the method for manufacturing an electronic device of the present invention is characterized by using an optically anisotropic composite material manufactured by the various methods described above.

本発明の電子装置の製造方法のその他の実施態様は、光学特性粒子を磁場配向させる際に、電子装置同士または電子装置と部材の組み立て時の位置合わせを同時に行うことを特徴とする。   Another embodiment of the method for manufacturing an electronic device according to the present invention is characterized in that when the optical property particles are magnetically oriented, the electronic devices are aligned with each other or at the time of assembling the electronic device and the member.

本発明の電子装置の製造方法のその他の実施態様は、電子装置として基板上に強磁性体のパターンが形成されており、このパターンに沿って集中した磁力線を利用して電子装置の位置合わせを行うことを特徴とする。   In another embodiment of the method for manufacturing an electronic device according to the present invention, a ferromagnetic pattern is formed on a substrate as the electronic device, and alignment of the electronic device is performed using magnetic field lines concentrated along this pattern. It is characterized by performing.

以上のように、本発明により、複雑な製造工程を有さず、光学特性粒子を任意の方向に配向させることにより、光学異方性複合材料を簡便に提供することができる。また、本発明の光学異方性複合材料を透明基板に直接形成することによって、液晶ディスプレイ用の光学補償フィルムを簡便に形成することが可能であり、磁場配向を利用する際に電子装置の位置合わせを同時に達成することもできる。   As described above, according to the present invention, an optically anisotropic composite material can be simply provided by aligning optical characteristic particles in an arbitrary direction without having a complicated manufacturing process. In addition, by directly forming the optically anisotropic composite material of the present invention on a transparent substrate, it is possible to easily form an optical compensation film for a liquid crystal display, and the position of an electronic device when using magnetic field orientation. Matching can be achieved simultaneously.

以下に、図面を用いながら、光学異方性複合材料の製造方法に関する実施形態を説明する。本発明は、磁化率及び/または誘電率に異方性がある光学特性粒子を、電場及び磁場の少なくとも一方を用いて、固化可能な流動性物質中で配向させることにより光学異方性複合材料を製造する発明であり、また、その光学異方性複合材料用いた電子装置の製造方法に関するものである。   Embodiments relating to a method for producing an optically anisotropic composite material will be described below with reference to the drawings. The present invention relates to an optically anisotropic composite material by orienting optically characteristic particles having anisotropy in magnetic susceptibility and / or dielectric constant in a solidifiable fluid substance using at least one of an electric field and a magnetic field. And an electronic device manufacturing method using the optically anisotropic composite material.

ここで、本発明で言う磁場(磁界)H(単位はAT/m=アンペア-ターン/メートル)とは、電荷が動くことによって生じる渦状の場をさし、電荷の動きに力を及ぼす。磁場の強さは磁束密度B(単位はT=テスラ)で表され、磁界と垂直な面積S(m2)を貫く磁束線の数Ф(単位はWb=ウェーバー)を面積で割ったものである。
式1 B=Ф/S (Wb/m2=T)
Here, the magnetic field (magnetic field) H (unit: AT / m = ampere-turns / meter) referred to in the present invention refers to a vortex field generated by the movement of electric charges and exerts a force on the movement of electric charges. The strength of the magnetic field is expressed by magnetic flux density B (unit: T = Tesla), which is obtained by dividing the number of magnetic flux lines (unit: Wb = Weber) penetrating through the area S (m 2 ) perpendicular to the magnetic field by the area. is there.
Formula 1 B = Ф / S (Wb / m 2 = T)

このような磁場は、電磁石のように電流を流すことにより発生させたり、永久磁石のように、物質が持つ電子スピンの磁気モーメントの方向を揃えることにより発生させることができる。また、磁束密度Bと磁場Hは、真空中では以下の関係式で表すことができる。
式2 B=μ0
Such a magnetic field can be generated by passing an electric current as in an electromagnet, or can be generated by aligning the direction of the magnetic moment of an electron spin possessed by a substance as in a permanent magnet. Further, the magnetic flux density B and the magnetic field H can be expressed by the following relational expression in a vacuum.
Formula 2 B = μ 0 H

ここで、μ0は真空の透磁率で、有理単位で4π×10−7(ヘンリー/メートル=H/m)、非有理単位で1(無名数)であり、磁束密度Bと磁場強度Hを結びつける係数である。また、磁場中に物質を置いた際の磁束密度Bと磁場の強さHとの比μをμ0で割ったものを、透磁率K(ヘンリー/メートル=H/m)という。
式3 K=μ/μ0
Here, μ 0 is the permeability of vacuum, rational unit is 4π × 10 −7 (Henry / meter = H / m), non-rational unit is 1 (anonymous number), and magnetic flux density B and magnetic field strength H are It is a coefficient to tie. Further, a value obtained by dividing the ratio μ between the magnetic flux density B and the magnetic field strength H when a substance is placed in a magnetic field by μ 0 is called magnetic permeability K (Henry / meter = H / m).
Formula 3 K = μ / μ 0

磁場による物質の相互作用の強さは磁化率χで示され、その絶対値が大きい方がより強く物質に磁場が誘起され、誘起した磁場と強い磁気的相互作用を引き起こす。そして、上述した透磁率Kとは、非有理単位で以下の関係式が成り立つ。
式4 K=1+χ
The strength of the interaction of the substance by the magnetic field is indicated by the magnetic susceptibility χ, and the larger the absolute value, the stronger the magnetic field is induced in the substance, causing a strong magnetic interaction with the induced magnetic field. And the above-mentioned magnetic permeability K is a non-rational unit and the following relational expression holds.
Equation 4 K = 1 + χ

ここで、光学異方性粒子は磁化率や誘電率に異方性があるため、磁場または電場で配向させることができる。   Here, since the optically anisotropic particles have anisotropy in magnetic susceptibility and dielectric constant, they can be oriented by a magnetic field or an electric field.

磁場と物質との相互作用は、磁場の強さと磁化率χの絶対値で決まり、磁場が強く磁化率χの絶対値が大きい軸が磁場に対して平行に配向しようとする力が強くなる。実際にどの方向に向くか(磁化容易軸)については、結晶の3軸の磁気異方性の釣り合いによって決定される。   The interaction between the magnetic field and the substance is determined by the strength of the magnetic field and the absolute value of the magnetic susceptibility χ, and the force to align the axis where the magnetic field is strong and the absolute value of the magnetic susceptibility χ is large is parallel to the magnetic field. The actual direction (magnetization easy axis) is determined by the balance of the three-axis magnetic anisotropy of the crystal.

また、磁気異方性とは、外部磁場によって励起される磁化に対して物質内で異方性を有することをさし、磁場内では磁気的相互作用によりトルクを発生し、より安定な方向に回転する。分子構造に異方性を有する物質は、磁気的にも異方性を持ち、例えば延伸して作った繊維は分子鎖が延伸方向に並んでいるため、繊維方向(//)とそれに垂直な方向(⊥)では磁化率が異なる。繊維が反磁性を示す場合は、その差を反磁性異方性磁化率(χa)と呼び、任意の軸に対する磁化率の差で表す。
χa=χ//−χ
Also, magnetic anisotropy means that there is anisotropy in a substance with respect to magnetization excited by an external magnetic field. In the magnetic field, torque is generated by magnetic interaction, and in a more stable direction. Rotate. Substances that have anisotropy in the molecular structure also have magnetic anisotropy. For example, in a fiber made by drawing, molecular chains are aligned in the drawing direction, so the fiber direction (//) and perpendicular to it The magnetic susceptibility differs in the direction (率). When the fiber exhibits diamagnetism, the difference is called diamagnetic anisotropic magnetic susceptibility (χ a ), and is represented by the difference in magnetic susceptibility with respect to an arbitrary axis.
χ a = χ // −χ

このような磁気異方性を有する反磁性物質を強度Bの磁場中に置くと、物質は磁気エネルギーEを獲得する。

ここでμは真空の透磁率、Vは物体の体積、θは磁場と繊維軸方向のなす角度、Bは外部磁場強度である。
χa>0の場合には、繊維軸方向が磁場と平行になったほうが磁気エネルギーは小さくなり安定である。その結果、磁場に平行に配向する。
When a diamagnetic material having such magnetic anisotropy is placed in a magnetic field of strength B, the material acquires magnetic energy E.

Here, μ 0 is the vacuum permeability, V is the volume of the object, θ is the angle between the magnetic field and the fiber axis direction, and B is the external magnetic field strength.
When χ a > 0, the magnetic energy becomes smaller and more stable when the fiber axis direction is parallel to the magnetic field. As a result, it is oriented parallel to the magnetic field.

このように一軸配向する繊維については、上記のように記述することができる。一方、磁気異方性が二以上の軸で異なる物質は、二以上の軸の磁気異方性の数値から外部磁場に対して、どの方向に物質が配向するかが決まる。
また、外部磁場が大きいとき、体積が大きいとき、より強く磁気的エネルギーを受けることが上式からわかる。
Such a uniaxially oriented fiber can be described as described above. On the other hand, for substances having different magnetic anisotropy between two or more axes, the direction in which the substance is oriented with respect to the external magnetic field is determined from the values of the magnetic anisotropy of the two or more axes.
It can also be seen from the above formula that when the external magnetic field is large and when the volume is large, the magnetic energy is received more strongly.

磁気異方性を有する物質には、物質内の電子状態に異方性を有するものがある。上述したような繊維の場合、延伸した方向に分子が並ぶことで、結合を通じた電子の流れに異方性が生じる。また、結晶構造に異方性を有する物質も磁場内で配向する。一方、磁気的な異方性が無い場合も、物質の形状に異方性を有する場合は配向する。   Some substances having magnetic anisotropy have anisotropy in the electronic state in the substance. In the case of the fibers described above, anisotropy occurs in the flow of electrons through the bonds by arranging the molecules in the stretched direction. A substance having anisotropy in the crystal structure is also oriented in the magnetic field. On the other hand, even when there is no magnetic anisotropy, it is oriented when the material has anisotropy.

また、粘土などの層状化合物も磁気異方性が大きい物質として例示でき、適切な磁場を印加することにより、任意の方向に結晶を向けることができる。このような粘土層状化合物に有機物をインターカレーションした複合材料も同様に利用可能であり、層間に有機物が配向挿入された場合、配向した有機物に由来する磁気的な異方性により配向方向をコントロールすることも可能である。よって、任意の方向に粘土層状化合物と有機物との複合材料を配向させるのに利用することが可能であり、粘土層間に配向挿入された有機物が持つ旋光能や偏光能を始めとする所定の光学異方性を好ましく利用することも可能である。
このような物質に磁場を印加すると磁気的に安定な方向に配向するが、例えば一軸回転する磁場を磁気異方性を有する材料に印加した場合、回転軸に対して物質の磁化困難軸が磁場の回転軸に平行に配向する。また、このように、磁気異方性を有する物質に印加する磁場は、回転磁場を含め、時間的に変動する磁場を印可することも可能である。
A layered compound such as clay can also be exemplified as a substance having a large magnetic anisotropy, and crystals can be directed in an arbitrary direction by applying an appropriate magnetic field. Composite materials obtained by intercalating organic substances into such clay layered compounds can be used as well. When organic substances are oriented and inserted between layers, the orientation direction is controlled by the magnetic anisotropy derived from the oriented organic substances. It is also possible to do. Therefore, it can be used to orient the composite material of clay layered compound and organic matter in any direction, and the predetermined optical properties such as optical rotation and polarization ability of organic matter oriented and inserted between clay layers Anisotropy can be preferably used.
When a magnetic field is applied to such a substance, it is oriented in a magnetically stable direction. For example, when a magnetic field that rotates uniaxially is applied to a material having magnetic anisotropy, the hard axis of magnetization of the substance with respect to the rotation axis is the magnetic field. Oriented parallel to the rotation axis. Further, as described above, the magnetic field applied to the substance having magnetic anisotropy can be a time-varying magnetic field including a rotating magnetic field.

以上、磁場中における磁気異方性を有する物質の挙動について述べたが、電場中の誘電率異方性を有する物質の挙動も同等の原理で説明でき、これらの磁気的、電気的な異方性を有する光学特性粒子を、流動性がある物質中で磁場及び電場の少なくとも一方を用いて配向させることができる。   The behavior of a material having magnetic anisotropy in a magnetic field has been described above, but the behavior of a material having dielectric anisotropy in an electric field can also be explained by the same principle, and these magnetic and electrical anisotropies can be explained. The optically characteristic particles having a property can be oriented in at least one of a magnetic field and an electric field in a fluid material.

ここで、本発明で言う旋光性とは、偏光した電磁波の偏光面を回転させる物質の能力である。   Here, the optical rotation referred to in the present invention is the ability of a substance to rotate the polarization plane of polarized electromagnetic waves.

(固化可能な流動性のある物質中で磁場及び電場の少なくとも一方を用いて配向させる方法)
固化可能な流動性のある物質中で、磁気及び/または誘電率の異方性を有する旋光性やエネルギー線反射特性を始めとする所定の光学特性を有する物質を、磁場及び電場の少なくとも一方で配向させる場合、熱エネルギーに由来するランダムな回転運動や、粘性抵抗に打ち勝つ必要がある。磁気及び/または誘電率の異方性が小さい物質を配向させるためには、強い磁場及び/または電場を用いるのが有利であり、粘度の低い流体を用いることにより、プロセスを短時間で終わらせることもできる。
(Orientation method using at least one of a magnetic field and an electric field in a solidified fluid material)
Among substances having fluidity that can be solidified, a substance having a predetermined optical characteristic such as optical rotation and energy ray reflection characteristic having magnetic and / or dielectric anisotropy is selected from at least one of a magnetic field and an electric field. In the case of orientation, it is necessary to overcome random rotational motion derived from thermal energy and viscous resistance. In order to orient a substance having a small magnetic and / or dielectric anisotropy, it is advantageous to use a strong magnetic field and / or electric field, and the process can be completed in a short time by using a low-viscosity fluid. You can also.

特に、流動性のある物質が液体である場合が好ましく、液体の粘度が低いほど磁場及び電場の一方または両方を用いた配向に対する粘性抵抗が小さくなり、結果、磁場及び/または電場による配向をスムーズに行えるため、さらに好ましいといえる。これ以外にも、流動性を有する粉や、気体に対しても適応可能であり、物質の種類にはとらわれない。   In particular, the fluid substance is preferably a liquid, and the lower the viscosity of the liquid, the smaller the viscous resistance to orientation using one or both of a magnetic field and an electric field. As a result, the orientation by the magnetic field and / or electric field becomes smoother. It can be said that it is more preferable. Besides this, it can be applied to fluid powder and gas, and is not restricted by the type of substance.

この流動性のある物質として、硬化性のある有機成分及び無機成分を適宜用いることができる。これらのうち、有機成分としては、各種エポキシ化合物、シロキサン化合物などのほか、硬化性のモノマーやオリゴマーなどのプレポリマーを使用することができ、これらをポリマーの状態で融解させたり、溶媒に溶解させて使用したり、流動性のある微粉末を使用したりすることもできる。これらのうち、熱可塑性樹脂としては、酢酸ビニル、ビニルアルコール、ビニルブチラール、塩化ビニル、メタクリレート、アクリル酸、メタクリル酸、スチレン、エチレン、アミド、セルロース、イソブチレン、ビニルエーテルなどからなるプレポリマーやポリマーを挙げることができる。また、熱硬化性樹脂としては、尿素、メラミン、フェノール、レゾルシノール、エポキシ、エピスルフィド、イソシアネート、イミドなどからなるプレポリマーやポリマーを挙げることができる。これらの化合物は、1種類、または2種類以上を適宜組み合わせて使用することができる。   As this fluid substance, a curable organic component and an inorganic component can be appropriately used. Among these, as an organic component, in addition to various epoxy compounds, siloxane compounds, etc., prepolymers such as curable monomers and oligomers can be used, and these can be melted in a polymer state or dissolved in a solvent. Or a fine powder with fluidity can be used. Of these, thermoplastic resins include prepolymers and polymers composed of vinyl acetate, vinyl alcohol, vinyl butyral, vinyl chloride, methacrylate, acrylic acid, methacrylic acid, styrene, ethylene, amide, cellulose, isobutylene, vinyl ether, and the like. be able to. Examples of the thermosetting resin include prepolymers and polymers made of urea, melamine, phenol, resorcinol, epoxy, episulfide, isocyanate, imide and the like. These compounds can be used alone or in combination of two or more.

このような硬化性のプレポリマーを流動性のある物質に配合する際には、プレポリマーを硬化させるための硬化剤、重合開始剤を必要に応じて配合することもできる。これらの硬化剤、重合開始剤の種類は、配合するプレポリマーの種類に応じて適宜選択することができる。このような硬化剤、重合開始剤としてエネルギー線により反応を開始する化合物を好ましく用いることができる。例えば、アクリルモノマー・オリゴマーの光ラジカル重合型樹脂、ポリエン-チオール硬化系の光マイケル付加型樹脂、エポキシ及びオキセタン及びビニルエーテルモノマー・オリゴマーの光カチオン重合型樹脂が例示できる。また、これら配合には各種公知の光反応増感剤を使用することもできる。   When blending such a curable prepolymer into a fluid substance, a curing agent or a polymerization initiator for curing the prepolymer can be blended as necessary. The kind of these hardening | curing agents and a polymerization initiator can be suitably selected according to the kind of prepolymer to mix | blend. As such a curing agent and polymerization initiator, a compound that initiates a reaction by energy rays can be preferably used. For example, photo radical polymerization type resin of acrylic monomer / oligomer, photo Michael addition type resin of polyene-thiol curing system, photo cationic polymerization type resin of epoxy, oxetane and vinyl ether monomer / oligomer can be exemplified. Moreover, various well-known photoreaction sensitizers can also be used for these formulations.

例示した固化可能な流動性がある物質のうち、重合成があるプレポリマーは、硬化後の体積変動が小さくデバイスに、直接、旋光性や偏光性を始めとする所定の光学異方性を有する複合材料を形成する際、固化時の歪に由来する応力を低減できるため好ましい。中でも、光硬化性の樹脂は、透明基板上に旋光性や偏光性を始めとする所定の光学異方性を有する複合材料を形成するのに好ましく用いることができる。また、光硬化性の樹脂のプレポリマーの粘度を低くすることにより、旋光性やエネルギー線反射特性を始めとする所定の光学特性を有する粒子の配向スピードを向上させたり、配向率を向上させたりできるので、更に好ましいといえる。   Of the exemplified solidifying fluidity materials, prepolymers with polysynthesis have a small volume variation after curing and have a predetermined optical anisotropy directly on the device, including optical rotation and polarization. When forming a composite material, it is preferable because stress derived from strain at the time of solidification can be reduced. Among these, a photocurable resin can be preferably used for forming a composite material having predetermined optical anisotropy including optical rotation and polarization on a transparent substrate. In addition, by reducing the viscosity of the photocurable resin prepolymer, the orientation speed of particles having predetermined optical characteristics such as optical rotation and energy ray reflection characteristics can be improved, and the orientation rate can be improved. It can be said that it is more preferable.

反応を開始させる活性エネルギー線としては、紫外線、電子線などが挙げられるが、特にこれらに制限されるものではない。また、活性エネルギー線を照射する際、その雰囲気に限定されるものではなく、大気、窒素やアルゴンなどの不活性ガス、真空中など、様々な雰囲気下、温度環境下で照射することができる。また、透明基板に対する塗布性を向上させるために、各種溶媒で希釈して粘度調整を行うこともできる。   Examples of the active energy ray for initiating the reaction include ultraviolet rays and electron beams, but are not particularly limited thereto. Moreover, when irradiating an active energy ray, it is not limited to the atmosphere, It can irradiate in various atmospheres and temperature environments, such as air | atmosphere, inert gas, such as nitrogen and argon, and a vacuum. Moreover, in order to improve the applicability | paintability with respect to a transparent substrate, it can also dilute with various solvents and can also adjust viscosity.

また、使用できる無機成分としては、各種金属アルコキシド、各種金属塩化物、水ガラス、コロイダルシリカ、各種ケイ素酸化物、ケイ素窒化物、ケイ素フッ化物、金属酸化物、金属窒化物、金属ケイ化物、金属ホスフェートの溶液を用いたり、流動性のある微粉末を用いたりすることができる。   Examples of inorganic components that can be used include various metal alkoxides, various metal chlorides, water glass, colloidal silica, various silicon oxides, silicon nitride, silicon fluoride, metal oxide, metal nitride, metal silicide, metal A solution of phosphate can be used, or a fine powder with fluidity can be used.

このような無機成分を含む流動性のある物質は、ゾルゲル反応や高温焼付けなどを用いることにより固化することができるが、この場合は、ゾルゲル反応の触媒も流動性のある物質に配合することができる。   Such a fluid substance containing an inorganic component can be solidified by using a sol-gel reaction or high-temperature baking. In this case, a sol-gel reaction catalyst may also be added to the fluid substance. it can.

上記ゾルゲル反応の触媒としては、無機成分を加水分解し重縮合させる、塩酸のような酸;水酸化ナトリウムのようなアルカリ;アミン;あるいはジブチルスズジアセテ−ト、ジブチルスズジオクテ−ト、ジブチルスズジラウレート、ジブチルスズジマレート、ジオクチルスズジラウレート、ジオクチルスズジマレート、オクチル酸スズなどの有機スズ化合物;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、テトラアルキルチタネートなどの有機チタネート化合物;テトラブチルジルコネート、テトラキス(アセチルアセトナート)ジルコニウム、テトライソブチルジルコネート、ブトキシトリス(アセチルアセトナート)ジルコニウム、ナフテン酸ジルコニウムなどの有機ジルコニウム化合物;トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウムなどの有機アルミニウム化合物;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸コバルトなどの有機金属触媒などを挙げることができる。これらの中でも、市販品としてジブチルスズ化合物(三共有機化学(株)製SCAT−24)を具体的に挙げることができる。これらの化合物は、1種類、または2種類以上を適宜組み合わせて使用することができる。これらの有機成分及び無機成分は、必要に応じて単体でも、有機・無機の組み合わせでも適宜組み合わせて使用することができる。   As a catalyst for the sol-gel reaction, an inorganic component is hydrolyzed and polycondensed; an acid such as hydrochloric acid; an alkali such as sodium hydroxide; an amine; or dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate, Organotin compounds such as dibutyltin dimaleate, dioctyltin dilaurate, dioctyltin dimaleate, tin octylate; isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, tetraalkyl titanate Organic titanate compounds such as: tetrabutyl zirconate, tetrakis (acetylacetonate) zirconium, tetraisobutyl zirconate, butoxytris ( Cetylacetonate) Zirconium, zirconium naphthenate, and other organic zirconium compounds; Tris (ethyl acetoacetate) aluminum, tris (acetylacetonato) aluminum, and other organic aluminum compounds; Zinc naphthenate, cobalt naphthenate, cobalt octylate A metal catalyst etc. can be mentioned. Among these, a dibutyltin compound (SCAT-24 manufactured by Sansha Machinery Chemical Co., Ltd.) can be specifically mentioned as a commercial product. These compounds can be used alone or in combination of two or more. These organic components and inorganic components can be used as needed alone or in combination of organic and inorganic as appropriate.

本発明で用いることができる流動性のある物質には、更に必要に応じて、溶媒を配合成分に応じて適宜選択することができる。このような溶媒としては、具体的には炭化水素(プロパン、n−ブタン、n−ペンタン、イソヘキサン、シクロヘキサン、n−オクタン、イソオクタン、ベンゼン、トルエン、キシレン、エチルベンゼン、アミルベンゼン、テレビン油、ピネンなど)、ハロゲン系炭化水素(塩化メチル、クロロホルム、四塩化炭素、塩化エチレン、臭化メチル、臭化エチル、クロロベンゼン、クロロブロモメタン、ブロモベンゼン、フルオロジクロロメタン、ジクロロジフルオロメタン、ジフルオロクロロエタンなど)、アルコール(メタノール、エタノール、n−プロパノール、イソプロパノール、n−アミルアルコール、イソアミルアルコール、n−ヘキサノール、n−ヘプタノール、2−オクタノール、n−ドデカノール、ノナノール、シクロヘキサノール、グリシドールなど)、エーテル、アセタール(エチルエーテル、ジクロロエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、エチルベンジルエーテル、フラン、フルフラール、2−メチルフラン、シネオール、メチラール)、ケトン(アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−アミルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロヘキサノン、アセトフェノンなど)、エステル(ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸−n−アミル、酢酸メチルシクロヘキシル、酪酸メチル、酪酸エチル、酪酸プロピル、ステアリン酸ブチルなど)、多価アルコールとその誘導体(エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、メトキシメトキシエタノール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテルなど)、脂肪酸及びフェノール(ギ酸、酢酸、無水酢酸、プロピオン酸、無水プロピオン酸、酪酸、イソ吉草酸、フェノール、クレゾール、o−クレゾール、キシレノールなど)、窒素化合物(ニトロメタン、ニトロエタン、1−ニトロプロパン、ニトロベンゼン、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジアミルアミン、アニリン、モノメチルアニリン、o−トルイジン、o−クロロアニリン、ジクロヘキシルアミン、ジシクロヘキシルアミン、モノエタノールアミン、ホルムアミド、N、N−ジメチルホルムアミド、アセトアミド、アセトニトリル、ピリジン、α−ピコリン、2、4−ルチジン、キノリン、モルホリンなど)、硫黄、リン、その他化合物(二硫化炭素、ジメチルスルホキシド、4、4−ジエチル−1、2−ジチオラン、ジメチルスルフィド、ジメチルジスルフィド、メタンチオール、プロパンスルトン、リン酸トリエチル、リン酸トフェニル、炭酸ジエチル、炭酸エチレン、ホウ酸アミルなど)、無機溶剤(液体アンモニア、シリコーンオイルなど)、水などを挙げることができる。   For the fluid substance that can be used in the present invention, a solvent can be appropriately selected according to the blending components, if necessary. Specific examples of such solvents include hydrocarbons (propane, n-butane, n-pentane, isohexane, cyclohexane, n-octane, isooctane, benzene, toluene, xylene, ethylbenzene, amylbenzene, turpentine oil, pinene, and the like). , Halogenated hydrocarbons (methyl chloride, chloroform, carbon tetrachloride, ethylene chloride, methyl bromide, ethyl bromide, chlorobenzene, chlorobromomethane, bromobenzene, fluorodichloromethane, dichlorodifluoromethane, difluorochloroethane, etc.), alcohol (methanol , Ethanol, n-propanol, isopropanol, n-amyl alcohol, isoamyl alcohol, n-hexanol, n-heptanol, 2-octanol, n-dodecanol, nonanol, cyclohexa Ether, acetal (ethyl ether, dichloroethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, methylphenyl ether, ethylbenzyl ether, furan, furfural, 2-methylfuran, cineol, methylal) , Ketone (acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-amyl ketone, diisobutyl ketone, phorone, isophorone, cyclohexanone, acetophenone, etc.), ester (methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, Propyl acetate, acetic acid-n-amyl, methyl cyclohexyl acetate, methyl butyrate, ethyl butyrate, propyl butyrate, butyl stearate), polyhydric alcohols and their derivatives Glycol, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, methoxymethoxyethanol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monomethyl ether, propylene glycol, propylene glycol monoethyl ether), fatty acids and phenols ( Formic acid, acetic acid, acetic anhydride, propionic acid, propionic anhydride, butyric acid, isovaleric acid, phenol, cresol, o-cresol, xylenol, etc., nitrogen compounds (nitromethane, nitroethane, 1-nitropropane, nitrobenzene, monomethylamine, dimethyl) Amine, trimethylamine, monoethylamine, diamylamine, aniline, monomethyl Aniline, o-toluidine, o-chloroaniline, dichloroamine, dicyclohexylamine, monoethanolamine, formamide, N, N-dimethylformamide, acetamide, acetonitrile, pyridine, α-picoline, 2,4-lutidine, quinoline, morpholine Etc.), sulfur, phosphorus, other compounds (carbon disulfide, dimethyl sulfoxide, 4,4-diethyl-1,2-dithiolane, dimethyl sulfide, dimethyl disulfide, methanethiol, propane sultone, triethyl phosphate, tophenyl phosphate, carbonic acid Diethyl, ethylene carbonate, amyl borate, etc.), inorganic solvents (liquid ammonia, silicone oil, etc.), water and the like.

本発明に用いる液体には、更に必要に応じて、安定剤、カップリング剤などを適宜選択して配合することができる。このような安定剤としては、具体的には2、6−ジ−tert−ブチル−フェノール、2、4−ジ−tert−ブチル−フェノール、2、6−ジ−tert−ブチル−4−エチル−フェノール、2、4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3、5−ジ−tert−ブチル−アニリノ)−1、3、5−トリアジンなどによって例示されるフェノール系酸化防止剤、アルキルジフェニルアミン、N、N′−ジフェニル−p−フェニレンジアミン、6−エトキシ−2、2、4−トリメチル−1、2−ジヒドロキノリン、N−フェニル−N′−イソプロピル−p−フェニレンジアミンなどによって例示される芳香族アミン系酸化防止剤、ジラウリル−3、3′−チオジプロピオネート、ジトリデシル−3、3′−チオジプロピオネート、ビス[2−メチル−4−{3−n−アルキルチオプロピオニルオキシ}−5−tert−ブチル−フェニル]スルフィド、2−メルカプト−5−メチル−ベンゾイミダゾールなどによって例示されるサルファイド系ヒドロペルオキシド分解剤、トリス(イソデシル)ホスファイト、フェニルジイソオクチルホスファイト、ジフェニルイソオクチルホスファイト、ジ(ノニルフェニル)ペンタエリトリトールジホスファイト、3、5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスファートジエチルエステル、ナトリウムビス(4−tert−ブチルフェニル)ホスファートなどによって例示されるリン系ヒドロペルオキシド分解剤、フェニルサリチラート、4−tert−オクチルフェニルサリチラートなどによって例示されるサリチレート系光安定剤、2、4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸などによって例示されるベンゾフェノン系光安定剤、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2、2′−メチレンビス[4−(1、1、3、3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]などによって例示されるベンゾトリアゾール系光安定剤、フェニル−4−ピペリジニルカルボナート、セバシン酸ビス−[2、2、6、6−テトラメチル−4−ピペリジニル]などによって例示されるヒンダードアミン系光安定剤、[2、2′−チオ−ビス(4−t−オクチルフェノラート)]−2−エチルヘキシルアミン−ニッケル−(II)によって例示されるNi系光安定剤、シアノアクリレート系光安定剤、シュウ酸アニリド系光安定剤などを挙げることができる。また、このようなカップリング剤としては、具体的にはフッ素系のシランカップリング剤として、((トリデカフルオロ−1、1、2、2−テトラヒドロオクチル)トリエトキシシラン、エポキシ変性シランカップリング剤として(信越化学工業株式会社製 KBM−403)、オキセタン変性シランカップリング剤として(東亞合成株式会社製 TESOX)、あるいは、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピルメチルジメトキシシランγ−メタクリロキシキシプロピルトリメトキシシラン、γ−メタクリロキシキシプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどのシランカップリング剤や、トリエタノールアミンチタネート、チタニウムアセチルアセトネート、チタニウムエチルアセトアセテート、チタニウムラクテート、チタニウムラクテートアンモニウム塩、テトラステアリルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、イソプロピルトリオクタイノルチタネート、イソプロピルジメタクリイソステアロイルチタネート、チタニウムラクテートエチルエステル、オクチレングリコールチタネート、イソプロピルトリイソステアロイルチタネート、トリイソステアリルイソプロピルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトラ(2−エチルヘキシル)チタネート、ブチルチタネートダイマー、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2、2−ジアリルオキシメチル−1−ブチル)ビス(ジ−トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、テトラ−i−プロピルチタネート、テトラ−n−ブチルチタネート、ジイソステアロイルエチレンチタネートなどのチタン系カップリング剤を挙げることができる。これらの化合物は、1種類、または2種類以上を適宜組み合わせて使用することができる。   In the liquid used in the present invention, a stabilizer, a coupling agent and the like can be appropriately selected and blended as necessary. Specific examples of such stabilizers include 2,6-di-tert-butyl-phenol, 2,4-di-tert-butyl-phenol, 2,6-di-tert-butyl-4-ethyl- Phenol-based antioxidants exemplified by phenol, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butyl-anilino) -1,3,5-triazine and the like Agent, alkyldiphenylamine, N, N'-diphenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine, etc. Aromatic amine antioxidants exemplified by: dilauryl-3, 3'-thiodipropionate, ditridecyl-3, 3'-thiodipropionate, bis [2-methyl Sulfide hydroperoxide decomposer exemplified by -4- {3-n-alkylthiopropionyloxy} -5-tert-butyl-phenyl] sulfide, 2-mercapto-5-methyl-benzimidazole, and the like, tris (isodecyl) phos Phyto, phenyl diisooctyl phosphite, diphenyl isooctyl phosphite, di (nonylphenyl) pentaerythritol diphosphite, 3,5-di-tert-butyl-4-hydroxy-benzyl phosphate diethyl ester, sodium bis (4 -Tert-butylphenyl) phosphate, etc., a phosphorus hydroperoxide decomposing agent, a phenyl salicylate, a salicylate light stabilizer exemplified by 4-tert-octylphenyl salicylate, and the like, 2,4-dihydroxy Benzophenone light stabilizers exemplified by cibenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol] and the like, benzotriazole-based light stabilizer, phenyl-4-piperidinyl Hindered amine light stabilizers exemplified by carbonate, bis- [2,2,6,6-tetramethyl-4-piperidinyl] sebacate and the like, [2,2′-thio-bis (4-t-octylpheno) Lat)]-2-ethylhexylamine-nickel- (II) Over preparative based light stabilizers, and the like oxalic acid anilide-based light stabilizer. Moreover, as such a coupling agent, specifically, ((tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane, epoxy-modified silane coupling, as a fluorine-based silane coupling agent, As an agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.), As an oxetane-modified silane coupling agent (TESOX manufactured by Toagosei Co., Ltd.), or vinyltrimethoxysilane, vinyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxy Silane, β-glycidoxypropylmethyldi Silane coupling agents such as toxisilane γ-methacryloxyxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, triethanolamine titanate, titanium acetylacetonate, titanium ethylacetoacetate , Titanium lactate, titanium lactate ammonium salt, tetrastearyl titanate, isopropyl tricumyl phenyl titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, dicumylphenyloxyacetate titanate, isopropyl trioctainol titanate, isopropyl dimethacrylisostearoyl Titanate, titanium lactate ethyl ester, octylene glycol tita Nitrate, isopropyl triisostearoyl titanate, triisostearyl isopropyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, tetra (2-ethylhexyl) titanate, butyl titanate dimer, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tris (Dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite Titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (di Chi le pyrophosphate) ethylene titanate, tetra -i- propyl titanate, tetra -n- butyl titanate, and titanium-based coupling agents such as diisostearoyl ethylene titanate. These compounds can be used alone or in combination of two or more.

旋光性やエネルギー線反射特性を始めとする所定の光学特性を有する粒子が、これら液体中で浮遊したり沈降したりしないようにするため、各種添加剤を溶解させることができる。具体的には、有機物に対しては各種含ハロゲン化合物を、水に対してはショ糖やポリタングステン酸ナトリウム等を挙げることができる。   Various additives can be dissolved in order to prevent particles having predetermined optical characteristics such as optical rotation and energy ray reflection characteristics from floating or settling in these liquids. Specifically, various halogen-containing compounds can be used for organic substances, and sucrose and sodium polytungstate can be used for water.

ここで、旋光性やエネルギー線を始めとする所定の光学特性を有する粒子が、液体中で浮遊したり沈降したりしないようにするためには、液体とこの粒子の比重を一致させることが最も好ましく、少なくとも、液体とこの粒子の比重比が、0.5〜2の間に収まることが好ましい。   Here, in order to prevent particles having predetermined optical characteristics such as optical rotation and energy rays from floating or settling in the liquid, it is most preferable to match the specific gravity of the liquid and the particles. Preferably, at least the specific gravity ratio between the liquid and the particles is preferably in the range of 0.5 to 2.

また、浮遊や沈降を防ぐために、各種チキソ剤を添加することが可能であり、具体的には、シリカやタルクなどの無機粒子、アクリルやポリカーボネイトの有機粒子、シリカゾルなどの各種コロイドを好ましく用いることができ、電場を印加することにより、粘土が下がるタイプは更に好ましい。定量的に言えば、流体のチキソ比が1.5以上であることが好ましい。   In addition, various thixotropic agents can be added to prevent floating and settling. Specifically, inorganic particles such as silica and talc, organic particles such as acrylic and polycarbonate, and various colloids such as silica sol are preferably used. More preferably, the clay can be lowered by applying an electric field. Quantitatively speaking, it is preferable that the fluid has a thixo ratio of 1.5 or more.

このような固化可能な流動性物質に分散させる旋光性を有する物質として、異方性を有する使用領域において概略透明な材料を用いることができ、三斜晶リゾチウムなどの有機結晶や炭酸ストロンチウム、水晶などの無機結晶、旋光能を有する延伸した高分子などを用いることができる。   As the optically rotatory substance dispersed in such a solidifiable fluid substance, an approximately transparent material can be used in an anisotropic use region, such as organic crystals such as triclinic lysozyme, strontium carbonate, quartz Inorganic crystals such as, stretched polymers having optical activity, and the like can be used.

これら旋光性を有する物質は複屈折率を有するが、固化可能な流動性物質中で配向させる際、この固化可能な流動性物質の固化後の屈折率に最も近い屈折率を有する軸の方向を、使用時に光が入射してくる方向に配向させることにより、光散乱に伴う光学的損失を防ぐことができる。   These optically-rotating substances have a birefringence, but when orienting in a solidifiable flowable substance, the direction of the axis having the refractive index closest to the refractive index after solidification of the solidifiable flowable substance is determined. By aligning in the direction in which light enters during use, optical loss due to light scattering can be prevented.

樹脂に旋光性を有する粒子を分散させる場合、異方性屈折率の最も小さい値が1.65以下であるものが樹脂との屈折率の一致の観点から好ましい。   In the case where particles having optical activity are dispersed in the resin, those having the smallest anisotropic refractive index of 1.65 or less are preferable from the viewpoint of matching the refractive index with the resin.

このような屈折率が低い物質のうち、屈折率の異方性が大きく旋光性が大きい物質として、炭酸カルシウム、炭酸ストロンチウム、炭酸コバルト、炭酸マンガン、炭酸マグネシウムを挙げることができる。   Among such substances having a low refractive index, examples of the substance having a large refractive index anisotropy and a large optical rotation include calcium carbonate, strontium carbonate, cobalt carbonate, manganese carbonate, and magnesium carbonate.

このような粒子はどのようなサイズのものも適用できるが、固化後の流動性がある物質と屈折率が大きく異なり光散乱が強くなる場合、光の波長よりも十分に小さいサイズの粒子を用いることが好ましく、具体的には100 nm以下であり、好ましくは20 nm以下である。   Such particles can be of any size, but if the refractive index is significantly different from that of the fluidized substance after solidification and the light scattering is strong, use particles with a size sufficiently smaller than the wavelength of the light. Preferably, it is 100 nm or less, preferably 20 nm or less.

このようなごく小さい粒子は、磁気的、電気的エネルギーが小さくなるため、熱的外乱に打ち勝って配向できなくなる恐れがある。また、磁化率や誘電率の異方性が小さい物質を用いる場合も、同様に配向が困難になる。このような粒子の表面に、磁化率や誘電率の異方性がある物質を吸着配向させ、磁気的、電気的エネルギーを配向に必要な大きさに増強することが可能であり、具体的には、粒子の表面に磁化率や誘電率の異方性を有する分子や高分子を吸着配向させる方法を用いることができる。このような分子は、粒子の表面に吸着しやすい化学構造を持つものを持つものを好ましく用いることができ、このような化学構造の具体例として、アミノ基、イミノ基、アミド基、ヒドロキシ基、カルボキシル基、シラノール基、チオール基、などを例示することができる。   Such very small particles have a small magnetic and electrical energy, and thus may be unable to be oriented by overcoming the thermal disturbance. Similarly, when a substance having a small magnetic susceptibility or dielectric anisotropy is used, orientation becomes difficult. It is possible to enhance the magnetic and electrical energy to the size necessary for orientation by adsorbing and orienting substances having anisotropy in magnetic susceptibility and dielectric constant on the surface of such particles. Can employ a method of adsorbing and orienting molecules or polymers having anisotropy of magnetic susceptibility or dielectric constant on the surface of the particles. As such a molecule, a molecule having a chemical structure that is easily adsorbed on the surface of the particle can be preferably used. Specific examples of such a chemical structure include an amino group, an imino group, an amide group, a hydroxy group, A carboxyl group, a silanol group, a thiol group, etc. can be illustrated.

このようなごく小さい粒子と、磁気的、電気的エネルギーを増強させる吸着物質の具体例として、金属製のナノ粒子及びナノ粒子の被覆保護分子を挙げる事ができる。ナノ粒子のうち、ロッドやディスクやコイルのような、異方性を有する形状のナノサイズの金属粒子は、複合材料に光学的な異方性を付与する。   Specific examples of such very small particles and adsorbents that enhance magnetic and electrical energy include metal nanoparticles and nanoparticle coating protective molecules. Among the nanoparticles, nano-sized metal particles having anisotropy, such as rods, disks, and coils, impart optical anisotropy to the composite material.

(本発明の旋光性や偏光性を始めとする所定の光学異方性を有する極薄膜の製造方法)
図4では、光学特性粒子を分散させた固化可能な液体を用いて、ループ状の支持体の間に膜を張り、次いで磁場または電場で配向させ、次いで硬化させることにより旋光性や偏光性を始めとする所定の光学異方性を有する極薄膜を製造する方法の一つの実施形態を示す。リング状の支持体間に膜を張った後静置すると、重力の効果でリングの上のほうから膜がどんどん薄くなり、数十〜数百nmレベルのごく薄膜を簡便に得ることができる。
(Manufacturing method of ultrathin film having predetermined optical anisotropy including optical rotation and polarization of the present invention)
In FIG. 4, using a solidifiable liquid in which optical characteristic particles are dispersed, a film is stretched between loop-shaped supports, then oriented in a magnetic field or electric field, and then cured to achieve optical rotation and polarization. One embodiment of a method for manufacturing an ultrathin film having a predetermined optical anisotropy is shown. When the membrane is stretched between ring-shaped supports and allowed to stand, the membrane becomes thinner and thinner from the top of the ring due to the effect of gravity, and a very thin film with a level of several tens to several hundreds of nm can be easily obtained.

本実施形態では光学特性粒子が分散した光硬化性樹脂に、リングを漬け込み引き上げることにより、このリングの間に樹脂膜を形成し、次いで磁場を印加し、次いで光硬化させることによって、旋光性や偏光性を始めとする所定の光学異方性を有する極めて薄い極薄膜を作製した。   In this embodiment, a ring is immersed in a photocurable resin in which optical property particles are dispersed, and a resin film is formed between the rings, then a magnetic field is applied, and then photocuring is performed, whereby optical rotation or An extremely thin ultrathin film having predetermined optical anisotropy including polarization was produced.

(本発明の電子装置の位置合わせを磁場配向と同時に行う方法)
図5では、固化可能な流動性を有する物質に分散させた光学特性粒子を磁場配向させる際に、電子装置の位置合わせを同時に行う方法の1つの実施形態を示す。強磁性体のパターンが形成された弱磁性体の基板を有する電子装置を、同じパターンが形成された電子装置上に配し、次いで磁場を印加することにより、強磁性体に吸い込まれる性質を有する磁力線の性質により、強磁性体のパターン同士が重なり合う方向に磁気力が働き、その結果、強磁性体のパターン同士が重なり合う。この電子装置間、またはその表面近傍に、光学特性粒子が分散した固化可能な流動性を有する物質を塗布または充填することによって、磁場による光学異方性複合材料の製造と、磁場による電子装置の位置合わせを同時に達成することができる。
(Method for performing alignment of the electronic device of the present invention simultaneously with magnetic field orientation)
FIG. 5 shows one embodiment of a method for simultaneously aligning electronic devices when magnetically orienting optically characteristic particles dispersed in a solidified fluid material. An electronic device having a weak magnetic substrate on which a ferromagnetic pattern is formed is placed on the electronic device on which the same pattern is formed, and then a magnetic field is applied, thereby attracting the ferromagnetic device. Due to the nature of the magnetic field lines, the magnetic force acts in the direction in which the ferromagnetic patterns overlap, and as a result, the ferromagnetic patterns overlap. By applying or filling a substance having a solidifiable fluidity in which optical characteristic particles are dispersed between or near the surface of the electronic device, it is possible to manufacture an optically anisotropic composite material using a magnetic field and Registration can be achieved simultaneously.

本実施形態では、強磁性体で作製した電極を有する半導体チップを用いており、この半導体チップ間に光学異方性複合材料を形成する際に、この半導体チップの位置合わせを同時に行う。   In this embodiment, a semiconductor chip having an electrode made of a ferromagnetic material is used, and when the optically anisotropic composite material is formed between the semiconductor chips, the alignment of the semiconductor chip is simultaneously performed.

以下に、本発明の光学異方性複合材料の製造方法を用いた実施例を説明する。   Below, the Example using the manufacturing method of the optically anisotropic composite material of this invention is described.

実施例1では、本発明の光学異方性複合材料の製造方法のうち、磁場を用いた旋光能を有する複合材料の製造方法の一実施例を示す。
旋光性を示す粒子が分散した液の作成
炭酸ストロンチウム結晶(純度99 %)を、自動乳鉢で光硬化性樹脂(協立化学産業(株)製;W/R No。 XFL-06L)に10 %分散させた後、更に超音波ホモジナイザーで1時間分散させた。分散後の炭酸ストロンチウム粒子径は、約2 μmである。
Example 1 shows an example of a method for manufacturing a composite material having an optical rotation ability using a magnetic field among the methods for manufacturing an optically anisotropic composite material of the present invention.
Preparation of a liquid in which particles exhibiting optical rotation are dispersed 10 % of strontium carbonate crystals (purity 99%) in a photocurable resin (manufactured by Kyoritsu Chemical Industry Co., Ltd .; W / R No. XFL-06L) in an automatic mortar After the dispersion, the mixture was further dispersed with an ultrasonic homogenizer for 1 hour. The particle diameter of strontium carbonate after dispersion is about 2 μm.

充填・塗布
上記の分散液を、2枚のガラス板の間にギャップ100μmで挟み込んだ。
Filling / Coating The above dispersion was sandwiched between two glass plates with a gap of 100 μm.

磁場の印加
そこに、磁力線がガラス板に対して縦に印加されるように、電磁石を用いて2Tの磁場を5 分間印加した。
Application of magnetic field A 2T magnetic field was applied for 5 minutes using an electromagnet so that the lines of magnetic force were applied vertically to the glass plate.

液体の硬化
磁場を印加した後、磁場をそのまま印加しながらUVを6000 mJ/cm2 (365 nm)照射して樹脂を硬化させ、磁場の印加を停止した。
After applying the liquid curing magnetic field, the resin was cured by irradiating UV with 6000 mJ / cm 2 (365 nm) while applying the magnetic field as it was, and the application of the magnetic field was stopped.

配向状態の確認
上記の硬化物をクロスニコルの偏光顕微鏡で観察したところ、図6に示す様に、炭酸ストロンチウム粒子が磁場印加方向に沿って配向し、旋光性を発現している様子が確認できた。図6の中の実線矢印は偏光子の向きを示し、破線矢印は磁場の印加方向を示す。
Confirmation of Orientation State When the above cured product was observed with a crossed Nicol polarizing microscope, it was confirmed that the strontium carbonate particles were aligned along the magnetic field application direction and developed optical rotation as shown in FIG. It was. The solid line arrow in FIG. 6 indicates the direction of the polarizer, and the broken line arrow indicates the direction of application of the magnetic field.

実施例2では、本発明の磁場を用いた旋光能を有する複合材料の製造方法の一実施例を示す。
旋光性を示す粒子が分散した液の作成
炭酸ストロンチウム結晶(純度99 %)を、自動乳鉢で光硬化性樹脂(協立化学産業(株)製;W/R No。 XFL-06L)に10 %分散させた後、更に超音波ホモジナイザーで1時間分散させた。分散後の炭酸ストロンチウム粒子径は、約2 μmである。
Example 2 shows an example of a method for producing a composite material having optical rotation ability using a magnetic field of the present invention.
Preparation of a liquid in which particles exhibiting optical rotation are dispersed 10 % of strontium carbonate crystals (purity 99%) in a photocurable resin (manufactured by Kyoritsu Chemical Industry Co., Ltd .; W / R No. XFL-06L) in an automatic mortar After the dispersion, the mixture was further dispersed with an ultrasonic homogenizer for 1 hour. The particle diameter of strontium carbonate after dispersion is about 2 μm.

充填・塗布
上記の分散液を、2枚のガラス板の間にギャップ100μmで挟み込んだ。
Filling / Coating The above dispersion was sandwiched between two glass plates with a gap of 100 μm.

磁場の印加
そこに、磁力線がガラス板に対して縦に印加されるように、電磁石を用いて2Tの磁場を印加しながら試料を等速回転させた(2 r/m)。
Application of magnetic field The sample was rotated at a constant speed (2 r / m) while applying a 2T magnetic field using an electromagnet so that the magnetic field lines were applied vertically to the glass plate.

液体の硬化
回転磁場を印加した後、磁場をそのまま印加しながらUVを6000 mJ/cm2 (365 nm)照射して樹脂を硬化させ、磁場の印加を停止した。
After applying a liquid curing rotating magnetic field, UV was irradiated at 6000 mJ / cm 2 (365 nm) while applying the magnetic field as it was to cure the resin, and the application of the magnetic field was stopped.

配向状態の確認
上記の硬化物をクロスニコルの偏光顕微鏡で観察したところ、図7に示す様に、炭酸ストロンチウム粒子が磁場の回転方向に沿って配向し、旋光性が発現している様子が確認できた。実線矢印は偏光子の向きを示し、破線矢印は磁場の回転軸を示す。
Confirmation of orientation state When the cured product was observed with a crossed Nicol polarizing microscope, as shown in FIG. 7, it was confirmed that the strontium carbonate particles were oriented along the rotation direction of the magnetic field and the optical rotation was developed. did it. A solid line arrow indicates the direction of the polarizer, and a broken line arrow indicates the rotation axis of the magnetic field.

実施例3では、本発明の磁場を用いた旋光能を有する複合材料の製造方法の一実施例を示す。
旋光性を示す粒子が分散した液の作成
炭酸ストロンチウム結晶(純度99 %)を、自動乳鉢で光硬化性樹脂(協立化学産業(株)製;W/R No。 XFL-06L)に10 %分散させた後、更に超音波ホモジナイザーで1時間分散させた。分散後の炭酸ストロンチウム粒子径は、約2 μmである。
Example 3 shows an example of a method for producing a composite material having optical rotation ability using a magnetic field of the present invention.
Preparation of a liquid in which particles exhibiting optical rotation are dispersed 10 % of strontium carbonate crystals (purity 99%) in a photocurable resin (manufactured by Kyoritsu Chemical Industry Co., Ltd .; W / R No. XFL-06L) in an automatic mortar After the dispersion, the mixture was further dispersed with an ultrasonic homogenizer for 1 hour. The particle diameter of strontium carbonate after dispersion is about 2 μm.

充填・塗布
上記の分散液を、2枚のガラス板の間にギャップ100μmで挟み込んだ。
Filling / Coating The above dispersion was sandwiched between two glass plates with a gap of 100 μm.

磁場の印加
そこに、磁力線がガラス板に対して縦に印加されるように、電磁石を用いて2Tの磁場を印加しながら、試料を周期的かつ連続的に変速して回転させた。具体的には、1/4周を0.5 r/m、1/4周を1 r/m、1/4周を0.5 r/m、1/4周を1 r/mで回転させた。
Application of magnetic field The sample was rotated periodically and continuously while applying a 2T magnetic field using an electromagnet so that the magnetic field lines were applied vertically to the glass plate. Specifically, the 1/4 turn was rotated at 0.5 r / m, the 1/4 turn at 1 r / m, the 1/4 turn at 0.5 r / m, and the 1/4 turn at 1 r / m. .

液体の硬化
周期的かつ連続的に変速して回転させた磁場を印加した後、磁場をそのまま印加しながら、UVを6000 mJ/cm2 (365 nm)照射して樹脂を硬化させ、磁場の印加を停止した。
Liquid curing period After applying a magnetic field rotated continuously and continuously, the resin is cured by irradiating UV at 6000 mJ / cm 2 (365 nm) while applying the magnetic field as it is, and applying the magnetic field Stopped.

配向状態の確認
上記の硬化物をクロスニコルの偏光顕微鏡で観察したところ、図8に示す様に、炭酸ストロンチウム粒子が磁場の遅くなった変速回転方向に沿って配向し、旋光性が発現している様子が確認できた。実線矢印は偏光子の向きを示し、破線矢印は変速回転が遅くなった回転の方向を示す。
Confirmation of Orientation State When the above cured product was observed with a crossed Nicol polarizing microscope, as shown in FIG. 8, the strontium carbonate particles were oriented along the rotational speed direction in which the magnetic field was slow, and optical rotation was exhibited. I was able to confirm. The solid line arrow indicates the direction of the polarizer, and the broken line arrow indicates the direction of rotation in which the speed change rotation becomes slow.

実施例4では、本発明の旋光性を示す極薄膜の製造方法の一実施例を示す。
旋光性を示す粒子が分散した液の作成
炭酸ストロンチウム結晶(純度99 %)を、自動乳鉢で光硬化性樹脂(協立化学産業(株)製;W/R No。 7710)に5 %分散させた後、更に超音波ホモジナイザーで24時間分散させた。分散後の炭酸ストロンチウム粒子径は、約0.1 μmである。
Example 4 shows an example of a method for producing an ultrathin film showing optical rotation according to the present invention.
Preparation of a liquid in which particles exhibiting optical rotation are dispersed 5 % of strontium carbonate crystals (purity 99%) are dispersed in a photocurable resin (Kyoritsu Chemical Industry Co., Ltd .; W / R No. 7710) with an automatic mortar. After that, the mixture was further dispersed for 24 hours with an ultrasonic homogenizer. The particle diameter of strontium carbonate after dispersion is about 0.1 μm.

塗膜の形成
直径1 mmのアルミニウムワイヤーで直径2 cmのリングを作り、このリングを分散液に浸漬し、次いで引き上げた。
Formation of coating film A ring having a diameter of 2 cm was made of an aluminum wire having a diameter of 1 mm, this ring was immersed in the dispersion, and then pulled up.

磁場の印加
そこに、磁力線が膜面に対して平行に印加されるように、電磁石を用いて2Tの磁場を1 min間印加した。
Application of magnetic field A 2T magnetic field was applied for 1 min using an electromagnet so that the lines of magnetic force were applied parallel to the film surface.

液体の硬化
磁場をそのまま印加しながら、UVを6000 mJ/cm2 (365 nm)照射して樹脂を硬化させ、磁場の印加を停止した。
While applying the liquid curing magnetic field as it was, UV was irradiated at 6000 mJ / cm 2 (365 nm) to cure the resin, and the application of the magnetic field was stopped.

配向状態の確認
上記の硬化物をクロスニコルの偏光顕微鏡で観察したところ、図9に示す様に、炭酸ストロンチウム粒子が磁場の印加方向に沿って配向し、旋光性が発現している様子が確認できた。実線矢印は偏光子の向きを示し、破線矢印は磁場の印加方向を示す。
Confirmation of orientation state When the cured product was observed with a crossed Nicol polarizing microscope, it was confirmed that the strontium carbonate particles were oriented along the direction of application of the magnetic field and optical rotation was developed as shown in FIG. did it. A solid line arrow indicates the direction of the polarizer, and a broken line arrow indicates the application direction of the magnetic field.

図10は薄膜の外観である。   FIG. 10 shows the appearance of the thin film.

図11は、ガラス基板上に、上記の薄膜を貼り付けたときの、高さ方向において薄膜の膜厚を走査型白色光干渉法で測定した結果である。   FIG. 11 shows the result of measuring the film thickness of the thin film in the height direction by scanning white light interferometry when the above thin film was attached to the glass substrate.

実施例5では、本発明の旋光性を示す極薄膜の製造方法の一実施例を示す。
旋光性を示す粒子が分散した液の作成
アニリンで被覆した金のナノプレート(薄さ20 nm,大きさ20 μm)を、光硬化性樹脂(協立化学産業(株)製;W/R No。 7710)に1 %分散させた。
Example 5 shows an example of a method for producing an ultrathin film showing optical rotation according to the present invention.
Preparation of a liquid in which particles exhibiting optical rotation are dispersed Gold nanoplates coated with aniline (thickness 20 nm, size 20 μm) are coated with a photocurable resin (Kyoritsu Chemical Industry Co., Ltd .; W / R No. 7710) was dispersed 1%.

塗膜の形成
直径1 mmのアルミニウムワイヤーで直径2 cmのリングを作り、このリングを分散液に浸漬し、次いで引き上げた。
Formation of coating film A ring having a diameter of 2 cm was made of an aluminum wire having a diameter of 1 mm, this ring was immersed in the dispersion, and then pulled up.

磁場の印加
そこに、磁力線が膜面に対して平行に印加されるように、電磁石を用いて14.09 Tの磁場を10 min間印加した。
Application of magnetic field A 14.09 T magnetic field was applied for 10 min using an electromagnet so that the lines of magnetic force were applied parallel to the film surface.

液体の硬化
磁場をそのまま印加しながら、UVを6000 mJ/cm2 (365 nm)照射して樹脂を硬化させ、磁場の印加を停止した。
While applying the liquid curing magnetic field as it was, UV was irradiated at 6000 mJ / cm 2 (365 nm) to cure the resin, and the application of the magnetic field was stopped.

配向状態の確認
上記の硬化物をクロスニコルの偏光顕微鏡で観察したところ、図12に示す様に、金ナノプレートが磁場印加方向に沿って配向し、旋光性が発現している様子が確認できた。実線矢印は偏光子の向きを示し、破線矢印は磁場の印加方向を示す。
Confirmation of Orientation State When the above cured product was observed with a crossed Nicol polarizing microscope, it was confirmed that the gold nanoplates were oriented along the magnetic field application direction and optical rotation was developed as shown in FIG. It was. A solid line arrow indicates the direction of the polarizer, and a broken line arrow indicates the application direction of the magnetic field.

実施例6では、本発明の旋光性を示す極薄膜の製造方法の一実施例を示す。
旋光性を示す粒子が分散した液の作成
ポリビニルピロリドンで被覆した銀のナノロッド(Ф200 nm,長さ10 μm)を、光硬化性樹脂(協立化学産業(株)製;W/R No。 7710)に5 %分散させた。
Example 6 shows an example of a method for producing an ultrathin film showing optical rotation according to the present invention.
Preparation of a liquid in which particles exhibiting optical rotation are dispersed Silver nanorods coated with polyvinylpyrrolidone (Ф 200 nm, length 10 μm) are made of a photocurable resin (Kyoritsu Chemical Industry Co., Ltd .; W / R No. 7710) ) 5%.

塗膜の形成
直径1 mmのアルミニウムワイヤーで直径2 cmのリングを作り、このリングを分散液に浸漬し、次いで引き上げた。
Formation of coating film A ring having a diameter of 2 cm was made of an aluminum wire having a diameter of 1 mm, this ring was immersed in the dispersion, and then pulled up.

磁場の印加
そこに、磁力線が膜面に対して平行に印加されるように、電磁石を用いて14.09 Tの磁場を10 min間印加した。
Application of magnetic field A 14.09 T magnetic field was applied for 10 min using an electromagnet so that the lines of magnetic force were applied parallel to the film surface.

液体の硬化
磁場をそのまま印加しながら、UVを6000 mJ/cm2 (365 nm)照射して樹脂を硬化させ、磁場の印加を停止した。
While applying the liquid curing magnetic field as it was, UV was irradiated at 6000 mJ / cm 2 (365 nm) to cure the resin, and the application of the magnetic field was stopped.

配向状態の確認
上記の硬化物をクロスニコルの偏光顕微鏡で観察したところ、図13に示す様に、銀ナノロッドが磁場印加方向に直交して配向し、旋光性が発現している様子が確認できた。実線矢印は偏光子の向きを示し、破線矢印は磁場の印加方向を示す。
Confirmation of Orientation State When the above cured product was observed with a crossed Nicol polarizing microscope, it was confirmed that the silver nanorods were oriented perpendicularly to the magnetic field application direction and optical rotation was exhibited as shown in FIG. It was. A solid line arrow indicates the direction of the polarizer, and a broken line arrow indicates the application direction of the magnetic field.

実施例7では、本発明の旋光性を有する粒子を磁場配向させるときに、電子装置の位置合わせを行う方法を示す。
旋光性を示す粒子が分散した液の作成
炭酸ストロンチウム結晶(純度99 %)を、自動乳鉢で熱硬化性樹脂(協立化学産業(株)製;W/R No。 XS-OE-51)に10 %分散させた後、更に超音波ホモジナイザーで1時間分散させた。分散後の炭酸ストロンチウム粒子径は、約2 μmである。
Example 7 shows a method for aligning an electronic device when magnetically orienting particles having optical activity of the present invention.
Preparation of a liquid in which particles exhibiting optical rotation are dispersed Strontium carbonate crystals (purity 99%) in a thermosetting resin (manufactured by Kyoritsu Chemical Industry Co., Ltd .; W / R No. XS-OE-51) in an automatic mortar After 10% dispersion, the mixture was further dispersed with an ultrasonic homogenizer for 1 hour. The particle diameter of strontium carbonate after dispersion is about 2 μm.

樹脂の充填
高さ15μm幅50μmのNiP突起を有する2枚のシリコン基板において、NiP突起側を互いに対向させ、その隙間に分散液を充填した。
The two silicon substrates having NiP protrusions with a resin filling height of 15 μm and a width of 50 μm were opposed to each other with NiP protrusions facing each other, and the gap was filled with the dispersion.

磁場の印加
そこに、磁力線がシリコン基板面に対して垂直に印加されるように、永久磁石を用いて0.5Tの磁場を10min間印加した。
Application of magnetic field A magnetic field of 0.5 T was applied for 10 minutes using a permanent magnet so that the magnetic field lines were applied perpendicularly to the silicon substrate surface.

液体の硬化
磁場をそのまま印加しながら、100℃において10分間加熱して樹脂を硬化させ、磁場の印加を停止した。
While applying the liquid curing magnetic field as it was, the resin was cured by heating at 100 ° C. for 10 minutes, and the application of the magnetic field was stopped.

位置合わせ状態の確認
上記の硬化後の試料の断面を観察したところ、図14に示す様に、磁場印加を行わない場合には、NiPの突起同士の位置が一致せず((A)参照)、磁場印加を行なった場合には、NiPの突起同士の位置が一致していることが判明した((B)参照)。
Confirmation of alignment state When a cross section of the cured sample was observed, as shown in FIG. 14, the positions of the NiP protrusions did not match when no magnetic field application was performed (see (A)). When the magnetic field was applied, it was found that the positions of the NiP protrusions matched (see (B)).

以上のような実施例1〜7に示す事例は、旋光性を有する粒子だけでなく、エネルギー線反射特性を始めとするその他のあらゆる光学特性粒子において適用可能である。   The examples shown in Examples 1 to 7 as described above can be applied not only to particles having optical activity but also to any other optical characteristic particles including energy ray reflection characteristics.

静磁場または静電場を用いて、最も磁場配向または電場配向しやすい方向に粒子を配向させた状態を示す図である。It is a figure which shows the state which orientated the particle | grains in the direction which is most easy to carry out magnetic field orientation or electric field orientation using a static magnetic field or an electrostatic field. 回転磁場または回転電場を用いて、最も磁場配向しにくいまたは電場配向しにくい方向に粒子を配向させた状態を示す図である。It is a figure which shows the state which orientated the particle | grains in the direction which is hard to carry out magnetic field orientation or electric field orientation most easily using a rotating magnetic field or a rotating electric field. 周期的に回転速度が変化する電場または磁場を用いて、周期的な回転のうち、回転速度が遅くなる方向である、磁場配向または電場配向しやすい方向に粒子を配向させ、回転軸方向である磁場または電場配向しにくい方向に粒子を配向させた状態を示す図である。Using an electric field or magnetic field whose rotational speed changes periodically, out of the periodic rotation, the direction of the rotational axis is the direction in which the rotational speed slows down, the particles are oriented in the direction of magnetic field orientation or electric field orientation, and the rotational axis direction. It is a figure which shows the state which orientated the particle | grains in the direction which is hard to carry out a magnetic field or an electric field orientation. 本発明のループ状の支持体を用いて薄膜を形成する方法を示す図である。It is a figure which shows the method of forming a thin film using the loop-shaped support body of this invention. 本発明の電子装置の位置合わせを磁場を用いて行う方法を示す図である。It is a figure which shows the method of aligning the electronic apparatus of this invention using a magnetic field. 静磁場で配向させた炭酸ストロンチウム/樹脂複合体のクロスニコル偏光顕微鏡写真である。2 is a crossed Nicols polarization micrograph of a strontium carbonate / resin composite oriented in a static magnetic field. 回転磁場で配向させた炭酸ストロンチウム/樹脂複合体のクロスニコル偏光顕微鏡写真である。2 is a crossed Nicols polarization micrograph of a strontium carbonate / resin composite oriented in a rotating magnetic field. 周期的に回転速度が変化する回転磁場で配向させた炭酸ストロンチウム/樹脂複合体のクロスニコル偏光顕微鏡写真である。FIG. 3 is a crossed Nicols polarization micrograph of a strontium carbonate / resin composite oriented in a rotating magnetic field with periodically changing rotational speed. ループ状の支持体間に膜を形成、静磁場で配向させた炭酸ストロンチウム/樹脂複合体のクロスニコル偏光顕微鏡写真であるIt is a crossed Nicols polarization micrograph of a strontium carbonate / resin composite in which a film is formed between loop-shaped supports and oriented in a static magnetic field. ループ状の支持体間に形成し光硬化させた膜の写真である。It is a photograph of the film | membrane formed between the loop-shaped support bodies and photocured. ループ状の支持体間に形成し光硬化させた膜の走査型白色光干渉法の測定結果を示す図である。It is a figure which shows the measurement result of the scanning white light interferometry of the film | membrane formed between the loop-shaped support bodies and photocured. ループ状の支持体間に形成し光硬化させた膜中で配向している金ナノプレートのクロスニコル偏光顕微鏡写真である.Cross-Nicol polarization micrograph of a gold nanoplate oriented in a photocured film formed between looped supports. ループ状の支持体間に形成し光硬化させた膜中で配向している銀ナノロッドのクロスニコル偏光顕微鏡写真である.Cross-Nicol polarization micrograph of silver nanorods oriented in a photocured film formed between looped supports. 磁場で位置合わせしていない電子装置(A)、及び磁場で位置合わせした電子装置(B)の断面電子顕微鏡写真である。It is a cross-sectional electron micrograph of the electronic device (A) not aligned with a magnetic field, and the electronic device (B) aligned with a magnetic field.

Claims (10)

磁場及び電場の少なくとも一方を印加することにより配向する、旋光性や光反射特性を始めとする所定の光学特性を有する粒子(以下、「光学特性粒子」という)を分散させた固化可能な流動性物質に、磁場及び電場の少なくとも一方を印加して、前記光学特性粒子を印加した磁場及び/または電場に対応する方向に配向させ固定することにより、前記光学特性粒子の向きに応じた所望の方向に旋光性や偏光性を始めとする所定の光学異方性を有する複合材料(以下、「光学異方性複合材料」という)を製造する場合において
前記印加した磁場及び/または電場によって配向させることが困難な大きさの金属性微粒子の表面に磁化率や誘電率の異方性を有する分子や高分子を吸着配向させることによって、前記光学特性粒子を形成することを特徴とする光学異方性を有する複合材料の製造方法。
Solidizable fluidity in which particles having predetermined optical properties such as optical rotation and light reflection properties (hereinafter referred to as “optical property particles”) that are oriented by applying at least one of a magnetic field and an electric field are dispersed. By applying at least one of a magnetic field and an electric field to the substance and orienting and fixing the optical characteristic particles in a direction corresponding to the applied magnetic field and / or electric field, a desired direction according to the direction of the optical characteristic particles in the composite material having a predetermined optical anisotropy, including optical rotation and polarization (hereinafter referred to as "optically anisotropic composite material") to produce,
By adsorbing and orienting molecules and polymers having anisotropy in magnetic susceptibility and dielectric constant on the surface of metallic fine particles having a size difficult to orient by the applied magnetic field and / or electric field, the optical characteristic particles A method for producing a composite material having optical anisotropy, wherein
磁場及び電場の少なくとも一方を印加することにより配向する、旋光性や光反射特性を始めとする所定の光学特性を有する粒子(以下、「光学特性粒子」という)を分散させた固化可能な流動性物質に、磁場及び電場の少なくとも一方を印加して、前記光学特性粒子を印加した磁場及び/または電場に対応する方向に配向させ固定することにより、前記光学特性粒子の向きに応じた所望の方向に旋光性や偏光性を始めとする所定の光学異方性を有する複合材料(以下、「光学異方性複合材料」という)を製造し、
ループ状の支持体の間に前記光学特性粒子を含む固化可能な液体の膜を張り、該膜を固化させる前に、磁場及び/または電場を印加して該粒子を配向させることにより、所定の光学異方性を有する極薄膜を形成することを特徴とする光学異方性を有する複合材料の製造方法。
Solidizable fluidity in which particles having predetermined optical properties such as optical rotation and light reflection properties (hereinafter referred to as “optical property particles”) that are oriented by applying at least one of a magnetic field and an electric field are dispersed. By applying at least one of a magnetic field and an electric field to the substance and orienting and fixing the optical characteristic particles in a direction corresponding to the applied magnetic field and / or electric field, a desired direction according to the direction of the optical characteristic particles Manufacturing a composite material having predetermined optical anisotropy including optical rotation and polarization (hereinafter referred to as “optically anisotropic composite material”),
A film of solidifiable liquid containing the optical property particles is stretched between the loop-shaped supports, and a magnetic field and / or an electric field is applied to orient the particles before solidifying the film. A method for producing a composite material having optical anisotropy, comprising forming an ultrathin film having optical anisotropy.
前記磁場が、静磁場、一定速度で回転する磁場、周期的に回転速度が変化する回転磁場のいずれかであって、前記電場が、静電場、一定速度で回転する電場、周期的に回転速度が変化する回転電場のいずれかである場合において、
これらの磁場及び電場の少なくとも一方を印加することによって、
前記光学特性粒子を印加した磁場及び/または電場に対応する方向に配向させることを特徴とする請求項1または2記載の光学異方性を有する複合材料の製造方法。
The magnetic field is any one of a static magnetic field, a magnetic field rotating at a constant speed, and a rotating magnetic field whose rotation speed changes periodically, and the electric field is an electrostatic field, an electric field rotating at a constant speed, and a periodic rotation speed. Is one of the changing rotating electric fields,
By applying at least one of these magnetic and electric fields,
3. The method for producing a composite material having optical anisotropy according to claim 1, wherein the optical characteristic particles are oriented in a direction corresponding to an applied magnetic field and / or electric field.
前記流動性物質が固化可能な液状樹脂であることを特徴とする請求項1〜3のいずれか1項記載の光学異方性を有する複合材料の製造方法。   The method for producing a composite material having optical anisotropy according to any one of claims 1 to 3, wherein the fluid substance is a solidifiable liquid resin. 前記流動性物質がエネルギー線硬化型樹脂であることを特徴とする請求項4記載の光学異方性を有する複合材料の製造方法。   The method for producing a composite material having optical anisotropy according to claim 4, wherein the fluid substance is an energy beam curable resin. 前記光学特性粒子を分散させた固化可能な流動性物質を透明基板上に直接塗布して、前記透明基板上に所定の光学異方性を有する層を形成することを特徴とする請求項1項記載の光学異方性を有する複合材料の製造方法。   2. The solidifiable fluid substance in which the optical characteristic particles are dispersed is directly applied onto a transparent substrate to form a layer having a predetermined optical anisotropy on the transparent substrate. The manufacturing method of the composite material which has optical anisotropy of description. 前記光学特性粒子が旋光性を有することを特徴とする請求項1〜6のいずれか1項記載の光学異方性を有する複合材料の製造方法。   The method for producing a composite material having optical anisotropy according to any one of claims 1 to 6, wherein the optical characteristic particles have optical rotation. 固化した前記流動性物質の屈折率と最も近くなる異方屈折率を示す前記光学特性粒子の軸が、使用時に光が入射する方向に向くように配向させることを特徴とする請求項7記載の光学異方性を有する複合材料の製造方法。   8. The axis of the optical characteristic particle exhibiting an anisotropic refractive index closest to the refractive index of the solidified fluid substance is oriented so as to face the direction in which light enters during use. A method for producing a composite material having optical anisotropy. 前記光学特性粒子がエネルギー線反射特性を有し、該粒子を用いて、光反射型の偏光能を有する複合材料を形成することを特徴とする請求項1〜6のいずれか1項記載の光学異方性を有する複合材料の製造方法。   The optical material according to any one of claims 1 to 6, wherein the optical property particle has energy ray reflection property, and a composite material having a light reflection type polarization ability is formed using the particle. A method for producing a composite material having anisotropy. 請求項1に記載の前記金属粒子が光を反射する微細なプレートであって、該プレートを用いた反射型偏光子の製造方法。 A the fine plate metal fine particles reflect light according to claim 1, a manufacturing method of a reflective polarizer with the plate.
JP2007009459A 2007-01-18 2007-01-18 Composite material having optical anisotropy and method for manufacturing electronic device Active JP4933904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009459A JP4933904B2 (en) 2007-01-18 2007-01-18 Composite material having optical anisotropy and method for manufacturing electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009459A JP4933904B2 (en) 2007-01-18 2007-01-18 Composite material having optical anisotropy and method for manufacturing electronic device

Publications (2)

Publication Number Publication Date
JP2008176065A JP2008176065A (en) 2008-07-31
JP4933904B2 true JP4933904B2 (en) 2012-05-16

Family

ID=39703133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009459A Active JP4933904B2 (en) 2007-01-18 2007-01-18 Composite material having optical anisotropy and method for manufacturing electronic device

Country Status (1)

Country Link
JP (1) JP4933904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405053B2 (en) 1997-07-22 2013-03-26 Hitachi, Ltd. Method and apparatus for specimen fabrication

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143459A1 (en) * 2008-05-23 2009-11-26 Reflexite Corporation Light control films and method thereof
JP2013077557A (en) * 2011-09-13 2013-04-25 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure
NO20120740A1 (en) * 2012-06-25 2013-12-26 Inst Energiteknik A method of forming a body with a particle structure fixed in a matrix material
FI129889B (en) 2015-10-09 2022-10-31 Inkron Ltd Dielectric siloxane particle films and devices having the same
US11998947B2 (en) 2018-07-18 2024-06-04 3M Innovative Properties Company Magnetizable particles forming light controlling structures and methods of making such structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267703A (en) * 1986-05-16 1987-11-20 Saiteku Kk Colored polarizing plate
JPH04325423A (en) * 1991-04-25 1992-11-13 Hoya Corp Production of polarizing glass
JP2003075634A (en) * 2001-09-03 2003-03-12 Yoshiyuki Namita Method for manufacturing optical film, and optical film
JP2003279735A (en) * 2002-03-22 2003-10-02 Fuji Photo Film Co Ltd Polarization element
JP2004109951A (en) * 2002-09-20 2004-04-08 Japan Science & Technology Corp Polarizing color filter and manufacturing method therefor
JP4866694B2 (en) * 2006-09-15 2012-02-01 協立化学産業株式会社 Alignment method using magnetic field and / or electric field, and method for producing alignment material using this alignment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405053B2 (en) 1997-07-22 2013-03-26 Hitachi, Ltd. Method and apparatus for specimen fabrication
US8569719B2 (en) 1997-07-22 2013-10-29 Hitachi, Ltd. Method and apparatus for specimen fabrication

Also Published As

Publication number Publication date
JP2008176065A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4933904B2 (en) Composite material having optical anisotropy and method for manufacturing electronic device
Li et al. Semiconductor nanorod liquid crystals
Liang et al. Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites
Chen et al. Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes
JP5173173B2 (en) Method for aligning conductive material and method for manufacturing electronic device having anisotropic material or anisotropic material using this alignment method
He et al. Magnetic assembly of nonmagnetic particles into photonic crystal structures
KR102024778B1 (en) Black sealant composition, display device comprising the same and method of manufacturing for the display device
Guin et al. Tunable electromechanical liquid crystal elastomer actuators
KR101837829B1 (en) High reflective organic-inorganic hybrid solution and its manufacturing method
Lv et al. Layered double hydroxide assemblies with controllable drug loading capacity and release behavior as well as stabilized layer-by-layer polymer multilayers
Yoo et al. Quantitative measurements of size-dependent magnetoelectric coupling in Fe3O4 nanoparticles
Eslami et al. Optical and mechanical properties of transparent acrylic based polyurethane nano Silica composite coatings
EP3359991B1 (en) Displays comprising dielectric siloxane polymer films
US10053626B2 (en) Methods of fabricating PDLC thin films
Sarkar et al. Preparation and characterization of ultrafine Co and Ni particles in a polymer matrix
Jeon et al. Reducing the coefficient of thermal expansion of polyimide films in microelectronics processing using ZnS particles at low concentrations
Lantean et al. Magnetoresponsive devices with programmable behavior using a customized commercial stereolithographic 3D printer
Eita et al. Thin films of zinc oxide nanoparticles and poly (acrylic acid) fabricated by the layer-by-layer technique: A facile platform for outstanding properties
Palaniandy et al. New insights into segmental packing, chain dynamics and thermomechanical performance of aliphatic polyurea composites: comparison between silica oxides and titanium (III) oxides
Knaapila et al. Transparency enhancement for photoinitiated polymerization (UV curing) through magnetic field alignment in a piezoresistive metal/polymer composite
Wu et al. Magnetically-assisted digital light processing 4D printing of flexible anisotropic soft-Magnetic composites
Kubo et al. Surface-assisted unidirectional orientation of ZnO nanorods hybridized with nematic liquid crystals
Ellahi et al. Preparation of silver nanoparticles (AgNPs)-doped epoxy-based thin PDLC films (smart glass)
JP4933819B2 (en) Method for producing light reflecting or shielding material using one or both of magnetic field and electric field
JP4866694B2 (en) Alignment method using magnetic field and / or electric field, and method for producing alignment material using this alignment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Ref document number: 4933904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250