JP4933760B2 - Filter device - Google Patents
Filter device Download PDFInfo
- Publication number
- JP4933760B2 JP4933760B2 JP2005273245A JP2005273245A JP4933760B2 JP 4933760 B2 JP4933760 B2 JP 4933760B2 JP 2005273245 A JP2005273245 A JP 2005273245A JP 2005273245 A JP2005273245 A JP 2005273245A JP 4933760 B2 JP4933760 B2 JP 4933760B2
- Authority
- JP
- Japan
- Prior art keywords
- ring member
- filter
- gap
- filter device
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Disintegrating Or Milling (AREA)
- Nozzles (AREA)
Abstract
Description
本発明は、例えばスラリー液や異種の液体からなる混合液等の原料液を高圧ノズル噴射により材料粒子の微粒化、分散、乳化等を行う際にノズル上流側で用いるフィルタ装置に関するものである。 The present invention relates to a filter device used on the upstream side of a nozzle, for example, when a raw material liquid such as a slurry liquid or a mixed liquid composed of different kinds of liquid is atomized, dispersed, emulsified and the like by high-pressure nozzle injection.
材料物質の微粒化や乳化または微細粒子の分散などの流体の均質化を行う方法の一つとして、例えば図5に示すような微粒化装置を用いて材料粒子を含む液体(原料液)を高圧プランジャポンプで加圧してノズルから衝突チャンバー内に高圧噴射する方法が採用されている。 As one of the methods for homogenizing a fluid such as atomization of material, emulsification or dispersion of fine particles, for example, a liquid (raw material liquid) containing material particles is used at a high pressure using a atomization apparatus as shown in FIG. A method is adopted in which high pressure is injected from the nozzle into the collision chamber by pressurizing with a plunger pump.
このような方法では、原料液が小径のノズルから噴射される際に、ノズルが目詰まりしないようにノズルより上流で材料粒子径を小さく、望ましくは噴射ノズルの噴射口径よりも小さくしておかなければならない。 In such a method, when the raw material liquid is ejected from a nozzle having a small diameter, the material particle diameter should be made small upstream of the nozzle so that the nozzle is not clogged, and preferably smaller than the jet nozzle diameter of the jet nozzle. I must.
そこで、ノズル(衝突チャンバー)より上流位置に超高圧フィルタを設置して、大径の粒子を細かくしてノズルの目詰まりを防止している。このようなフィルタとしては、例えば、ウェッジワイヤーフィルタがある。これは、SUSステンレス鋼製のワイヤーからなる金網フィルタであって、ワイヤー間の網目間隙に原料液を通すことによって大径粒子を分散、解砕するフィルタである(例えば、非特許文献1参照。)。 Therefore, an ultra-high pressure filter is installed upstream of the nozzle (collision chamber) to prevent clogging of the nozzle by making large particles fine. An example of such a filter is a wedge wire filter. This is a wire mesh filter made of a wire made of SUS stainless steel, and is a filter that disperses and pulverizes large-diameter particles by passing a raw material solution through a mesh gap between wires (see, for example, Non-Patent Document 1). ).
即ち、原料液に含まれる粒子が軟質なものであれば、網目を通るだけで粒子は解砕、分散されるが、原料液に含まれる粒子が比較的硬質なものであれば、その粒子はまず網目に噛み込み、その後に網目の前後の圧力差によって解砕されて噛み込みが解消される。このようにウェッジワイヤーフィルタは強固な構造であることから、比較的硬質な粒子にも適用でき、高圧な流れにも適用できる。 That is, if the particles contained in the raw material liquid are soft, the particles are crushed and dispersed only by passing through the mesh, but if the particles contained in the raw material liquid are relatively hard, the particles are The mesh is first bitten, and then is broken by the pressure difference before and after the mesh to eliminate the bite. Thus, since the wedge wire filter has a strong structure, it can be applied to relatively hard particles and can be applied to a high-pressure flow.
しかしながら、上記のようなウェッジワイヤーフィルタでも、チタン酸バリウムなどの極めて硬い粒子を対象とする場合には、この硬質粒子が高速で狭い網目を通過すると、網目を構成するSUS製ワイヤーからなるフィルタ面がアブレージョンやエロージョンによって磨耗あるいは壊食されていき、ついには大径粒子がそのままフィルタを通過してノズルの目詰まりを引き起こしてしまう。 However, even when the above wedge wire filter is intended for extremely hard particles such as barium titanate, when the hard particles pass through a narrow mesh at high speed, a filter surface made of SUS wire constituting the mesh. However, the particles are worn or eroded by abrasion or erosion, and finally the large-diameter particles pass through the filter as it is, causing clogging of the nozzle.
また、磨耗や壊食が生じる前でも、極めて硬い粒子を含む原料液では、ウェッジワイヤーフィルタの網目に噛み込んだ大径粒子はいつまでも解砕されないか、解砕されるまでの時間が長くなる。 Further, even before wear or erosion occurs, in the raw material liquid containing extremely hard particles, the large-diameter particles bitten in the mesh of the wedge wire filter are not crushed indefinitely, or the time until pulverization is increased.
この場合、硬質粒子が網目に噛み込んだままの領域が拡がっていき、塞がった網目前後の圧力差によってついにはワイヤーが破損する可能性が高まる。生産ラインでこのような事態が生じると、その都度ラインを停止し、フィルタの取り外し・分解、ウェッジワイヤー交換、フィルタ部品の組付け及び、ノズル目詰まりの解消など、復旧に時間を要し、実際の微粒化や分散等の処理において作業効率に悪影響を及ぼし、最終的な製品の生産性の低下をもたらしてしまう。 In this case, the region in which the hard particles remain in the mesh expands, and the possibility that the wire is finally damaged by the pressure difference before and after the closed mesh increases. When such a situation occurs in the production line, the line is stopped each time, and it takes time to recover, such as removing and disassembling the filter, replacing the wedge wire, assembling the filter parts, and eliminating nozzle clogging. In the process of atomization or dispersion of the powder, the work efficiency is adversely affected and the final product productivity is lowered.
このようなワイヤー破損を回避し、より長寿命のフィルタを得るためには、エロージョンやアブレージョンに強い超硬合金製のフィルタを製作することがまず考えられる。しかしながら、超硬合金は脆性材料であるため、複雑な形状に加工することができず、ウェッジワイヤーフィルタの製造は困難で実用に適さなかった。 In order to avoid such wire breakage and to obtain a longer-life filter, it is first considered to manufacture a cemented carbide filter that is resistant to erosion and abrasion. However, since the cemented carbide is a brittle material, it cannot be processed into a complicated shape, and the production of the wedge wire filter is difficult and unsuitable for practical use.
本発明の目的は、上記問題点に鑑み、チタン酸バリウム等の極めて硬質の材料粒子を含む原料液に対する分散・解砕にも適用でき、従来より高い耐摩耗性を備えてより長い寿命を実現可能とするフィルタ装置を提供することにある。 In view of the above problems, the object of the present invention can also be applied to dispersion and crushing of raw material liquids containing extremely hard material particles such as barium titanate, and realizes a longer life with higher wear resistance than before. An object of the present invention is to provide a filter device that enables this.
上記目的を達成するため、請求項1に記載の発明に係るフィルタ装置は、加圧手段を介して加圧された原料液を噴射ノズルへ送る配管途中に配置され、原料液中の前記噴射ノズルの噴射口径より大径の材料粒子を解砕するフィルタ装置において、高硬度部材製の第1のリング部材と、この第1のリング部材とは別体の第2の部材と、該第1のリング部材と第2の部材との間に形成される間隙からなる原料液流路と、を備え、前記間隙が前記噴射ノズルの噴射口径より小さい幅寸法を有し、前記噴射ノズルの噴射口径より大径の材料粒子を前記幅寸法以下に解砕するするものである。
To achieve the above object, the filter device according to the invention of
また、請求項2に記載の発明に係るフィルタ装置は、請求項1に記載のフィルタ装置において、前記第2の部材は、第1のリング部材の内部に配置され、第1のリング部材内径より小さい外径を有するセラミックス製ボールであることを特徴とするものである。 The filter device according to a second aspect of the present invention is the filter device according to the first aspect, wherein the second member is disposed inside the first ring member, and has an inner diameter of the first ring member. It is a ceramic ball having a small outer diameter.
また、請求項3に記載の発明に係るフィルタ装置は、請求項1に記載のフィルタ装置において、第2の部材は、前記第1のリング部材とスペーサを介して同軸に配置された第2のリング部材であり、前記間隙が、隣合う前記第1のリング部材と第2のリング部材同士間に前記スペーサによって形成されるものである。 According to a third aspect of the present invention, there is provided the filter device according to the first aspect, wherein the second member is a second member disposed coaxially with the first ring member via a spacer. It is a ring member, and the gap is formed by the spacer between the adjacent first ring member and second ring member.
本発明のフィルタ装置においては、第1のリング部材と第2の部材としてのセラミックス製ボールとの間に形成される間隙、あるいは第1のリング部材と第2のリング部材との間でスペーサを介して形成される間隙を原料液流路とし、この間隙寸法を噴射ノズルの噴射口径より小さくすることによって、噴射口径より大径の材料粒子を分散または解砕してノズルの目詰まりを防止するものであるため、フィルタ装置を構成する各部材形状は単純で複雑な加工を必要とせず、チタン酸バリウム等の極めて硬質粒子を対象とした場合にも優れた耐摩耗性を示す超硬合金やセラミックスでリング部材を製造でき、フィルタ装置自体の長寿命化とこれによる生産性の向上を実現できるという効果がある。 In the filter device of the present invention, a spacer is formed between the first ring member and the ceramic ball as the second member, or between the first ring member and the second ring member. The gap formed between the two nozzles is used as a raw material liquid flow path, and the gap size is made smaller than the jet nozzle diameter of the jet nozzle, thereby dispersing or crushing material particles having a diameter larger than the jet nozzle diameter to prevent clogging of the nozzle. Therefore, the shape of each member constituting the filter device does not require simple and complicated processing, and it is a cemented carbide that exhibits excellent wear resistance even when targeting extremely hard particles such as barium titanate. A ring member can be manufactured with ceramics, and there is an effect that the life of the filter device itself can be extended and the productivity can be improved.
本発明においては、第1のリング部材とこれとは別体の第2の部材との間に形成される間隙を、原料液流路とし、この間隙を、噴射ノズルの噴射口径より小さい所定の幅寸法とすることによって、該間隙を通過する際に原料液に含まれる材料粒子の大径のものを分散または解砕させて、ノズル目詰まりを回避するフィルタ装置である。 In the present invention, a gap formed between the first ring member and the second member separate from the first ring member is used as a raw material liquid flow path, and the gap is a predetermined smaller than the injection nozzle diameter of the injection nozzle. By setting the width dimension, the filter device prevents the nozzle clogging by dispersing or crushing the large-diameter material particles contained in the raw material liquid when passing through the gap.
このように、フィルタ装置の主要部分をリング状という単純な形状としたことによって、製造時に複雑な加工を必要としなくなり、第1のリング部材を耐摩耗性に優れた高硬度部材、具体的には超硬合金製またはセラミックス製とすることができる。従って、処理対象である材料粒子がチタン酸バリウムのような極めて硬質のものであっても、フィルタへの磨耗、損傷は従来に比べて大幅に低減されて良好な粒子の分散・解砕処理が維持できるため、フィルタ装置自体の寿命は延び、損傷によるフィルタ交換や目詰まり解消等の煩雑な作業も大幅に省かれ、消耗部品コストが抑えられ、作業効率も向上し、結果として製品の生産性も向上する。 Thus, by making the main part of the filter device a simple shape called a ring shape, complicated processing is not required at the time of manufacture, and the first ring member is a high-hardness member excellent in wear resistance, specifically, Can be made of cemented carbide or ceramics. Therefore, even if the material particles to be processed are extremely hard, such as barium titanate, the wear and damage to the filter is greatly reduced compared to the conventional method, and a good particle dispersion and crushing process is achieved. As a result, the life of the filter device itself is extended, complicated work such as filter replacement and clogging due to damage is greatly eliminated, consumable parts costs are reduced, and work efficiency is improved, resulting in product productivity. Will also improve.
なお、本発明における第1のリング部材と第2の部材との間に前記原料液流路となる間隙を形成するための具体的構成としては、第1のリング部材の内部に、この第1のリング部材内径より小さい外径を有するセラミックス製ボールを第2の部材として配置する構成が簡便なものとして挙げられる。 As a specific configuration for forming a gap serving as the raw material liquid flow path between the first ring member and the second member in the present invention, the first ring member includes the first ring member. A configuration in which a ceramic ball having an outer diameter smaller than the inner diameter of the ring member is arranged as the second member can be mentioned as a simple one.
この場合、第1のリング部材とボールはある程度の加工精度は要求されるものの、形状は単純であるため、製作は比較的容易であり、第1のリング内径とそれより小さいボール外径さえ適度な精度を確保すれば、両部材間に噴射ノズルの噴射口径に応じた極めて狭い環状間隙を形成できる。 In this case, although the first ring member and the ball require a certain degree of processing accuracy, since the shape is simple, the manufacturing is relatively easy, and even the first ring inner diameter and the smaller ball outer diameter are appropriate. If a sufficient accuracy is ensured, an extremely narrow annular gap corresponding to the injection nozzle diameter of the injection nozzle can be formed between both members.
原料液に含まれる材料粒子が硬質である場合、この環状間隙に大径粒子が噛み込んだとしても、それは周囲を高速で流れる原料液の衝突エネルギーによって解砕されたり、噛み込み粒子の前後の圧力差によって解砕され微細化される。従ってこのような環状間隙においては、粒子が噛み込んだままの領域が拡がって間隙が塞がり過ぎることはない。また極めて硬い粒子が原料液と共にこの環状間隙を高速で通過したとしても、ボールは窒化珪素、ジルコニア等のセラミックス材または超硬合金材からなり、第1のリング部材は超硬合金製またはセラミックス製であるため、磨耗や壊食はほとんどなく、フィルタ装置の寿命は長くなる。 When the material particles contained in the raw material liquid are hard, even if the large-diameter particles are caught in the annular gap, they can be crushed by the collision energy of the raw material liquid flowing at high speed around, or before and after the biting particles. It is crushed and refined by the pressure difference. Therefore, in such an annular gap, the region in which the particles are stuck is not expanded, and the gap is not closed too much. Even if extremely hard particles pass through the annular gap together with the raw material liquid at high speed, the ball is made of a ceramic material or cemented carbide material such as silicon nitride or zirconia, and the first ring member is made of cemented carbide or ceramics. Therefore, there is almost no wear or erosion, and the life of the filter device is prolonged.
セラミックス製ボールの第1のリング部材内への配置は、例えば第1のリング部材内の下流側にボール受けを設け、上流側でスプリング等で押さえることによって固定できる。この時、原料液の流れに応じてボールを回転可能とすることによってもボールへの衝撃は緩和され、ボールの磨耗や損傷は回避できる。 The ceramic ball can be fixed in the first ring member by, for example, providing a ball receiver on the downstream side in the first ring member and pressing it with a spring or the like on the upstream side. At this time, by making the ball rotatable according to the flow of the raw material liquid, the impact on the ball is alleviated and wear and damage of the ball can be avoided.
また、前記間隙を形成するための他の構成としては、第2の部材として、別のリング部材をスペーサを介して同軸方向に配列するものが挙げられる。即ち、第1のリング部材に対し第2のリング部材を隣り合わせに配置するものであり、実際の装置構成に応じて同軸方向にさらに第3のリング部材、第4のリング部材、と配列するリング部材の個数を設定すればよい。例えば、同形状の複数個のリング部材とスペーサを交互に管状の軸部材外周に嵌める構成とし、スペーサの軸方向の寸法によって隣り合うリング部材同士間の間隙を所定寸法で確保することができる。 In addition, as another configuration for forming the gap, as the second member, there is a configuration in which another ring member is arranged in a coaxial direction via a spacer. That is, the second ring member is disposed adjacent to the first ring member, and the third ring member and the fourth ring member are arranged in the same direction in the coaxial direction according to the actual device configuration. What is necessary is just to set the number of members. For example, a plurality of ring members and spacers of the same shape can be alternately fitted on the outer periphery of the tubular shaft member, and a gap between adjacent ring members can be secured with a predetermined size depending on the axial dimension of the spacer.
この場合、管状軸部材には、管内流路と各間隙に対応する位置で各間隙と管内流路とを連通するように複数本の貫通孔を径方向に放射状に等角度間隔で形成すればよい。これにより原料液は、各リング部材外周方向からこの間隙を通って内周に向かう際に所定径以下に分散・解砕され、前記貫通孔から筒内部の流路へ導入され、軸部材の下流側端部から噴射ノズルへ向かう配管中へ流出される。 In this case, in the tubular shaft member, a plurality of through holes may be formed radially at equal angular intervals so as to communicate the gaps and the pipe flow paths at positions corresponding to the pipe flow paths and the gaps. Good. As a result, the raw material liquid is dispersed and crushed to a predetermined diameter or less when going from the outer circumferential direction of each ring member to the inner circumference through this gap, and is introduced into the flow path inside the cylinder from the through hole, and downstream of the shaft member. It flows out into the piping from the side end toward the injection nozzle.
従って、スペーサは、この間隙にて原料液のリング部材外周側から内周側への導入をできるだけ遮ることのない形状とする。例えば、1つのリング部材につき1つのスペーサが嵌合状態で配置され、この嵌合状態にあるリング部材から所定寸法だけ突出するスペーサ部分が隣り合う別のリング部材に突き当たることによってその別のリング部材との間に突出寸法分の間隙を確保するというフィルタ装置が構成できるが、前記突出部は、間隙を塞ぐことにもなるため、突出部領域はリング部材全周に対して均一な間隙を維持できる部分的な領域のみとすれば良い。特に、前記貫通孔の開口ができるだけ突出部に重ならないものとする。 Therefore, the spacer has a shape that does not block the introduction of the raw material liquid from the outer peripheral side of the ring member to the inner peripheral side as much as possible in this gap. For example, one spacer is arranged in a fitted state per one ring member, and a spacer portion protruding by a predetermined dimension from the ring member in the fitted state hits another adjacent ring member, so that the other ring member The filter device can be configured to ensure a gap corresponding to the protrusion dimension between the protrusion and the protrusion. However, since the protrusion also closes the gap, the protrusion area maintains a uniform gap with respect to the entire circumference of the ring member. It suffices to make only a partial area that can. In particular, it is assumed that the opening of the through hole does not overlap the protrusion as much as possible.
例えば、スペーサ突出部がリング部材全周に対して2箇所設けられている場合、前記径方向に放射状に形成される貫通孔を少なくとも3つとすれば、例え貫通孔の開口のうち1つが突出部で塞がれても、他の2つは塞がれることはない。 For example, when two spacer protrusions are provided for the entire circumference of the ring member, if at least three through holes are formed radially in the radial direction, one of the openings of the through holes is the protrusion. Even if it is blocked, the other two are not blocked.
以上のように、リング部材に外周側にも原料液を回り込ませる構成とすることによって、リング部材にかかる応力分布は一様になり、リング部材の内側と外側の圧力差が小さくなってリング部材にかかる機械的な強度負担が軽減される。 As described above, by adopting a configuration in which the raw material liquid is made to circulate to the outer peripheral side of the ring member, the stress distribution applied to the ring member becomes uniform, and the pressure difference between the inner side and the outer side of the ring member becomes smaller. The mechanical strength burden is reduced.
なお、本発明で云う原料液としては、固体粒子+液体(溶媒)の所謂スラリー液に限らず、油などの液体粒子+液体(溶媒)の場合もあり、また液体(溶媒)としては、水に限らず各種溶媒の場合もあり、本発明によるフィルタ装置では、いずれの場合も有効である。 The raw material liquid referred to in the present invention is not limited to the so-called slurry liquid of solid particles + liquid (solvent), but may be liquid particles such as oil + liquid (solvent). The liquid (solvent) may be water. The present invention is not limited to various solvents, and the filter device according to the present invention is effective in any case.
本発明の第1の実施例として、第1のリング部材と第2の部材としてのセラミックス製ボールとで前記大径粒子の分散・解砕のための間隙が形成されるフィルタ装置を図1に示す。図1(a)は、本フィルタ装置の構成を示す概略側断面図であり、(b)は原料液流入側(上流側)から見た概略正面図、(c)は(a)中のC部分の拡大図である。 As a first embodiment of the present invention, FIG. 1 shows a filter device in which a gap for dispersing and crushing the large-diameter particles is formed between a first ring member and a ceramic ball as a second member. Show. FIG. 1A is a schematic side sectional view showing the configuration of the filter device, FIG. 1B is a schematic front view seen from the raw material liquid inflow side (upstream side), and FIG. 1C is C in FIG. It is an enlarged view of a part.
本フィルタ装置1は、中心軸に沿って原料液流路が形成されているフィルタボディ2の中央部に設けられたフィルタ室9内に、超硬合金製の第1のリング部材3とセラミックスボール4とから主に構成されるフィルタ部を配置し、フィルタボディ2に対して下流側からフィルタ押さえ8でボルト止めすることによりこのフィルタ部が固定されるものである。
The
セラミックス製ボール4は、リング部材3の内部下流側のボール受け5に対して、上流側からのスプリング6によるバネ付勢によってリング部材3内に位置決めされる。このようなフィルタ装置1おいて、高圧の原料液が流路の上流側から導入されると、フィルタ室9内のフィルタ部に衝突し、セラミックス製ボール4とリング部材3との間の極めて狭い環状間隙Zを通過し、この通過時に原料液に含まれる大径粒子が環状間隙の幅寸法に応じて小径のものに分散・解砕されてから下流側流路へ流れる。
The
本実施例では、超硬合金製のリング部材3の内径を13.14mm、セラミックス製ボール4を窒化珪素製としてその外径を12.70mmとし、両部材間の形成される環状間隙Zの幅を0.22mmとした。この間隙Zが小さすぎると、フィルタ部での圧損が大きくなり、フィルタ装置1の下流側でノズルから原料液を噴射する際に噴射圧の低下を招いてしまう。本実施例では、間隙の開口面積は8.8mm2 であり、直径3.3mmの円管の流路面積に相当し、圧損は小さい。
In this embodiment, the inner diameter of the cemented
本実施例によるフィルタ装置1を、図5の微粒化装置中の超高圧フィルタとして配置し、該微粒化装置にてチタン酸バリウム微粒化処理テストにおけるフィルタ装置の寿命判定を行った。本テストは、増圧機としての2つの高圧プランジャポンプにより原料スラリーをチャンバーに245MPa、流量8kg/minで送り込み、チャンバー内でノズル径0.35mmでの噴射による対向衝突を行うものである。ここで、ウェッジワイヤーフィルタ(網目幅0.22mm)を用いた場合を比較例とし、結果を、以下の表1に示す。フィルタ装置の寿命判定は、隙間が0.30mmに達した時点で寿命とした。
The
上記表1の結果から明らかなように、本実施例によるフィルタ装置では、従来のものよりも寿命が長くなることが確認された。これによって、フィルタ装置の交換を頻繁にする必要がなく、消耗部品コストが抑えられ、作業効率も向上し、結果的に製品の生産性の向上につながる。 As is clear from the results in Table 1 above, it was confirmed that the filter device according to this example has a longer life than the conventional one. This eliminates the need for frequent replacement of the filter device, reduces the cost of consumable parts, improves work efficiency, and results in improved product productivity.
本発明の第2の実施例として、第1〜第4の4つのリング部材で構成され、リング部材同士間でスペーサによって前記大径粒子の分散・解砕のための間隙が形成されるフィルタ装置の場合を図2に示す。図2(a)は本フィルタ装置の原料液流入側(上流側)から見た概略正面図であり、(b)は(a)のA−A断面矢視図、(c)は(b)のB−B断面矢視図であり、(d)は(b)中のD部分の拡大図である。 As a second embodiment of the present invention, a filter device composed of first to fourth ring members, wherein a gap for dispersing and crushing the large-diameter particles is formed between the ring members by a spacer. This case is shown in FIG. 2 (a) is a schematic front view of the filter device as viewed from the raw material liquid inflow side (upstream side), FIG. 2 (b) is an AA cross-sectional view of FIG. 2 (a), and FIG. It is a BB cross-sectional arrow view of these, (d) is an enlarged view of D section in (b).
図3は、本実施例のフィルタ部分を構成するリング部材とスペーサの構成を示す模式図であり、(a)は両部材が離反状態における斜視図、(b)はスペーサがリング部材に嵌合状態にある場合の側面図、(c)は嵌合状態にある場合の斜視図である。図4は4個のリング部材とスペーサによりフィルタ部分を構成する場合を示す説明図であり、(a)は各リング部材およびスペーサを管状軸部材に順次装着していく途中を示す側面図であり、(b)は4つのリング部材の装着完了状態を示す側面図である。 3A and 3B are schematic views showing the structure of the ring member and the spacer constituting the filter portion of the present embodiment, in which FIG. 3A is a perspective view when both members are separated from each other, and FIG. The side view in the case of being in a state, (c) is a perspective view in the case of being in a fitted state. FIG. 4 is an explanatory view showing the case where the filter portion is constituted by four ring members and spacers, and (a) is a side view showing the middle of sequentially attaching each ring member and spacer to the tubular shaft member. (B) is a side view which shows the mounting completion state of four ring members.
本実施例におけるフィルタ装置11は、中心軸に沿って原料液流路が形成されているフィルタボディ12の略中央部に形成されたフィルタ室19内に、複数個の超硬合金製のリング部材13が軸部材15にスペーサ14を介して装着されてなるフィルタ部を設置し、フィルタボディ12に対して下流側からフィルタ押さえ18でボルト止めすることによりこのフィルタ部が固定されるものである。
The
このフィルタ部は、図3に示すように、各リング部材13の内部に環状のスペーサ14が嵌合された状態にて、図4に示すように軸部材15に順次装着されるものであり、各スペーサ14の周縁上に2箇所ずつ形成された突出部14Sが、隣り合う別のリング部材13との間に所定幅寸法の間隙Xを確保するものである。
As shown in FIG. 3, the filter portion is sequentially attached to the
軸部材15には、軸方向に沿って各リング部材13およびスペーサ14装着状態において間隙Xに対応する周上位置に、間隙Xと管内流路16とを連通する貫通孔17が径方向に放射状に形成されている。従って、このようなフィルタ装置11おいて、高圧の原料液が流路の上流側から導入されると、フィルタ室19内では、高圧原料液は、リング部材13の外周側から間隙Xを通ってリング部材13の内側へ流入し、各貫通孔17から管内流路16内に導入され、下流側へ流出する。本フィルタ装置11においては、リング部材13の外周側から間隙Xを通過する際に、原料液に含まれる大径粒子が間隙Xの幅寸法に応じて小径のものに分散・解砕される。
In the
本実施例では、超硬合金製の4つのリング部材13を、3つのSUSステンレス鋼製のスペーサを介して軸部材15に装着し、隣合うリング部材13間に3つの間隙Xを形成するものとし、該間隙Xの幅寸法を0.22mmとして構成した。また、管状軸部材15の各周上位置に形成される貫通孔17は、それぞれ等角度間隔で3本ずつ、計9本設けた。
In this embodiment, four
原料液の流量は、この3つの間隙Xの流路面積で規定されるが、その最小流路面積は、図3(c)に示す隙間部最小径Yを19mmとした場合に、「19mm×0.22mm×π×3個」で求められ、本実施例の場合は39.3mm2 である。これは、上記実施例1に示したリング部材とセラミックスボールからフィルタ部を構成した場合の流路面積8.8mm2 に対して約4.5倍になっており、実施例1におけるフィルタ装置よりもさらに圧損を小さくできる構成である。本実施例の如く、複数個のリング部材13とスペーサ14により間隙Xを形成するフィルタ構成の場合は、スペーサ14の突出部14Sの長さを変更することによって、任意の間隙幅寸法、即ち流路面積を自由に選択することができる。
The flow rate of the raw material liquid is defined by the flow path area of these three gaps X. The minimum flow path area is “19 mm × when the gap gap minimum diameter Y shown in FIG. 0.22 mm × π × 3 ”, which is 39.3 mm 2 in this embodiment. This is about 4.5 times the flow path area of 8.8 mm 2 when the filter portion is composed of the ring member and ceramic balls shown in the first embodiment. However, the pressure loss can be further reduced. In the case of the filter configuration in which the gap X is formed by the plurality of
以下に、図5に示した微粒化装置において、超高圧フィルタとして本実施例のフィルタ装置11を配置してチタン酸バリウム微粒化処理テストにおけるフィルタ装置の寿命判定を行った場合を示す。具体的なテスト条件および比較例(ウェッジワイヤーフィルタ:網目幅0.22mm)、寿命判定基準は、実施例1の場合と同様である。結果を、以下の表2に示す。
Hereinafter, in the atomization apparatus shown in FIG. 5, the case where the
上記表2の結果から明らかなように、本実施例によるフィルタ装置では、従来のものはもちろん実施例1のフィルタ装置よりもさらに寿命が長くなり、450時間も安定して稼働できることが確認された。これによって、フィルタ装置の交換等の手間は更に省かれ、消耗部品コストが抑えられ、作業効率も製品の生産性もより向上する。 As is clear from the results in Table 2 above, it was confirmed that the filter device according to this example has a longer life than the conventional filter device as well as the filter device of Example 1, and can operate stably for 450 hours. . As a result, the trouble of replacing the filter device and the like is further reduced, the cost of consumable parts is reduced, and the work efficiency and the productivity of the product are further improved.
1:フィルタ装置
2:フィルタボディ
3:リング部材
4:セラミックス製ボール
5:ボール受け
6:スプリング
8:フィルタ押さえ
9:フィルタ室
11:フィルタ装置
12:フィルタボディ
13:リング部材
14:スペーサ
14S:スペーサ突出部
15:管状軸部材
16:管内流路
17:貫通孔
18:フィルタ押さえ
19:フィルタ室
Z:間隙(リング部材とボール間)
X:間隙(リング部材同士間)
Y:間隙部最小径
1: Filter device 2: Filter body 3: Ring member 4: Ceramic ball 5: Ball receiver 6: Spring 8: Filter retainer 9: Filter chamber 11: Filter device 12: Filter body 13: Ring member 14:
X: Gap (between ring members)
Y: Minimum gap
Claims (3)
高硬度部材製の第1のリング部材と、この第1のリング部材とは別体の第2の部材と、該第1のリング部材と第2の部材との間に形成される間隙からなる原料液流路と、を備え、
前記間隙が前記噴射ノズルの噴射口径より小さい幅寸法を有し、前記噴射ノズルの噴射口径より大径の材料粒子を前記幅寸法以下に解砕することを特徴とするフィルタ装置。 In the filter device that is arranged in the middle of the piping for sending the raw material liquid pressurized through the pressurizing means to the injection nozzle, and crushes the material particles having a diameter larger than the injection nozzle diameter of the injection nozzle in the raw material liquid,
A first ring member made of a high hardness member, a second member separate from the first ring member, and a gap formed between the first ring member and the second member A raw material liquid flow path ,
The filter device characterized in that the gap has a width dimension smaller than the injection nozzle diameter of the injection nozzle, and material particles larger than the injection nozzle diameter of the injection nozzle are crushed to the width dimension or less.
前記間隙が、隣合う前記第1のリング部材と第2のリング部材同士間に前記スペーサによって形成されることを特徴とする請求項1に記載のフィルタ装置。
The second member is a second ring member disposed coaxially with the first ring member via a spacer,
The filter device according to claim 1, wherein the gap is formed by the spacer between the first ring member and the second ring member adjacent to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005273245A JP4933760B2 (en) | 2005-09-21 | 2005-09-21 | Filter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005273245A JP4933760B2 (en) | 2005-09-21 | 2005-09-21 | Filter device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007083133A JP2007083133A (en) | 2007-04-05 |
JP4933760B2 true JP4933760B2 (en) | 2012-05-16 |
Family
ID=37970656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005273245A Expired - Fee Related JP4933760B2 (en) | 2005-09-21 | 2005-09-21 | Filter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4933760B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220234011A1 (en) * | 2021-01-25 | 2022-07-28 | Sugino Machine Limited | Intensifier and atomizer using intensifier |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5209576B2 (en) * | 2009-07-08 | 2013-06-12 | 株式会社スギノマシン | Collision equipment |
JP2011088108A (en) * | 2009-10-26 | 2011-05-06 | Sugino Machine Ltd | Collision apparatus |
JP6494041B2 (en) * | 2016-07-21 | 2019-04-03 | 株式会社スギノマシン | Atomizer with back pressure function that can be cleaned and sterilized |
JP6596392B2 (en) * | 2016-07-21 | 2019-10-23 | 株式会社スギノマシン | Atomizer |
CN109351443B (en) * | 2018-12-02 | 2024-02-27 | 北京协同创新食品科技有限公司 | High-pressure jet nozzle and high-pressure jet crushing device using same |
JP7326241B2 (en) * | 2020-10-12 | 2023-08-15 | 株式会社スギノマシン | Emulsification slit chamber and emulsification device |
JP7404222B2 (en) * | 2020-12-21 | 2023-12-25 | 株式会社スギノマシン | ultra high pressure filter |
JP7539857B2 (en) | 2021-09-15 | 2024-08-26 | 株式会社スギノマシン | Wet Atomization Equipment |
CN114558656B (en) * | 2022-03-10 | 2022-09-02 | 江西合盈生物科技有限公司 | But beasts and birds of dust absorption are with thousand mesh traditional chinese medicine reducing mechanism |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57123626A (en) * | 1981-01-23 | 1982-08-02 | Toshiba Corp | Manufacturing method of bulb |
JPS606690B2 (en) * | 1982-04-01 | 1985-02-20 | 株式会社コンポン | mixer |
JPS59141767A (en) * | 1983-01-31 | 1984-08-14 | Nippon Denso Co Ltd | Inertia plunging type starter motor |
JPS6295728A (en) * | 1985-10-21 | 1987-05-02 | Sony Corp | Magnetic recording medium |
JPH1033965A (en) * | 1996-07-22 | 1998-02-10 | Daiwa Kasei Kogyo Kk | Fluid mixer |
JP3171561B2 (en) * | 1996-08-05 | 2001-05-28 | 塚田 徳郎 | Fluid mixing device |
JPH1085574A (en) * | 1996-09-13 | 1998-04-07 | Oji Paper Co Ltd | Emulsifying method |
JPH1142430A (en) * | 1997-07-25 | 1999-02-16 | Jiinasu:Kk | Atomizer |
SE513519C2 (en) * | 1998-09-15 | 2000-09-25 | Tetra Laval Holdings & Finance | Method for homogenizing a pressurized liquid emulsion |
-
2005
- 2005-09-21 JP JP2005273245A patent/JP4933760B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220234011A1 (en) * | 2021-01-25 | 2022-07-28 | Sugino Machine Limited | Intensifier and atomizer using intensifier |
Also Published As
Publication number | Publication date |
---|---|
JP2007083133A (en) | 2007-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4933760B2 (en) | Filter device | |
KR101573123B1 (en) | Nozzle for blasting liquid detergents with dispersed abrasive particles | |
RU2666870C1 (en) | Filtration and formation film module and high-pressure nozzle module | |
DE102014203336A1 (en) | Mechanical seal with delivery sleeve | |
US10654043B2 (en) | Wear-resistant element for a comminuting device | |
JP2018079417A (en) | Nozzle washing method and nozzle washing structure of atomization device | |
EP1683561A1 (en) | Filtration device | |
JP2013000669A (en) | Washing nozzle | |
JP2007301509A (en) | Atomizing device | |
JP2006214539A (en) | Check valve | |
DE102009020409A1 (en) | Rotary nozzle | |
JP7326241B2 (en) | Emulsification slit chamber and emulsification device | |
JP4981760B2 (en) | Emulsifying and dispersing device | |
JP2007237093A (en) | Spraying nozzle | |
CN211612938U (en) | Separator of grinding machine and grinding machine | |
EP3482114B1 (en) | Powder rotary feedthrough having a purge chamber | |
JP4397014B2 (en) | Jet collision device | |
JP3978069B2 (en) | Bead processing apparatus and processing object dispersion machine | |
JP7404222B2 (en) | ultra high pressure filter | |
EP3974050A1 (en) | Nozzle with self-closing mechanism | |
JP7323154B2 (en) | plunger pump | |
KR100465662B1 (en) | breakup apparatus | |
JP2009297690A (en) | Emulsifying and dispersing apparatus | |
DE202018004503U1 (en) | Device for supplying fluidized solids | |
JP4536600B2 (en) | strainer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080806 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4933760 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |