JP4933407B2 - Spatter detection method - Google Patents

Spatter detection method Download PDF

Info

Publication number
JP4933407B2
JP4933407B2 JP2007301416A JP2007301416A JP4933407B2 JP 4933407 B2 JP4933407 B2 JP 4933407B2 JP 2007301416 A JP2007301416 A JP 2007301416A JP 2007301416 A JP2007301416 A JP 2007301416A JP 4933407 B2 JP4933407 B2 JP 4933407B2
Authority
JP
Japan
Prior art keywords
electrode
welding
welding workpiece
electrodes
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007301416A
Other languages
Japanese (ja)
Other versions
JP2009125757A (en
Inventor
典子 栗本
薫 柴田
徳昭 重松
光隆 伊賀上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007301416A priority Critical patent/JP4933407B2/en
Publication of JP2009125757A publication Critical patent/JP2009125757A/en
Application granted granted Critical
Publication of JP4933407B2 publication Critical patent/JP4933407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spatter detecting method capable of early detecting spatter. <P>SOLUTION: The spatter detecting method detects, as follows, the spatter that is generated when resistance-welding a weld workpiece 2 prepared by superposing two plate materials 21, 22 on each other. A pair of electrodes 31, 32 is arranged while putting the weld workpiece 2 between themselves. By applying an electric current across the pair of electrodes 31, 32 while pressurizing the weld workpiece 2 with the electrodes 31, 32, the two plate materials 21, 22 are resistance-welded. Here, the contact state of the front ends of the electrodes 31, 32 and the weld workpiece 2 is monitored during the time when the electric current is applied across the electrodes 31, 32. When a clearance between the front ends of the electrodes 31, 32 and the weld workpiece 2 is detected, generation of spatter is decided. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、スパッタ検出方法に関する。詳しくは、複数の板材を重ね合わせた溶接ワークを抵抗溶接する際に発生するスパッタを検出するスパッタ検出方法に関する。   The present invention relates to a sputtering detection method. Specifically, the present invention relates to a sputter detection method for detecting spatter generated when resistance welding is performed on a welded workpiece in which a plurality of plate materials are overlapped.

従来より、自動車の製造工程では、複数の板材を重ねて抵抗溶接することが行われている。例えば、自動車のボディを製造する際には、剛性が高く厚い2枚のインナパネルと、このインナパネルよりも剛性が低く薄いアウタパネルと、を重ねて抵抗溶接する。
この抵抗溶接では、複数枚の金属の板材を重ね合わせた溶接ワークを一対の電極間に挟んで加圧することにより局部的に接触面積を小さくする。そして、一対の電極間に電流を流すことで、この狭い接触面に大電流を流して、板材間の接触面に溶融部を生じさせる。
Conventionally, in a manufacturing process of an automobile, a plurality of plate materials are stacked and resistance-welded. For example, when manufacturing an automobile body, two inner panels having a high rigidity and a thick inner panel and a thin outer panel having a lower rigidity than the inner panel are overlapped and resistance-welded.
In this resistance welding, the contact area is locally reduced by pressing a welding work in which a plurality of metal plates are overlapped between a pair of electrodes. And by flowing an electric current between a pair of electrodes, a large electric current is caused to flow through this narrow contact surface, and a melted portion is generated at the contact surface between the plate members.

ところで、抵抗溶接による発熱が過大になると、溶融部の一部が飛散するスパッタが発生し、溶融部やその周囲に溶接不良が生じるおそれがある。
そこで、このスパッタの発生による溶接不良を検出するため、例えば、溶接ワークの抵抗値を測定し、抵抗値が急激に低下した場合には、スパッタが発生したと判定する手法が提案されている(特許文献1参照)。
実公平6−44542号公報
By the way, when the heat generated by resistance welding becomes excessive, spatter that causes a part of the melted part to scatter is generated, and there is a possibility that poor welding may occur in the melted part and its surroundings.
Therefore, in order to detect the welding failure due to the occurrence of this spatter, for example, a method has been proposed in which the resistance value of the welding workpiece is measured and, when the resistance value rapidly decreases, it is determined that spatter has occurred ( Patent Document 1).
Japanese Utility Model Publication No. 6-44542

しかしながら、スパッタが発生すると、溶接ワークの板厚が瞬間的に減少して、電極と溶接ワークとの間に隙間が生じるため、スパッタが発生してから抵抗値が変化するまで遅れが発生する。よって、上述の提案手法では、スパッタが発生してからスパッタを検出するまでに時間がかかる、という問題があった。   However, when spatter occurs, the thickness of the welded workpiece is instantaneously reduced, and a gap is formed between the electrode and the welded workpiece. Therefore, a delay occurs until the resistance value changes after the occurrence of spatter. Therefore, the above-described proposed method has a problem that it takes time until spatter is detected after spatter has occurred.

本発明は、スパッタを早期に検出できるスパッタ検出方法を提供することを目的とする。   An object of this invention is to provide the sputter | spatter detection method which can detect a sputter | spatter early.

本発明のスパッタ検出方法は、複数の板材(例えば、後述の板材21、22)を重ね合わせた溶接ワーク(例えば、後述の溶接ワーク2)を抵抗溶接する際に発生するスパッタを検出するスパッタ検出方法であって、前記溶接ワークに電極(例えば後述の溶接電極31、31A、31B、32、32A、32B)を配置し、当該電極で前記溶接ワークを加圧しつつ前記電極に通電することで、前記複数の板材同士を抵抗溶接し、前記電極に通電中、前記電極の先端と前記溶接ワークとの接触状態を監視し、当該電極の先端と前記溶接ワークとの間の隙間を検出した場合には、スパッタが発生したと判断することを特徴とする。   The sputter detection method of the present invention is a sputter detection method for detecting spatter generated when resistance welding is performed on a welded workpiece (for example, a welded workpiece 2 described later) in which a plurality of plates (for example, plate materials 21, 22 described later) are overlapped. A method in which an electrode (for example, a welding electrode 31, 31A, 31B, 32, 32A, 32B, which will be described later) is arranged on the welding workpiece, and the electrode is energized while pressurizing the welding workpiece with the electrode. When the plurality of plate members are resistance-welded to each other, and when the electrode is energized, the contact state between the tip of the electrode and the welding workpiece is monitored, and a gap between the tip of the electrode and the welding workpiece is detected Is characterized in that it is determined that sputtering has occurred.

本発明者らは、スパッタが発生すると、溶接ワークの板厚が瞬間的に減少して、電極と溶接ワークとの間に隙間が生じることを見出した。
そこで、この発明によれば、電極の先端と溶接ワークとの接触状態を監視し、この電極と溶接ワークとの間の隙間を検出した場合には、スパッタが発生したと判断した。よって、隙間を検出するだけでよいから、簡易な方法で精度よくかつ早期にスパッタを検出できる。
The present inventors have found that when spatter occurs, the plate thickness of the weld work is instantaneously reduced, and a gap is formed between the electrode and the weld work.
Therefore, according to the present invention, the contact state between the tip of the electrode and the welding workpiece is monitored, and when a gap between the electrode and the welding workpiece is detected, it is determined that spatter has occurred. Therefore, since it is only necessary to detect the gap, spatter can be detected accurately and quickly by a simple method.

この場合、前記電極に通電中、前記電極に内蔵された発振器(例えば、後述の超音波発振器311)から前記溶接ワークに対して横波を出力するとともに、当該電極に内蔵されたセンサ(例えば、後述のセンサ312)で前記横波の反射波を検出し、前記横波の往復時間を測定し、当該往復時間が低下して第1の基準値を超えた場合には、前記電極の先端と前記溶接ワークとの間に隙間が生じたと判定することが好ましい。   In this case, while the electrode is energized, a transverse wave is output to the welding workpiece from an oscillator (for example, an ultrasonic oscillator 311 described later) built in the electrode, and a sensor (for example, described later) is built in the electrode. Sensor 312) detects the reflected wave of the transverse wave, measures the round-trip time of the transverse wave, and if the round-trip time decreases and exceeds the first reference value, the tip of the electrode and the welding workpiece It is preferable to determine that a gap has occurred between the two.

この場合、前記電極に通電中、前記電極に内蔵された発振器(例えば、後述の超音波発振器311A)から前記溶接ワークに対して縦波を出力するとともに、当該電極に内蔵されたセンサ(例えば、後述のセンサ312A)で前記縦波の反射波を検出し、前記反射波の強度が上昇して第2の基準値を超えた場合には、前記電極の先端と前記溶接ワークとの間に隙間が生じたと判定することが好ましい。   In this case, while energizing the electrode, a longitudinal wave is output to the welding workpiece from an oscillator (for example, an ultrasonic oscillator 311A described later) built in the electrode, and a sensor (for example, an electrode built in the electrode (for example, When the reflected wave of the longitudinal wave is detected by a sensor 312A) to be described later and the intensity of the reflected wave rises and exceeds the second reference value, there is a gap between the tip of the electrode and the welding workpiece. It is preferable to determine that has occurred.

この場合、前記電極は、前記溶接ワークを挟んで一対設けられ、前記一対の電極間に通電中、前記一対の電極のうちの一方に内蔵された発振器(例えば、後述の超音波発振器311B)から前記溶接ワークに対して縦波を出力するとともに、前記一対の電極のうちの他方の電極に内蔵されたセンサ(例えば、後述のセンサ312B)で前記縦波の透過波を検出し、前記透過波の強度が低下して第3の基準値を超えた場合には、前記一対の電極の先端と前記溶接ワークとの間に隙間が生じたと判定することが好ましい。   In this case, a pair of the electrodes are provided across the welding workpiece, and an oscillator (for example, an ultrasonic oscillator 311B to be described later) built in one of the pair of electrodes is energized between the pair of electrodes. A longitudinal wave is output to the welding workpiece, and a transmitted wave of the longitudinal wave is detected by a sensor (for example, a sensor 312B described later) built in the other electrode of the pair of electrodes. It is preferable to determine that a gap has occurred between the tip of the pair of electrodes and the welded workpiece when the strength of the electrode decreases and exceeds the third reference value.

この発明によれば、発振器から溶接ワークに向かって縦波や横波を出力し、これら出力した波の透過波や反射波をセンサで検出する。そして、検出した透過波や反射波の強度または反射波の往復時間が変化して基準値を超えた場合には、隙間が生じたと判定する。よって、隙間を容易に検出できる。   According to this invention, a longitudinal wave and a transverse wave are output from the oscillator toward the welding workpiece, and a transmitted wave and a reflected wave of these output waves are detected by the sensor. When the detected transmitted wave or reflected wave intensity or the round-trip time of the reflected wave changes and exceeds the reference value, it is determined that a gap has occurred. Therefore, the gap can be easily detected.

この場合、前記基準値を超えた状態が第1の所定時間以上連続した場合、前記電極の先端と前記溶接ワークとの間に隙間が生じたと判定することが好ましい。   In this case, when the state exceeding the reference value continues for a first predetermined time or more, it is preferable to determine that a gap has occurred between the tip of the electrode and the welding workpiece.

この場合、前記基準値を超えた状態が第1の所定時間以上第2の所定時間以下の範囲で連続した場合、前記電極の先端と前記溶接ワークとの間に隙間が生じたと判定することが好ましい。   In this case, when the state exceeding the reference value continues in a range from the first predetermined time to the second predetermined time, it is determined that a gap has occurred between the tip of the electrode and the welding workpiece. preferable.

この発明によれば、基準値を超えた状態が連続する時間に基づいて隙間の発生を判定したので、ノイズやその他の原因による誤判定を防止できる。   According to the present invention, since the occurrence of the gap is determined based on the time during which the state exceeding the reference value continues, erroneous determination due to noise and other causes can be prevented.

本発明によれば、電極の先端と溶接ワークとの接触状態を監視し、この電極と溶接ワークとの間の隙間を検出した場合には、スパッタが発生したと判断した。よって、隙間を検出するだけでよいから、簡易な方法で精度よくかつ早期にスパッタを検出できる。   According to the present invention, when the contact state between the tip of the electrode and the welded workpiece is monitored and a gap between the electrode and the welded workpiece is detected, it is determined that spatter has occurred. Therefore, since it is only necessary to detect the gap, spatter can be detected accurately and quickly by a simple method.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
[第1実施形態]
図1は、本発明の第1実施形態に係るスパッタ検出方法が適用された抵抗溶接システム1の構成を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
[First Embodiment]
FIG. 1 is a diagram showing a configuration of a resistance welding system 1 to which a sputter detection method according to a first embodiment of the present invention is applied.

抵抗溶接システム1は、金属製の2枚の板材21および板材22が重ね合わされた溶接ワーク2を抵抗溶接するものである。
抵抗溶接システム1は、溶接ワーク2を挟んで配置された一対の溶接電極31、32と、これら溶接電極31、32を互いに接近、離隔させる駆動機構33と、駆動機構33を制御する制御装置34と、溶接電極31、32に電流を供給する溶接電源35と、を備える。
The resistance welding system 1 performs resistance welding on a welding work 2 in which two metal plate materials 21 and 22 are overlapped.
The resistance welding system 1 includes a pair of welding electrodes 31 and 32 disposed with a welding work 2 interposed therebetween, a drive mechanism 33 that moves the welding electrodes 31 and 32 closer to and away from each other, and a control device 34 that controls the drive mechanism 33. And a welding power source 35 for supplying a current to the welding electrodes 31 and 32.

溶接電極31には、横波を出力する超音波発振器311と、この横波の反射波を検出するセンサ312と、が内蔵されている。これら超音波発振器311およびセンサ312は、制御装置34に接続されている。   The welding electrode 31 includes an ultrasonic oscillator 311 that outputs a transverse wave and a sensor 312 that detects a reflected wave of the transverse wave. The ultrasonic oscillator 311 and the sensor 312 are connected to the control device 34.

以上の抵抗溶接システム1の動作を説明する。
まず、制御装置34により駆動機構33を駆動して、溶接電極31、32で溶接ワーク2を加圧して、この溶接ワーク2を挟持する。
The operation of the resistance welding system 1 will be described.
First, the drive mechanism 33 is driven by the control device 34, the welding workpiece 2 is pressurized by the welding electrodes 31, 32, and the welding workpiece 2 is clamped.

この状態で、溶接電源35により、溶接電極31、32間に通電する。すると、板材21、22間の接触抵抗により、板材21、22間で発熱し、この板材21、22間には、溶融部23が生じる。その後、溶融部23は次第に成長し、これにより、板材21と板材22とが溶接される。   In this state, the welding power source 35 energizes between the welding electrodes 31 and 32. Then, due to the contact resistance between the plate materials 21 and 22, heat is generated between the plate materials 21 and 22, and a melting part 23 is generated between the plate materials 21 and 22. Thereafter, the melted portion 23 gradually grows, whereby the plate material 21 and the plate material 22 are welded.

ここで、溶接電極31、32間に通電中、制御装置34により、超音波発振器311から溶接ワーク2に対して横波を出力するとともに、センサ312でこの横波の反射波を検出することで、横波の往復時間を測定する。横波は、固体を透過し空間で反射する性質があるため、溶接電極31の先端と溶接ワーク2とが接触した状態では、溶接ワーク2の溶融部24で反射する。このようにして、溶接電極31、32の先端と溶接ワーク2との接触状態を監視する。   Here, while the welding electrodes 31 and 32 are energized, the control device 34 outputs a transverse wave from the ultrasonic oscillator 311 to the welding workpiece 2 and detects a reflected wave of the transverse wave by the sensor 312, thereby producing a transverse wave. Measure the round trip time. Since the shear wave has a property of passing through the solid and reflecting in the space, the shear wave is reflected by the molten portion 24 of the weld work 2 when the tip of the weld electrode 31 and the weld work 2 are in contact with each other. In this way, the contact state between the tips of the welding electrodes 31 and 32 and the welding workpiece 2 is monitored.

そして、図2に示すように、溶接電極31、32の先端と溶接ワーク2との間に隙間が発生すると、横波が溶接電極31の先端面で反射するので、往復時間が急激に短くなる。そこで、この往復時間が急激に低下して基準値を超えた状態が所定時間の範囲で連続した場合には、一対の溶接電極31、32の先端と溶接ワーク2との間に隙間が生じたと判定し、これにより、スパッタが発生したと判断する。   As shown in FIG. 2, when a gap is generated between the tips of the welding electrodes 31 and 32 and the welding work 2, the transverse wave is reflected by the tip surface of the welding electrode 31, so that the reciprocation time is abruptly shortened. Therefore, when this reciprocation time rapidly decreases and exceeds the reference value for a predetermined time range, a gap is generated between the tip of the pair of welding electrodes 31 and 32 and the welding workpiece 2. This is determined, and it is determined that sputtering has occurred.

次に、スパッタを検出する手順について、図3のフローチャートを参照しながら説明する。
まず、ST1では、初期設定を行う。すなわち、往復時間の異常値の検出フラグs、反射波の検出番号i、および、往復時間の異常値の検出回数kをゼロに設定する。なお、図3のフローチャートにおいて、往復時間の異常値が測定されると、検出フラグsがゼロから1となり、通常モードから、異常値がスパッタであるか否かを確認するスパッタ確認モードに移行するものとする。
ST2では、ナゲット(溶融部)が発生しているか否かを判定する。この判定がNoの場合には、再びST2に戻り、Yesの場合には、ST3に移る。
Next, the procedure for detecting spatter will be described with reference to the flowchart of FIG.
First, in ST1, initial setting is performed. That is, the round trip time abnormal value detection flag s, the reflected wave detection number i, and the round trip time abnormal value detection count k are set to zero. In the flowchart of FIG. 3, when the abnormal value of the round trip time is measured, the detection flag s is changed from zero to 1, and the normal mode is shifted to the sputtering confirmation mode for confirming whether or not the abnormal value is sputtering. Shall.
In ST2, it is determined whether or not a nugget (melting portion) is generated. If this determination is No, the process returns to ST2 again, and if Yes, the process moves to ST3.

ST3では、反射波の検出番号iをインクリメントし、ST4では、この検出した反射波の往復時間tを測定する。
ST5では、異常値の検出フラグSが1であるか否かを判定し、この判定がYesの場合は、スパッタ確認モードであるので、ST8に移り、Noの場合には、通常モードであるので、ST6に移る。
In ST3, the detection number i of the reflected wave is incremented, and in ST4, the round trip time t i of the detected reflected wave is measured.
In ST5, it is determined whether or not the abnormal value detection flag S is 1. If this determination is Yes, since it is the sputter confirmation mode, the process proceeds to ST8, and if it is No, it is the normal mode. , Move to ST6.

ST6では、往復時間tが前回計測した往復時間ti−1±所定値αの範囲内にあるか否かを判定する。この判定がYesの場合、往復時間tは異常値ではないため、ST3に戻る。一方、この判定がNoの場合、往復時間tは異常値であるため、ST7に移る。
ST7では、異常値の検出フラグSを1、異常値の検出回数kをインクリメントし、往復時間の異常値の基準値tをtとして、スパッタ確認モードに移行し、ST3に戻る。
In ST6, it determines whether the round trip time t i is in the range of round trip time t i-1 ± predetermined value α to the previously measured. If the determination is Yes, the order round trip time t i is not the abnormal value, the process returns to ST3. On the other hand, when the determination is No, since the round-trip time t i is the abnormal value, the process proceeds to ST7.
In ST7, the detection flag S outliers 1 increments the detection number k of outliers, the reference value t S outliers round trip time as t i, shifted to the sputtering confirmation mode, returns to ST3.

ST8では、往復時間tiが基準値t±所定値βの範囲内にあるか否かを判定する。この判定がYesの場合、往復時間tは基準値tを中心とした所定範囲内に収まるため、ST9に移る。この判定がNoの場合、往復時間tは基準値tを中心とした所定範囲から外れるため、ST10に移り、スパッタが発生したか否かを判定する。 In ST8, it is determined whether or not the round trip time ti is within the range of the reference value t S ± predetermined value β. If this determination is Yes, the round trip time t i falls within a predetermined range centered on the reference value t S , and the process moves to ST9. If the determination is No, the round trip time t i is because out of the predetermined range around the reference value t S, proceeds to ST10, determines whether or not the sputtering occurs.

ST9では、異常値の検出回数kをインクリメントして、ST3に戻る。
ST10では、この異常値の検出回数kが所定値γ以上所定値δ以下であるか否かを判定する。この判定がNoの場合、異常値の検出回数kが所定回数の範囲に収まらないので、ノイズと判定され、ST12に移る。一方、この判定がYesの場合、ST11に移る。
In ST9, the abnormal value detection count k is incremented, and the process returns to ST3.
In ST10, it is determined whether or not the number k of abnormal value detections is a predetermined value γ or more and a predetermined value δ or less. If this determination is No, the number k of abnormal value detections does not fall within the range of the predetermined number, so it is determined as noise, and the process proceeds to ST12. On the other hand, if this determination is Yes, the process moves to ST11.

ST11では、スパッタが発生したと判断し、ST12では、異常値の検出フラグSおよび異常値の検出回数kをリセットして、ST3に戻る。   In ST11, it is determined that sputtering has occurred. In ST12, the abnormal value detection flag S and the abnormal value detection count k are reset, and the process returns to ST3.

図4は、抵抗溶接システムのタイミングチャートである。
時刻tから時刻tの間、スパッタが発生していないので、往復時間はrで一定である。
時刻tにおいて、スパッタが発生する。すると、溶接電極と溶接ワークとの間に隙間が発生するので、往復時間が急激に低下し、rとなる。
時刻tでは、抵抗溶接システムにより、スパッタの発生が検出される。
時刻tでは、溶接電極と溶接ワークと再び密着して、往復時間は再びrとなる。
FIG. 4 is a timing chart of the resistance welding system.
Between the time t 0 of time t 1, since the sputtering does not occur, the round-trip time is constant at r 1.
At time t 1, the sputtering occurs. Then, the gap is generated between the welding electrode welding workpiece, round-trip time is rapidly reduced, and r 2.
At time t 2, the by resistance welding system, spatter is detected.
At time t 3 , the welding electrode and the welding work are brought into close contact again, and the reciprocation time becomes r 1 again.

本実施形態によれば、以下のような効果がある。
(1)溶接電極31、32の先端と溶接ワーク2との接触状態を監視し、これら電極31、32と溶接ワーク2との間の隙間を検出した場合には、スパッタが発生したと判断した。よって、隙間を検出するだけでよいから、簡易な方法で精度よくかつ早期にスパッタを検出できる。
According to this embodiment, there are the following effects.
(1) When the contact state between the tips of the welding electrodes 31 and 32 and the welding workpiece 2 is monitored and a gap between the electrodes 31 and 32 and the welding workpiece 2 is detected, it is determined that spatter has occurred. . Therefore, since it is only necessary to detect the gap, spatter can be detected accurately and quickly by a simple method.

(2)超音波発振器311から溶接ワーク2に向かって横波を出力し、この出力した横波の反射波をセンサ312で検出する。そして、検出した反射波の往復時間が急激に変化して基準値を超えた場合には、隙間が生じたと判定する。よって、隙間を容易に検出できる。   (2) A transverse wave is output from the ultrasonic oscillator 311 toward the welding workpiece 2, and the reflected wave of the outputted transverse wave is detected by the sensor 312. And when the round-trip time of the detected reflected wave changes rapidly and exceeds a reference value, it determines with the gap having arisen. Therefore, the gap can be easily detected.

(3)基準値を超えた状態が所定時間の範囲で連続した場合にのみ、電極31、32の先端と溶接ワーク2との間に隙間が生じたと判定したので、ノイズやその他の原因による誤判定を防止できる。   (3) Since it is determined that a gap has occurred between the tip of the electrodes 31 and 32 and the welded work 2 only when the state exceeding the reference value continues for a predetermined time range, errors due to noise or other causes are determined. Judgment can be prevented.

[第2実施形態]
図5は、本発明の第2実施形態に係るスパッタ検出方法が適用された抵抗溶接システム1Aの構成を示す図である。
本実施形態では、溶接電極31A、32Aおよび制御装置34Aの構成が、第1実施形態と異なる。
すなわち、溶接電極31Aには、縦波を出力する超音波発振器311Aと、この縦波の反射波を検出するセンサ312Aと、が内蔵されている。これら超音波発振器311Aおよびセンサ312Aは、制御装置34Aに接続されている。
[Second Embodiment]
FIG. 5 is a diagram showing a configuration of a resistance welding system 1A to which the sputtering detection method according to the second embodiment of the present invention is applied.
In the present embodiment, the configurations of the welding electrodes 31A and 32A and the control device 34A are different from those of the first embodiment.
That is, the welding electrode 31A includes an ultrasonic oscillator 311A that outputs a longitudinal wave and a sensor 312A that detects a reflected wave of the longitudinal wave. The ultrasonic oscillator 311A and the sensor 312A are connected to the control device 34A.

また、制御装置34Aは、溶接電極31A、32A間に通電中、超音波発振器311Aから溶接ワーク2に対して縦波を出力するとともに、センサ312Aでこの縦波の反射波を検出する。縦波は、固体および液体を透過し空間で反射する性質があるため、溶接電極31Aの先端と溶接ワーク2とが接触した状態では、溶接ワーク2を透過する。このようにして、溶接電極31A、32Aの先端と溶接ワーク2との接触状態を監視する。   Further, the control device 34A outputs a longitudinal wave from the ultrasonic oscillator 311A to the welding workpiece 2 while energizing between the welding electrodes 31A and 32A, and detects a reflected wave of the longitudinal wave by the sensor 312A. Since the longitudinal wave has a property of transmitting solids and liquids and reflecting in space, the longitudinal wave passes through the welding workpiece 2 when the tip of the welding electrode 31A and the welding workpiece 2 are in contact with each other. In this manner, the contact state between the tips of the welding electrodes 31A and 32A and the welding workpiece 2 is monitored.

そして、図6に示すように、溶接電極31A、32Aの先端と溶接ワーク2との間に隙間が発生すると、横波が溶接電極31Aの先端面で反射するので、反射波の強度が急激に上昇する。そこで、この反射波の強度が上昇して基準値を超えた状態が所定時間の範囲で連続した場合には、一対の溶接電極31A、32Aの先端と溶接ワーク2との間に隙間が生じたと判定し、これにより、スパッタが発生したと判断する。   Then, as shown in FIG. 6, when a gap is generated between the tip of the welding electrodes 31A and 32A and the welding workpiece 2, the transverse wave is reflected by the tip surface of the welding electrode 31A, so that the intensity of the reflected wave rapidly increases. To do. Therefore, when the intensity of the reflected wave increases and exceeds the reference value for a predetermined time range, a gap is generated between the tip of the pair of welding electrodes 31A and 32A and the welding workpiece 2. This is determined, and it is determined that sputtering has occurred.

本実施形態によれば、上述の(1)〜(3)の効果と同様の効果がある。   According to this embodiment, there are the same effects as the effects (1) to (3) described above.

[第3実施形態]
図7は、本発明の第3実施形態に係るスパッタ検出方法が適用された抵抗溶接システム1Bの構成を示す図である。
本実施形態では、溶接電極31B、32Bおよび制御装置34Bの構成が、第1実施形態と異なる。
すなわち、溶接電極31Bには、縦波を出力する超音波発振器311Bが内蔵され、溶接電極32Bには、この縦波の反射波を検出するセンサ312Bが内蔵されている。これら超音波発振器311Bおよびセンサ312Bは、制御装置34Bに接続されている。
[Third Embodiment]
FIG. 7 is a diagram showing a configuration of a resistance welding system 1B to which the sputtering detection method according to the third embodiment of the present invention is applied.
In the present embodiment, the configurations of the welding electrodes 31B and 32B and the control device 34B are different from those in the first embodiment.
That is, the welding electrode 31B includes an ultrasonic oscillator 311B that outputs a longitudinal wave, and the welding electrode 32B includes a sensor 312B that detects a reflected wave of the longitudinal wave. The ultrasonic oscillator 311B and the sensor 312B are connected to the control device 34B.

また、制御装置34Bは、溶接電極31B、32B間に通電中、超音波発振器311Bから溶接ワーク2に対して縦波を出力するとともに、センサ312Bでこの縦波の反射波を検出する。縦波は、固体および液体を透過し空間で反射する性質があるため、溶接電極31Bの先端と溶接ワーク2とが接触した状態では、溶接ワーク2を透過する。このようにして、溶接電極31B、32Bの先端と溶接ワーク2との接触状態を監視する。   Further, the control device 34B outputs a longitudinal wave from the ultrasonic oscillator 311B to the welding workpiece 2 while energizing between the welding electrodes 31B and 32B, and detects a reflected wave of the longitudinal wave by the sensor 312B. Since the longitudinal wave has a property of transmitting solids and liquids and reflecting in space, the longitudinal wave passes through the welding workpiece 2 when the tip of the welding electrode 31B is in contact with the welding workpiece 2. In this manner, the contact state between the tips of the welding electrodes 31B and 32B and the welding workpiece 2 is monitored.

そして、図8に示すように、溶接電極31B、32Bの先端と溶接ワーク2との間に隙間が発生すると、横波が溶接電極31Bの先端面で反射するので、透過波の強度が急激に低下する。そこで、この透過波の強度が急激に低下して基準値を超えた状態が所定時間の範囲で連続した場合には、一対の溶接電極31B、32Bの先端と溶接ワーク2との間に隙間が生じたと判定し、これにより、スパッタが発生したと判断する。   As shown in FIG. 8, when a gap is generated between the tip of the welding electrodes 31B and 32B and the welding workpiece 2, the transverse wave is reflected by the tip surface of the welding electrode 31B, so that the intensity of the transmitted wave is drastically reduced. To do. Therefore, when the intensity of the transmitted wave suddenly decreases and exceeds the reference value for a predetermined time range, there is a gap between the tip of the pair of welding electrodes 31B and 32B and the welding workpiece 2. It is determined that it has occurred, and it is determined that sputtering has occurred.

本実施形態によれば、上述の(1)〜(3)の効果と同様の効果がある。   According to this embodiment, there are the same effects as the effects (1) to (3) described above.

[実施例]
スパッタ検出方法の実施例について説明する。
図9は、上述の第1実施形態に係るスパッタ検出方法の実施例であり、通電時間と反射波の往復時間との関係を示す図である。
図9に示すように、反射波の往復時間は、最初、bでほぼ一定であるが、時刻aにスパッタが発生して隙間が発生すると急激に低下して第1の基準値bを超えてbとなり、その後、溶接電極と溶接ワークとが再び密着すると、再びbとなる。ここで、時刻aにスパッタが発生して隙間が発生した後、この隙間が残った場合には、図9中一点鎖線で示すように、反射波の往復時間は、bのままとなる。
[Example]
An embodiment of the sputtering detection method will be described.
FIG. 9 is an example of the sputtering detection method according to the first embodiment described above, and is a diagram showing the relationship between the energization time and the round trip time of the reflected wave.
As shown in FIG. 9, the round-trip time of the reflected wave is substantially constant at b 1 at first, but when the spatter occurs at time a 1 and a gap is generated, the round trip time decreases rapidly to the first reference value b 0. Exceeds b and becomes b 2 , and thereafter, when the welding electrode and the welded work are brought into close contact again, b 1 is obtained again. Here, after the spatter is generated at time a 1 and a gap is generated, if this gap remains, the round-trip time of the reflected wave remains b 2 as shown by the one-dot chain line in FIG. .

図10は、上述の第2実施形態に係るスパッタ検出方法の実施例であり、通電時間と反射波の強度との関係を示す図である。
図10に示すように、反射波の強度は、最初、cでほぼ一定であるが、時刻aにスパッタが発生して隙間が発生すると急激に上昇して第2の基準値cを超えてcとなり、その後、溶接電極と溶接ワークとが再び密着すると、再びcとなる。ここで、時刻aにスパッタが発生して隙間が発生した後、この隙間が残った場合には、図10中一点鎖線で示すように、反射波の強度は、cのままである。
FIG. 10 is an example of the sputtering detection method according to the second embodiment described above, and is a diagram illustrating the relationship between the energization time and the intensity of the reflected wave.
As shown in FIG. 10, the intensity of the reflected wave is initially substantially constant at c 1 , but when the spatter occurs at time a 2 and a gap is generated, it rapidly rises and becomes the second reference value c 0 . beyond c 2, and the subsequently when the welding electrode and the welding workpiece comes into close contact again, a c 1 again. Here, after the spatter is generated at time a 2 and a gap is generated, when this gap remains, the intensity of the reflected wave remains c 2 as indicated by a one-dot chain line in FIG.

図11は、上述の第3実施形態に係るスパッタ検出方法の実施例であり、通電時間と透過波の強度との関係を示す図である。
図11に示すように、透過波の強度は、最初、dでほぼ一定であるが、時刻aにスパッタが発生して隙間が発生すると急激に低下して第3の基準値dを超えてdとなり、その後、溶接電極と溶接ワークとが再び密着すると、再びdとなる。ここで、時刻aにスパッタが発生して隙間が発生した後、この隙間が残った場合には、図10中一点鎖線で示すように、透過波の強度は、dのままである。
FIG. 11 is an example of the sputtering detection method according to the third embodiment described above, and is a diagram showing the relationship between the energization time and the intensity of the transmitted wave.
As shown in FIG. 11, the intensity of the transmitted wave is initially substantially constant at d 1 , but when the spatter occurs at time a 3 and a gap is generated, the intensity decreases sharply to obtain the third reference value d 0 . beyond d 2, and the subsequently when the welding electrode and the welding workpiece comes into close contact again, the d 1 again. Here, when the gap remains after spattering occurs at time a 3 , the intensity of the transmitted wave remains d 2 as indicated by the one-dot chain line in FIG.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

本発明の第1実施形態に係るスパッタ検出方法が適用された抵抗溶接システムの構成を示す図である。It is a figure which shows the structure of the resistance welding system to which the sputtering detection method which concerns on 1st Embodiment of this invention was applied. 前記実施形態に係る抵抗溶接システムについて、溶接ワークに隙間が発生した状態を示す図である。It is a figure which shows the state which the clearance gap generate | occur | produced in the welding workpiece | work about the resistance welding system which concerns on the said embodiment. 前記実施形態に係る抵抗溶接システムでスパッタを検出するフローチャートである。It is a flowchart which detects a spatter with the resistance welding system which concerns on the said embodiment. 前記実施形態に係る抵抗溶接システムのタイミングチャートである。It is a timing chart of the resistance welding system which concerns on the said embodiment. 本発明の第2実施形態に係るスパッタ検出方法が適用された抵抗溶接システムの構成を示す図である。It is a figure which shows the structure of the resistance welding system to which the sputtering detection method which concerns on 2nd Embodiment of this invention was applied. 前記実施形態に係る抵抗溶接システムについて、溶接ワークに隙間が発生した状態を示す図である。It is a figure which shows the state which the clearance gap generate | occur | produced in the welding workpiece | work about the resistance welding system which concerns on the said embodiment. 本発明の第2実施形態に係るスパッタ検出方法が適用された抵抗溶接システムの構成を示す図である。It is a figure which shows the structure of the resistance welding system to which the sputtering detection method which concerns on 2nd Embodiment of this invention was applied. 前記実施形態に係る抵抗溶接システムについて、溶接ワークに隙間が発生した状態を示す図である。It is a figure which shows the state which the clearance gap generate | occur | produced in the welding workpiece | work about the resistance welding system which concerns on the said embodiment. 本発明の第1実施形態に係るスパッタ検出方法の実施例である。It is an Example of the sputtering detection method which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るスパッタ検出方法の実施例である。It is an Example of the sputtering detection method which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るスパッタ検出方法の実施例である。It is an Example of the sputtering detection method which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

2 溶接ワーク
21、22 板材
31、31A、31B、32、32A、32B 溶接電極(電極)
311、311A、311B 超音波発振器(発振器)
312、312A、312B センサ


2 Welding work 21, 22 Plate material 31, 31A, 31B, 32, 32A, 32B Welding electrode (electrode)
311, 311A, 311B Ultrasonic oscillator
312, 312A, 312B sensor


Claims (4)

複数の板材を重ね合わせた溶接ワークを抵抗溶接する際に発生するスパッタを検出するスパッタ検出方法であって、
前記溶接ワークに電極を配置し、当該電極で前記溶接ワークを加圧しつつ前記電極に通電することで、前記複数の板材同士を抵抗溶接し、
前記電極に通電中、前記電極の先端と前記溶接ワークとの接触状態を監視し、当該電極の先端と前記溶接ワークとの間の隙間を検出した場合には、スパッタが発生したと判断するスパッタ検出方法において、
前記電極に通電中、前記電極に内蔵された発振器から前記溶接ワークに対して横波を出力するとともに、当該電極に内蔵されたセンサで前記横波の反射波を検出し、
前記横波の往復時間を測定し、当該往復時間が低下して第1の基準値を超えた場合には、前記電極の先端と前記溶接ワークとの間に隙間が生じたと判定することを特徴とするスパッタ検出方法。
A sputter detection method for detecting spatter generated when resistance welding is performed on a welded workpiece in which a plurality of plate materials are overlapped,
An electrode is disposed on the welding workpiece, and the electrodes are energized while pressurizing the welding workpiece with the electrode, whereby the plurality of plate members are resistance-welded to each other,
Sputtering that determines that spatter has occurred when the contact state between the tip of the electrode and the welding workpiece is monitored while a gap between the tip of the electrode and the welding workpiece is detected while the electrode is energized. In the detection method,
While energizing the electrode, output a transverse wave to the welding work from the oscillator built in the electrode, and detect the reflected wave of the transverse wave with a sensor built in the electrode,
The reciprocation time of the transverse wave is measured, and when the reciprocation time decreases and exceeds a first reference value, it is determined that a gap is generated between the tip of the electrode and the welding workpiece. Sputter detection method.
複数の板材を重ね合わせた溶接ワークを抵抗溶接する際に発生するスパッタを検出するスパッタ検出方法であって、
前記溶接ワークに電極を配置し、当該電極で前記溶接ワークを加圧しつつ前記電極に通電することで、前記複数の板材同士を抵抗溶接し、
前記電極に通電中、前記電極の先端と前記溶接ワークとの接触状態を監視し、当該電極の先端と前記溶接ワークとの間の隙間を検出した場合には、スパッタが発生したと判断するスパッタ検出方法において、
前記電極に通電中、前記電極に内蔵された発振器から前記溶接ワークに対して縦波を出力するとともに、当該電極に内蔵されたセンサで前記縦波の反射波を検出し、
前記反射波の強度が上昇して第2の基準値を超えた場合には、前記電極の先端と前記溶接ワークとの間に隙間が生じたと判定することを特徴とするスパッタ検出方法。
A sputter detection method for detecting spatter generated when resistance welding is performed on a welded workpiece in which a plurality of plate materials are overlapped,
An electrode is disposed on the welding workpiece, and the electrodes are energized while pressurizing the welding workpiece with the electrode, whereby the plurality of plate members are resistance-welded to each other,
Sputtering that determines that spatter has occurred when the contact state between the tip of the electrode and the welding workpiece is monitored while a gap between the tip of the electrode and the welding workpiece is detected while the electrode is energized. In the detection method,
While energizing the electrode, it outputs a longitudinal wave from the oscillator built in the electrode to the welding workpiece, and detects a reflected wave of the longitudinal wave with a sensor built in the electrode,
When the intensity of the reflected wave rises and exceeds a second reference value, it is determined that a gap has occurred between the tip of the electrode and the welding workpiece .
複数の板材を重ね合わせた溶接ワークを抵抗溶接する際に発生するスパッタを検出するスパッタ検出方法であって、
前記溶接ワークに電極を配置し、当該電極で前記溶接ワークを加圧しつつ前記電極に通電することで、前記複数の板材同士を抵抗溶接し、
前記電極に通電中、前記電極の先端と前記溶接ワークとの接触状態を監視し、当該電極の先端と前記溶接ワークとの間の隙間を検出した場合には、スパッタが発生したと判断するスパッタ検出方法において、
前記電極は、前記溶接ワークを挟んで一対設けられ、
前記一対の電極間に通電中、前記一対の電極のうちの一方に内蔵された発振器から前記溶接ワークに対して縦波を出力するとともに、前記一対の電極のうちの他方の電極に内蔵されたセンサで前記縦波の透過波を検出し、
前記透過波の強度が低下して第3の基準値を超えた場合には、前記一対の電極の先端と前記溶接ワークとの間に隙間が生じたと判定することを特徴とするスパッタ検出方法。
A sputter detection method for detecting spatter generated when resistance welding is performed on a welded workpiece in which a plurality of plate materials are overlapped,
An electrode is disposed on the welding workpiece, and the electrodes are energized while pressurizing the welding workpiece with the electrode, whereby the plurality of plate members are resistance-welded to each other,
Sputtering that determines that spatter has occurred when the contact state between the tip of the electrode and the welding workpiece is monitored while a gap between the tip of the electrode and the welding workpiece is detected while the electrode is energized. In the detection method,
A pair of the electrodes are provided across the welding workpiece,
While energizing between the pair of electrodes, a longitudinal wave is output to the welding workpiece from an oscillator built in one of the pair of electrodes, and built in the other electrode of the pair of electrodes. Detect the longitudinal transmitted wave with a sensor,
When the intensity of the transmitted wave decreases and exceeds a third reference value, it is determined that a gap is generated between the tip of the pair of electrodes and the welding workpiece .
請求項からのいずれかに記載のスパッタ検出方法において、
前記基準値を超えた状態が第1の所定時間以上連続した場合、前記電極の先端と前記溶接ワークとの間に隙間が生じたと判定することを特徴とするスパッタ検出方法。
In the spatter detection method according to any one of claims 1 to 3 ,
A sputter detection method comprising: determining that a gap has occurred between the tip of the electrode and the welding workpiece when the state exceeding the reference value continues for a first predetermined time or more.
JP2007301416A 2007-11-21 2007-11-21 Spatter detection method Expired - Fee Related JP4933407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301416A JP4933407B2 (en) 2007-11-21 2007-11-21 Spatter detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301416A JP4933407B2 (en) 2007-11-21 2007-11-21 Spatter detection method

Publications (2)

Publication Number Publication Date
JP2009125757A JP2009125757A (en) 2009-06-11
JP4933407B2 true JP4933407B2 (en) 2012-05-16

Family

ID=40817203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301416A Expired - Fee Related JP4933407B2 (en) 2007-11-21 2007-11-21 Spatter detection method

Country Status (1)

Country Link
JP (1) JP4933407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230280B (en) * 2020-01-20 2021-06-15 上海交通大学 Resistance spot welding spatter on-line detection method and system based on intrinsic process signal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824377A (en) * 1972-05-10 1974-07-16 Trodyne Corp Acoustic emission spot welding controller
JPS5458655A (en) * 1977-10-19 1979-05-11 Toyota Motor Corp Controlling method for resistance spot welding
JPS5847579A (en) * 1981-09-17 1983-03-19 Dengensha Mfg Co Ltd Method and device for controlling weld time in resistance welding
JPH0644542Y2 (en) * 1989-03-18 1994-11-16 ミヤチテクノス株式会社 Inverter resistance welding machine control or measuring device
JPH04300078A (en) * 1991-03-28 1992-10-23 Miyachi Technos Kk Method and device for controlling inverter type resistance welding
JPH10202371A (en) * 1997-01-17 1998-08-04 Nachi Fujikoshi Corp Spatter detecting method for welding gun and correcting method for welding condition
JP4164754B2 (en) * 2003-10-16 2008-10-15 株式会社デンソー Sputtering detection method and apparatus for resistance welding
JP4445279B2 (en) * 2004-02-03 2010-04-07 本田技研工業株式会社 Welding control method and welding control apparatus for spot welding

Also Published As

Publication number Publication date
JP2009125757A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
CN110238499B (en) Resistance spot welding method and resistance spot welding apparatus
JP5793495B2 (en) Resistance spot welding method and system using DC micropulse
US20130337284A1 (en) Resistance welding method, resistance-welded member, resistance welder and control apparatus thereof, control method and control program for resistance welder, and resistance welding evaluation method and evaluation program
JP2003500213A (en) Determination of resistance spot welding system status
CN109483033B (en) Resistance welding method and resistance welding device
KR102031895B1 (en) Friction Stir Point Bonding Device and Friction Stir Point Bonding Method
JP2008142739A (en) Ultrasonic welder and method for controlling the same, and welding inspection apparatus for ultrasonic welding and welding inspection method therefor
JP7010720B2 (en) Resistance spot welding method
JP4933407B2 (en) Spatter detection method
JP5801169B2 (en) One-side spot welding equipment
JP6971724B2 (en) One-sided spot welding equipment and one-sided spot welding method
JP5738702B2 (en) Resistance welding evaluation method, resistance welding machine control method, resistance welding machine control device, and resistance welding machine
US20110233174A1 (en) Spot welding method
JP2006326656A (en) Resistance welding machine, and method for deciding normal/defective condition of resistance welding
US20220126400A1 (en) Method to execute a weld of an electrode of a cell which is part of a battery
JP5963508B2 (en) Spot welding method
JP2001252776A (en) Heating device by semiconductor laser beam
JP2014166646A (en) Solid-phase welding method for metal workpiece
JP2013063447A (en) Welding device and welding method
JP4232257B2 (en) Projection welding pass / fail judgment method
JP3489760B2 (en) Joining method
JP2002103051A (en) Method and equipment for seam welding
JP6667409B2 (en) Judging method and joining apparatus for judging replacement of ultrasonic welding tool
JPH1190642A (en) Method and device for electrically pressurizing and controlling resistance welding machine
JP3705057B2 (en) Spot welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees