JP4932539B2 - Optical interferometer control circuit - Google Patents

Optical interferometer control circuit Download PDF

Info

Publication number
JP4932539B2
JP4932539B2 JP2007052774A JP2007052774A JP4932539B2 JP 4932539 B2 JP4932539 B2 JP 4932539B2 JP 2007052774 A JP2007052774 A JP 2007052774A JP 2007052774 A JP2007052774 A JP 2007052774A JP 4932539 B2 JP4932539 B2 JP 4932539B2
Authority
JP
Japan
Prior art keywords
heater
circuit
voltage
current
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007052774A
Other languages
Japanese (ja)
Other versions
JP2008216557A (en
Inventor
英二 吉田
広人 川上
幹夫 米山
文昭 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2007052774A priority Critical patent/JP4932539B2/en
Publication of JP2008216557A publication Critical patent/JP2008216557A/en
Application granted granted Critical
Publication of JP4932539B2 publication Critical patent/JP4932539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光のフィルタとして用いられるマッハツェンダ型、AWGあるいはリング型光干渉計のフィルタ光周波数の調整に関する。   The present invention relates to adjustment of a filter optical frequency of a Mach-Zehnder type, AWG, or ring type optical interferometer used as an optical filter.

光フィルタとして、光の干渉を利用するマッハツェンダ型、AWG(Arrayed
Waveguide Grating)あるいはリング型などの光干渉計が知られている。このような光干渉計では、少なくとも一部の光導波路上に形成された抵抗体をヒータとして用い、このヒータに電力を供給することで発生する熱によって光導波路の屈折率を変化させることで、フィルタ光周波数をシフトさせることができる。
As an optical filter, a Mach-Zehnder type AWG (Arrayed) that uses light interference
Waveguide gratings or ring type optical interferometers are known. In such an optical interferometer, a resistor formed on at least a part of the optical waveguide is used as a heater, and the refractive index of the optical waveguide is changed by heat generated by supplying electric power to the heater. The filter optical frequency can be shifted.

図6は従来例を示すブロック構成図であり、マッハツェンダ型光干渉計(以下、MZIという)のフィルタ光周波数を制御する例を示す。MZI1にはヒータ2が設けられ、外部からの制御電圧に対応した電流(もしくは電圧)をヒータ駆動回路3からヒータ2に供給することで、MZI1のフィルタ光周波数を制御していた。図6の例では、制御電圧はマイクロプロセッサ4の制御により制御電圧生成回路5で生成される。   FIG. 6 is a block diagram showing a conventional example, showing an example of controlling the filter optical frequency of a Mach-Zehnder optical interferometer (hereinafter referred to as MZI). The heater 2 is provided in the MZI 1, and the filter optical frequency of the MZI 1 is controlled by supplying a current (or voltage) corresponding to a control voltage from the outside to the heater 2 from the heater driving circuit 3. In the example of FIG. 6, the control voltage is generated by the control voltage generation circuit 5 under the control of the microprocessor 4.

特許第3320172号Patent 3320172

ヒータで消費される電力は電流の自乗×抵抗値であるので、ヒータの抵抗値の製造上のバラツキがそのまま制御精度へ影響を与えてしまう。また、ヒータの抵抗値が過大な場合には、ヒータの定格電力を超えてしまう危険もあった。このため従来は、あらかじめヒータの抵抗値を記録しておき、この抵抗値に応じて制御電圧もしくはヒータ駆動信号に補正をかけることが行われていた。例えば特許文献1には、用途が異なるが、ヒータ抵抗値を記録しておき、検知された電圧値に応じてヒータへの給電電力を制御することが記載されている。しかし、この方法では、ヒータの抵抗値を個別に測定して記録しておく必要があり、制御回路を量産する上で課題があった。   Since the electric power consumed by the heater is the square of the current × the resistance value, the manufacturing variation of the resistance value of the heater directly affects the control accuracy. Further, when the resistance value of the heater is excessive, there is a risk of exceeding the rated power of the heater. For this reason, conventionally, the resistance value of the heater is recorded in advance, and the control voltage or the heater drive signal is corrected in accordance with the resistance value. For example, Patent Document 1 describes that the heater resistance value is recorded and the power supplied to the heater is controlled according to the detected voltage value, although the application is different. However, in this method, it is necessary to individually measure and record the resistance value of the heater, and there is a problem in mass-producing the control circuit.

本発明は、このような課題を解決し、ヒータの抵抗値の変動を吸収して制御電圧に対応した電力をヒータに給電することのできる光干渉計の制御方法および制御回路を提供することを目的とする。   The present invention provides a control method and a control circuit for an optical interferometer capable of solving such problems and supplying power corresponding to a control voltage by absorbing fluctuations in the resistance value of the heater. Objective.

本発明の観点によると、光干渉計の光導波路上に形成されたヒータの発熱によりその光干渉計の透過光周波数を制御する制御回路において、制御信号として入力される制御電圧に相当する電力が前記ヒータに供給されるように、前記ヒータで消費される電力を制御する電力制御手段を備えたことを特長とする光干渉計の制御回路が提供される。 According to the perspective of the present invention, in a control circuit for controlling the transmitted light frequency of the optical interferometer by heat generation of the heater formed on the optical waveguide of the optical interferometer, which corresponds to a control voltage input as a control signal power There is provided an optical interferometer control circuit comprising power control means for controlling the power consumed by the heater so that is supplied to the heater.

前記電力制御手段は、前記ヒータに流れる電流および前記ヒータの両端の電位差から前記ヒータの抵抗値を求める手段と、その抵抗値に基づいて前記ヒータに供給される電圧または電流を調整する手段とを含むことができる。   The power control means includes means for obtaining a resistance value of the heater from a current flowing through the heater and a potential difference between both ends of the heater, and means for adjusting a voltage or current supplied to the heater based on the resistance value. Can be included.

具体的には、入力された電圧に対応する駆動電流を前記ヒータに供給するヒータ駆動回路を備え、前記抵抗値を求める手段は、前記ヒータの両端の電位差を求める電圧計測回路と、この電圧計測回路により求められた電位差と前記ヒータ駆動回路の駆動電流値とから抵抗値を算出する抵抗値算出回路とを含み、前記調整する手段は、前記制御電圧を可変利得で前記ヒータ駆動回路に入力する可変利得増幅器と、この可変利得増幅器の利得を前記算出する手段の算出した抵抗値に基づいて調整する利得調整回路と含むことが望ましい。この場合、前記ヒータ駆動回路の駆動電流値は前記制御電圧の値と前記可変利得増幅器の利得とから求めることが望ましい。   Specifically, a heater drive circuit that supplies a drive current corresponding to the input voltage to the heater is provided, and the means for obtaining the resistance value includes a voltage measurement circuit for obtaining a potential difference between both ends of the heater, and the voltage measurement. A resistance value calculating circuit for calculating a resistance value from a potential difference obtained by the circuit and a driving current value of the heater driving circuit, wherein the adjusting means inputs the control voltage to the heater driving circuit with a variable gain. It is desirable to include a variable gain amplifier and a gain adjustment circuit that adjusts the gain of the variable gain amplifier based on the calculated resistance value of the calculating means. In this case, it is preferable that the drive current value of the heater drive circuit is obtained from the value of the control voltage and the gain of the variable gain amplifier.

前記ヒータに流れる電流および前記ヒータの両端の電位差から前記ヒータの消費電力を求める手段と、その消費電力に基づいて前記ヒータに供給される電圧または電流を調整する手段とを含むこともできる。   Means for obtaining the power consumption of the heater from the current flowing through the heater and the potential difference across the heater, and means for adjusting the voltage or current supplied to the heater based on the power consumption.

具体的には、入力された電圧に対応する駆動電流を前記ヒータに供給するヒータ駆動回路を備え、前記消費電力を求める手段は、このヒータ駆動回路に流れる駆動電流を計測する電流計測回路と、前記ヒータの両端の電位差を求める電圧計測回路と、前記電流計測回路の計測した駆動電流値と前記電圧計測回路の計測した電位差とから電力値を算出する電力演算回路とを含み、前記調整する手段は、前記制御電圧を可変利得で前記ヒータ駆動回路に入力する可変利得増幅器と、この可変利得増幅器の利得を前記電力演算回路の算出した電力値に基づいて調整する補正値算出回路とを含むことが望ましい。この場合、前記電流計測回路は、前記ヒータ駆動回路内の抵抗であって前記ヒータと直列に接続されその抵抗値が既知の抵抗の両端の電位差を測定する電圧計測回路と、この電圧計測回路の測定値から前記抵抗値が既知の抵抗に流れる電流値を算出する電流算出回路とを含むことができる。   Specifically, a heater drive circuit that supplies a drive current corresponding to the input voltage to the heater is provided, and the means for obtaining the power consumption includes a current measurement circuit that measures the drive current flowing through the heater drive circuit, and A voltage measuring circuit for obtaining a potential difference between both ends of the heater; and a power calculating circuit for calculating a power value from a driving current value measured by the current measuring circuit and a potential difference measured by the voltage measuring circuit, and the means for adjusting Includes a variable gain amplifier that inputs the control voltage to the heater drive circuit with a variable gain, and a correction value calculation circuit that adjusts the gain of the variable gain amplifier based on the power value calculated by the power calculation circuit. Is desirable. In this case, the current measuring circuit is a resistance in the heater driving circuit, and is connected in series with the heater to measure a potential difference between both ends of the resistor whose resistance value is known. A current calculation circuit for calculating a current value flowing through a resistor whose resistance value is known from a measured value.

光干渉計の周波数シフト制御で従来の問題であるヒータ抵抗値の変動を吸収するために、制御電圧に対応した電力がヒータに給電されるよう、ヒータで消費される電力を直接制御する。これによって、ヒータ抵抗値をあらかじめ測定すること無しに、高抵抗では電流を抑え、低抵抗では電流を増加させることが可能となり、ヒータ抵抗値のバラツキを吸収できる。また、印加する電力量の上限を規定することによって、ヒータの許容電力を超える危険性を無くすことができる。本発明により、ヒータ抵抗値を実測して記録する工程が不要となり、生産性の高い制御回路が実現できる。   In order to absorb the fluctuation of the heater resistance value which is a conventional problem in the frequency shift control of the optical interferometer, the power consumed by the heater is directly controlled so that the power corresponding to the control voltage is supplied to the heater. As a result, it is possible to suppress the current at a high resistance and increase the current at a low resistance without measuring the heater resistance value in advance, thereby absorbing variations in the heater resistance value. Further, by defining the upper limit of the amount of power to be applied, the risk of exceeding the allowable power of the heater can be eliminated. According to the present invention, a process of actually measuring and recording the heater resistance value is not necessary, and a control circuit with high productivity can be realized.

図1は本発明の実施形態を簡単に説明するブロック構成図である。ここでは、光干渉計としてMZIを用いる場合を例に説明する。   FIG. 1 is a block diagram for briefly explaining an embodiment of the present invention. Here, a case where MZI is used as an optical interferometer will be described as an example.

MZI1の分岐した少なくとも一方の光導波路上にはヒータ2が設けられ、このヒータ2に電力を供給することで発生する熱によって光導波路の屈折率が変化し、電力に比例した大きさでフィルタ光周波数がシフトする。フィルタ光周波数のシフト量は制御電圧生成回路5から制御信号として入力される制御電圧により設定され、図1に示す実施形態では、制御電圧生成回路5からの制御電圧に相当する電力がヒータ2に供給されるように、ヒータ2で消費される電力を制御する定電力制御回路6を備える。ここで「定電力制御」とは、常に一定の電力を保つという意味ではなく、制御電圧に対して1対1の定電力に制御するという意味である。   A heater 2 is provided on at least one of the branched optical waveguides of the MZI 1, and the refractive index of the optical waveguide is changed by heat generated by supplying electric power to the heater 2, and the filter light has a magnitude proportional to the electric power. The frequency shifts. The amount of shift of the filter optical frequency is set by a control voltage input as a control signal from the control voltage generation circuit 5. In the embodiment shown in FIG. 1, electric power corresponding to the control voltage from the control voltage generation circuit 5 is applied to the heater 2. A constant power control circuit 6 for controlling the power consumed by the heater 2 is provided so as to be supplied. Here, “constant power control” does not mean that constant power is always maintained, but means that constant power is controlled to 1: 1 with respect to the control voltage.

定電力制御は、ヒータ2の抵抗値を実際に検出して行うか、あるいは、ヒータ2で実際に消費されている電力を測定して行う。具体的な実施例について以下に説明する。   The constant power control is performed by actually detecting the resistance value of the heater 2 or by measuring the power actually consumed by the heater 2. Specific examples will be described below.

図2は本発明の第一実施例を示すブロック構成図である。この実施例は、ヒータ2に流れる電流およびヒータ2の両端の電位差からヒータ2の抵抗値を求める抵抗値計測回路11と、その抵抗値に基づいてヒータ2に供給される電圧または電流を調整するため、制御電圧生成回路5からヒータ駆動回路3に供給される制御電圧に補正を加える利得調整回路12および可変利得増幅器13を備える。   FIG. 2 is a block diagram showing the first embodiment of the present invention. In this embodiment, a resistance value measuring circuit 11 for obtaining a resistance value of the heater 2 from a current flowing through the heater 2 and a potential difference between both ends of the heater 2 and a voltage or current supplied to the heater 2 based on the resistance value are adjusted. For this reason, a gain adjustment circuit 12 and a variable gain amplifier 13 for correcting the control voltage supplied from the control voltage generation circuit 5 to the heater drive circuit 3 are provided.

ヒータ駆動回路3としては入力された電圧値に対して所定の電流を出力する電圧電流変換回路が用いられ、可変利得増幅器13の出力電圧からヒータ2に流れる電流を計算により求めることができる。したがって、抵抗値計測回路11では、ヒータ2の両端の電位差を測定することで、ヒータ2の抵抗値を求めることができる。この抵抗値に応じて可変利得増幅器13の利得を調整し、制御電圧生成回路5からヒータ駆動回路3へ供給される制御電圧を調整して、ヒータ2で消費される電力を調整する。   As the heater drive circuit 3, a voltage-current conversion circuit that outputs a predetermined current with respect to an input voltage value is used, and the current flowing through the heater 2 can be obtained from the output voltage of the variable gain amplifier 13 by calculation. Therefore, the resistance value measurement circuit 11 can determine the resistance value of the heater 2 by measuring the potential difference between both ends of the heater 2. The gain of the variable gain amplifier 13 is adjusted according to the resistance value, the control voltage supplied from the control voltage generation circuit 5 to the heater drive circuit 3 is adjusted, and the power consumed by the heater 2 is adjusted.

図3はこの実施例をさらに詳しく説明するブロック構成図である。ヒータ駆動回路3は、ヒータ2と直列に接続されその抵抗値が既知の内部抵抗R3に流れる電流を入力電圧に応じて制御することで、入力電圧に対して一定の電流を出力する構成となっている。可変利得増幅器13は、非反転入力への入力抵抗値がR1、反転入力と接地点との間の抵抗値がR1、出力と反転入力との間の帰還抵抗値がR1+Rvの非反転増幅器として構成され、その利得はG=1+Rvである。また、図2に示した抵抗値計測回路11に相当する回路として、電圧計測回路111および抵抗値算出回路112を備える。   FIG. 3 is a block diagram for explaining this embodiment in more detail. The heater drive circuit 3 is configured to output a constant current with respect to the input voltage by controlling the current flowing through the internal resistor R3, which is connected in series with the heater 2 and whose resistance value is known, according to the input voltage. ing. The variable gain amplifier 13 is configured as a non-inverting amplifier having an input resistance value R1 to the non-inverting input, a resistance value R1 between the inverting input and the ground point, and a feedback resistance value R1 + Rv between the output and the inverting input. The gain is G = 1 + Rv. Further, a voltage measurement circuit 111 and a resistance value calculation circuit 112 are provided as circuits corresponding to the resistance value measurement circuit 11 shown in FIG.

この構成において、制御電圧生成回路5からの制御電圧Vcに対して可変利得増幅器13の出力電圧はGVcとなり、ヒータ駆動回路3の出力電流はI=GVc/R3と算出される。ヒータ2の両端の電位差Vmを電圧計測回路111により測定し、抵抗値算出回路112で(Vm/GVc)×R3を計算することにより、ヒータ2の抵抗値Rhが求められる。この値に応じて、利得調整回路12により可変利得増幅器13の利得を調整する。   In this configuration, the output voltage of the variable gain amplifier 13 is GVc with respect to the control voltage Vc from the control voltage generation circuit 5, and the output current of the heater drive circuit 3 is calculated as I = GVc / R3. The resistance value Rh of the heater 2 is obtained by measuring the potential difference Vm between both ends of the heater 2 by the voltage measuring circuit 111 and calculating (Vm / GVc) × R3 by the resistance value calculating circuit 112. In accordance with this value, the gain adjustment circuit 12 adjusts the gain of the variable gain amplifier 13.

可変利得増幅器13の利得Gは、制御を開始する最初の状態で決定してもよく、常に利得が最適となるように制御してもよい。前者の場合は制御が簡単であるが、制御の開始時に決定された利得がその後も維持され、ヒータ2の熱による抵抗値の変動や経時変化に対応することができない。後者の場合には、利得を制御するフィードバックループの応答速度をヒータ制御ループより高速に応答するように設計し、熱による抵抗値の変動や経時変化に対応することができる。   The gain G of the variable gain amplifier 13 may be determined in the initial state where the control is started, or may be controlled so that the gain is always optimum. In the former case, the control is simple, but the gain determined at the start of the control is maintained thereafter, and it is not possible to cope with a change in resistance value or a change with time due to the heat of the heater 2. In the latter case, the response speed of the feedback loop for controlling the gain can be designed to respond faster than the heater control loop, so that it is possible to cope with a change in resistance value and a change with time due to heat.

また、可変利得増幅器13の利得Gを制御の開始時に決定する場合には、利得Gの初期値が1となるように構成し、その状態で算出された抵抗値Rhに基づいてそれ以降の利得Gを決定することが望ましい。   When determining the gain G of the variable gain amplifier 13 at the start of control, the gain G is configured so that the initial value of the gain G is 1, and the gain thereafter is determined based on the resistance value Rh calculated in that state. It is desirable to determine G.

図4は本発明の第二実施例を示すブロック構成図である。この実施例は、ヒータ2に流れる駆動電流を測定する電流計測回路21、ヒータ2の両端の電位差を計測する電圧計測回路22およびこれらの測定値からヒータ2の消費電力を求める電力演算回路23を備え、さらに、その消費電力に基づいてヒータ2に供給される電圧または電流を調整するため、制御電圧生成回路5からヒータ駆動回路3に供給される制御電圧に補正を加える帰還制御回路24を備える。   FIG. 4 is a block diagram showing the second embodiment of the present invention. In this embodiment, a current measurement circuit 21 that measures the drive current flowing through the heater 2, a voltage measurement circuit 22 that measures the potential difference between both ends of the heater 2, and a power calculation circuit 23 that determines the power consumption of the heater 2 from these measured values are provided. And a feedback control circuit 24 for correcting the control voltage supplied from the control voltage generation circuit 5 to the heater drive circuit 3 in order to adjust the voltage or current supplied to the heater 2 based on the power consumption. .

図5はこの実施例をさらに詳しく説明するブロック構成図である。ヒータ駆動回路3の構成は図3に示したものと同等であり、図4の電流計測回路21に相当する回路として、ヒータ駆動回路3の内部抵抗R3の両端の電位差を測定する電圧計測回路211と、この電圧計測回路211の測定値から内部抵抗R3に流れる電流値を算出する電流算出回路212とを備える。また、図4の帰還制御回路24に相当する回路として、制御電圧生成回路5からの制御電圧を可変利得でヒータ駆動回路3に入力する可変利得増幅器242と、この可変利得増幅器242の利得を電力演算回路23の算出した電力値に基づいて調整する補正値算出回路241とを備える。   FIG. 5 is a block diagram for explaining this embodiment in more detail. The configuration of the heater drive circuit 3 is the same as that shown in FIG. 3, and a voltage measurement circuit 211 that measures the potential difference between both ends of the internal resistance R3 of the heater drive circuit 3 as a circuit corresponding to the current measurement circuit 21 of FIG. And a current calculation circuit 212 that calculates the value of the current flowing through the internal resistor R3 from the measurement value of the voltage measurement circuit 211. Further, as a circuit corresponding to the feedback control circuit 24 of FIG. 4, a variable gain amplifier 242 that inputs the control voltage from the control voltage generation circuit 5 to the heater driving circuit 3 with a variable gain, and the gain of the variable gain amplifier 242 is set to the power. And a correction value calculation circuit 241 that adjusts based on the power value calculated by the arithmetic circuit 23.

ヒータ駆動回路3の内部抵抗R3はヒータ2と直列に接続されており、その抵抗値は既知である。したがって、この内部抵抗R3の両端の電位差Vr3から、この内部抵抗R3を通ってヒータ2を流れる電流値がI=Vr3/R3により求められる。さらに、この電流値Iと電圧計測回路22の測定値とから、電力演算回路23においてヒータ2の実際の消費電力が求められる。この消費電力値に応じて、補正値算出回路241により補正値を算出して、可変利得増幅器242の利得を調整する。   The internal resistance R3 of the heater drive circuit 3 is connected in series with the heater 2, and its resistance value is known. Therefore, the value of the current flowing through the heater 2 through the internal resistance R3 is obtained from I = Vr3 / R3 from the potential difference Vr3 across the internal resistance R3. Furthermore, the actual power consumption of the heater 2 is obtained in the power calculation circuit 23 from the current value I and the measurement value of the voltage measurement circuit 22. A correction value is calculated by the correction value calculation circuit 241 in accordance with the power consumption value, and the gain of the variable gain amplifier 242 is adjusted.

以上の実施例では光干渉計としてMZIを用いた場合を例に説明したが、本発明は、AWGあるいはリング型などの光干渉計でも同様に利用することができる。   In the above embodiments, the case where MZI is used as an optical interferometer has been described as an example. However, the present invention can be similarly used in an optical interferometer of AWG or ring type.

本発明の実施形態を簡単に説明するブロック構成図。The block block diagram which illustrates embodiment of this invention simply. 本発明の第一実施例を示すブロック構成図。The block block diagram which shows the 1st Example of this invention. この実施例をさらに詳しく説明するブロック構成図。The block block diagram explaining this Example further in detail. 本発明の第二実施例を示すブロック構成図。The block block diagram which shows the 2nd Example of this invention. この実施例をさらに詳しく説明するブロック構成図。The block block diagram explaining this Example further in detail. 従来例を示すブロック構成図。The block block diagram which shows a prior art example.

符号の説明Explanation of symbols

1 MZI
2 ヒータ
3 ヒータ駆動回路
4 マイクロプロセッサ
5 制御電圧生成回路
6 定電力制御回路
11 抵抗値計測回路
12 利得調整回路
13 可変利得増幅器
111 電圧計測回路
112 抵抗値算出回路
21 電流計測回路
22 電圧計測回路
23 電力演算回路
24 帰還制御回路
211 電圧計測回路
212 電流算出回路
241 補正値算出回路
242 可変利得増幅器
1 MZI
2 Heater 3 Heater drive circuit 4 Microprocessor 5 Control voltage generation circuit 6 Constant power control circuit 11 Resistance value measurement circuit 12 Gain adjustment circuit 13 Variable gain amplifier 111 Voltage measurement circuit 112 Resistance value calculation circuit 21 Current measurement circuit 22 Voltage measurement circuit 23 Power calculation circuit 24 Feedback control circuit 211 Voltage measurement circuit 212 Current calculation circuit 241 Correction value calculation circuit 242 Variable gain amplifier

Claims (4)

光干渉計の光導波路上に形成されたヒータ(2)の発熱によりその光干渉計の透過光周波数を制御する制御回路において、
制御信号として入力される制御電圧に相当する電力が前記ヒータ(2)に供給されるように、前記ヒータ(2)で消費される電力を制御する電力制御手段と、
入力された電圧に対応する駆動電流を前記ヒータ(2)に供給するヒータ駆動回路(3)と
を備え、
前記電力制御手段は、前記ヒータ(2)に流れる電流および前記ヒータ(2)の両端の電位差から前記ヒータ(2)の抵抗値を求める手段(11)と、その抵抗値に基づいて前記ヒータ(2)に供給される電圧または電流を調整する手段(12、13)とを含み、
前記抵抗値を求める手段(11)は、前記ヒータ(2)の両端の電位差を求める電圧計測回路(111)と、この電圧計測回路(111)により求められた電位差と前記ヒータ駆動回路(3)の駆動電流値とから抵抗値を算出する抵抗値算出回路(112)とを含み、
前記電圧または電流を調整する手段(12,13)は、前記制御電圧を可変利得で前記ヒータ駆動回路(3)に入力する可変利得増幅器(13)と、この可変利得増幅器(13)の利得を前記抵抗値算出回路(112)の算出した抵抗値に基づいて調整する利得調整回路(12)とを含む
ことを特徴とする光干渉計の制御回路。
In a control circuit for controlling the transmitted light frequency of the optical interferometer by the heat generated by the heater (2) formed on the optical waveguide of the optical interferometer,
Power control means for controlling power consumed by the heater (2) so that power corresponding to a control voltage input as a control signal is supplied to the heater (2) ;
A heater drive circuit (3) for supplying a drive current corresponding to the input voltage to the heater (2);
With
The power control means includes means (11) for obtaining a resistance value of the heater (2) from a current flowing through the heater (2) and a potential difference between both ends of the heater (2), and the heater (2) based on the resistance value. 2) means for adjusting the voltage or current supplied to (12, 13),
The means (11) for obtaining the resistance value includes a voltage measurement circuit (111) for obtaining a potential difference between both ends of the heater (2), a potential difference obtained by the voltage measurement circuit (111), and the heater driving circuit (3). A resistance value calculation circuit (112) for calculating a resistance value from the drive current value of
The means (12, 13) for adjusting the voltage or current includes a variable gain amplifier (13) for inputting the control voltage to the heater drive circuit (3) with a variable gain, and a gain of the variable gain amplifier (13). A control circuit for an optical interferometer , comprising: a gain adjustment circuit (12) that adjusts based on the resistance value calculated by the resistance value calculation circuit (112) .
前記ヒータ駆動回路(3)の駆動電流値は前記制御電圧の値と前記可変利得増幅器(13)の利得とから求める請求項記載の光干渉計の制御回路。 The control circuit of the optical interferometer of claim 1, wherein obtaining from the gain of the value of said control voltage driving current variable gain amplifier (13) of the heater drive circuit (3). 光干渉計の光導波路上に形成されたヒータ(2)の発熱によりその光干渉計の透過光周波数を制御する制御回路において、
制御信号として入力される制御電圧に相当する電力が前記ヒータ(2)に供給されるように、前記ヒータ(2)で消費される電力を制御する電力制御手段と、
前記ヒータ(2)に流れる電流および前記ヒータ(2)の両端の電位差から前記ヒータ(2)の消費電力を求める手段(21、22、23)と、
その消費電力に基づいて前記ヒータ(2)に供給される電圧または電流を調整する手段(24)と、
入力された電圧に対応する駆動電流を前記ヒータ(2)に供給するヒータ駆動回路(3)と
を備え、
前記消費電力を求める手段(21、22、23)は、このヒータ駆動回路(3)に流れる駆動電流を計測する電流計測回路(21)と、前記ヒータ(2)の両端の電位差を求める電圧計測回路(22)と、前記電流計測回路(21)の計測した駆動電流値と前記電圧計測回路(22)の計測した電位差とから電力値を算出する電力演算回路(23)とを含み、
前記調整する手段(24)は、前記制御電圧を可変利得で前記ヒータ駆動回路(3)に入力する可変利得増幅器(242)と、この可変利得増幅器(242)の利得を前記電力演算回路(23)の算出した電力値に基づいて調整する補正値算出回路(241)とを含む
ことを特徴とする光干渉計の制御回路。
In a control circuit for controlling the transmitted light frequency of the optical interferometer by the heat generated by the heater (2) formed on the optical waveguide of the optical interferometer,
Power control means for controlling power consumed by the heater (2) so that power corresponding to a control voltage input as a control signal is supplied to the heater (2);
Means (21, 22, 23) for obtaining power consumption of the heater (2) from a current flowing through the heater (2) and a potential difference between both ends of the heater (2);
Means (24) for adjusting the voltage or current supplied to the heater (2) based on its power consumption;
A heater drive circuit (3) for supplying a drive current corresponding to the input voltage to the heater (2);
With
The means (21, 22, 23) for determining the power consumption includes a current measurement circuit (21) for measuring the drive current flowing through the heater drive circuit (3), and a voltage measurement for determining a potential difference between both ends of the heater (2). A circuit (22), and a power calculation circuit (23) that calculates a power value from the drive current value measured by the current measurement circuit (21) and the potential difference measured by the voltage measurement circuit (22),
The adjusting means (24) includes a variable gain amplifier (242) for inputting the control voltage to the heater driving circuit (3) with a variable gain, and a gain of the variable gain amplifier (242) to the power calculation circuit (23). And a correction value calculation circuit (241) that adjusts based on the calculated power value.
An optical interferometer control circuit.
前記電流計測回路(21)は、前記ヒータ駆動回路(3)内の抵抗であって前記ヒータ(2)と直列に接続されその抵抗値が既知の抵抗の両端の電位差を測定する電圧計測回路(211)と、この電圧計測回路(211)の測定値から前記抵抗値が既知の抵抗に流れる電流値を算出する電流算出回路(212)とを含む請求項記載の光干渉計の制御回路。 The current measurement circuit (21) is a resistance in the heater drive circuit (3), which is connected in series with the heater (2) and has a resistance value that measures a potential difference between both ends of a known resistance ( and 211), the control circuit of the optical interferometer of claim 3, wherein said resistance value from the measured values comprises a current calculation circuit (212) for calculating a current flowing through the known resistance of the voltage measuring circuit (211).
JP2007052774A 2007-03-02 2007-03-02 Optical interferometer control circuit Active JP4932539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052774A JP4932539B2 (en) 2007-03-02 2007-03-02 Optical interferometer control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052774A JP4932539B2 (en) 2007-03-02 2007-03-02 Optical interferometer control circuit

Publications (2)

Publication Number Publication Date
JP2008216557A JP2008216557A (en) 2008-09-18
JP4932539B2 true JP4932539B2 (en) 2012-05-16

Family

ID=39836684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052774A Active JP4932539B2 (en) 2007-03-02 2007-03-02 Optical interferometer control circuit

Country Status (1)

Country Link
JP (1) JP4932539B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11861491B2 (en) 2017-10-16 2024-01-02 Illumina, Inc. Deep learning-based pathogenicity classifier for promoter single nucleotide variants (pSNVs)
NZ759818A (en) 2017-10-16 2022-04-29 Illumina Inc Semi-supervised learning for training an ensemble of deep convolutional neural networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341947B2 (en) * 1994-07-13 2002-11-05 日本電信電話株式会社 Thermo-optic effect optical switch drive
JP3406691B2 (en) * 1994-07-25 2003-05-12 日本電信電話株式会社 Optical space switch
JP2003149610A (en) * 2001-11-12 2003-05-21 Hitachi Cable Ltd Waveguide type optical variable attenuator
JP2004229243A (en) * 2003-01-27 2004-08-12 Fujitsu Ltd Mach-zehnder interferometer type optical filter and control method thereof

Also Published As

Publication number Publication date
JP2008216557A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
EP1713173B1 (en) Method for adjusting parameters of an electric motor and variable speed drive using such a method
CN104335061A (en) Magnetic element control device, magnetic element control method and magnetic detection device
JP4932539B2 (en) Optical interferometer control circuit
US8716918B2 (en) Drive circuit and physical quantity measuring device
JP2007103398A (en) Extinction ratio controller, extinction ratio control method and extinction ratio control program
TW202102819A (en) Flow rate sensor correction device, flow rate sensor, flow rate control device, a program for a correction device, and correction method
JP5488159B2 (en) Constant power control circuit
JP3726261B2 (en) Thermal flow meter
US6661963B2 (en) System and method for calibrating and operating a semiconductor variable optical attenuator
JP4472239B2 (en) Disturbance compensation method and apparatus for optical sensor
JP4274007B2 (en) Wavelength analyzer
JP5891516B2 (en) Current sensor
TWI458992B (en) Integrated current sensing apparatus
JP2013022110A (en) Needle thread tension measurement device of sewing machine
CN112564807B (en) Method and device for controlling bias voltage of optical modulator
JP3849576B2 (en) Coriolis mass flow meter
JP2003149610A (en) Waveguide type optical variable attenuator
JP4249081B2 (en) Measuring device and temperature compensation method of measuring device
US10502766B2 (en) Measurement method and apparatus for simultaneous correction of disturbance and offset of sensor
JP5178261B2 (en) Thermal flow meter
JP5178263B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JPS6343697B2 (en)
JP5511978B2 (en) Flow rate measuring device with digital temperature compensation function
JPH04299226A (en) Device for compensating temperature of torque sensor
JP2005265453A (en) Direct current measurement type optical fiber sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090909

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090909

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4932539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250