JP4932107B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4932107B2
JP4932107B2 JP2001300134A JP2001300134A JP4932107B2 JP 4932107 B2 JP4932107 B2 JP 4932107B2 JP 2001300134 A JP2001300134 A JP 2001300134A JP 2001300134 A JP2001300134 A JP 2001300134A JP 4932107 B2 JP4932107 B2 JP 4932107B2
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
ions
light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001300134A
Other languages
Japanese (ja)
Other versions
JP2003105336A (en
Inventor
勉 小田喜
Original Assignee
株式会社ファインラバー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファインラバー研究所 filed Critical 株式会社ファインラバー研究所
Priority to JP2001300134A priority Critical patent/JP4932107B2/en
Publication of JP2003105336A publication Critical patent/JP2003105336A/en
Application granted granted Critical
Publication of JP4932107B2 publication Critical patent/JP4932107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チッ化ガリウム系発光ダイオードに用いられ発光色を変換する蛍光体およびその蛍光体を用いた発光装置に関するものである。
【0002】
【従来の技術】
チッ化ガリウム系発光ダイオードの発光色を変換する蛍光体として、YAG:Ce3+蛍光体が用いられてきた。また、YAGのYサイトをGdイオンで置換すると、発光ピークがシフトすることが報告され、チッ化ガリウム系青色発光ダイオードとGdで置換したYAG:Ce3+とを組み合わせた白色LEDが開発され市販されている。
【0003】
YAG:Ce3+にMnをドープすることは電子線センサ材料として特開平2−143571号公報で報告され、Mn3+からCe3+へ無副射的にエネルギーを伝達するような増感作用があるとしている。
【0004】
【発明が解決しようとする課題】
チッ化ガリウム系発光ダイオードと蛍光体を組み合わせることによって発光色を変換させていたが、その発光色の発光強度は蛍光体の発光効率に依存していた。つまり高い発光強度を得るためには、発光強度の高いチッ化ガリウム系発光素子と共に、高い発光強度を持つ蛍光体が必要とされていた。
【0005】
また、4価のMnイオンは、そのd電子によりチッ化ガリウム系発光ダイオードの発光波長を吸収し赤色に発光するが、YAG:Ce3+にMn4+イオンをドープすると著しく発光強度が低下する問題が生じていた。Mnは大気雰囲気下では4価になりやすく、特開平2‐143571号公報で報告されているようなMn3+イオンによる増感作用は確認されなかった。
【0006】
本発明は、上記問題点を解決するためになされたものであり、チッ化ガリウム系発光ダイオードの励起光に対して効率よく放射でき、1個の発光ダイオードから白色ないし任意の色調を取り出すために実用的に使用できるYAG:Ce3+系蛍光体およびその蛍光体を使用したLEDランプ等の発光装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため、種々の組成からなるYAG:Ce3+系蛍光体を調製し、その組成成分の種類および添加量が蛍光体の発光強度に及ぼす影響を実験により比較検討した。
【0008】
その結果、YAG:Ce3+系蛍光体にMn4+イオンとアルカリ土類金属(magnesium、beryllium、calcium、strontium、barium、radium等)をドープさせることによって、Ce3+の発光強度が向上することを明らかにした。
本発明は上記知見に基づいて完成されたものである。
【0009】
即ち、本発明に係る発光ダイオード用蛍光体は、Mn4+イオンとアルカリ土類金属をドープすることを特徴とし、Mnの添加量は母体結晶に対し0.0001mol%から0.01mol%であることを特徴とする。Mnの添加量が母体結晶に対し0.0001mol%以下では、Mnによるチッ化ガリウム系発光ダイオードからの励起波長の吸収率が少なく、Ce3+イオンへの増感効果がみられない。又、0.01mol%以上ではMn濃度が高い為、Mnイオン間の共鳴伝達による交差緩和やMnイオン間の励起エネルギーの回遊が生じ、これが結晶表面や非発光中心への励起エネルギーの移行と消滅を助長する要因となる。また、付活剤どうしが凝集あるいはイオン対を形成することによって、非発光中心やキラー(蛍光抑制剤)に変わるなどの理由によって増感効果が消滅する。
【0010】
さらに、Mnとアルカリ土類金属とをドープさせてなる蛍光体がYAG:Ce3+系蛍光体であることを特徴とする。ここで、YAG:Ce3+系蛍光体はYAl12のYサイトをGd、または他の希土類イオンで置換したものでもよいしまた、AlサイトをGaなどの3価金属で置換してもよい。
【0011】
さらに、本発明に係る発光装置は、蛍光体と組み合わされたLEDチップに通電することにより電気エネルギーを紫外光または可視光に変換するLEDにおいて、上記LEDチップ上に設けられた蛍光体層がMn4+イオンおよびアルカリ土類金属をドープしたCe3+イオンを発光イオンとする蛍光体であることを特徴とする。ここで蛍光体層は少なくても1種以上の蛍光体を層状に配置しても良いし、複数の蛍光体を混合して配置しても良い。
【0012】
また、蛍光体はLEDチップ上のモールド部材に少なくても1種以上の蛍光体を添加しても良いし、2種以上の蛍光体層をLEDの外側に設けても良い。LEDの外側に設ける形態としては、LEDのモールド部材の外表面にコーティングしたり、モールド部材の外側に成形体を被せたり、或いはLEDの投射方向前方位置に配置する形態等が挙げられる。又、前記のLEDに成形体を被覆する場合は、前記の蛍光体をゴム、合成樹脂、エラストマー等に分散させ、これをキャップ形状に成形するのが有効である。
【0013】
ここで、上記発光ダイオード用蛍光体において、Mn4+イオンは励起光の吸収及びCe3+イオンへエネルギーを伝達するような増感剤として作用する。しかし3価金属位置に4価のMnイオンがドープされるため、結晶内の電荷バランスがくずれる。このことから、蛍光体の発光強度は著しく低下する。電荷バランスを補正し、Ce3+イオンへエネルギー伝達をさせるため、アルカリ土類金属をMn4+イオンと共にドープしたところ、発光強度の向上が確認された。このことから、チッ化ガリウム系発光ダイオードと蛍光体を組み合わせることによって高い発光強度を得ることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を以下の実施例に基づいて説明する。
【実施例1】
蛍光体構成原料としてY,Al,CeO粉末をYAl12となるように化学量論比で正確に秤量し、母体結晶に対し0.001mol%から0.005mol%のMnCOとMnイオンと同モルのMg(CHCOO)またはCaCOとをボールミルを使用して均一に混合して原料混合体とした。
【0015】
次に、得られた原料混合体をアルミナ製坩堝に入れ、大気中1500℃の温度で6時間焼成した。得られた焼成物は乳鉢で粉砕し、蛍光分光光度計(日本分光製 PF-750)で470nmを励起光源として用い発光強度の測定を行なった。その結果、Mn4+イオンとアルカリ土類金属とをYAG:Ce3+系蛍光体にドープさせると蛍光体の発光強度が向上することが判明した。
【0016】
図1は、YAl12:Ce3+にMn4+,Mg2+イオンをそれぞれ0.001、0.005mol添加して作成した蛍光体の470nm励起における発光波長を示す図である。Mn4+,Mg2+イオンを添加していないYAl12:Ce3+と比較すると、Mn4+,Mg2+イオンの添加によりCe3+イオンの発光強度が高くなり、Mn4+イオンがCe3+イオンの増感剤として作用していることがわかる。
図2は、YAl12:Ce3+にMn4+,Ca2+イオンをそれぞれ0.003、0.005mol添加して作成した蛍光体の470nm励起における発光波長を示す図である。この場合も、Mn4+,Ca2+イオンを添加していないYAl12:Ce3+と比較すると、Mn4+,Ca2+イオンを添加することによって、Ce3+イオンの発光強度が高くなり、Mn4+イオンがCe3+イオンの増感剤として作用していることがわかる。
図3は、チッ化ガリウム系発光ダイオードの外側に、前記した蛍光体層を設けた発光装置の一例を示す実施例で、発光ダイオード1におけるモールド部材2の外側表面に、本発明に係る蛍光体をシリコーンゴムに混合し、これをキャップ形状に形成した被覆体3を被せた発光装置である。
尚、蛍光体は、発光ダイオード1における発光素子4の外表面を被覆するコーティング部材に混入しても、或いはモールド部材2に混入しても、更には発光ダイオードの投光方向前方に配置する透光シートに混入してもよいものである。
【0017】
本発明の係る発光ダイオード用蛍光体は、前述したとおり、チッ化ガリウム系発光ダイオードを励起光源として従来品より発光強度の高いYAG:Ce3+系蛍光体が得られる。
【0018】
又、本発明に係る発光ダイオード用蛍光体と他の蛍光体を組み合わせることにより高輝度の白色光が得られるばかりでなく安定した様々な色調を提供することができる。
更に、チッ化ガリウム系発光チップと組み合わせることにより高輝度のLED光源(発光装置)を提供できる。
【図面の簡単な説明】
【図1】本発明に係るMn4+イオンとMg2+イオンをドープした発光ダイオード用蛍光体の470nm励起における発光スペクトル分布を示すグラフである。
【図2】本発明に係るMn4+イオンとCa2+イオンをドープした発光ダイオード用蛍光体の470nm励起における発光スペクトル分布を示すグラフである。
【図3】発光ダイオードの外側に蛍光体層を設けた発光装置の一例を示す図である。
【符号の説明】
1…発光ダイオード 2…モールド部材
3…蛍光体入り被覆体 4…発光素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phosphor that is used in a gallium nitride light-emitting diode and converts a light emission color, and a light-emitting device using the phosphor.
[0002]
[Prior art]
A YAG: Ce 3+ phosphor has been used as a phosphor for converting the luminescent color of a gallium nitride light emitting diode. In addition, it is reported that the emission peak shifts when the Y site of YAG is replaced with Gd ions, and a white LED that combines a gallium nitride blue light-emitting diode and YAG: Ce 3+ substituted with Gd has been developed and marketed. Has been.
[0003]
Doping Mn to YAG: Ce 3+ is reported in Japanese Patent Application Laid-Open No. 2-143571 as an electron beam sensor material, and a sensitizing action that transfers energy from Mn 3+ to Ce 3+ non-subjectively. There is going to be.
[0004]
[Problems to be solved by the invention]
The luminescent color was converted by combining a gallium nitride light emitting diode and a phosphor, but the luminescence intensity of the luminescent color depended on the luminous efficiency of the phosphor. That is, in order to obtain a high light emission intensity, a phosphor having a high light emission intensity is required together with a gallium nitride light emitting element having a high light emission intensity.
[0005]
The tetravalent Mn ion absorbs the emission wavelength of the gallium nitride light-emitting diode by its d electrons and emits red light, but when YAG: Ce 3+ is doped with Mn 4+ ions, the emission intensity is significantly reduced. There was a problem. Mn tends to be tetravalent in an air atmosphere, and no sensitizing action by Mn 3+ ions as reported in JP-A-2-143571 has been confirmed.
[0006]
The present invention has been made to solve the above-described problems, and can efficiently radiate the excitation light of a gallium nitride light emitting diode to extract white or any color tone from one light emitting diode. It is an object to provide a YAG: Ce 3+ phosphor that can be used practically and a light-emitting device such as an LED lamp using the phosphor.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors prepared YAG: Ce 3+ type phosphors having various compositions, and experimentally examined the influence of the types and addition amounts of the composition components on the emission intensity of the phosphor. A comparative study was conducted.
[0008]
As a result, the emission intensity of Ce 3+ is improved by doping YAG: Ce 3+ phosphors with Mn 4+ ions and alkaline earth metals (magnesium, beryllium, calcium, strontium, barium, radium, etc.). It revealed that.
The present invention has been completed based on the above findings.
[0009]
That is, the phosphor for a light emitting diode according to the present invention is characterized in that Mn 4+ ions and alkaline earth metal are doped, and the amount of Mn added is 0.0001 mol% to 0.01 mol% with respect to the base crystal. It is characterized by that. When the amount of Mn added is 0.0001 mol% or less with respect to the base crystal, the absorption rate of the excitation wavelength from the gallium nitride light emitting diode by Mn is small, and the sensitizing effect on Ce 3+ ions is not observed. In addition, since the Mn concentration is high at 0.01 mol% or more, cross relaxation due to resonance transfer between Mn ions and excitement of excitement energy between Mn ions occur, which transfer and disappearance of the excitation energy to the crystal surface and non-luminescent center. It becomes a factor to promote. In addition, the sensitizing effect disappears due to the reason that the activators are aggregated or form ion pairs to change to non-luminescent centers or killer (fluorescence suppressor).
[0010]
Furthermore, the phosphor formed by doping Mn and an alkaline earth metal is a YAG: Ce 3+ phosphor. Here, the YAG: Ce 3+ phosphor may be one in which the Y site of Y 3 Al 5 O 12 is substituted with Gd or another rare earth ion, or the Al site is substituted with a trivalent metal such as Ga. May be.
[0011]
Furthermore, the light emitting device according to the present invention is an LED that converts electrical energy into ultraviolet light or visible light by energizing an LED chip combined with a phosphor, and the phosphor layer provided on the LED chip is Mn. It is characterized in that it is a phosphor having a light emitting ion of Ce 3+ ion doped with 4+ ion and alkaline earth metal. Here, at least one type of phosphor may be arranged in a layer shape, or a plurality of phosphors may be mixed and arranged.
[0012]
Further, at least one phosphor may be added to the mold member on the LED chip, and two or more phosphor layers may be provided outside the LED. Examples of the form provided on the outside of the LED include a form in which the outer surface of the mold member of the LED is coated, a molded body is covered on the outside of the mold member, or the LED is placed at the front position in the projection direction. Further, when the LED is covered with a molded body, it is effective to disperse the phosphor in rubber, synthetic resin, elastomer or the like and mold it into a cap shape.
[0013]
Here, in the phosphor for a light emitting diode, Mn 4+ ions act as a sensitizer that absorbs excitation light and transmits energy to Ce 3+ ions. However, since the trivalent metal position is doped with tetravalent Mn ions, the charge balance in the crystal is lost. For this reason, the emission intensity of the phosphor is significantly reduced. In order to correct the charge balance and transfer energy to the Ce 3+ ions, when alkaline earth metal was doped together with Mn 4+ ions, an improvement in emission intensity was confirmed. From this, a high emission intensity can be obtained by combining a gallium nitride light emitting diode and a phosphor.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on the following examples.
[Example 1]
Y 2 O 3 , Al 2 O 3 , and CeO 2 powders as phosphor constituting raw materials are accurately weighed in a stoichiometric ratio so as to be Y 3 Al 5 O 12, and 0.001 mol% to 0. 005 mol% of MnCO 3 and Mn ions and the same mole of Mg (CH 3 COO) 2 or CaCO 3 were uniformly mixed using a ball mill to obtain a raw material mixture.
[0015]
Next, the obtained raw material mixture was put in an alumina crucible and baked in the atmosphere at a temperature of 1500 ° C. for 6 hours. The fired product obtained was pulverized in a mortar, and the emission intensity was measured with a fluorescence spectrophotometer (PF-750 manufactured by JASCO Corporation) using 470 nm as an excitation light source. As a result, it was found that when the YAG: Ce 3+ phosphor is doped with Mn 4+ ions and alkaline earth metal, the emission intensity of the phosphor is improved.
[0016]
FIG. 1 is a diagram showing an emission wavelength at excitation of 470 nm of a phosphor prepared by adding 0.001 mol and 0.005 mol of Mn 4+ and Mg 2+ ions to Y 3 Al 5 O 12 : Ce 3+ respectively. . Mn 4+, without the addition of Mg 2+ ions Y 3 Al 5 O 12: Compared to Ce 3+, Mn 4+, emission intensity of Ce 3+ ions is increased by the addition of Mg 2+ ions, Mn It can be seen that 4+ ions act as sensitizers for Ce 3+ ions.
FIG. 2 is a diagram showing the emission wavelength at 470 nm excitation of a phosphor prepared by adding 0.003 mol and 0.005 mol of Mn 4+ and Ca 2+ ions to Y 3 Al 5 O 12 : Ce 3+ respectively. . Again, Mn 4+, Y 3 Al 5 O 12 without the addition of Ca 2+ ions: Compared to Ce 3+, Mn 4+, by adding Ca 2+ ions, of Ce 3+ ions It can be seen that the emission intensity increases and Mn 4+ ions act as sensitizers for Ce 3+ ions.
FIG. 3 shows an example of a light emitting device in which the above phosphor layer is provided outside the gallium nitride light emitting diode. The phosphor according to the present invention is formed on the outer surface of the mold member 2 in the light emitting diode 1. Is a light emitting device in which is coated with silicone rubber and covered with a covering 3 formed in a cap shape.
The phosphor may be mixed in a coating member that covers the outer surface of the light emitting element 4 in the light emitting diode 1 or mixed in the mold member 2, and may be further disposed in front of the light emitting diode in the light projecting direction. It may be mixed in the light sheet.
[0017]
As described above , the phosphor for a light emitting diode according to the present invention is a YAG: Ce 3+ phosphor having a higher emission intensity than that of a conventional product using a gallium nitride light emitting diode as an excitation light source.
[0018]
Further, by combining the phosphor for a light emitting diode according to the present invention with another phosphor, not only high brightness white light can be obtained but also various stable color tones can be provided.
Furthermore, a high-intensity LED light source (light emitting device) can be provided by combining with a gallium nitride light emitting chip.
[Brief description of the drawings]
FIG. 1 is a graph showing an emission spectrum distribution at 470 nm excitation of a phosphor for a light emitting diode doped with Mn 4+ ions and Mg 2+ ions according to the present invention.
FIG. 2 is a graph showing an emission spectrum distribution at 470 nm excitation of a phosphor for a light emitting diode doped with Mn 4+ ions and Ca 2+ ions according to the present invention.
FIG. 3 is a diagram showing an example of a light emitting device in which a phosphor layer is provided outside a light emitting diode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light emitting diode 2 ... Mold member 3 ... Cover body containing fluorescent substance 4 ... Light emitting element

Claims (7)

イットリウム・アルミニウム・ガーネット系化合物を母体結晶とし、当該母体結晶に対して0.0001mol%から0.01mol%の添加量でMn4+イオンをドープすると共に、前記母体結晶に対して0.001mol%から0.005mol%の添加量でアルカリ土類金属イオンをドープした、Ce3+イオンを発光イオンとする蛍光体を用い、
当該蛍光体をチッ化ガリウム系発光ダイオードの発光チップ上の部材に混入したことを特徴とする発光装置。
An yttrium / aluminum / garnet compound is used as a base crystal , doped with Mn 4+ ions in an addition amount of 0.0001 mol% to 0.01 mol% with respect to the base crystal and 0.001 mol% with respect to the base crystal. A phosphor having Ce 3+ ions as luminescent ions, doped with alkaline earth metal ions at an addition amount of 0.005 mol% from
A light-emitting device comprising the phosphor mixed in a member on a light-emitting chip of a gallium nitride light-emitting diode.
前記アルカリ土類金属イオンがMg2+イオン又はCa 2+ イオンであり、前記チッ化ガリウム系発光ダイオードの発光が前記蛍光体に対する470nm励起光を含むことを特徴とする請求項1記載の発光装置。2. The light emitting device according to claim 1, wherein the alkaline earth metal ion is Mg 2+ ion or Ca 2+ ion, and light emission of the gallium nitride light emitting diode includes 470 nm excitation light for the phosphor. . 前記蛍光体を混入する部材が前記発光チップ上に設けられる蛍光体層であることを特徴とする請求項1又は2記載の発光装置。  3. The light emitting device according to claim 1, wherein the member mixed with the phosphor is a phosphor layer provided on the light emitting chip. 前記蛍光体層が複数層であることを特徴とする請求項記載の発光装置。The light emitting device according to claim 3, wherein the phosphor layer includes a plurality of layers. 前記蛍光体層は、キャップ状に成形された被覆体であることを特徴とする請求項3又は4に記載された発光装置。  The light emitting device according to claim 3 or 4, wherein the phosphor layer is a covering formed in a cap shape. 前記蛍光体を混入する部材が前記発光チップ上に設けられるモールド部材であることを特徴とする請求項1〜5のいずれかに記載された発光装置。  The light emitting device according to claim 1, wherein the member mixed with the phosphor is a mold member provided on the light emitting chip. 前記蛍光体を混入する部材は、当該蛍光体と異なる種類の蛍光体を含むことを特徴とする請求項1〜6のいずれかに記載の発光装置。  The light emitting device according to claim 1, wherein the member mixed with the phosphor includes a phosphor of a different type from the phosphor.
JP2001300134A 2001-09-28 2001-09-28 Light emitting device Expired - Fee Related JP4932107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001300134A JP4932107B2 (en) 2001-09-28 2001-09-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001300134A JP4932107B2 (en) 2001-09-28 2001-09-28 Light emitting device

Publications (2)

Publication Number Publication Date
JP2003105336A JP2003105336A (en) 2003-04-09
JP4932107B2 true JP4932107B2 (en) 2012-05-16

Family

ID=19120760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300134A Expired - Fee Related JP4932107B2 (en) 2001-09-28 2001-09-28 Light emitting device

Country Status (1)

Country Link
JP (1) JP4932107B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697794B1 (en) 2004-06-29 2007-03-20 특허법인 맥 Mixed luminescent material and white light emitting diode using the material
US7662311B2 (en) 2005-09-06 2010-02-16 Niigata University Fluorescent substance for light-emitting diode
DE102007010719A1 (en) * 2007-03-06 2008-09-11 Merck Patent Gmbh Phosphors consisting of doped garnets for pcLEDs
WO2011073871A2 (en) * 2009-12-17 2011-06-23 Koninklijke Philips Electronics N.V. Light emitting diode device with luminescent material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL160869C (en) * 1972-11-03 Philips Nv LUMINESCENT SCREEN, AS WELL AS DISCHARGE LAMP AND KATHODE BEAM TUBE, FITTED WITH SUCH SCREEN.
JP2786329B2 (en) * 1990-11-13 1998-08-13 松下電子工業株式会社 Aluminate phosphor and fluorescent lamp using the same
JP2663306B2 (en) * 1990-12-11 1997-10-15 株式会社東京化学研究所 Aluminate phosphor
JPH04239588A (en) * 1991-01-22 1992-08-27 Matsushita Electron Corp Aluminate fluorescent material and fluorescent lamp produced by using the same
JPH04248895A (en) * 1991-01-25 1992-09-04 Matsushita Electron Corp Aluminate fluorescent material and fluorescent lamp produced by using the same
JP2000169844A (en) * 1998-12-08 2000-06-20 Tokyo Kagaku Kenkyusho:Kk Zinc/manganese-substituted cerium magnesium aluminate fluophor

Also Published As

Publication number Publication date
JP2003105336A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP4418758B2 (en) Irradiation system having a radiation source and a light emitter
TWI415923B (en) Illumination system comprising a radiation source and a fluorescent material
US7443094B2 (en) Phosphor and manufacturing method of the same, and light emitting device using the phosphor
TWI443854B (en) Illumination system comprising a yellow green-emitting luminescent material
KR101080215B1 (en) Phosphor, method for production thereof, and light-emitting apparatus
JP5186016B2 (en) Phosphor conversion light emitting device
JP4207489B2 (en) α-sialon phosphor
KR100774028B1 (en) Fluorescent Substance, Method of Manufacturing Fluorescent Substance, and Light Emitting Device Using the Fluorescent Substance
US9732271B2 (en) Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
TWI304438B (en) Nitrogen oxide based fluorescent body and process for preparing the same
JP4799549B2 (en) White light emitting diode
JP5511820B2 (en) Alpha-sialon phosphor
US20060049414A1 (en) Novel oxynitride phosphors
JP2008533233A (en) Illumination system including a radiation source and a luminescent material
JP4988180B2 (en) Oxynitride phosphor and method for producing the same
JP2007223864A5 (en) Oxynitride phosphor, method for producing oxynitride phosphor, semiconductor light emitting device, light emitting device, light source, lighting device, and image display device
TW200811273A (en) Illumination system comprising a radiation source and a luminescent material
US9840666B2 (en) Phosphor having inorganic oxide with cerium and terbium activators, light-emitting device illumination light source, and illumination device using same
JP4619509B2 (en) Light emitting device
JP2007137946A (en) Phosphor, light emitting device using the same, image display device and illumination device
JP4932107B2 (en) Light emitting device
JP4098354B2 (en) White light emitting device
JP2004253747A (en) Light emitting device and lighting device using same
KR100654539B1 (en) Thiogallate phosphor and white light emitting device employing the same
JP3754701B2 (en) Phosphor and light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees