JP4932042B1 - Surface modification method for sintered carbon and electromagnetic induction heating cooker - Google Patents

Surface modification method for sintered carbon and electromagnetic induction heating cooker Download PDF

Info

Publication number
JP4932042B1
JP4932042B1 JP2011089735A JP2011089735A JP4932042B1 JP 4932042 B1 JP4932042 B1 JP 4932042B1 JP 2011089735 A JP2011089735 A JP 2011089735A JP 2011089735 A JP2011089735 A JP 2011089735A JP 4932042 B1 JP4932042 B1 JP 4932042B1
Authority
JP
Japan
Prior art keywords
carbon
molded product
oxygen
shaped molded
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011089735A
Other languages
Japanese (ja)
Other versions
JP2012219005A (en
Inventor
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011089735A priority Critical patent/JP4932042B1/en
Application granted granted Critical
Publication of JP4932042B1 publication Critical patent/JP4932042B1/en
Publication of JP2012219005A publication Critical patent/JP2012219005A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】黒鉛粒を高濃度で含有する未硬化のフェノール樹脂との複合体である成形材料を、金型内で加熱・加圧成形によって賦形した成形品を無酸素の高温雰囲気で焼成して誘電加熱を可能とするカーボン凝結体成形品において、ゲート近傍の過度な吐出圧と流路の急変に伴って歪みが成形品内に残留する。この結果、焼成段階で樹脂部分に微細な亀裂が発生し、落球などの衝撃応力による耐性を著しく低下させていた。
【解決手段】この発明に係るカーボン焼結体の表面改質方法は、黒鉛粒にフェノール起源のカーボンを結合材としたカーボン凝結体の鍋状成形品の底面中央にあるゲート相当部分にシリコン化合物を含浸させた後、無酸素雰囲気の1100〜1500℃で加熱処理を行う工程を含んで成るものである。
【選択図】図3
An object of the present invention is to form a molding material, which is a composite with an uncured phenol resin containing a high concentration of graphite grains, and to form the molded product formed by heating and pressure molding in a mold in an oxygen-free high temperature atmosphere. In a carbon aggregate molded product that enables dielectric heating, distortion remains in the molded product due to excessive discharge pressure in the vicinity of the gate and sudden change in the flow path. As a result, fine cracks were generated in the resin portion in the firing stage, and the resistance due to impact stress such as falling balls was significantly reduced.
A method for modifying the surface of a carbon sintered body according to the present invention includes a silicon compound in a gate-corresponding portion at the center of the bottom surface of a pan-like molded product of a carbon aggregate using graphite-derived carbon as a binder for graphite grains. After the impregnation, a step of heat treatment at 1100 to 1500 ° C. in an oxygen-free atmosphere is included.
[Selection] Figure 3

Description

本発明は、黒鉛粒とフェノール樹脂を無酸素雰囲気で焼成処理して成るカーボン凝結体を素材とした成型品の一部にシリコン化合物由来の炭化ケイ素を備えることによって強度を改善するカーボン焼結体の表面改質方法に関する。また、電磁誘導加熱による炊飯器の釜などである電磁誘導加熱調理器(以下、単に調理器という)に関する。   The present invention is a carbon sintered body whose strength is improved by providing silicon carbide derived from a silicon compound in a part of a molded product made of a carbon aggregate obtained by firing graphite particles and a phenol resin in an oxygen-free atmosphere. The present invention relates to a surface modification method. The present invention also relates to an electromagnetic induction heating cooker (hereinafter simply referred to as a cooker) which is a pot of a rice cooker by electromagnetic induction heating.

電磁誘導加熱を応用した調理器具であるコンロや炊飯器は、高周波磁場発生装置である誘導加熱コイルが発生する渦電流によって磁性体金属である鉄やステンレスなどが発熱する電磁誘導加熱を利用するもので、速やかで均一な加熱が得られるという特徴を有する。   Stoves and rice cookers that are cooking utensils applying electromagnetic induction heating use electromagnetic induction heating in which iron or stainless steel, which is a magnetic metal, generates heat due to eddy current generated by an induction heating coil that is a high-frequency magnetic field generator. Thus, it has a feature that rapid and uniform heating can be obtained.

当該調理器にはアルミニウムや銅などを積層したクラッド材が鍋状の成形品として用いていたが、前記クラッド材は鍋や釜などの形状加工が困難で、さらに表面をフッ素樹脂などの耐熱樹脂塗装面の各積層界面が剥離するなどの不具合もあった。   In the cooker, a clad material laminated with aluminum or copper was used as a pan-shaped molded product. However, the clad material is difficult to be shaped into a pan or a pot, and the surface is heat resistant resin such as fluororesin. There were also problems such as peeling of each laminated interface on the painted surface.

このため、従来の鉄やステンレスなどに代わる電磁誘導加熱の調理器の素材として、適度な導電性と誘電性と優れた熱伝導度を有しているカーボンの凝結体の使用が提案されている(例えば、特許文献1参照)。   For this reason, it has been proposed to use a carbon condensate having moderate conductivity, dielectric properties and excellent thermal conductivity as a material for an electromagnetic induction heating cooker that replaces conventional iron and stainless steel. (For example, refer to Patent Document 1).

また、棒柱状に加圧した圧縮体の切削加工物が紹介されている(例えば、特許文献2参照)。   Further, a cut product of a compressed body pressed into a rod-pillar shape has been introduced (see, for example, Patent Document 2).

上述の調理器具の製造方法によれば、コークスなどのカーボン粉粒にフェノールやピッチなどの高炭素含有物である結合材を主体とする混合物によって棒柱状に成型し、これを無酸素雰囲気下の1000〜3000℃で加熱して得た黒鉛化したカーボンの凝結体を得た後、任意の形状に切削加工したものである。   According to the above-described method of manufacturing a cooking utensil, a carbon pillar such as coke is molded into a rod-column shape by a mixture mainly composed of a binder that is a high carbon content such as phenol or pitch, and this is formed in an oxygen-free atmosphere. After obtaining a graphitized carbon aggregate obtained by heating at 1000 to 3000 ° C., it is cut into an arbitrary shape.

しかし、カーボンの焼結体を切削して任意形状を得る手段には、切削の大半を占める容器の中空部分にある素材の廃棄が多く、加工工数も大きい、という課題があった。   However, the means for obtaining an arbitrary shape by cutting a carbon sintered body has a problem that the material in the hollow portion of the container that occupies most of the cutting is discarded, and the number of processing steps is large.

また、カーボン圧縮体に内在する欠陥を事前に検知することが困難なうえ、切削によって欠陥が露出するなどによって意匠および強度などの諸特性に悪影響を及ぼすことになる。   In addition, it is difficult to detect defects existing in the carbon compression body in advance, and the characteristics such as design and strength are adversely affected by the exposure of the defects by cutting.

これらの課題を解決する手段として、黒鉛粒とフェノール樹脂原料液やタールピッチなどの結合材との混合物を金型内に注入して加圧するなどして賦型した後、得られた成形品を焼成処理することによって鍋状に成形したカーボンの凝結体を得る手段が開示されている(例えば、特許文献3参照)。   As a means for solving these problems, the molded product obtained after molding by injecting a mixture of graphite particles and a binder material such as a phenol resin raw material liquid or tar pitch into a mold and pressurizing it, is used. Means for obtaining a carbon aggregate formed into a pan shape by firing is disclosed (for example, see Patent Document 3).

上記特許文献3によれば、黒鉛粒と結合材を混合した原料が金型内で高い流動状態を得るために、射出温度条件下で溶融するフェノール樹脂などを結合材として多く含有する必要がある。反面、電磁誘導加熱が可能な調理器具として、強度、電気伝導及び熱伝導が優れるカーボン凝結体成形品を得るには、黒鉛粒の混合比の高いことが必要である。しかしながら、フェノール樹脂の含有量を少なくして黒鉛粒の混合比を高くした原料は、粘度が向上して流動性が低下するうえ、黒鉛粒の表面が十分に濡れないために凝集して流動性を喪失する。   According to the above-mentioned Patent Document 3, in order to obtain a high flow state in the mold, a raw material in which graphite particles and a binder are mixed needs to contain a large amount of a phenol resin or the like that melts under injection temperature conditions as a binder. . On the other hand, as a cooking utensil capable of electromagnetic induction heating, it is necessary to have a high mixing ratio of graphite particles in order to obtain a carbon aggregate molded product having excellent strength, electrical conduction and thermal conduction. However, a raw material with a low phenolic resin content and a high mixing ratio of graphite grains improves the viscosity and lowers the fluidity, and the surface of the graphite grains does not wet sufficiently so that they aggregate and flow. To lose.

また、上述の如く結合材であるフェノール樹脂を削減して多量の黒鉛粒を混合したことにより、黒鉛粒の表面に結合材が塗布されない欠陥部位が発生して凝結体の強度が低下する、同様に流動性の低下に伴って密に充填せずに多くの気孔が残留して熱伝導率が低下する、という課題があった。   In addition, by reducing the phenol resin as a binder as described above and mixing a large amount of graphite particles, a defect site where the binder is not applied is generated on the surface of the graphite particles, and the strength of the aggregate is reduced. However, with the decrease in fluidity, there is a problem that many pores remain without being densely packed and the thermal conductivity is lowered.

上記課題に対して、フェノール基とアルデヒド基を含む両化合物が重合してフェノール系樹脂の未硬化物を得る反応段階で、界面活性剤の存在下の水中で黒鉛粒を撹拌して分散させることにより、フェノール樹脂の重合に伴って黒鉛粒の表面に未硬化部の塗膜が完全に被覆して球状化した粒状のコンポジット成形原料が提案されている。該成形原料は加圧加熱成形における硬化によって賦形、得られた成形品を無酸素の高温雰囲気下で焼成処理によるフェノール樹脂が炭化し、上述した課題を解消した凝結体を得ることができる(例えば、特許文献4参照)。   In response to the above problem, graphite particles are stirred and dispersed in water in the presence of a surfactant in a reaction stage where both compounds containing a phenol group and an aldehyde group are polymerized to obtain an uncured phenol resin. Thus, there has been proposed a granular composite forming raw material in which the surface of graphite particles is completely covered with a coating film of an uncured portion and spheroidized with the polymerization of a phenol resin. The molding raw material is shaped by curing in pressure heating molding, and the obtained molded product is carbonized with a phenol resin by baking treatment in an oxygen-free high-temperature atmosphere, so that a coagulated body in which the above-described problems are solved can be obtained ( For example, see Patent Document 4).

特開平9−75211号公報JP-A-9-75211 特開平9−70352号公報JP-A-9-70352 特開2007−044257号公報JP 2007-04257 A 特開2010−059372号公報JP 2010-059372 A

しかし、黒鉛粒表面にフェノール樹脂を複素化した成形材料の加熱加圧成形として任意形状に賦型するための射出成形またはトランスファ成形において、鍋状の成形品の安定成形を確保するため、底面中央にゲート位置を設けることが最適である。しかし、反面、金型内に吐出した成形材料がゲートの対面にある壁面に衝突しながら急激に流動方向を変更することを容認する必要があった。   However, in the injection molding or transfer molding for shaping the molding material with phenol resin complexed on the graphite grain surface into an arbitrary shape, the center of the bottom surface is secured to ensure stable molding of the pan-shaped molded product. It is optimal to provide a gate position in However, on the other hand, it was necessary to accept that the molding material discharged into the mold suddenly changed the flow direction while colliding with the wall surface facing the gate.

この場合、得られた成形品のゲート相当部分近傍では黒鉛粒子が激しく衝突した後に金型内に充填を完了するため、黒鉛粒同士の接点部分に歪みが残留し、これが焼成段階の高温時に前記歪みを解放することによって微細な亀裂を発生し易くする、という課題がある。   In this case, in the vicinity of the portion corresponding to the gate of the obtained molded product, since the filling of the mold is completed after the graphite particles collide violently, strain remains in the contact portion between the graphite grains, and this is the case when the high temperature in the firing stage. There exists a subject of making it easy to generate | occur | produce a fine crack by releasing distortion.

この発明は、上記のような課題を解決するためになされたもので、カーボン凝結体の強度を改善するカーボン焼結体の表面改質方法及び電磁誘導加熱調理器を提供する。   The present invention has been made to solve the above-described problems, and provides a surface modification method for a carbon sintered body and an electromagnetic induction heating cooker that improve the strength of the carbon aggregate.

この発明に係るカーボン焼結体の表面改質方法は、黒鉛粒にフェノール起源のカーボンを結合材としたカーボン凝結体の鍋状成形品の底面中央にあるゲート相当部分にシリコン化合物を含浸させた後、無酸素雰囲気の1100〜1500℃で加熱処理を行う工程を含んで成るものである。   In the method for modifying the surface of a carbon sintered body according to the present invention, a silicon compound is impregnated in a gate-corresponding portion in the center of the bottom surface of a pan-like molded product of a carbon aggregate using carbon derived from phenol as a binder for graphite grains. Then, it includes a step of performing heat treatment at 1100 to 1500 ° C. in an oxygen-free atmosphere.

この発明に係るカーボン焼結体の表面改質方法は、黒鉛粒にフェノール起源のカーボンを結合材としたカーボン凝結体の鍋状成形品の底面中央にあるゲート相当部分にシリコン化合物を含浸させた後、無酸素雰囲気の1100〜1500℃で加熱処理を行う工程を含んで成るので、炭化ケイ素(SiC)による補強効果を得て、他の物品の衝突に伴う破壊を来しにくい性状を確保することができた。   In the method for modifying the surface of a carbon sintered body according to the present invention, a silicon compound is impregnated in a gate-corresponding portion in the center of the bottom surface of a pan-like molded product of a carbon aggregate using carbon derived from phenol as a binder for graphite grains. After that, since it includes a step of performing heat treatment at 1100 to 1500 ° C. in an oxygen-free atmosphere, it obtains a reinforcing effect by silicon carbide (SiC) and secures properties that are unlikely to cause breakage due to collision of other articles. I was able to.

比較のために示す図で、一般的な成形用原料で混練のみによる塊状物を破砕したカーボン粉粒物とフェノール樹脂未硬化物とを押出し機などで加圧混練して得た混合物の樹脂付着の概念図。In the figure shown for comparison, resin adhesion of a mixture obtained by pressure-kneading a carbon powder and a phenol resin uncured material obtained by crushing a lump only by kneading with a general molding raw material with an extruder or the like Conceptual diagram. 実施の形態1を示す図で、フェノール樹脂未硬化物を表面に複素化した成形原料の概念図。The figure which shows Embodiment 1 and is the conceptual diagram of the shaping | molding raw material which complexed the phenol resin uncured material on the surface. 実施の形態1を示す図で、改質部分である底面中央部における落球強度(破壊高さ)を、実施例1、2と比較例1〜4について比較結果を示す図。The figure which shows Embodiment 1, and is a figure which shows the comparison result about Examples 1 and 2 and Comparative Examples 1-4 about the falling ball strength (destruction height) in the bottom face center part which is a modification | reformation part.

実施の形態1.
<概要>
誘電加熱が可能な調理器具に用いるカーボン凝結体は、黒鉛粒を高濃度で含有する未硬化のフェノール樹脂との複合体である成形材料を金型内で加熱・加圧成形によって賦形した成形品を無酸素の高温雰囲気で焼成してカーボン凝結体として誘電加熱を可能とする成形品を確保した。その後、必要に応じて、表面に備える多くの気孔に含浸したアンカー効果を利用して塗装処理、調理具材の密着防止を目的にフッ素樹脂塗膜を形成する。
Embodiment 1 FIG.
<Overview>
Carbon agglomerates used in cooking utensils capable of dielectric heating are formed by molding a molding material that is a composite with an uncured phenol resin containing a high concentration of graphite grains by heating and pressure molding in the mold. The product was fired in an oxygen-free high-temperature atmosphere to secure a molded product that can be heated as a carbon aggregate. Thereafter, if necessary, a fluororesin coating film is formed for the purpose of coating treatment and prevention of adhesion of cooking utensils using an anchor effect impregnated in many pores provided on the surface.

成形に際して、底面部と直交する金型内に成形材料を吐出する場合、ゲート近傍の過度な吐出圧と流路の急変に伴う黒鉛粉粒の充填状態、例えば、黒鉛粒同士が接する部分が歪みとして成形品内に残留する。この結果、焼成段階の加熱に依る硬化に伴う賦形後であっても、Tg(ガラス転移温度)を越えて樹脂の剛性が低い状態の脱型直後では樹脂部分に微細な亀裂の発生を含んだ変形を来して黒鉛粒同士が接して生じた歪みを解放することとなる。   During molding, when the molding material is discharged into a mold perpendicular to the bottom surface, the excessive discharge pressure in the vicinity of the gate and the graphite powder filling state due to a sudden change in the flow path, for example, the part where the graphite particles are in contact with each other is distorted. Remains in the molded product. As a result, even after shaping due to curing due to heating in the firing stage, fine cracks are generated in the resin portion immediately after demolding in a state where the rigidity of the resin is low and exceeds the Tg (glass transition temperature). The deformation caused by the deformation of the graphite grains due to the deformation is released.

ここで発生した微細な亀裂は、その後の900℃以上の無酸素雰囲気下で行う焼成処理を行ったカーボン凝結体における当該部分の衝撃強度を大きく低下させることになり、調理補助器具が受ける応力への耐性が低下して衝撃破壊を招き易いことから、ゲート近傍の限定した部位に補強を行うこと必要があった。   The fine cracks generated here greatly reduce the impact strength of the part of the carbon aggregate subjected to the firing treatment performed in an oxygen-free atmosphere at 900 ° C. or higher, and the stress applied to the cooking aids. Since the resistance of the material is reduced and impact damage is likely to occur, it is necessary to reinforce a limited portion near the gate.

本実施の形態は、黒鉛凝結体の成形品が内部に過度な歪みが残留しやすいゲート近傍の領域に、有機ケイ素化合物を塗布・含浸後に無酸素雰囲気下で焼成することにより、優れた強度を備える炭化ケイ素(SiC)を得て、亀裂などの発生部分を補強し、衝撃破壊を招き難い態様を得る。   In this embodiment, the graphite aggregate molded product is fired in an oxygen-free atmosphere after coating and impregnation with an organosilicon compound in a region in the vicinity of the gate where excessive distortion tends to remain inside. A silicon carbide (SiC) provided is obtained to reinforce an occurrence portion such as a crack and obtain an aspect in which impact destruction is not easily caused.

<手段>
金型内に黒鉛粒とフェノール樹脂から成る成形材料を注入後、成形材料を加熱・加圧して硬化させて賦型した成形品を、無酸素状態の高温で第一の焼成処理を行って得たカーボン凝結体に対し、ゲート相当部分近傍にシラン化合物を塗布して含浸させた後、再度に無酸素状態の高温で第二の焼成処理を行うことによって改質した。
<Means>
After injecting molding material consisting of graphite grains and phenolic resin into the mold, the molding material is heated and pressed to cure and molded, and then obtained by performing a first firing treatment at an oxygen-free high temperature. The carbon aggregates were modified by applying a silane compound in the vicinity of the gate equivalent and impregnating the carbon aggregates, and then performing a second baking process again at a high temperature in an oxygen-free state.

<作用>
加熱加圧成形によって得た成形品は、結合材のフェノール樹脂が非晶質カーボンとした凝結体として取り出す焼成温度が800℃以下の第一の焼成処理を行った後、ゲート相当部分にシリコン化合物を含浸させた状態で1200℃以上の第二の焼成処理を施すことによって、本実施の形態の調理器具に供するカーボン凝結体とした。
<Action>
A molded product obtained by heat and pressure molding is subjected to a first firing process in which a firing temperature of 800 ° C. or less is taken out as an aggregate in which the binder phenol resin is amorphous carbon. A carbon aggregate to be used for the cooking utensil according to the present embodiment was obtained by performing a second baking process at 1200 ° C. or higher in a state of impregnating with.

ここで用いたシリコン化合物は、シラザンまたはポリシラザンであって、前者は弱酸性の水による加水分解を来してSiOに転化し、後者は大気中の水分と反応してシリカガラスに転化する。 The silicon compound used here is silazane or polysilazane. The former is hydrolyzed by weakly acidic water and converted into SiO 2 , and the latter reacts with moisture in the atmosphere and is converted into silica glass.

一般に、シラザン化合物は基材表面に吸着した水(HO)のほかに、有機官能基と加水分解性基(OR)を併せ持つ有機ケイ素化合物であるシランカップリング剤の加水分解によって生じたシラノール基(Si−OH)と反応し結合することによって高温でも飛散することなく保持され、第二の焼成段階で分解して、わずかに活性基が残留する不純物を含有した非晶質カーボンと反応して優れた強度を備える炭化ケイ素(SiC)を得て、亀裂の発生部分を補強し、衝撃破壊を招き難い態様を得る。 In general, a silazane compound is a silanol produced by hydrolysis of a silane coupling agent which is an organosilicon compound having both an organic functional group and a hydrolyzable group (OR) in addition to water (H 2 O) adsorbed on the substrate surface. It reacts with the group (Si-OH) and is retained without scattering even at high temperatures, decomposes in the second firing step, and reacts with amorphous carbon containing impurities with slightly remaining active groups. Thus, silicon carbide (SiC) having an excellent strength is obtained, and the cracked portion is reinforced to obtain a mode in which impact destruction is unlikely to occur.

<効果(進歩性)>
カーボン凝結体から成る調理器具が過度な歪みの残留や微細な亀裂のゲート近傍に含浸したシリコン化合物は、その後の1200℃以上の焼成温度で非晶質カーボンとの反応生成物である炭化ケイ素(シリコンカーバイト;SiC)による補強効果を得て、他の物品の衝突に伴う破壊を来しにくい性状を確保することができた。
<Effect (Inventive step)>
The silicon compound impregnated in the vicinity of the gate of the excessive strain residue and fine cracks by the cookware made of the carbon aggregate is silicon carbide (reaction product with amorphous carbon at a firing temperature of 1200 ° C. or higher) The reinforcing effect by silicon carbide (SiC) was obtained, and it was possible to secure a property that is less likely to break due to the collision of other articles.

シラザン(Silazane)について説明する。ケイ素(Si)と窒素を構成成分とするシラザンは、酸化反応を起こさせると、SiOに転化する。通常は、加水分解反応で、酸化膜に転化させるのだが、高い絶縁性を確保するためには、作製するSiO薄膜に水分が取り込まれてしまうことは避けなければならない。このため、今回開発した技術では、水分を排除した環境下で、加水分解反応を用いずに、オゾンを反応させることで酸化物に転化させることとした。SiO薄膜の作製方法は、まず原料であるシラザンを溶媒に溶解して塗布し、薄膜化した。 Silazane will be described. Silazane containing silicon (Si) and nitrogen as constituent components is converted into SiO 2 when an oxidation reaction is caused. Usually, it is converted into an oxide film by a hydrolysis reaction, but in order to ensure high insulation, it is necessary to avoid that moisture is taken into the SiO 2 thin film to be produced. For this reason, in the technology developed this time, it was decided to convert to an oxide by reacting ozone without using a hydrolysis reaction in an environment excluding moisture. In the method for producing the SiO 2 thin film, first, silazane as a raw material was dissolved in a solvent and applied to form a thin film.

その後、作製したシラザン薄膜をオゾンと反応させることにより、SiO薄膜を得た。この際、薄膜化する際のコンディション、オゾンとの反応の条件・反応環境などを適切に制御し、段階的な加温プロセスを適用すると、酸化膜の品質が向上し、TFT(Thin Film Transistor、薄膜トランジスタ)のゲート絶縁層として使用するのにも十分耐えうる高品質SiO絶縁膜が得られる。 Thereafter, a silazane thin films prepared by reacting with ozone, to obtain a SiO 2 thin film. At this time, the condition of the thin film, the conditions of the reaction with ozone, the reaction environment, etc. are appropriately controlled, and if a stepwise heating process is applied, the quality of the oxide film is improved, and the TFT (Thin Film Transistor, A high-quality SiO 2 insulating film that can withstand use as a gate insulating layer of a thin film transistor is obtained.

ポリシラザン(Polysilazane)の特徴について述べる。ポリシラザンは、オリゴマーおよびポリマーのシラザン、すなわち2またはそれ以上のモノマーのシラザン単位を有する化合物を包含し、水やアルコールなどの活性水素を有する化合物と反応する。   The characteristics of polysilazane will be described. Polysilazanes include oligomeric and polymeric silazanes, ie, compounds having two or more monomeric silazane units and react with compounds having active hydrogen such as water and alcohols.

ポリシラザンおよびその誘導体は、窒化ケイ素(Si)、炭化ケイ素(SiC)、Si/SiC合金、Si/炭素合金、Si/窒化ホウ素合金、およびこれらの混合物の調製に、とりわけ有用である。これらのセラミック材料は、極端な環境状態下における硬さ、強さ、構造的安定性、および広範囲にわたる電気特性のために、建築材料、保護被覆、および電子材料として用いられ得る。特に、これらの材料は、複合材料の強化材として有用なセラミック繊維に形成され得る。 Polysilazane and its derivatives include silicon nitride (Si 3 N 4 ), silicon carbide (SiC), Si 3 N 4 / SiC alloy, Si 3 N 4 / carbon alloy, Si 3 N 4 / boron nitride alloy, and mixtures thereof It is particularly useful for the preparation of These ceramic materials can be used as building materials, protective coatings, and electronic materials because of their hardness, strength, structural stability, and a wide range of electrical properties under extreme environmental conditions. In particular, these materials can be formed into ceramic fibers useful as composite reinforcements.

シラザン化合物は空気中あるいは基材表面に吸着した水(HO)または表面のシラノール基(Si−OH)と反応し結合するが、本実施の形態に用いた二酸化珪素含有被膜は表面にシラノール基が多く存在するため、二酸化珪素含有被膜と有機シラザン化合物からなる撥水層との結合密度が高くなる。 The silazane compound reacts and bonds with water (H 2 O) adsorbed on the surface of the air or the substrate or silanol groups (Si—OH) on the surface, but the silicon dioxide-containing coating used in this embodiment has a silanol on the surface. Since there are many groups, the bond density between the silicon dioxide-containing film and the water-repellent layer made of an organic silazane compound is increased.

シランカップリング剤は、一つの分子中に有機物との反応や相互作用が期待できる有機官能基「Y」と、加水分解性基「OR」の両者を併せ持つ有機ケイ素化合物である。   A silane coupling agent is an organosilicon compound having both an organic functional group “Y” that can be expected to react and interact with an organic substance in one molecule and a hydrolyzable group “OR”.

ポリシラザンの組成は、Si−H、N−H、Si−N結合のみから構成される完全な無機ポリマーである。   The composition of polysilazane is a complete inorganic polymer composed only of Si—H, N—H, and Si—N bonds.

ポリシラザンの分子量、数平均分子量Mnは、500〜2500程度の実質的にオリゴマーで、溶媒を除いた樹脂成分の性状は粘性液体である。   The molecular weight and number average molecular weight Mn of polysilazane are substantially oligomers of about 500 to 2500, and the properties of the resin component excluding the solvent are viscous liquids.

ポリシラザンの溶媒について述べる。ポリシラザンは、OH(水酸基)をもつ物質と反応し、加水分解すると同時に、水素、アンモニア、シラン系ガスが発生するため、水やアルコールなどと接触させることはできない。ケトンやエステル類など水を溶解する溶媒も好ましくない。従って、溶解性、安定性、塗膜性状の点からキシレン、ミネラルターペン、高沸点芳香族系溶媒などを主に用いる。   The solvent of polysilazane will be described. Polysilazane reacts with a substance having OH (hydroxyl group) and hydrolyzes, and at the same time, hydrogen, ammonia, and a silane-based gas are generated. Therefore, polysilazane cannot be brought into contact with water or alcohol. Solvents that dissolve water, such as ketones and esters, are also not preferred. Therefore, xylene, mineral terpenes, high-boiling aromatic solvents, etc. are mainly used from the viewpoint of solubility, stability, and coating film properties.

ポリシラザンの収率について述べる。ポリシラザン薄膜からシリカ薄膜への転化では、大気中の水分との下記反応が支配的と考えられている。
−(SiHNH)− + 2HO → SiO + NH + 2H
M=45 → M=60
この反応に伴う重量収率は、60/45=133%となり、実測値も同様に極めて高い値となる。この理由は、水素以外の有機成分の離脱がないばかりでなく、窒素1モルに対し、酸素2モルが置き変わるという効率的な反応が起こることによる。
The yield of polysilazane will be described. In the conversion from a polysilazane thin film to a silica thin film, the following reaction with moisture in the atmosphere is considered to be dominant.
- (SiH 2 NH) - + 2H 2 O → SiO 2 + NH 3 + 2H 2
M = 45 → M = 60
The weight yield associated with this reaction is 60/45 = 133%, and the actually measured value is also extremely high. The reason for this is that not only there is no separation of organic components other than hydrogen, but also an efficient reaction occurs in which 2 mol of oxygen is replaced with 1 mol of nitrogen.

低温硬化(シリカ転化)タイプポリシラザンには、無機触媒添加ポリシラザン(L110)と有機触媒添加ポリシラザン(P110)がある。   The low temperature curing (silica conversion) type polysilazane includes an inorganic catalyst-added polysilazane (L110) and an organic catalyst-added polysilazane (P110).

無機触媒添加ポリシラザン(L110)は、脱水素、酸化触媒であるPd化合物を添加することによって、シリカへの転化温度、言い換えればセラミック化の温度を、250℃程度まで低減することが可能である。   The inorganic catalyst-added polysilazane (L110) can reduce the conversion temperature to silica, in other words, the temperature of ceramization to about 250 ° C. by adding a Pd compound that is a dehydrogenation and oxidation catalyst.

有機触媒添加ポリシラザン(P110)は、水との反応を促進させるアミン系触媒を添加することにより、常温でシリカへ転化することができる。   The organic catalyst-added polysilazane (P110) can be converted to silica at room temperature by adding an amine-based catalyst that promotes the reaction with water.

パーヒドロポリシラザン(Perhydro−polysilazane:PHPS)は、大気中の水分と反応してシリカガラスに転化する。パーヒドロポリシラザンを主成分として、有機溶媒、微量の触媒(常温・低温焼成タイプ)により構成され、これに塩化アンモニウムが簡単なオリゴジメチルシラザンの架橋化を触媒、シランカップリング剤は加水分解によってシラノール(Si−OH)を生成後、シラノール同士が縮合してシロキサン結合(Si−O−Si)を有するシランオリゴマーを形成してシリコーンの性質が強くなるが、一方でシラノール基数が減るために反応性が低下し水に溶け難くなる。縮合反応の速度はpHによって変化し、一般にはpHが3.5〜4の場合に最も遅くなる。   Perhydropolysilazane (PHPS) reacts with moisture in the atmosphere and is converted to silica glass. Consists of perhydropolysilazane as the main component, organic solvent and a small amount of catalyst (room temperature / low temperature baking type), ammonium chloride is a catalyst for the crosslinking of simple oligodimethylsilazane, silane coupling agent is silanol by hydrolysis After producing (Si-OH), silanols condense together to form a silane oligomer having a siloxane bond (Si-O-Si) to enhance the properties of silicone, but on the other hand, the number of silanol groups is reduced to reduce reactivity. Drops and becomes difficult to dissolve in water. The rate of the condensation reaction varies with pH and is generally slowest when the pH is 3.5-4.

また、pHとは別に有機金属等の触媒の存在により反応が加速する場合があり、安定な水溶液を得る場合には水溶液のpHを4付近に制御することが有効である。   In addition to the pH, the reaction may be accelerated by the presence of a catalyst such as an organic metal, and it is effective to control the pH of the aqueous solution to around 4 in order to obtain a stable aqueous solution.

成形材料を金型内に吐出して得た調理器具である鍋状の成型品の衝撃強度を改善する手段に関し、特に微細な亀裂が発生して強度低下を来すゲート近傍部分である底面中央の改質手段を、以下に詳述する。   Regarding the means to improve the impact strength of pot-shaped molded products, which are cooking utensils obtained by discharging molding material into the mold, especially the center of the bottom surface near the gate where fine cracks occur and the strength decreases The reforming means will be described in detail below.

まず、カーボン凝結体成形原料の製造方法について述べる。ブロックを破砕するなどして得た0.3mm以下の黒鉛粒を水中で均一分散するように撹拌しながら第四級アンモニウム塩型カチオン界面活性剤を投入したのち、フェノール類化合物とアルデヒド類化合物を25wt%のフェノール樹脂が付着するように投入した。界面活性剤は保護コロイド性を有して高分子電解質挙動を示し、アニオン性水溶性樹脂とイオンコンプレックスを形成して黒鉛粒を核とする保護コロイドの内部、つまり黒鉛粒の表面でフェノール類化合物とアルデヒド類化合物が反応してフェノール樹脂が球状を成すように形成さる。   First, a method for producing a carbon aggregate forming raw material will be described. After adding a quaternary ammonium salt type cationic surfactant while stirring so that graphite particles of 0.3 mm or less obtained by crushing a block are uniformly dispersed in water, a phenol compound and an aldehyde compound are added. It poured so that 25 wt% phenol resin might adhere. Surfactant has protective colloid properties and exhibits polyelectrolyte behavior, forms an ion complex with an anionic water-soluble resin, and forms phenolic compounds inside the protective colloid with graphite grains as the core, that is, on the surface of the graphite grains And the aldehyde compound react to form a phenol resin in a spherical shape.

上述した保護コロイドを形成する第四級アンモニウム塩型カチオン界面活性剤として、アルキルトリメチル型とアルキルジメチルベンジル型のカチオン活性剤が好ましく、アルキル部分も高純度のラウリル、パルミチル、ステアリルおよびベヘニルなどの、C数が10〜20程度のものが有効である。   As the quaternary ammonium salt type cationic surfactant that forms the protective colloid described above, alkyltrimethyl type and alkyldimethylbenzyl type cationic surfactants are preferable, and the alkyl part also has high purity such as lauryl, palmityl, stearyl and behenyl, Those having a C number of about 10 to 20 are effective.

フェノール樹脂の反応は水温と混合時間を調整して、成形時の金型温度である160℃で溶融せずに軟化状態を呈する態様を備えた未硬化状態とした。また、黒鉛粒への樹脂付着の効率は撹拌速度の調整する必要があり、遅すぎる場合には各粒子が凝集して肥大化し、速すぎる場合は黒鉛粒表面に付着した樹脂が剥離して単独で硬化が進行した球状樹脂を形成するので、黒鉛粒表面における付着量が減少する。   The reaction of the phenol resin was adjusted to the water temperature and the mixing time to be in an uncured state having a mode in which it was not melted at 160 ° C., which is the mold temperature at the time of molding, and exhibited a softened state. Also, the efficiency of resin adhesion to the graphite grains needs to be adjusted by the stirring speed. If it is too slow, the particles aggregate and enlarge, and if it is too fast, the resin adhering to the graphite grain surface will peel off and become independent. As a result, a spherical resin that has been cured is formed, so that the amount of adhesion on the surface of the graphite grains is reduced.

フェノール樹脂が半硬化状態に至って、所望する黒鉛粒表面に被覆した複素化状態を形成後、これを濾過して回収したものを低温の温風で乾燥してカーボン凝結体の成形原料を得た。   After the phenolic resin has reached a semi-cured state and formed a complexed state coated on the surface of the desired graphite particles, this was filtered and recovered and dried with low-temperature hot air to obtain a raw material for forming a carbon aggregate .

図1は比較のために示す図で、一般的な成形用原料で混練のみによる塊状物を破砕したカーボン粉粒物とフェノール樹脂未硬化物とを押出し機などで加圧混練して得た混合物の樹脂付着の概念図である。図2は実施の形態1を示す図で、フェノール樹脂未硬化物を表面に複素化した成形原料の概念図である。   FIG. 1 is a diagram for comparison, and is a mixture obtained by pressure-kneading a carbon powder and a phenol resin uncured product obtained by crushing a lump by only kneading with a general molding raw material with an extruder or the like. It is a conceptual diagram of resin adhesion. FIG. 2 is a diagram showing the first embodiment, and is a conceptual diagram of a molding raw material in which an uncured phenol resin is complexed on the surface.

図2に示すように、上述手段によって得られたカーボン凝結体成形原料は、図1に示す一般的な成形用原料で混練のみによる塊状物を破砕したカーボン粉粒物とフェノール樹脂未硬化物とを押出し機などで加圧混練して得た混合物の樹脂付着と比較して、フェノール樹脂の重合過程でカーボンの粉粒が備える鋭角な端面を覆い隠すようにカーボン粉粒1の表面に析出しながらフェノール樹脂の未硬化物2が塗膜を形成して、平滑な面を形成することになる。   As shown in FIG. 2, the carbon aggregate forming raw material obtained by the above-mentioned means is composed of carbon particles obtained by crushing a lump only by kneading with the general forming raw material shown in FIG. Compared with the resin adhesion of the mixture obtained by pressure kneading with an extruder or the like, it precipitates on the surface of the carbon particle 1 so as to cover the sharp end face of the carbon particle during the phenol resin polymerization process. However, the uncured phenol resin 2 forms a coating film and forms a smooth surface.

このため、本実施の形態によるカーボン凝結体成形原料は、成形温度である160℃近傍の加熱下で加圧して金型内に吐出したとき、金型内で溶融することなしに樹脂を保持しながら空隙を埋めるなどして好適な位置に移動しやすい、つまり、流動性に優れるという特徴を有することになる。   For this reason, the carbon aggregate molding raw material according to the present embodiment retains the resin without melting in the mold when pressurized under heating at a molding temperature of about 160 ° C. and discharged into the mold. However, it is easy to move to a suitable position by filling the gap, that is, it has a feature of excellent fluidity.

上述手段によって得た成形品は無酸素雰囲気で750〜800℃まで、フェノール樹脂の分解ガスが成型品の壁内に滞留しないように段階的な昇温の焼成処理を行った。この温度域の焼成処理により、僅かに活性基が残存する不純物を含有した非晶質カーボンを黒鉛粒の結合材とする凝結体が得られた。   The molded product obtained by the above-described means was subjected to a calcination treatment at a stepwise temperature increase in an oxygen-free atmosphere up to 750 to 800 ° C. so that the decomposition gas of the phenol resin does not stay in the wall of the molded product. By the baking treatment in this temperature range, an aggregate having amorphous carbon containing impurities in which active groups slightly remain as a binder of graphite grains was obtained.

次に、得られた凝結体の成形品底面中央部分にあるゲート近傍部で、前記成形品のゲートを排除した加工痕にシランカップリング剤(好ましくは、官能基がアミノ基のメトキシまたはエトキシ系のシランカップリング剤)と水(好ましくは、水とエタノールなどの低沸点アルコールとの混合物)の混合物を含浸して室温で乾燥した。   Next, a silane coupling agent (preferably a methoxy or ethoxy group having a functional group as an amino group) is formed on the processing mark in which the gate of the molded product is excluded in the vicinity of the gate at the center of the bottom of the molded product. Silane coupling agent) and water (preferably a mixture of water and a low-boiling alcohol such as ethanol) was impregnated and dried at room temperature.

この状態は、シランカップリング剤が加水分解によってシラノール(Si−OH)を生成した後、シラノール同士が縮合してシロキサン結合(Si−O−Si)を有するシランオリゴマーを形成する。このとき、成形品の微細な亀裂内で、水およびOH基を有するカップリング剤と、上述の凝結体にあってフェノール樹脂起源の結合材が含む僅かに残存する不純物にある活性基と結合して、固定化された状態を成す。   In this state, after the silane coupling agent generates silanol (Si—OH) by hydrolysis, the silanols are condensed to form a silane oligomer having a siloxane bond (Si—O—Si). At this time, within the minute cracks of the molded product, the coupling agent having water and OH group and the active group in the slightly remaining impurities contained in the above-mentioned aggregate and the binder derived from phenol resin are combined. In a fixed state.

上述した成形品ゲートの加工痕から含浸したシランカップリング剤が乾燥した段階で、シリコン化合物であるシラザンを含浸した。シラザンは、基材表面に吸着した水またはシラノール基(Si−OH)と反応し、二酸化珪素を含有した被膜と有機シラザン化合物からなる撥水層を形成し、さらに高温の雰囲気で気散せずに亀裂内に保持される、という特長を備える。   At the stage where the silane coupling agent impregnated from the above-mentioned processing mark of the molded product gate was dried, the silicon compound was impregnated with silazane. Silazane reacts with water or silanol groups (Si-OH) adsorbed on the surface of the substrate to form a water-repellent layer composed of a coating containing silicon dioxide and an organic silazane compound, and does not disperse in a high-temperature atmosphere. It has the feature that it is held in the crack.

このとき、シランカップリング剤はアミノ基を官能基とするメトキシシラン類が好ましく、弱酸性を呈して加水分解を促進してSiOに転化し、残余の水分と反応してシリカガラスに転化するので、亀裂内での固定化が一層、容易になる。 At this time, the silane coupling agent is preferably a methoxysilane having an amino group as a functional group. The silane coupling agent is weakly acidic, promotes hydrolysis and is converted into SiO 2 , reacts with the remaining moisture, and is converted into silica glass. Therefore, fixing in the crack is further facilitated.

ここで用いたシリコン化合物は、シラザンに代えてポリシラザンでも良い。この場合、水やアルコールなどと接触させると、容易に加水分解する。この反応に伴う重量収率は水素以外の有機成分の離脱が無く、窒素1モルに対して酸素2モルが置換して、収率が130%程度の極めて高い値となる効率的な反応が起こる。   The silicon compound used here may be polysilazane instead of silazane. In this case, it hydrolyzes easily when brought into contact with water or alcohol. The weight yield associated with this reaction has no separation of organic components other than hydrogen, and 2 moles of oxygen are substituted for 1 mole of nitrogen, resulting in an efficient reaction in which the yield is as high as about 130%. .

また、触媒としてアミン類を添加しても有効であり、含浸を効率化する低粘度化のために、OH基を含有せず、水分の含有が少ないキシレン、ミネラルターペン、高沸点芳香族系溶媒などが、溶解性、安定性、安定した塗膜性状を確保する点から好ましい。   Addition of amines as a catalyst is effective, and xylene, mineral terpenes, and high-boiling aromatic solvents that do not contain OH groups and contain less water in order to reduce viscosity for efficient impregnation. Are preferable from the viewpoint of securing solubility, stability, and stable coating properties.

次に、1200℃以上の第二の焼成処理を施すことによって、本実施の形態の調理器具に供するカーボン凝結体とした。この第二の焼成処理の段階で二酸化珪素およびシリカガラスが分解することにより、わずかに活性基が残留する不純物が残存した非晶質カーボンと反応して優れた強度を備える炭化ケイ素(SiC)の無定形物を生成、黒鉛との結合を損なわずに高い強度の複合体を形成する。該反応は1100℃〜1500℃の範囲、好ましくは1200〜1300℃で進行し、破壊の開始部分となる亀裂部分を補強して衝撃破壊の耐性が向上する態様が得られる。   Next, the carbon coagulation body used for the cooking utensil of the present embodiment was obtained by performing a second baking process at 1200 ° C. or higher. The silicon dioxide and the silica glass are decomposed in the stage of the second baking treatment, so that the silicon carbide (SiC) having an excellent strength reacts with the amorphous carbon in which the impurities in which the active groups remain slightly remain. An amorphous material is produced, and a high-strength composite is formed without impairing the bond with graphite. The reaction proceeds in the range of 1100 ° C. to 1500 ° C., preferably 1200 to 1300 ° C., and an aspect in which the resistance to impact fracture is improved by reinforcing the crack portion that becomes the fracture initiation portion is obtained.

図3は実施の形態1を示す図で、改質部分である底面中央部における落球強度(破壊高さ)を、実施例1、2と比較例1〜4について比較結果を示す図である。   FIG. 3 is a diagram showing the first embodiment, and shows a comparison result of the falling ball strength (breaking height) in the center portion of the bottom surface, which is a modified portion, in Examples 1 and 2 and Comparative Examples 1 to 4.

シリコン化合物、焼成条件の表面改質条件を変更した試料を比較例として作製し、これら試料の改質部分である底面中央部における落球強度(破壊高さ)を測定、本実施の形態の有効性を確認した(図3参照)。   Samples with modified surface modification conditions of silicon compound and firing conditions are prepared as comparative examples, and the falling ball strength (breaking height) at the center of the bottom surface, which is the modified portion of these samples, is measured. The effectiveness of this embodiment Was confirmed (see FIG. 3).

落球強度は、200gの鋼球を凝結体成形品のゲート位置に相当する底面中央部に落下させて、クラック発生などの破壊に至らない最大高さである落球強度として示した。   The falling ball strength was shown as the falling ball strength which is the maximum height at which a 200 g steel ball is dropped to the center of the bottom surface corresponding to the gate position of the aggregate molded product and does not lead to breakage such as crack generation.

第一の焼成温度が800℃のカーボン凝結体成形品に、底面中央部のゲート近傍にある加工痕に水とエタノールおよびシランカップリング剤(3−アミノプロピルトリメトキシシラン)の混合物(各、等量)を塗布して室温で乾燥した後、シリコン化合物であるシラザン又はポリシラザンを塗布した。その後、第二の焼成温度が1200℃で加熱処理したものを本実施の形態の表面改質方法である実施例1(シラザンを塗布)および実施例2(ポリシラザンを塗布)とした。   A carbon aggregate molded product having a first baking temperature of 800 ° C., a mixture of water, ethanol, and a silane coupling agent (3-aminopropyltrimethoxysilane) (respectively, etc.) on a processing mark in the vicinity of the gate at the center of the bottom surface Amount) and dried at room temperature, and then a silazane or polysilazane which is a silicon compound was applied. Then, what was heat-processed by the 2nd baking temperature of 1200 degreeC was made into Example 1 (application | coating silazane) and Example 2 (application | coating polysilazane) which are the surface modification methods of this Embodiment.

これに対し、シリコン化合物を塗布しないもの(比較例1)、第一の焼成温度を800℃以上の900℃としたもの(比較例2)、第二の焼成温度を1100℃以下の1000℃としたもの(比較例3)、第二の焼成温度を1600℃としたもの(比較例4)を比較例とし、変更条件以外は実施例に倣った。   On the other hand, a silicon compound is not applied (Comparative Example 1), a first baking temperature is set to 900 ° C. of 800 ° C. or higher (Comparative Example 2), and a second baking temperature is 1000 ° C. of 1100 ° C. or lower. (Comparative Example 3) and the second baking temperature set to 1600 ° C. (Comparative Example 4) were used as comparative examples, and the examples were similar to those of the examples except for the changing conditions.

上記結果に示した如く、本実施の形態によるカーボン凝結体の表面改質手段は、第一の焼成温度が800℃で、微細な亀裂を含んだカーボン凝結体のゲート近傍部分に、シランカップリング剤が加水分解した状態でシリコン化合物を含浸して乾燥後、1200℃で焼成処理した。この結果、前記亀裂部分は、シラザンの重量収率増加に伴う修復が成されるとともに、その後の焼成処理によって、非晶質カーボンとの反応によって炭化珪素が生成されるので、破壊の開始点となる微細な亀裂を補強して衝撃強度の改善することができる。   As shown in the above results, the carbon aggregate surface modifying means according to the present embodiment has a first calcination temperature of 800 ° C. and a silane coupling in the vicinity of the gate of the carbon aggregate containing fine cracks. After the agent was hydrolyzed, it was impregnated with a silicon compound, dried, and then fired at 1200 ° C. As a result, the crack portion is repaired with an increase in the weight yield of silazane, and silicon carbide is generated by a reaction with amorphous carbon in the subsequent baking treatment. The resulting fine cracks can be reinforced to improve the impact strength.

これに対し、比較例1の何らの表面改質を行っていない調理器具である単にカーボン凝結体成形品の場合は、底面中央にあるゲート近傍で成形材料に起因した残留歪みの解放挙動によって発生した微細な亀裂を含有して成り、前記亀裂が破壊の開始点として作用することに伴い、著しく低い落球衝撃強度を呈した。   On the other hand, in the case of a carbon aggregate molded product which is a cooking utensil without any surface modification of Comparative Example 1, it is generated by the release behavior of the residual strain caused by the molding material in the vicinity of the gate at the center of the bottom surface. The cracked ball impact strength was extremely low as the crack acted as a starting point of fracture.

これに対し、比較例2では、フェノール樹脂由来で官能基を含んだ不純物の多くが飛散してシラノール(Si−OH)が飛散した結果、最終的に炭化ケイ素の生成量が不足したために十分な表面改質の達成が不十分であった。   On the other hand, in Comparative Example 2, as a result of the fact that many of the impurities derived from the phenol resin and containing functional groups were scattered and silanol (Si—OH) was scattered, the amount of silicon carbide produced was finally insufficient, which was sufficient. Insufficient surface modification was achieved.

また、比較例3ではシラノールやシリカガラスが炭化ケイ素に転化が十分に行われなかったこと、比較例4では生成した炭化ケイ素の結晶化が進行して黒鉛との解離が進行すること、を主な要因として、十分な表面改質の効果を呈さないことを確認した。   Further, in Comparative Example 3, silanol or silica glass was not sufficiently converted to silicon carbide, and in Comparative Example 4, the generated silicon carbide was crystallized and dissociated from graphite. As a major factor, it was confirmed that the effect of sufficient surface modification was not exhibited.

なお、本実施例ではシリコン化合物としてシラザン(実施例1)またはポリシラザン(実施例2)を用いたが、これに代えて、脱水素、酸化触媒であるPd(パラジウム)化合物を添加した低温硬化(シリカ転化)型ポリシラザンや、大気中の水分と反応してシリカガラスに転化が容易なパーヒドロポリシラザンを用いても良い。   In this example, silazane (Example 1) or polysilazane (Example 2) was used as the silicon compound, but instead of this, low-temperature curing (Pd (palladium) compound as a dehydrogenation and oxidation catalyst was added ( Silica conversion) type polysilazane or perhydropolysilazane which reacts with moisture in the air and easily converts to silica glass may be used.

また、シランカップリング剤には、アセトキシ基やハロゲン基を備えた組成物を用いることによって加水分解が促進されるので、適宜、選択すればよい。   Moreover, since a hydrolysis is accelerated | stimulated by using the composition provided with the acetoxy group and the halogen group as a silane coupling agent, what is necessary is just to select it suitably.

1 カーボン粉粒、2 フェノール樹脂の未硬化物。   1 carbon powder, 2 uncured phenol resin.

Claims (6)

ェノール起源のカーボンを結合材とした黒鉛粒の凝結体であるカーボン凝結体の鍋状成形品を800℃以下の無酸素雰囲気で焼成し、前記鍋状成形品の底面中央にあるゲート相当部分にシリコン化合物を含浸させた後、前記鍋状成形品を1100〜1500℃の無酸素雰囲気で加熱ることを特徴とするカーボン焼結体の表面改質方法。 Is graphite grains of aggregates of carbon was bound material phenol origin of the carbon aggregates pot-shaped molded article was fired in an oxygen-free atmosphere at 800 ° C. or less, the gate corresponding parts on the bottom center of the pan-shaped molded article after a silicon compound impregnated into, the surface modification method of the carbon sintered body, characterized that you heat the pot-shaped molded product in an oxygen-free atmosphere at from 1100 to 1,500 ° C.. 前記鍋状成形品の加熱が、前記鍋状成形品を1200〜1300℃の無酸素雰囲気で加熱することを特徴とする請求項1に記載のカーボン焼結体の表面改質方法。 The pot-shaped molded article of the heating, the surface modification method of a carbon sintered body according to claim 1, characterized that you heat the pot-shaped molded product in an oxygen-free atmosphere at 1200 to 1300 ° C.. 前記シリコン化合物が、シラザンまたはポリシラザンであることを特徴とする請求項1又は請求項2に記載のカーボン焼結体の表面改質方法。 The method for modifying the surface of a carbon sintered body according to claim 1 or 2 , wherein the silicon compound is silazane or polysilazane. 前記シリコン化合物の含浸が、シランカップリング剤と水との混合物を含浸、乾燥後にシラザンまたはポリシラザンを含浸させることを特徴とする請求項1又は請求項2に記載のカーボン焼結体の表面改質方法。   The surface modification of the carbon sintered body according to claim 1 or 2, wherein the impregnation of the silicon compound is impregnated with a mixture of a silane coupling agent and water and impregnated with silazane or polysilazane after drying. Method. 前記シリコン化合物の含浸が、微量の低級アルコールを含む水を含浸、乾燥後にシラザンまたはポリシラザンを含浸させることを特徴とする請求項1又は請求項2に記載のカーボン焼結体の表面改質方法。   The method for modifying the surface of a carbon sintered body according to claim 1 or 2, wherein the impregnation of the silicon compound is impregnated with water containing a trace amount of lower alcohol, and impregnated with silazane or polysilazane after drying. ェノール起源のカーボンを結合材とした黒鉛粒の凝結体であるカーボン凝結体の鍋状成形品を備え、前記鍋状成形品の底面中央にあるゲート相当部分に存在する亀裂内にシリコン化合物由来の炭化ケイ素を含ことを特徴とする電磁誘導加熱調理器。 Comprising a carbon aggregate pot-shaped molded article is a condensation of the carbon phenol origin binder and the graphite grain, from silicon compounds into cracks present in the gate corresponding parts on the bottom center of the pan-shaped molded article electromagnetic induction heating cooker according to claim silicon carbide including that.
JP2011089735A 2011-04-14 2011-04-14 Surface modification method for sintered carbon and electromagnetic induction heating cooker Active JP4932042B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089735A JP4932042B1 (en) 2011-04-14 2011-04-14 Surface modification method for sintered carbon and electromagnetic induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089735A JP4932042B1 (en) 2011-04-14 2011-04-14 Surface modification method for sintered carbon and electromagnetic induction heating cooker

Publications (2)

Publication Number Publication Date
JP4932042B1 true JP4932042B1 (en) 2012-05-16
JP2012219005A JP2012219005A (en) 2012-11-12

Family

ID=46395257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089735A Active JP4932042B1 (en) 2011-04-14 2011-04-14 Surface modification method for sintered carbon and electromagnetic induction heating cooker

Country Status (1)

Country Link
JP (1) JP4932042B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261409B (en) * 2014-09-29 2016-08-24 平顶山易成新材料有限公司 A kind of preparation method of the silicon carbide powder as organic composite material reinforcement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252184A (en) * 2000-03-09 2001-09-18 Tokai Konetsu Kogyo Co Ltd Earthen pot for induction heating cooker
JP2008173355A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Method of manufacturing induction heating cooker and induction heating cooker
JP2010059372A (en) * 2008-09-05 2010-03-18 Mitsubishi Electric Corp Raw material for molding of carbon aggregate and method for manufacturing molding of carbon aggregate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252184A (en) * 2000-03-09 2001-09-18 Tokai Konetsu Kogyo Co Ltd Earthen pot for induction heating cooker
JP2008173355A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Method of manufacturing induction heating cooker and induction heating cooker
JP2010059372A (en) * 2008-09-05 2010-03-18 Mitsubishi Electric Corp Raw material for molding of carbon aggregate and method for manufacturing molding of carbon aggregate

Also Published As

Publication number Publication date
JP2012219005A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
CN110054864B (en) High-thermal-conductivity composite filler and preparation method of polymer-based composite material thereof
CN103709608B (en) A kind of Electric-insulation epoxy resin castable for outdoor mutual inductor
CN110373108A (en) A kind of high-temperature insulation coating and its preparation method and application
CN110479564A (en) A kind of preparation and technique of in-situ ceramic high temperature resistant heat insulation coating
JP2007314416A (en) Composite
WO2009096501A1 (en) Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same
KR950006646B1 (en) Thermosetting resin composition
JPS63183958A (en) Thermosetting resin composition
CN109467706A (en) A kind of novel liquid Polycarbosilane and preparation method thereof
CN113683818B (en) Core-shell structure modified boron nitride and preparation method thereof
KR20190109611A (en) Fabrication method of ceramic core based on 3d printing
CN109265912B (en) Titanium modified boron phenolic resin and preparation method and application thereof
JP4932042B1 (en) Surface modification method for sintered carbon and electromagnetic induction heating cooker
JP2009283774A (en) Soft magnetic powder
JP6136861B2 (en) Formation method of heat insulation layer
JP2003137528A (en) Production method for spherical silica powder
CN104891998B (en) Method for preparing ceramic matrix diamond composite material by employing organosilicon
JP3588860B2 (en) Composite of thermosetting resin and metal oxide and method for producing the same
TW200936500A (en) Silica powder, process for its production and its use
CN105694109A (en) Core-shell-structure heat-conducting powder with toughening and chain extension functions and preparation method thereof
KR101844580B1 (en) Heat and Corrosion resistant Ceramic Composites Coating Composition And Manufacturing Methods For The Same
CN108774461A (en) Corrosion anti-cracking surface is modified the processing technology of galvanized steel plain sheet
CN115304931B (en) High-hydrophobicity and high-insulativity electrical grade magnesia and production method thereof
JP3998838B2 (en) Nonflammable sealing material for electronic parts
KR101199857B1 (en) A Mold and A Mold Manufacturing Method By Dual-Coating Process

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4932042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250