JP4931253B2 - Method of manufacturing laser diode having coaxial line structure and light emitting device thereof - Google Patents

Method of manufacturing laser diode having coaxial line structure and light emitting device thereof Download PDF

Info

Publication number
JP4931253B2
JP4931253B2 JP2008301031A JP2008301031A JP4931253B2 JP 4931253 B2 JP4931253 B2 JP 4931253B2 JP 2008301031 A JP2008301031 A JP 2008301031A JP 2008301031 A JP2008301031 A JP 2008301031A JP 4931253 B2 JP4931253 B2 JP 4931253B2
Authority
JP
Japan
Prior art keywords
coaxial
laser
light
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008301031A
Other languages
Japanese (ja)
Other versions
JP2009135497A (en
Inventor
春足 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2009135497A publication Critical patent/JP2009135497A/en
Application granted granted Critical
Publication of JP4931253B2 publication Critical patent/JP4931253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)

Description

本発明は、同軸線型構造を有するレーザーダイオードの製造方法とその発行光装置に関するものである。 The present invention relates to a manufacturing method of a laser diode having a coaxial line structure and an issuing light device thereof.

固体半導体光源は体積が小さい割に効率が高く便利に使用できるため、現在、光通信、工業観測及び白光照明の節約に重要な製品である。従来の発光ダイオードが放つ光は、電子と正孔が再結合して生産する自然発光(Spontaneous Emission)によるものである。その位相、分極化及び放射方向はみな一致せず、図1Aに示すようにランダムに生産する光であり、インコヒーレント光(Incoherent Light)という。半導体レーザー光に対する、空洞共振器(Cavity Resonator)を利用し、自然発光する光波は空洞共振器の両端レンズ面の間で定常波振動(Standing Wave Oscillation)を生産し、 誘導放出(Stimulated Emission)を形成し、光拡大(Optical Amplification)のレーザー作用(Laser Action)原理を繰り返し、このように一致する位相、分極化及び放射方向が同じコーヒレント光(Coherent Light)を励起し発射することが図1Bにより示される。図2は異質な構成の発光ダイオードはFabry−Perotレーザーを製造することを示し、200は生電圧供給電極を表し、201はp型AlGaAs半導体を表し、202はn型AlGaAs半導体を表し、201と202は206の活性層p型GaAs半導体の制限層(Confinement Layer)或いは被覆層(Cladding Layer)を上下から囲み込んで構成し、その目的は活性層内でキャリヤーを制限し発光させる。203はn+型GaAs基板を表し、204はp+型GaAs基板を表し、205は負電圧供給電極を表す。レーザー作用が拡大した後の光線の方向が一致することにより、ηex(Extraction Efficiency)は比較的高くなる。仮に、発光ダイオードが頻繁に用いるηwp (Wall-Plug Efficiency )を表すとすると、発光ダイオードの効率転換効率は光出力効率と入力効率の比率となる。さらにηwpintex x ηv 、ηv は電圧効率で、ηv = h υ/qV となる。そしてηint 内部量子効率は光子数と電子及び正孔を結合した数の比率で、ηint=(ledP opt/hυ)/(I/q)となり,このhはプランク定数、υは光子周波数、qは電荷、Vは電圧、Iは電流、ledP optは発光ダイオードの光出力効率とする。すなわち
ηwpintex x ηv
=( ledPopt / hυ)/( I/ q ) x ηex x (hυ/qV)
= ( ledPopt x ηex ) / IV (1)
The solid-state semiconductor light source is an important product for saving optical communication, industrial observation, and white light illumination because it is highly efficient and can be used conveniently for its small volume. The light emitted from the conventional light emitting diode is due to spontaneous emission produced by recombination of electrons and holes. The phase, polarization, and radiation direction do not coincide with each other, and the light is randomly produced as shown in FIG. 1A and is called incoherent light (Incoherent Light). Using a cavity resonator (cavity resonator) for semiconductor laser light, spontaneously generated light waves produce standing wave oscillation between the lens surfaces of both ends of the cavity resonator and form stimulated emission (stimulated emission) FIG. 1B shows that the laser action principle of Optical Amplification is repeated, and the coherent light (Coherent Light) having the same phase, polarization, and radiation direction is excited and emitted in this way. It is. FIG. 2 shows that a light-emitting diode with a different configuration produces a Fabry-Perot laser, 200 represents a raw voltage supply electrode, 201 represents a p-type AlGaAs semiconductor, 202 represents an n-type AlGaAs semiconductor, Reference numeral 202 designates an active layer p-type GaAs semiconductor limiting layer (Confinement Layer) or covering layer (Cladding Layer) 206 from above and below, and its purpose is to limit the carriers in the active layer to emit light. 203 represents an n + type GaAs substrate, 204 represents a p + type GaAs substrate, and 205 represents a negative voltage supply electrode. Since the directions of the light rays after the laser action expands coincide, η ex (Extraction Efficiency) becomes relatively high. Assuming that η wp (Wall-Plug Efficiency) frequently used by light emitting diodes, the efficiency conversion efficiency of the light emitting diodes is the ratio of the light output efficiency and the input efficiency. Further, η wp = η intex x η v , η v is voltage efficiency, and η v = h υ / qV. And η int internal quantum efficiency is the ratio of the number of photons and the number of electrons and holes combined, η int = ( led P opt / hυ) / (I / q), where h is Planck's constant and υ is the photon frequency , Q is the charge, V is the voltage, I is the current, and led P opt is the light output efficiency of the light emitting diode. That is, η wp = η intex x η v
= ( led P opt / hυ) / (I / q) x η ex x (hυ / qV)
= ( led P opt x η ex ) / IV (1)

こうして一定の出力パワーIVのとき、比較的高い転換効率ηwpを得るには、高い光出力パワーledPopt及びさらに高い光抽出効率ηexを得るために内部量子効率を増加しなければならない。 Thus, in order to obtain a relatively high conversion efficiency η wp at a constant output power IV, the internal quantum efficiency must be increased in order to obtain a high light output power led P opt and a higher light extraction efficiency η ex .

公知の電流に対する固体半導体の発光効率の関係(P−I特性)を図3で示す。図中において自然発光域の発光ダイオードと誘導放出のレーザーダイオードの特性を比較する。特殊な構成をする発光ダイオードでは、DFBレーザーあるいはFabry−Perotレーザーのように、正方向電流が起動電流に達すると注入する電流が全てレーザー光へ流れ、半導体内部から発射する。もし、レーザーが作用する前に自然発光域の注入電流ユニットを1iuと仮定し、発光出力電源が1pu計算として比較すると、レーザー作用域において電流を2iuへ2倍注入し、16puの出力光を生産し、およそ15pu電源ユニット多く出る、ということが式(2)からわかる。
I-Ith = e U B (Ne-No) Np = ( e U / τp ) Np (2)
Iは起動電流後に流れる電流を表し、Ithは起動電流を表し、Uは活性作用層の体積を表し、Bは注入した電子が生産する誘導放出が消失する確立を表し、eは電子電荷量を表し、Npは最小の起動キャリヤー(電子)密度を表す。Npは誘導放出の光子密度を表し、τpは光子平均寿命を表し、以下の式で表せる。
τp = ( n / c )(α + L-1 ln R-1 ) -1 (3)
nは活性作用層回折率を表し、cは光速度を表し、αは長さ毎の光波吸収率に対する活性作用層材料の吸収値を表し、Lは空洞共振器長を表し、Rは両端面の反射率を表す。(2)の式は電流がスター電流Ithを超えると、流れ込んだ電子は全て誘導放出へ向かい、その発光電源は図3の誘導放出域の傾斜率によって示され、(I-Ith)と正比例になる。(2)式を微分して以下の式を得る。
d Np / d I = τp / e U (4)
この式はレーザーダイオードが流す電流は誘導発光の光子密度を生産することを表し、誘導発光光子の平均寿命τpがますます長くなり、傾斜率が大きくなることが分かる。(3)の式から活性作用層の材料吸収αは小さく、空洞共振器長は長く、傾斜率は大きくなり、さらに高い光出力を生産することがわかる。
FIG. 3 shows the relationship (PI characteristic) of the luminous efficiency of a solid semiconductor with respect to a known current. In the figure, the characteristics of the light emitting diode in the spontaneous emission region and the stimulated emission laser diode are compared. In a light emitting diode having a special configuration, like a DFB laser or a Fabry-Perot laser, when a positive current reaches a starting current, all of the injected current flows into the laser light and is emitted from the inside of the semiconductor. If the injection current unit in the spontaneous emission region is assumed to be 1 iu before the laser works, and the light emission output power supply is compared as 1 pu calculation, current is injected twice into 2 iu in the laser operation region, producing 16 pu output light And it can be seen from equation (2) that many 15 pu power supply units come out.
II th = e UB (N e -N o ) N p = (e U / τ p ) N p (2)
I represents the current flowing after the starting current, I th represents the starting current, U represents the volume of the active working layer, B represents the probability that the stimulated emission produced by the injected electrons has disappeared, and e represents the amount of electronic charge the stands, N p represents the minimum activation carriers (electrons) density. N p represents stimulated emission photon density, τ p represents photon average lifetime, and can be expressed by the following equation.
τ p = (n / c) (α + L -1 ln R -1 ) -1 (3)
n represents the active working layer diffraction index, c represents the speed of light, α represents the absorption value of the active working layer material with respect to the light wave absorptance for each length, L represents the cavity length, and R represents both end faces. Represents the reflectance. Expression when the current exceeds a star current I th (2), flowed electrons is directed to all stimulated emission, the emission power is indicated by the slope ratio of the stimulated emission zone of Figure 3, in direct proportion with (II th) Become. Differentiating the equation (2), the following equation is obtained.
d N p / d I = τ p / e U (4)
This equation indicates that the current flowing through the laser diode produces a photon density of induced emission, and it can be seen that the average lifetime τ p of the induced emission photon becomes longer and the gradient becomes larger. From the equation (3), it can be seen that the material absorption α of the active layer is small, the cavity length is long, the tilt rate is large, and a higher light output is produced.

レーザーダイオードの発光効率には、ηi (Internal Efficiency)、ηd (Differential Quantum Efficiency)、ηt (Total Device Efficiency)及びηl (Laser Efficiency)の4種類の表示法式がある。 The luminous efficiency of a laser diode includes four types of display formulas: η i (Internal Efficiency), η d (Differential Quantum Efficiency), η t (Total Device Efficiency), and η l (Laser Efficiency).

内部効率の定義は正方向バイアスが生産する誘導放出光子数Nに対する注入電子数Nのパーセントとなり、すなわち
ηi =( Np / Ne )x 100 % (5)
Definition of internal efficiency becomes percentage of the injected electron number N e for stimulated emission photons number N p of forward biased to produce, i.e. η i = (N p / N e) x 100% (5)

微分量子効率は毎時間生産する誘導放出光子数に対する毎時間注入する電子数のパーセントとなり、すなわち
ηd =( d (ldPopt / hν )) / d ( I/ e )
= ( d ldPopt / d I ) / Eg (6)
式中のEは採用された発光材料発の発光波長の最小禁止帯幅(E=E−E)を表し、ldPoptは図3が示すようにレーザーダイオードの発光効率を表し、その傾斜率は以下の式となる。
tanα = d ldPopt / d I = ηd x Eg (7)
The differential quantum efficiency is the percentage of the number of electrons injected per hour relative to the number of stimulated emission photons produced per hour, that is, η d = (d ( ld P opt / hν)) / d (I / e)
= (d ld P opt / d I) / E g (6)
E g in the equation represents the minimum band gap (E g = E c −E v ) of the emission wavelength of the employed light emitting material, and ld P opt represents the luminous efficiency of the laser diode as shown in FIG. The inclination rate is given by the following equation.
tanα = d ld P opt / d I = η d x E g (7)

全素子効率の定義は外向け発射の光子数と注入電子数の比率で、以下(8)の式で表される。
ηt = (ldPopt / h υ) / ( I / e )
= ld Popt / I Eg
d ( 1- ( Ith / I )) (8)
The definition of the total element efficiency is the ratio of the number of photons emitted outward and the number of injected electrons, and is expressed by the following equation (8).
η t = ( ld P opt / h υ) / (I / e)
= ld P opt / IE g
= η d (1- (I th / I)) (8)

レーザー効率の定義は出力光電源と入力電源の比率で、すなわち
ηl = ldPopt / IV = ηt x ( Eg / V ) (9)
Vはレーザーダイオードの電圧を加えることを表し、このレーザー効率と発光ダイオードの電源効率の表示法式は同じである。発光ダイオードの電源転換効率ηwpwp = (ledPopt x ηex ) / IV)、とレーザーダイオードのレーザー効率ηll = ldPopt / IV) は光の出力電源と入力電源の比率であるが、しかしその傾斜率を比較するとレーザーダイオードは発光ダイオードの傾斜率より大幅に高い。主な違いは自然拡散発光の抽出効率ηexは比較的低く、空洞共振器の電流と比較して、スター電流Ithを超えると、誘導放出は増加した電流(I - Ith)(再注入したキャリヤー)全てが誘導放出へと流れ、傾斜率が大幅に増す。また、式(2)からU即ち活性層体積を増加し、さらに電子を注入することで出力電源の目的が増すことが分かる。最高の光エネルギー或いは電力節約を目的とするには、空洞共振器定常波を使用して振動し、高い効率の抽出レーザー作用及び活性層発光体積の発光構造を得ることが唯一の選択である。ただし、現在、最高電源効率のレーザー光を電光高能量転換の照明機能として使用した場合欠点があり、その欠点は以下のとおり、
一、光点集中は大面積を照らす目的が達成できず、さらにエネルギーが集中して被照体が、破壊網膜或いは制御できずに燃焼する危険をもたらすような破壊力を生産するに至る。
二、公知のレーザー結晶粒子は従来の半導体ウエハースでのエピタクシーから分割して生成され、レーザー結晶粒子は発光する活性作用層を有し、その体積が所定に限定され、限定された自然発光の初期光エネルギーにより、レーザー拡大作用の電光高能転換を有し、発揮しても拡大は限定される。なお、高価な体積回路設備を利用した工程と高価なウエハースの平面での沈殿或いはエピタクシー工程を有するレーザー結晶粒子のカット方法は、製造コストが高くなり、当然ながら大衆が使用できるほど大量に提供することはできない。
The definition of laser efficiency is the ratio of output optical power to input power, that is, η l = ld P opt / IV = η t x (E g / V) (9)
V represents that the voltage of the laser diode is applied, and the display formula of the laser efficiency and the power supply efficiency of the light emitting diode is the same. Light-emitting diode power conversion efficiency η wpwp = ( led P opt x η ex ) / IV) and laser diode laser efficiency η ll = ld P opt / IV) are the optical output power and input power However, when comparing the slope ratio, the laser diode is significantly higher than the slope ratio of the light emitting diode. The main difference is that the extraction efficiency η ex of spontaneous diffusion emission is relatively low, and stimulated emission is increased current (I-I th ) (re-injection) above the star current I th compared to the cavity resonator current All the carriers) will flow to stimulated emission, and the slope will be greatly increased. Further, it can be seen from the formula (2) that the purpose of the output power source is increased by increasing U, that is, the volume of the active layer and further injecting electrons. For the purpose of maximizing optical energy or power savings, the only choice is to oscillate using a cavity resonator standing wave to obtain a highly efficient extraction laser action and a light emitting structure with an active layer emission volume. However, currently there is a drawback when using the highest power efficiency laser light as the lighting function of lightning high-efficiency conversion, the disadvantages are as follows,
First, the light spot concentration cannot achieve the purpose of illuminating a large area, and further, the energy is concentrated to produce a destructive force that causes the object to be burned without being able to burn the retina or being uncontrollable.
Second, known laser crystal particles are generated by splitting from conventional semiconductor wafer epitaxy, and the laser crystal particles have an active working layer that emits light, the volume of which is limited to a predetermined level, and limited spontaneous emission. With the initial light energy, it has a lightning high-efficiency conversion of laser expansion action, and even if it is demonstrated, expansion is limited. Laser crystal particle cutting methods that include expensive volume circuit equipment processes and expensive wafer planar precipitation or epitaxy processes are costly to manufacture and, of course, are offered in large quantities that the masses can use. I can't do it.

以上の欠点を一つ一つ解決すると照明の目的として高い効率で固体レーザーが実現できる。同時に従来の白色発光ダイオードの固体照明装置に起こる、自然発光の低い外部量子効率により、内部熱の吸収損失を生産して引き起こされる各種の問題も解決でき、徹底的抜本的に解決することで半導体を使用した真の白光照明の効果となる。   If the above drawbacks are solved one by one, a solid-state laser can be realized with high efficiency for the purpose of illumination. At the same time, the external quantum efficiency with low spontaneous emission that occurs in conventional solid state lighting devices of white light emitting diodes can solve various problems caused by the production of internal heat absorption loss. The effect of true white light illumination using.

昼夜問わず建物内では照明が必須であり、安全に行動及び作業できることが求められている。従来の電力照明装置は日夜問わず地球上の資源を消耗しており、改善が必須である。上述のとおり以前の技術が製造する従来の白光ダイオードを照明に提供すると、比較的低い抽出効率の欠点により、その拡散発光及び抽出されない光子が重なる等で吸収損失が熱を生み、長時間使用する照明の節約目的にそぐわない。仮に高抽出効率のレーザーを改良し、照明用途に用いるとしても、高いコストでは大衆化できず、また出力等方性の高いレーザー光を有し白光を均一に照らすように分散できないという欠点がある。   Lighting is essential in buildings, day and night, and it is required to be able to act and work safely. Conventional power lighting devices consume resources on the earth day and night, and improvement is essential. As described above, when the conventional white light diode manufactured by the previous technology is provided for illumination, due to the disadvantage of relatively low extraction efficiency, absorption loss generates heat due to the overlap of diffused light emission and unextracted photons, etc., and it is used for a long time Not suitable for lighting saving purposes. Even if a laser with high extraction efficiency is improved and used for lighting applications, it cannot be popularized at a high cost, and it has a disadvantage that it has a laser beam with high output isotropy and cannot disperse white light uniformly. .

本発明は自身の特許請求「台湾特許請求番号:095146963」の特許名称「半径の同軸光ガイドファイバー及その同軸半導体光源と検出器共用の同軸光ガイドシステムにおける回折率分布」を利用し、この同軸半導体光源の構造原理及び同軸光ガイドファイバーの原理は、延長した線型同軸レーザーダイオード及び同軸発光ファイバーを発明し、組み合わせることで上述の問題を解決する。詳細は以下のとおり、
1、同軸半導体光源構造は同軸レーザー結晶バーを延長して完成し、それを区切って同軸線型構造を有するレーザーダイオードを完成し、両面を切削さえすれば、容易に材料を節約しコストを低くおとすことができる。同軸半導体光源はプラスマイナス同軸が等しい距離で給電する二つの電極で、中心に向けて発光する環状半導体層を構成し、同軸方式で給電する同軸半導体光源で、同軸発光ダイオードと同軸レーザーダイオードを含む。図4で示しているのは、通信用波長光源の同軸半導体レーザー構造について例をあげた説明であり、同軸円環状半導体層の同心共用体が分布するフィードバック形異種接合半導体レーザー(Coaxial DFB Heterojunction Laser)構造の局部断面図を示し、この構造は従来のフラット型構造を有するDFB異種接合レーザーを修正し、革新する同軸型レーザーである。この例はウエハース基板で同軸レーザーダイオードを製造すること表す。本同軸半導体レーザーはその間の各層の環状半導体層はホモ接合(Homojunction) 或は同位型(Isotype)異種接合(Heterojunction)或いは非同位型(Unisotype)異種接合等、各種の半導体材料が構成し、組み合わせて自然発光が誘導放出のレーザー作用を成す。これらのレーザー発光作用は従来の技術がブラッグ回折格子(Bragg‘s Grating)のフィードバック作用を採用するように、分布フィードバック型レーザーダイオード(Distributed feedback Laser Diode,DFB)或は分布型ブラッグレフレクター(Distributed Bragg Reflector Laser Diode,DBR)レーザーを作成する。
The present invention utilizes the patent name “Diffraction Index Distribution in a Coaxial Light Guide System Shared with a Radial Coaxial Light Guide Fiber and its Coaxial Semiconductor Light Source and Detector” of its own claim “Taiwan Patent Number: 095146963”. The structural principle of the semiconductor light source and the principle of the coaxial light guide fiber invent and extend the linear linear laser diode and the coaxial light emitting fiber to solve the above problems. Details are as follows:
1. Coaxial semiconductor light source structure is completed by extending the coaxial laser crystal bar, and a laser diode having a coaxial line structure is completed by dividing it, and if both sides are cut, material can be easily saved and cost can be reduced. be able to. A coaxial semiconductor light source is a coaxial semiconductor light source that supplies power in a coaxial manner, including a coaxial light emitting diode and a coaxial laser diode. . FIG. 4 shows an example of a coaxial semiconductor laser structure of a communication wavelength light source. A feedback type heterojunction semiconductor laser in which concentric unions of coaxial annular semiconductor layers are distributed (Coaxial DFB Heterojunction Laser). ) Shows a local cross-sectional view of the structure, which is a coaxial laser that modifies and innovates a DFB heterojunction laser having a conventional flat structure. This example represents the production of a coaxial laser diode on a wafer substrate. This coaxial semiconductor laser is composed of various semiconductor materials such as homojunction (Homojunction), isotype heterogeneous junction (Heterojunction), or nonisotopic (Uniisotype) heterojunction. Spontaneous light emission acts as a stimulated emission laser. These laser emission actions are distributed feedback laser diode (DFB) or distributed Bragg reflector (Distributed Bragg) so that the conventional technology adopts the feedback action of Bragg's grating. Create a Reflector Laser Diode (DBR) laser.

本例の同軸半導体レーザー光源は、上記の中の一つである同軸分布帰還型異種接合レーザーダイオードDFBを取り上げて説明する。同軸分布フィードバック型異種接合半導体レーザー構造は陽極を提供する導体軸心電極407及び陰極を提供する同軸外環給電電極408導体を含み、その間の多層環状同心半導体層は共に設置され、n型InP基板409で完成する。404は円環状活性作用層InGaAsP層を表し、405は円環状半導体層のp型InGaAsP層を表し、406は反射層を表し、403はブラッグ分布フィードバック層回折格子を表す。403の回折格子は401n-型環状InP半導体層及び402n型InGaAsP環状半導体層によって形成され、ブラッグ回折格子のフィードバック波長λBは以下の式により取得できる。
λB = 2nΛ/m ( 10 )
nは半導体材料回折率を表し、Λはブラッグ回折格子の周期の長さを表し、mは1或いは2の値、回折序数(Order of Diffraction,通常は1)を表す。まず先に発光波長λBを決め、従来の製作したウエハー基板のフラット沈殿技術において、即ちブラッグ回折格子を製造することは、周期の長さλ(厚)を繰り返す工程のコストを多額に消費する。本表面射出型のレーザーは401n-型円環状InP半導体層でブラッグ回折格子を製作することにより、その後、再度沈殿或いはエピタクシーして相互に形成される内部ブラッグ回折格子402n型InGaAsP円環状半導体層を生成し、ブラッグ分布フィードバック型レーザーDFBレーザーを完成する。このレーザーは光通信の光源となり、その製造コストは比較的高く、発光効率は高いが、大衆の安い照明光源として普及するには適さない。また図5において示すのは従来の垂直共振器面発光レーザー光源(Vertical Cavity Surface Emitting Laser,VCSEL或は共振空洞発光ダイオードResonate Cavity Light−Emitting Diodes,RCLEDsともいう)であり、図中の501は下端ブラッグ反射ミラーを表し、502は作用層を表し、503はバッファ層を表し、505は上端ブラッグ反射ミラーを表し、506は環状電極を表す。このレーザーのDBR分布型ブラッグレフレクターの製造は、上下層それぞれのDBR反射体において厚みを決め、繰り返し沈殿する。それゆえVCSELレーザーの産出率を低く、コストを割高にし、さらに上下に分布するブラッグ反射鏡DBR回折格子は超細層の沈殿槽で、そのエピタクシー成長層501及び505は、ブラッグ回折格子が生産するλ/4高曲折率及びλ/4低回折率は材料エピタクシー層で素子が正方向バイアスするとき、これらの超細層を通過した電圧は下がる。特に異質接合面は非連続のエネルギー帯が電流の流れを阻止する。
こうして引き起こされた不安定な電流は、パワーの上昇に不都合であり、VCSELレーザーは高パワーの出力ができず、そのために大パワー出力レーザーは図6のDFBレーザーダイオード横断面図が示すように、対面型レーザーを製造する。
The coaxial semiconductor laser light source of this example will be described by taking a coaxial distributed feedback heterogeneous junction laser diode DFB, which is one of the above. The coaxial distributed feedback heterogeneous semiconductor laser structure includes a conductor axial center electrode 407 that provides an anode and a coaxial outer ring feed electrode 408 conductor that provides a cathode, and a multi-layered annular concentric semiconductor layer therebetween is installed together, and an n-type InP substrate Completed in 409. 404 represents an annular active action layer InGaAsP layer, 405 represents a p-type InGaAsP layer of an annular semiconductor layer, 406 represents a reflective layer, and 403 represents a Bragg distributed feedback layer diffraction grating. The diffraction grating 403 is formed of a 401n-type annular InP semiconductor layer and a 402n-type InGaAsP annular semiconductor layer, and the feedback wavelength λ B of the Bragg diffraction grating can be obtained by the following equation.
λ B = 2nΛ / m (10)
n represents the semiconductor material diffraction rate, Λ represents the length of the period of the Bragg diffraction grating, m represents the value of 1 or 2, and the diffraction ordinal number (Order of Diffraction, usually 1). First, the emission wavelength λB is determined, and manufacturing the Bragg diffraction grating in the conventional wafer substrate flat precipitation technique, that is, manufacturing the Bragg diffraction grating, consumes a large amount of cost in the process of repeating the period length λ (thickness). This surface emitting laser is manufactured by fabricating a Bragg diffraction grating with a 401n-type annular InP semiconductor layer, and then forming an internal Bragg diffraction grating 402n type InGaAsP annular semiconductor layer by precipitation or epitaxy again. To complete a Bragg distribution feedback laser DFB laser. This laser is a light source for optical communication, and its manufacturing cost is relatively high and its luminous efficiency is high, but it is not suitable for popularization as a cheap illumination light source for the masses. Also shown in FIG. 5 is a conventional vertical cavity surface emitting laser light source (also called Vertical Cavity Surface Emitting Laser, VCSEL or Resonant Cavity Light Emitting Diode Resonate Cavity Light-Emitting Diodes, RCLEDs). Represents a Bragg reflecting mirror, 502 represents a working layer, 503 represents a buffer layer, 505 represents a top Bragg reflecting mirror, and 506 represents an annular electrode. In the production of the DBR distributed Bragg reflector of this laser, the thickness is determined in each of the upper and lower DBR reflectors and is repeatedly precipitated. Therefore, the production rate of VCSEL laser is low, the cost is high, and the Bragg reflector DBR diffraction grating distributed vertically is an ultra-thin sedimentation tank, and its epitaxial growth layers 501 and 505 are produced by the Bragg diffraction grating. The high λ / 4 curvature and low λ / 4 diffractive power when the device is forward biased in the material epitaxy layer, the voltage across these ultrathin layers drops. In particular, the discontinuous energy band of the heterogeneous joint surface prevents the flow of current.
The unstable current caused in this way is inconvenient for the power increase, and the VCSEL laser cannot output high power, so that the high power output laser is shown in the cross-sectional view of the DFB laser diode of FIG. Manufacturing face-to-face lasers.

以上のフラット沈殿が生産する端面型レーザー或いは面発光レーザーは、すべて従来の半導体ウエハーで沈殿して製造し、その後四面に区切って研磨することで完成し、本発明の面発光型同軸レーザーも例外ではない。ウェハー(Wafer)はごくゆっくりとした速度で成長した純材質結晶バー(Ingot)において上下両面を削り研磨して完成する。このように低い産出率で高価な材料は、現在、半導体科学技術の集積回路及び光電発光照明や太陽電池を造る科学技術において大量に求められている状況にあり、既にやりくりが難しく大幅に材料が足りない状態である。すでに光電科学技術の発展に影響を及ぼしており、間接的に人が節約する努力を妨害している。仮に、上下左右六面をカットして研磨する工程を経て、このレーザー製品を得るのであれば、大変物を粗末にしていることになり、残念なことである。   All of the edge-type lasers or surface-emitting lasers produced by the above flat precipitation are produced by precipitation with a conventional semiconductor wafer, and then finished by dividing into four sides and polishing. The surface-emitting type coaxial laser of the present invention is also an exception. is not. The wafer is completed by grinding and polishing both the upper and lower surfaces of a pure material crystal bar (Ingot) grown at a very slow speed. Such low-yield and expensive materials are currently being demanded in large quantities in semiconductor science and technology integrated circuits, photoelectric light-emitting lighting, and solar cell-making science and technology. It's not enough. It has already influenced the development of photoelectric science and technology, and indirectly hinders efforts to save people. If this laser product is obtained through a process of cutting and polishing the top, bottom, left, and right sides, it is unfortunate that the product is very rough.

同軸レーザーダイオードの高量子効率の長所を維持し、高いコストのウエハー沈殿を避けるためには、六面カットの材料消耗による損失を妨げる。本発明は自ら特許請求している「台湾特許請求番号096116961号」、特許名称「同軸線型発光ダイオード構造を有する固体照明装置」を利用し、この中の同軸線型半導体構造が沈殿して同軸半導体光源を製造する方法は、軸心電極を増加し、ブラッグ回折格子を先に製作した後の沈殿エピタクシーはレーザー結晶バーとなり、断片の長さで最小回数および最小量にカットして本発明の同軸線型レーザーを完成する。この種の同軸線型半導体の沈殿製造方法は、直立かつ真空の制御可能な円筒形誘電体(Dielectric)内部に、めっきした半導体材料(或いは金属軸心胴体上にて先に製作したブラッグ回折格子の周期の長さΛの刻み目或いは沈殿槽)の軸心導体線或いはむき出しの軸心金属線を陰極として配置し、またそれを誘電体筒の外側にはめ込み、上下に回転しながら移動する高い電圧のリング状コイルを陽極として配置し、直流或いは高周波の高圧プラズマ発射装置を構成し、また、誘電体筒内外で形成する同軸両電極間の直流或いは高周波プラズマ放電(RF Discharge Plasma)によって、筒内を通過する化学反応対放電電離のエネルギーを提供し、軸心電極表面において反応イオン或いはエピタクシーを有する沈殿方法である。 リング陽極は誘電対筒の外側の両端で一度移動し、即ち誘電体筒内部の軸心陰電極線の表面に沿って、化学気相を通過した一層の材料の同心環状半導体層の沈殿薄膜層の発達を完成し、このことを図7Aにて示す。その沈殿エピタクシーの厚さは移動速度、反応体の流出量或いは流速、温度圧力或いは各種工程での要素によって制御される。各層の半導体は繰り返し一つ一つ材料の厚み及び異なる種類の沈殿を予め決めることにより、同軸線型半導体が構成する各層の同心環状半導体或いは導体層を有するようになる。一歩一歩の工程は長い沈殿工程の同軸線型半導体レーザー光源ベースバー構造の製造をなす。この長い同軸線型半導体光源ベースバーの構成は、単にレーザー結晶バー(Laser Ingot)という。その後、レーザー結晶バーを筒の外取り出し、区分して端を研磨し、電流を通して使用できる同軸線型レーザーダイオードとなり、これを図8Aに示す。801は同軸の軸心電極を表し、802はP+型InPを表し、801と802はブラッグ回折格子分布フィードバック層ベースバーを形成し、803はAlxGal-xAsのP型環状制限層を表し、804はGaAsであるP型活性作用層を表し、805はN型制限層のAlxGal-xAs材料を表し、806は外層外環給電電極を表し、807は絶縁反射層を表し、808は保護反射層を表す。図8Bは、同軸線型レーザーダイオードの製造フローチャートを表し、809は沈殿前の予め製作したブラッグ回折格子ベースバーを表し、810は沈殿が完成したレーザー結晶バーを表し、811は区切ってカットした同軸線型レーザー結晶バーを表し、812は給電台座をそれぞれに完成するパッケージを表す。 In order to maintain the high quantum efficiency advantage of coaxial laser diodes and avoid high cost wafer deposition, it prevents loss due to material consumption of the six-sided cut. The present invention utilizes the “Taiwan Patent No. 096169661” and the patent name “Solid State Lighting Device Having Coaxial Line Type Light Emitting Diode Structure” claimed by the present invention, in which the coaxial line type semiconductor structure settles and the coaxial semiconductor light source In the method of manufacturing the coaxial electrode of the present invention, the number of axial electrodes is increased, and the precipitation epitaxy after the Bragg diffraction grating is first fabricated becomes a laser crystal bar, which is cut to the minimum number of times and the minimum amount by the length of the fragment. Complete a linear laser. In this kind of coaxial line type semiconductor precipitation manufacturing method, an upright and vacuum controllable cylindrical dielectric (Dielectric) is coated with a plated semiconductor material (or a Bragg diffraction grating previously fabricated on a metal axis body). The core conductor wire of the period length Λ or the sedimentation tank) or the bare metal core wire is arranged as the cathode, and it is fitted to the outside of the dielectric cylinder, and it moves while rotating up and down. A ring-shaped coil is arranged as an anode to constitute a DC or high-frequency high-pressure plasma emitting device, and the inside of the cylinder is caused by DC or high-frequency plasma discharge (RF Discharge Plasma) between both coaxial electrodes formed inside and outside the dielectric cylinder. It is a precipitation method that provides the energy of passing chemical reaction versus discharge ionization and has reactive ions or epitaxy on the surface of the axial electrode The ring anode moves once at both ends on the outside of the dielectric cylinder, i.e., a deposited thin film layer of a concentric annular semiconductor layer of one layer material that has passed through the chemical vapor phase along the surface of the axial negative electrode line inside the dielectric cylinder. This is shown in FIG. 7A. The thickness of the precipitation epitaxy is controlled by the moving speed, the outflow or flow rate of the reactants, the temperature and pressure, or factors in various processes. The semiconductor of each layer repeatedly has a concentric ring-shaped semiconductor or conductor layer of the respective layers constituting the coaxial line type semiconductor by predetermining the thickness of each material and different types of precipitation in advance. The step-by-step process produces a coaxial semiconductor laser source base bar structure with a long precipitation process. The configuration of this long coaxial line type semiconductor light source base bar is simply referred to as a laser crystal bar (Laser Ingot). Thereafter, the laser crystal bar is taken out of the cylinder, and the ends are divided and polished to form a coaxial laser diode that can be used through a current. This is shown in FIG. 8A. 801 represents a coaxial axial electrode, 802 represents P + type InP, 801 and 802 form a Bragg grating distributed feedback layer base bar, and 803 represents an Al x Galx As P type annular limiting layer. , 804 represents a P-type active working layer of GaAs, 805 represents an Al x Ga lx As material of an N-type limiting layer, 806 represents an outer outer ring feed electrode, 807 represents an insulating reflective layer, 808 Represents a protective reflective layer. FIG. 8B shows a manufacturing flow chart of a coaxial laser diode, 809 shows a Bragg grating base bar manufactured in advance before precipitation, 810 shows a laser crystal bar in which precipitation is completed, and 811 shows a coaxial wire type cut by dividing. A laser crystal bar is represented, and 812 represents a package for completing a power supply base.

この種の同軸線型半導体レーザー結晶バーの工程は沈殿前に予め製作したブラッグ回折格子、或いは行程中にブラッグ回折格子を製作するために取り出し、その後再度筒内に入れて継続して沈殿する工程を含む。同軸レーザーの光線射出口は電極で阻害されていないので、同軸レーザーは比較的長く多めの発光活性層体積のレーザー光を生成する。また、レーザー結晶バーは同軸線型レーザーを生成することにより、上下両面をカットし、そのカット量は極めて低い。従来のレーザーの六面カット量と比較して、貴重な半導体材料の消耗を大幅に減らし、コストを大幅に低減し普及することを目的にする。再度自らが特許請求している「台湾特許請求請求番号:096116961号」、特許名称「同軸線型発光ダイオード構造を有する固体照明装置」のVLSED法で垂直で大量の同意線型エピタクシー沈殿法(Vertical,Large-number,Synchronizing and Line-Shape Epitaxial Deposition)を図7Bで示すように利用する。これは同調して大量に同軸線型レーザー結晶バーを製造し、かつ簡素化して製造することはブラッグ回折工程を選択する同軸ハイライトレーザー製造法で、実施例1にて説明しているように、上記問題を解決する最良の技術方法である。 The process of this type of coaxial laser diode bar is a process of taking out a Bragg diffraction grating manufactured in advance before precipitation, or taking it out to produce a Bragg diffraction grating during the process, and then placing it again in the cylinder and continuing the precipitation. Including. Since the beam exit of the coaxial laser is not obstructed by the electrode, the coaxial laser generates a laser light having a relatively long and large light emitting active layer volume. Further, the laser crystal bar cuts both the upper and lower surfaces by generating a coaxial laser, and the cut amount is extremely low. The aim is to significantly reduce the consumption of precious semiconductor materials compared to the conventional laser six-sided cut amount, greatly reduce costs, and spread. The VLSED method of “Taiwan patent claim number: 096169661” and the patent name “Solid-state lighting device having a coaxial light-emitting diode structure”, which have been claimed by himself again, have a large amount of vertical and consensus linear epitaxy precipitation (Vertical, Large-number, Synchronizing and Line-Shape Epitaxy Deposition) is utilized as shown in FIG. 7B. This is to produce a coaxial laser crystal bar in a large amount in synchronism, and to simplify the manufacture is a coaxial highlight laser manufacturing method that selects the Bragg diffraction process, as described in Example 1, It is the best technical method to solve the above problem.

2、同軸発光ファイバー(Coaxial Lighting Optical Fiber)は同軸レーザーを均一に発光し、照明の目的をなしている。同軸光ガイドファイバー(Coaxial Light-Guide Optical Fiber)は、回折率分布によって半径で製造され、直径のファイバーにある従来の回折率分布と異なる。同軸の外からと軸心部の回折率の構成は同じで、光ガイドに従って回折率分布は軸心から移動して半径の光ファイバーに達し、光改は軸心とその同軸の外殻間を伝道するが、軸心中では伝道せず、軸心回折率と外殻回折率は同じため、,光波は従来集中する光ファイバー軸心のコア転送の配列から、各半径の中間が形成する環状帯状コア伝播に移動し、このことを図9A、9B、9Cが示す。図9Aは同軸單模態環状コアの伝播での光を示す。図9Bは同軸多形態傾斜率光ファイバーの環状コア自我焦点調整方法の的傳播方式。図9Cは同軸多模様ステップ率光ファイバーの環状コアの伝播法式の光を示す。射入した光ファイバー内の光波は遠距離通信を伝送し同軸光ガイドファイバーを目的とする。 2. A coaxial light emitting fiber (Coaxial Lighting Optical Fiber) emits a coaxial laser uniformly and serves the purpose of illumination. Coaxial light-guide optical fibers are manufactured at a radius by a diffractive index distribution and differ from a conventional diffractive index distribution in a diameter fiber. The structure of the diffractive index at the axial center is the same as that from the outside of the coaxial, and the diffractive index distribution moves from the axial center according to the light guide to reach the optical fiber of the radius, and the optical break is transmitted between the axial center and the coaxial outer shell. However, since it does not propagate in the axis, and the axial diffractive index and the outer shell diffractive index are the same, the light wave is propagated in an annular belt-shaped core formed by the middle of each radius from the core transfer arrangement of the concentrated optical fiber axis. This is shown in FIGS. 9A, 9B and 9C. FIG. 9A shows the light in the propagation of the coaxial cage annular core. FIG. 9B is a method of adjusting the self-focusing method of the annular core of the coaxial polymorphic gradient optical fiber. FIG. 9C shows light in the propagation formula of an annular core of a coaxial multi-pattern step rate optical fiber. The incident light waves in the optical fiber are used for transmission of long-distance communication and coaxial light guide fiber.

本発明はハイライトレーザーを短距離で均一に発射するために照明の目的をなし、同軸発光ファイバーを再度新しく生成し、その回折率分布と構造を図10A、10Bに示す。図10Aが示すように、同軸ステップ率多模様発光ファイバー構成について例を挙げて以下のとおり説明する、1001は環状コア層(Annular Core)といい、生産する回折率が比較的低く、その回折率をn1で表す。1002は外殻(Outcladding)を表し、外殼折射率はon2で表示する。1003は軸殼(Axial Cladding)、或いは内殻(Intercladding)を表示し、内殻回折率をin2で表示する。内外殼回折率は同じでi2 = on2。1001環状コア層回折率は比較的低く、完全に照合して放射する1001のレーザー光は,光ファイバーの外へ射出し、これを光ファイバー内の光波導図が示す。比較的低い回折率環状コア層1001は内殼1003を含み、その回折率は環状コア層と比べて高く、従来の光ガイドファイバー構造を有する。軸殻に進入した全ての反射光は、光ファイバーの外へ均一に射出できず、同軸発光ファイバーの末端で反射面1004をカットし、内チャンネルの光波は光ファイバーの外へ射出するようになる。発射方向により末尾の反射面を研磨してそれぞれの角度或いは円錐形状にする必要があり、内殼伝道の光を利用し、分散して射出する。図10Bは同軸単一形態ステップ率の発光ファイバー構造を表す。 The present invention has the purpose of illumination in order to uniformly emit a highlight laser at a short distance, and a new coaxial light emitting fiber is produced again. The diffraction index distribution and structure thereof are shown in FIGS. 10A and 10B. As shown in FIG. 10A, the coaxial step rate multi-pattern light-emitting fiber configuration will be described as follows. Reference numeral 1001 is called an annular core layer, and the produced diffraction rate is relatively low. Is represented by n 1 . 1002 denotes the outer shell (Outcladding), outer殼折Iritsu displays in o n 2. Reference numeral 1003 denotes an axial clad or an inner clad, and the inner diffractive index is represented by i n 2 . The inner and outer diffractive indices are the same, i n 2 = o n 2 . The 1001 annular core layer has a relatively low refractive index, and 1001 laser light radiated in perfect comparison is emitted out of the optical fiber, which is shown by the lightwave diagram in the optical fiber. The relatively low refractive index annular core layer 1001 includes an inner collar 1003, which has a higher diffraction index than the annular core layer and has a conventional light guide fiber structure. All of the reflected light that has entered the shaft shell cannot be uniformly emitted out of the optical fiber, and the reflection surface 1004 is cut at the end of the coaxial light emitting fiber, so that the light wave in the inner channel is emitted out of the optical fiber. It is necessary to polish the reflecting surface at the end depending on the launch direction so as to have each angle or conical shape. FIG. 10B represents a coaxial single-form step rate luminescent fiber structure.

本発明は同軸ファイバー構造における光ガイドの高回折率環状コアを利用し、回折率は比較的低く発散する光波の環状コア構造を変え、同軸レーザー半導体環状活性作用層が射出するレーザー光により、完全に照合して同軸発光ファイバーの形状コアの中に放射し、自然法則に適合する。環状コアは屈折率不純物材料を低下することにより例えばホウ素、フッ素沈殿し完成し、その回折率n1は内殼と外殼の二つの回折率in2on2よりも低い。環状コアチャンネルに進入するハイライトレーザー光は全て光ファイバーの外部へ発散して射出し、レーザー光波を分散並びに均一に射出する照明の目的をなす。 The present invention utilizes a high-diffractive-index annular core of a light guide in a coaxial fiber structure, changes the annular core structure of a light wave that emits a relatively low diffractive index, and is completely generated by laser light emitted from a coaxial laser semiconductor annular active layer. Emission into the shape core of the coaxial light-emitting fiber in conformity with, and conform to the law of nature. Such as boron, by an annular core to reduce the refractive index impurity materials, fluorine precipitated completed, lower than its diffraction index n 1 is the inner shells and two diffractive index of the outer shells i n 2 and o n 2. All of the highlight laser light that enters the annular core channel diverges and exits the outside of the optical fiber, and the purpose of illumination is to disperse and uniformly emit laser light waves.

要約すると、問題を解決する方法を提供する上述2つの本発明は、同時に上述の従来の技術が持つ欠点を以下のように解決する。
一、本発明の同軸発光ファイバーは均一に分散して一致する方向のハイライトレーザーは大面積の照明目的をなす。アメリカ照明協会CIEは1931年、赤緑青色の同軸レーザーが出力する三色波長光によって、それぞれ同軸発光ファイバーの中に放射し、発散型回折率分布の配列により、充分な合成発光と均一に射出ことを達成した。発散型回折率分布の内部波動配列以外に、同軸発光ファイバーの曲げし配列する組みを通して、合成発光照明或いはLCDバックライト構造を製造する。
二、本発明の同軸線型レーザーダイオード及び同軸線型半導体構造を有する沈殿の同軸線型レーザーを製造する方法は、体積が限定されたレーザー結晶粒子と限定された発光量及びそのカット材料の消耗でコストが上がる問題を解決する。同軸線型半導体構造を有する沈殿の同軸線型レーザーを製造する方法はレーザー結晶バーを製造し、その同軸レーザー方式のカットは既に材料の消耗を大幅に減らし、これによりコストを大幅に下げる。垂直で同時に大量に製造する同軸レーザー結晶バーにより、さらにコストを節約し沈殿を何倍も速め、同じ工程で製造するという価値がある。また、強い誘導発光エネルギーを生産する必要があるなら、高い効率かつ大量に自然発光エネルギーを生産するベースダイオード発光構造を構築しなければならない。明らかに本発明は活性作用層を延長し初期自然発光光子量を増やし、レーザー拡大作用の電光エネルギーを転換し、結果的にさらに大きく有効なパワー出力の価値がある。
In summary, the above-described two present inventions that provide a method for solving the problem simultaneously solve the above-mentioned drawbacks of the prior art as follows.
First, the coaxial light emitting fiber of the present invention is uniformly distributed and coincides with the highlight laser, which serves a large area illumination purpose. In 1931, the American Lighting Association CIE radiated into the coaxial light-emitting fiber by the three-color wavelength light output from the red, green, and blue coaxial lasers. Achieved that. In addition to the internal wave arrangement of the divergent diffractive index distribution, a synthetic light emitting illumination or LCD backlight structure is manufactured through a set of coaxial light emitting fibers bent and arranged.
2. The method for manufacturing a coaxial laser of the present invention having a coaxial laser diode and a coaxial semiconductor structure is costly due to consumption of laser crystal particles having a limited volume, a limited light emission amount, and a cutting material thereof. Solve the rising problem. The method of producing a precipitation coaxial line laser with a coaxial semiconductor structure produces a laser crystal bar, and the coaxial laser cut already significantly reduces material consumption, thereby significantly reducing costs. Coaxial laser crystal bars that are both vertically and simultaneously manufactured in large quantities are worth saving further, speeding up precipitation many times, and manufacturing in the same process. Also, if it is necessary to produce strong induced luminescence energy, a base diode luminescence structure that produces spontaneous luminescence energy with high efficiency and mass must be constructed. Obviously, the present invention extends the active working layer to increase the amount of initial spontaneous emission photons, converts the lightning energy of the laser expansion action, and as a result has a greater and more effective power output value.

発光ダイオードは電気エネルギーを光エネルギーへ流す半導体素子のため、電流の注入を必要とし、特に全体の発光ダイオードにおいてどのように電流を均一に促進及び拡散して注入するかが重要であり、特に発光活性作用層へ均一に進入する。発光を生産する電流は沿う軸心の陽極によって提供され、半径で放射状への等距離により外環導体を駆動(DRIFT)、拡散擴散する作業で、同軸給電両電極が提供する電圧が形成する電界の駆動配下で、正孔と電子は環状発光の活性層で異なる発光作業(Hopping、Exciting...)が生産する自然発光(Spontaneous Emission)は四方へと発光を射出する。同軸給電を形成する両電極は、両電極が提供する電子と正孔に対し、その間の環状発光層に流れ、最短距離を移動し、ちょうど各半径の電界極に向けて、即ち最大半径となる電界の作用に,キャリアーは最大半径となる電界駆動方向に移動し電流を注入する要素となる。本発明軸心電極を延長して、中心が製造する同心半導体の環状層の厚みが一致し、電子或いは正孔はみなその半径に沿って最短経路をとおり均一にPN内で構成した電位障壁を,それぞれは外環電極及び軸心電極まで促進及び拡散し,並在穿透過電位障壁後発光層の結合発光(電子或いは正孔が有機半導体のなかでポーラロンPolaronにより躍動式Hoppingに移動してユニットを変形し、従来のフラット層給電電界よりも高い内部量子効率の光を生産する。こうして、従来の発光ダイオードが無效結合する熱電流を拡散する生産を減らし、温度を低下し、また従来の照明光源が熱を散乱して引き起こす各種の問題を解決する。   Since a light emitting diode is a semiconductor element that sends electric energy to light energy, current injection is required, and it is particularly important how the current is uniformly promoted and diffused in the entire light emitting diode. Uniformly enters the active working layer. The electric current that produces the light emission is provided by the axial anode along the axis, and the electric field formed by the voltage provided by the coaxially fed electrodes is created by driving the outer ring conductor (DRIFT) radially and equidistantly by the radius and diffusing and dispersing. Under the driving condition, spontaneous emission (Spontaneous Emission) produced by different light emission operations (Hopping, Exciting ...) is emitted in all directions in holes and electrons in the active layer of circular emission. The two electrodes forming the coaxial power supply flow to the annular light emitting layer between the electrons and holes provided by the two electrodes, travel the shortest distance, and toward the electric field electrode of each radius, that is, the maximum radius. Under the action of the electric field, the carriers move in the electric field driving direction having the maximum radius and become an element for injecting current. By extending the axial electrode of the present invention, the thickness of the concentric semiconductor annular layer manufactured at the center is the same, and all the electrons or holes have a potential barrier configured in the PN uniformly along the shortest path along the radius. , Each of which promotes and diffuses to the outer ring electrode and the axial center electrode, and the combined emission of the light emitting layer after the parallel perforated transmission potential barrier (electron or hole is moved to the dynamic hopping by the polaron Polaron in the organic semiconductor unit. To produce light with an internal quantum efficiency higher than that of a conventional flat layer feeding electric field, thus reducing the production of diffused thermal currents that the conventional light-emitting diodes couple ineffectively, lowering the temperature, and conventional lighting Solves various problems caused by light sources that scatter heat.

本発明は同軸線型レーザーダイオードに関係し、特に照明用途及び特殊なハイライトレーザーダイオードが製造する固体発光装置及製造方法に使用される。以下に例をあげて本発明の実施例を説明する。   The present invention relates to a coaxial line type laser diode, and is particularly used in lighting applications and solid state light emitting devices and manufacturing methods manufactured by special highlight laser diodes. Examples of the present invention will be described below with examples.

実施例1は図7Bが示すVLSED法により、垂直で大量に同調する線型エピタクシー沈殿法は、このVLSED法を利用して、一台の機器でそれぞれ一メートルの同軸線型異種構成を有するレーザー結晶バーを同時に10本沈殿でき、再度それぞれ製造したレーザー結晶バーを分けて区切り、図8Bの同軸線型レーザーダイオードを製造する。製造工程は、10本の石英管内に設けた一メートルかつ外部直径2mmの軸心ベースバー(Subrod)606により開始し、これを図7Aにて示す。軸心ベースバーは図12Aが示す垂直段階冷却式によりVGF結晶法により完成する。この軸心ベースバーVGF結晶法は下記のステップを含む:
1.ブラッグ回折格子でカットした軸心金属バー1201の根元はInPシード1202に接続され、るつぼ1203の底部で固定する。
2.るつぼでInPポリシリコン角材を注入する。
3.ボイラーチューブ1206は温度の高低位置により曲線aを制御し徐々に上昇する。
4.ボイラーチューブは温度が制御する曲線bにより調整され、低い温度は1204固体‐液体1205の境界面をゆるやかに上昇する。
5.InP原始シード固体の初期の長さは徐々に延長し、液体区域は徐々になくなり、全体のInPベースバーを完全に覆うまで成長する。
6.InPベースバーを取り出し、VLSEDの石英管内で製作する同軸線型レーザー結晶バーへ移す。
In Example 1, the linear epitaxy precipitation method, which is tuned vertically and in large quantities by the VLSED method shown in FIG. 7B, uses this VLSED method, and a laser crystal having a coaxial linear heterogeneous configuration of 1 meter each in one apparatus. Ten bars can be precipitated at the same time, and the manufactured laser crystal bars are separated and separated to manufacture the coaxial laser diode of FIG. 8B. The manufacturing process starts with an axial base bar (Subrod) 606 of 1 meter and an outer diameter of 2 mm provided in 10 quartz tubes, which is shown in FIG. 7A. The axial center base bar is completed by the VGF crystal method by the vertical stage cooling method shown in FIG. 12A. This axial base bar VGF crystal method includes the following steps:
1. The base of the axial center metal bar 1201 cut by the Bragg diffraction grating is connected to the InP seed 1202 and fixed at the bottom of the crucible 1203.
2. InP polysilicon square material is injected with a crucible.
3. The boiler tube 1206 gradually rises by controlling the curve a according to the temperature level.
4). The boiler tube is regulated by a temperature-controlled curve b, with the lower temperature slowly rising at the 1204 solid-liquid 1205 interface.
5. The initial length of the InP primordial seed solid gradually increases, the liquid area gradually disappears, and grows until it completely covers the entire InP base bar.
6). The InP base bar is taken out and transferred to the coaxial line type laser crystal bar manufactured in the quartz tube of VLSED.

レーザー結晶バーは、InPベースバーにおいて、まず先にエピタクシー、AlxGal-xAsのP型環状制限層材料を、その後エピタクシーGaAsでP型活性作用層とし,その後再度エピタクシーN型極限層のAlxGal-xAs材料、最後に再度外環給電電極を導電する層を沈殿し、 同時に線型レーザー結晶バーを10本完成する。本例VLSED‐P10沈殿設備を図7Bに示し、コンピューター制御システムが指示して制御する各種共用のガス供給の定温供給タンクを含み,この中で、第一石英管のチェンバー(Reaction Chamber)を例とし,その他各支石英管内の気体供給は方法は同一である。20は液体TBAsの定温供給タンクを表し、TBAsは定温氣化を分別して流量制御装置16へ流れる。流量制御装置16はコンピューター制御システムに接続して一定量を制御して出力すると,601TMGa と、602TMAI、603水素(H2)、或いはその他必要なドーピング量が制御する気体(たとえばInGaAs及InPが成長するとき、TEAl及びTEInを交換、或いはGaInN系の材料で製作。)流出量制御システムが一定量で出力する化学気相反応体は、混合器19内で混合され、それぞれは、コネクタから10本の石英管内へ進入する。簡潔に実施例を説明するため、装備するフレームと保温機については列挙しない。外部直径が2mmの線型かつカットされたブラッグ回折格子はめっきされた反射銀層の導体バー(或いはInPベースバー)が石英管軸心内に装入される。再度、各石英管はつながった両端チャック13及びRF環状極コイル607をあけて進入する。十個の並列連動したRFパワー発生装置11は、コンピューター設定により多少同調して上下等しい長さと同じ速度でエピタクシー沈殿工程を開始する。各石英管内部の圧力は固定チャック14下の観測機及び圧力制御装置15により制御される。その排気及び沈殿されていない粒子は、フィルタを通して末尾の排気プロセッサー22が一緒に処理する。負圧条件は共同ポンプ21が提供する。高周波プラズマ放電(RF DISCHARGE PLASMA) はMOCVDを製作する工程において化学反応対が放電電離のエネルギー(またはPECVD)を提供する。陰極に接地するそれぞれの石英管軸心内導体バー606(或いはInPベースバー)と、石英管1が移動するRF環状陽極コイル607が構成する高周波高圧プラズマ誘導装置は、同時に導入する高圧電界を共振体、各管内で流れるRF環状陽極コイル607と石英管軸心内導体バー606の気体反応体にたいして超過した気体の崩潰電界提供す。両電極間において高圧アーク灯を生成する。アーク灯は大量のイオン及び自由電子を誘導放出し、環状プラズマ608を起動する。RF環状陽極コイル607と軸心内導体バー606構成する電界において、電子は正の陽極に向けて加速し、イオンは負の陰極に向けて加速して移動する。電子に質量が小さいことにより、その加速度は緩やかに移動するイオンより大変大きい。イオンは石英反応管内を移動し、最後に軸心電極を衝撃並びに沈殿する。この種の衝撃は、もし電極間の電圧が充分大きくなると、その衝撃陰極材料が生産する二次電子は情報の中性原子或いは分子は非弾力衝撃、さらに多くのイオンを生産する。プラズマは2回電子放出により、イオンはが生産する工程を維持する。このとき、内部を通過する化学氣相材料は軸心電極上で既にエピタクシーおよび沈殿し、RFパワー発生装置11はRF環状陽極コイル607を移動して同心環状半導体層609の沈殿を完成する。各RF環状陽極コイル607地面に垂直にそって設置された各石英管を並列し、同調しながら同じ速度で上下に移動し、各石英管内で生成する環状プラズマ608は製造された沈殿物をとおり、線型同軸発光ダイオードが構成する半導体膜厚または単結晶層が成長する。沈殿エピタクシーの厚みは移動速度、反応体の流出量、流速、温度圧力、及び各種工程の要素により制御される。一つ一つを繰り返し、各半導体がは予め材料の厚み、種類の異なる沈殿を決めることにより、最後に各長さが1メートルの同軸線型レーザー結晶バーが10本、沈殿工程一回で完成する。取り出した線型レーザー結晶バーは必要な長さに切断し、保護して両端面を給電した線型同軸線型レーザーダイオードを製造する。これを図8A,8Bにて示す。こうしたブラッグ回折格子ベースバーのVLSED法は固体線型レーザーを何倍も量産する方法で、コストを下げて、大量にハイライト光源を製造する。 The laser crystal bar is an InP base bar. First, epitaxy, Al x Ga lx As P-type annular limiting layer material, then epitaxy GaAs as P-type active working layer, then epitaxy N-type ultimate layer again The Al x Gal x As material and finally the layer that conducts the outer ring feed electrode are deposited again, and at the same time, 10 linear laser crystal bars are completed. This example VLSED-P10 precipitation facility is shown in FIG. 7B, and includes a constant temperature supply tank for various common gas supplies that are instructed and controlled by a computer control system. Among them, the first quartz tube chamber (Reaction Chamber) is an example. In addition, the gas supply method in each branch quartz tube is the same. Reference numeral 20 denotes a constant temperature supply tank for liquid TBAs, which separates the constant temperature incubation and flows to the flow control device 16. When the flow controller 16 is connected to a computer control system to control and output a certain amount, 601 TMGa, 602 TMAI, 603 hydrogen (H 2 ), or other gases (eg, InGaAs and InP) whose required doping amount is controlled grow. TEAl and TEIn are exchanged or manufactured with a GaInN-based material.) Chemical vapor reactants output by the outflow control system at a constant amount are mixed in the mixer 19, each of which is 10 from the connector. Enter into the quartz tube. For the sake of concise explanation, the frame and the heat insulator to be equipped will not be listed. A linear and cut Bragg diffraction grating having an external diameter of 2 mm has a plated reflective silver layer conductor bar (or InP base bar) inserted into the quartz tube axis. Again, each quartz tube enters with the open-ended chuck 13 and the RF annular pole coil 607 open. Ten parallel-coupled RF power generators 11 are slightly tuned by computer settings and start the epitaxy precipitation process at the same speed as the top and bottom. The pressure inside each quartz tube is controlled by an observation device and a pressure control device 15 under the fixed chuck 14. The exhaust and unprecipitated particles are processed together by a tail exhaust processor 22 through a filter. The joint pump 21 provides the negative pressure condition. Radio frequency plasma discharge (RF DISCHARGE PLASMA) provides the energy of discharge ionization (or PECVD) for chemical reaction pairs in the process of making MOCVD. The high-frequency and high-pressure plasma induction apparatus constituted by each quartz tube axial conductor bar 606 (or InP base bar) grounded to the cathode and the RF annular anode coil 607 on which the quartz tube 1 moves resonates the high-voltage electric field introduced simultaneously. Body, RF annular anode coil 607 flowing in each tube and quartz tube in-core conductor bar 606 provide a gas collapse electric field that exceeds the gas reactant. A high pressure arc lamp is generated between both electrodes. The arc lamp stimulates and emits a large amount of ions and free electrons and activates the annular plasma 608. In the electric field formed by the RF annular anode coil 607 and the in-axis conductor bar 606, electrons are accelerated toward the positive anode and ions are accelerated toward the negative cathode. Due to the small mass of electrons, their acceleration is much greater than that of slowly moving ions. The ions move in the quartz reaction tube, and finally bombard and precipitate the axial center electrode. In this type of impact, if the voltage between the electrodes becomes sufficiently large, the secondary electrons produced by the impact cathode material produce non-elastic impacts of information neutral atoms or molecules, and more ions are produced. The plasma maintains the process of producing ions by emitting electrons twice. At this time, the chemical phase material passing through the inside has already been epitaxially deposited on the axial electrode, and the RF power generator 11 moves the RF annular anode coil 607 to complete the deposition of the concentric annular semiconductor layer 609. Each RF annular anode coil 607 is arranged in parallel with each quartz tube installed vertically along the ground, and moves up and down at the same speed while being tuned. The annular plasma 608 generated in each quartz tube follows the produced precipitate. The semiconductor film thickness or single crystal layer that the linear coaxial light emitting diode constitutes grows. The thickness of the precipitation epitaxy is controlled by the moving speed, the reactant outflow, the flow rate, the temperature and pressure, and various process factors. Repeat one by one, each semiconductor is pre-determined the precipitation of different material thicknesses and types, and finally, 10 coaxial-line laser crystal bars each with a length of 1 meter are completed in one precipitation step. . The taken-out linear laser crystal bar is cut into a required length, and a linear coaxial laser diode is produced in which both ends are protected and fed. This is shown in FIGS. 8A and 8B. The VLSED method of such a Bragg grating base bar is a method of mass-producing a solid linear laser many times, lowering the cost and producing a large number of highlight light sources.

InPベースバーの軸心導体上でカットしたブラッグ回折格子は、その結晶が完成し、取り出した後、回折格子をエッチングする。或いは組み合わせてブラッグ回折格子のるつぼからInPブラッグ回折格子ベースバーが製造され、これを図12で示す。 The Bragg diffraction grating cut on the axis conductor of the InP base bar completes its crystal and is taken out, and then the diffraction grating is etched. Alternatively, an InP Bragg grating base bar is manufactured from a Bragg grating crucible in combination, as shown in FIG.

実施例2は、同軸線型レーザーダイオードと同軸発光ファイバーを組み合わせた固体白光照明である。 Example 2 is solid state white light illumination in which a coaxial line type laser diode and a coaxial light emitting fiber are combined.

実施1の分けて製造する3本の同軸線型赤緑青色のレーザーダイオードと同軸白光ファイバーの組み合わせは、白光固体照明装置を合成できる。図11は三色の白光ファイバー三つ芯を形成し、一つに合成する白光トップ図である。 1101は赤い白光ファイバーを表し、1102は緑色白光ファイバーを表し、1103は青色白光ファイバーを表し、1104は三色合成白色がそれぞれ照射する点を表す。1本の青色同軸船レーザーと1本の黄色同軸線型レーザーは分けて二本の同軸発光ファイバーに向けて射出し、相互に発射する白光固体照明装置を形成する。   The combination of the three coaxial line-type red, green, and blue laser diodes and the coaxial white optical fiber manufactured separately in the first embodiment can synthesize a white light solid state lighting device. FIG. 11 is a white light top view in which three cores of white optical fibers of three colors are formed and combined into one. Reference numeral 1101 denotes a red white optical fiber, 1102 denotes a green white optical fiber, 1103 denotes a blue white optical fiber, and 1104 denotes a point irradiated with three-color composite white. One blue coaxial ship laser and one yellow coaxial line laser are separately emitted toward two coaxial light emitting fibers to form a white light solid state lighting device that emits each other.

実施例3は、同軸線型レーザーダイオード及び同軸白光ファイバーを配合して蛍光粉が形成する白光の照明装置である。   Example 3 is a white light illumination device in which a fluorescent powder is formed by blending a coaxial laser diode and a coaxial white optical fiber.

同軸線型レーザーダイオードは同軸白光ファイバーに向けて射出して組み合わせ、蛍光管内に装入して白光照明装置を形成する。これを図13に示す。1301は青色白光ファイバー、1302は第二予備用の白光ファイバー(発色を調整する構造)、1303は黄色蛍光粉内の被覆箇所、1304は同軸線型構造を有するレーザーダイオードの外部給電台座を表す。同軸線型レーザーダイオードは白光ファイバーの外部被覆蛍光粉管を組み合わせて、発色照明をごうせいして発光する方法で、従来の蛍光灯が使用する蛍光粉(Phospor)が生産する発光発光技術で、異なるのは管内において気体を電離する必要がなく、極めて高い電離電圧を提供する必要がないことである。従来の発光ダイオードLEDは蛍光粉を加え固体照明を形成する方式により、最も簡単な一つのLEDは蛍光粉を一つくわえ、青色LEDが黄色い蛍光粉YAG:Ce(化学(Y1-aGda)3(Al1-bGab)O12材料)を加え、波長465nmの青色誘電YAG:Ce蛍光粉とし、黄色555nm光譜の光を生成する。この黄色とLEDはまだ吸収する青色合成発光ではない、これはLED吸収される青色で白光を合成されてなく、これは最も簡単で、1−PCLED(Phosphor Converted LED)という。そのLED誘導放出の蛍光粉方式は二個、三個、四個、五個以上と増加することにより、LEDは一種、二種、三種、またはそれ以上に異なる発色を誘導放出しする蛍光粉は発光照明を目的とする。以上の各種の組み合わせ目的は、すべて優れた発光照明を調整する特性で、色彩表現性CRI(Color Rendering Index、Raユニット)、色温CCT(Correlated Color Temperature、K)、発光効率(Luminous Efficacy、lm/W)等がある。また、紫色或いは紫外線UVのLEDに蛍光粉方式を加えて発光照明方法を得る。本実施例は同軸線型LEDを代わり:改めて二本の同軸線型レーザーダイオードを採用し、例のように青色同軸線型レーザー或いは一本の高いCRIの同軸線型レーザーを生産し、二本の同軸発光ファイバーに分けて射出し、再度外套内を黄色の蛍光粉管で覆い、線型発光照明装置を生産する方法である。本発明は長さの線型発光層を有し、長く、おおきな発光面積を生産し、同軸線型レーザー構造によりさらに強く効率的に発光し、従来の蛍光灯に取って代わる発明となる。 A coaxial line type laser diode is emitted and combined toward a coaxial white optical fiber, and is inserted into a fluorescent tube to form a white light illumination device. This is shown in FIG. 1301 is a blue white optical fiber, 1302 is a second preliminary white optical fiber (a structure for adjusting color development), 1303 is a coating portion in yellow fluorescent powder, and 1304 is an external power supply base of a laser diode having a coaxial line structure. Coaxial line type laser diode is a method that emits light by combining colored fluorescent tube with white coated optical fiber, and it is a light emitting and light emitting technology that fluorescent powder (Phospoor) used by conventional fluorescent lamps produces. This is because there is no need to ionize the gas in the tube and it is not necessary to provide a very high ionization voltage. A conventional light emitting diode LED is formed by adding fluorescent powder to form solid-state lighting. The simplest LED includes one fluorescent powder, and a blue LED is yellow fluorescent powder YAG: Ce (Chemical (Y 1-a Gd a ) 3 (Al 1-b Ga b ) O 12 material) is added to form a blue dielectric YAG: Ce fluorescent powder having a wavelength of 465 nm, and light having a yellow 555 nm optical score is generated. This yellow and LED are not yet blue combined light emission that absorbs, this is blue that is LED absorbed and has no white light combined, which is the simplest, called 1-PCLED (Phosphor Converted LED). The fluorescent powder method of LED stimulated emission increases by 2, 3, 4, 5 or more, so that the fluorescent powder that stimulates and emits different colors in one, two, three, or more LEDs is The purpose is light-emitting lighting. The above-mentioned various combination purposes are all characteristics for adjusting excellent light emission illumination, such as color expression CRI (Color Rendering Index, Ra unit), color temperature CCT (Correlated Color Temperature, K), luminous efficiency (Luminous Efficiency, lm / W) etc. In addition, a fluorescent powder method is added to a purple or ultraviolet UV LED to obtain a light emitting illumination method. This embodiment replaces the coaxial line type LED: adopts two coaxial line type laser diodes again and produces blue coaxial line type laser or one high CRI coaxial line type laser as shown in the example, and two coaxial light emitting fibers This is a method of producing a linear light-emitting lighting device by injecting and then covering the mantle again with a yellow fluorescent powder tube. The present invention has a long linear light emitting layer, produces a long and large light emitting area, emits light more strongly and efficiently with a coaxial laser structure, and replaces a conventional fluorescent lamp.

実施例4はレーザーピストルである。 同軸線型レーザーダイオードが集中して束状発射構造は固体の高いエネルギー光源を製造し、レーザーピストルという。図14は本実施例のレーザーピストル光源単体である。この同軸柱型構造を有するレーザーダイオード1401は熱を拡散及び保護作用のパイプ1402内に装入し、電池と制御回路台座1403に装入され、レーザーピストルを完成する。本レーザーピストル単体は36本の同軸線型レーザー束状を集めて合成することにより、それぞれの外部環境電極同電位(負電接地)は容易に製造される。それぞれの同軸線型レーザーは1ワットけいさんで射出し、36ワット集中して極小さな面積で作業し、極めて大きな作用が働く。パワー集中の目的は、波長を使用した種類を定めることである。また、集中した線型レーザーの数量は多く増長し、倍数に拡大したパワーは使用目的に到達し、同軸線型レーザー直径は極めて小さいため、数量が増加しても、すぐに整体長筒管の半径が粗く、攜帶に不便になる。   Example 4 is a laser pistol. The coaxial line type laser diode is concentrated, and the bundle launch structure produces a solid high energy light source, which is called a laser pistol. FIG. 14 shows a single laser pistol light source of this embodiment. The laser diode 1401 having the coaxial columnar structure is charged in a pipe 1402 for diffusing and protecting heat, and is inserted in a battery and a control circuit base 1403 to complete a laser pistol. This laser pistol alone can be easily produced by collecting and synthesizing 36 coaxial laser bundles so that each external environment electrode has the same potential (negative ground). Each coaxial laser is emitted by 1 watt, and it works in a very small area by concentrating 36 watts. The purpose of power concentration is to define the type using wavelength. In addition, the number of concentrated linear lasers increased greatly, and the power expanded to multiples reached the purpose of use, and the diameter of the coaxial linear laser was extremely small. It is rough and inconvenient for strawberries.

もし射撃目標で十分遠く前面に焦点調整装置を取り付け、或いは、機械構造が直線に発射するレーザー同調光の制御装置を製造すると、さらに確かなハイライト或いは高熱を集中する効果を得る。また、同軸光源構造は延長して製造でき、線型レーザーは容易に、体積は小さく、重量は軽く製造でき、攜帶便利で、前端を同軸光ガイドファイバーにつなげると、醫療或いは美容機器として製作できる。その操作は便利で点或いは面を精準に射出し、仮に工業或いは探測機能として製作するのであれば、国防戦力の優れた武器を配備できる。安全層組が求められ、18ヶ月後レーザーピストル部分は公開しないでください。   If a focus adjustment device is mounted in front of the shooting target far enough from the shooting target, or if a laser tuning light control device is produced in which the mechanical structure emits in a straight line, a more reliable highlight or high heat concentration effect is obtained. In addition, the coaxial light source structure can be extended and manufactured, and the linear laser can be manufactured easily, with a small volume and light weight. It is convenient, and can be manufactured as a medical or beauty device by connecting the front end to a coaxial light guide fiber. The operation is convenient, and if a point or surface is ejected to the standard, and if it is manufactured as an industrial or probing function, a weapon with excellent defense power can be deployed. A safety layer is required and the laser pistol part should not be released after 18 months.

以上本発明の各実施例は参考案件を引用して詳述しており、みな相同或いは機能上類似した案件であり、極簡潔な図解方式により実施例が示す主要な点を説明しており、この図が示す実際の実施例ではなく、即ち、実際の図面に係る素子サイズと数により絵図することはないので,示す図面が比率により絵図してなく,本発明の同軸線型雷射ダイオードの基本精神で絵図する。   Each embodiment of the present invention has been described in detail with reference to the reference cases, all of which are homologous or functionally similar, and explain the main points shown by the embodiments in an extremely simple illustration system. It is not an actual embodiment shown in this figure, that is, it is not drawn by the element size and number according to the actual drawing, so the drawing shown is not drawn by ratio, and the basics of the coaxial line type lightning diode of the present invention Drawing with the spirit.

以上、例をあげてまた図において示す本発明の同軸線型レーザーダイオードと製造する照明装置は、本発明同軸半導体光源を有する構造を取り上げて、主な精神の同軸共用を主張するばかりでなく、その他等しく同軸共用の発光機能および各種の応用を説明する。   As described above, the illumination device to be manufactured with the coaxial laser diode of the present invention shown in the drawing by way of example not only takes up the structure having the coaxial semiconductor light source of the present invention, but also insists on the common use of the coaxial of the main spirit. Equally shared light emitting function and various applications will be described.

実施例において説明したように、本同軸線型レーザーダイオード及び同軸発光ファイバーが形成する各種の発光固体照明装置及び同軸線型レーザーダイオードの製造方法は、高い発光効率(lm/W)、発光強度(lm/lamp)及び単一工程を有し、高度な同軸線型レーザー結晶バーの長さをえるだけでなく、各種応用する場合の照明製品および低いコストでの量産性において、同軸化の節電構造はエネルギーを節約する目的となる。   As described in the examples, various light-emitting solid state lighting devices formed by the present coaxial line type laser diode and coaxial light emitting fiber and the manufacturing method of the coaxial line type laser diode have high luminous efficiency (lm / W), luminous intensity (lm / lamp) and a single process, not only to increase the length of the advanced coaxial laser crystal bar, but also for the lighting products and low-cost mass production in various applications, the coaxial power saving structure saves energy The purpose is to save.

上述した機能およびその同軸使用発光機能は二個あるいはそれ以上の機能および同軸同調して量産する方法は、単独あるいはまとめて有効に応用し、上述と異なる例の同軸共用発光システムおよび工程システムにおいて、有益なものとなる。    The above-mentioned function and its coaxial-use light emission function are two or more functions and the method of mass production in synchronism with the coaxial is applied effectively alone or collectively, and in the coaxial common light-emitting system and process system different from the above, It will be useful.

本文は同軸線型レーザーダイオード及び同軸発行ファイバーが形成する白光固定照明の構成を図でもって説明し、本発明を詳述する、ただし本発明はこれらの図示を限定するものではなく、本発明の精神においていかなる前提のもと、本発明の実施は各種修正及び構成の変更が可能である。   This text explains the configuration of the white light fixed illumination formed by the coaxial line type laser diode and the coaxial emitting fiber, and explains the present invention in detail. However, the present invention is not limited to these illustrations, and the spirit of the present invention. However, the present invention can be modified and changed in configuration under any premise.

以上の説明のとおり本発明の要旨を全て示し、従来の技術の観点により知識を有する人であれば応用が可能で、本発明の一般的具体的な基本的特徴の前提のもと、各種応用したりその他の材料で本発明を応用するなど本発明を改修することは容易であるが、これらの修正は本発明の特許請求の範囲の意義及び範囲内に含まれるものとする。   As described above, all of the gist of the present invention is shown, and it can be applied by a person who has knowledge from the viewpoint of the prior art, and various applications can be applied under the premise of the general specific basic features of the present invention. However, it is easy to modify the present invention, such as applying the present invention with other materials, and these modifications are intended to be included within the meaning and scope of the claims of the present invention.

非同調自然発光ダイオードの概略図。1 is a schematic diagram of an untuned spontaneous light emitting diode. FIG. 同調誘導発光レーザーダイオードの概略図。Schematic of a tuned stimulated light emitting laser diode. 異質構成発光ダイオードがFabry-Perotレーザーを製造する概略図。Schematic of heterogeneous configuration light emitting diodes producing a Fabry-Perot laser. 電流に対する固体半導体発光パワーの関係特性図。The characteristic view of the solid-state semiconductor light emission power with respect to an electric current. 同軸半導体レーザ構成の断面外略図。1 is a schematic cross-sectional view of a coaxial semiconductor laser configuration. 垂直共振器面型レーザー光源VCSEL断面の概略図。Schematic of a cross section of a vertical cavity surface type laser light source VCSEL. DFB端面型レーザーダイオード横断面の概略図。The schematic of the cross section of a DFB end face type laser diode. プラズマを利用して石英管内で軸心銅電極がエピタクシー沈殿を開始する概略図。Schematic of axial copper electrode starting epitaxy precipitation in a quartz tube using plasma. VLSED同軸線型レーザー結晶バーのエピタクシー沈殿工程システムの概略図Schematic of epitaxy precipitation process system for VLSED coaxial laser bar 同軸線型レーザーダイオードの概略図Schematic diagram of coaxial laser diode 同軸線型レーザーダイオードの製造フローManufacturing flow of coaxial line type laser diode 同軸ファイバー單模態ステップ率ファイバーの概略図Schematic diagram of coaxial fiber 態 step-rate fiber 同軸ファイバーの多模様傾斜率ファイバーの概略図Schematic of multi-pattern gradient fiber of coaxial fiber 同軸ファイバーの同軸多模様ステップ率ファイバーの概略図Schematic of coaxial multi-pattern step rate fiber of coaxial fiber 同軸ステップ率多模様発光ファイバー構造の概略図Schematic diagram of multi-pattern light-emitting fiber structure with coaxial step rate 同軸単一形態ステップ率の発光ファイバー構造の概略図Schematic diagram of coaxial single-form step rate light-emitting fiber structure 三色発光ファイバー三つ芯からなる束合成発光するの俯瞰図。The overhead view of bundle synthetic | combination light emission which consists of a three-color light emission fiber three core. VGF結晶成長法が製造する軸心完成するブラッグ回折格子ベースバーの概略図Schematic of the Bragg grating base bar completed by the VGF crystal growth method VGF結晶成長法が製造する完成するブラッグ回折格子軸心ベースバーの概略図Schematic of completed Bragg grating axis base bar produced by VGF crystal growth method 同軸線型レーザー及び同軸発光ファイバーが装入する蛍光管装置の概略図Schematic diagram of a fluorescent tube device loaded with a coaxial line laser and coaxial light emitting fiber レーザーピストル光源単体立体構造装置の概略図Schematic of laser pistol light source single three-dimensional structure device

符号の説明Explanation of symbols

11 RFパワー発生装置
13 両端チャック
14 固定チャック
15 圧力制御装置
22 排気プロセッサー
21 共同ポンプ
200 正電圧供給電極
201 p型AlGaAs半導体
202 n型AlGaAs半導体
203 n+型GaAs基板
204 p+型GaAs基板
205 負電圧供給電極
206 活性層p型GaAs半導体の制限層或いは被覆層
403 ブラッグ分布フィードバック層回折格子
404 環状半導体層
406 反射層
407 導体軸心電極
408 同軸外環給電電極
409 n型InP基板
501 下端ブラッグ反射ミラー
502 作用層
503 バッファ層
505 上端ブラッグ反射ミラー
506 環状電極
606 石英管軸心内導体バー
607 RF環状陽極コイル
608 環状プラズマ
801 同軸の軸心電極
802 p+型InP
803 p型環状制限層
804 p型活性作用層
805 n型制限層のAlxGal-xAs材料
806 外層外環給電電極
807 絶縁反射層
808 保護反射層
809 形成しておくブラッグ回折格子ベースバーを沈殿
810 完成したレーザー結晶バーを沈殿
811 同軸線型レーザー結晶バーを区切り
812 給電台座をそれぞれに完成するパッケージ
1001 環状コア層
1002 外殻
1003 軸殻或いは内殻
1101 赤色発光照明装置
1102 緑色発光照明装置
1103 青色発光照明装置
1104 三色合成白色がそれぞれ照射する点
1201 軸心金属バー
1202 InPシード
1203 るつぼ
1206 ボイラーチューブ
1301 青色発光ファイバー
1302 第二予備用の発光ファイバー
1303 黄色蛍光粉内の被覆箇所
1304 同軸線型構造を有するレーザーダイオードの外部給電台座
1401 同軸柱型構造を有するレーザーダイオード
1402 長いパイプ
1403 制御回路台座
11 RF power generator 13 Both-end chuck 14 Fixed chuck 15 Pressure controller 22 Exhaust processor 21 Joint pump 200 Positive voltage supply electrode 201 p-type AlGaAs semiconductor 202 n-type AlGaAs semiconductor 203 n + -type GaAs substrate 204 p + -type GaAs substrate 205 Negative Voltage supply electrode 206 Active layer p-type GaAs semiconductor limiting layer or covering layer 403 Bragg distribution feedback layer diffraction grating 404 Annular semiconductor layer 406 Reflective layer 407 Conductor axis electrode 408 Coaxial outer ring feed electrode 409 n-type InP substrate 501 Lower end Bragg reflection Mirror 502 working layer 503 buffer layer 505 upper end Bragg reflection mirror 506 annular electrode 606 quartz tube axial conductor bar 607 RF annular anode coil 608 annular plasma 801 coaxial axial electrode 802 p + type InP
803 p-type annular limiting layer 804 p-type active working layer 805 n-type limiting layer Al x Ga lx As material 806 outer layer outer ring feeding electrode 807 insulating reflective layer 808 protective reflective layer 809 Precipitating Bragg diffraction grating base bar to be formed 810 Precipitating the completed laser crystal bar 811 Dividing the coaxial laser crystal bar 812 Package for completing the power supply pedestal 1001 Ring core layer 1002 Outer shell 1003 Axial shell or inner shell 1101 Red light emitting illumination device 1102 Green light emitting illumination device 1103 Blue Light-emitting lighting device 1104 Point irradiated by three-color composite white 1201 Axial metal bar 1202 InP seed 1203 Crucible 1206 Boiler tube 1301 Blue light-emitting fiber 1302 Second light-emitting fiber 1303 Covered portion 1304 in yellow fluorescent powder Coaxial line type structure Have Laser diode 1402 long pipe 1403 controller pedestal having an external power supply pedestal 1401 coaxial pillar structure of that laser diode

Claims (1)

軸線型構造を有するレーザーダイオードであって
予め定められた格子パターンが刻まれた軸心電極と、
外環導体と、
前記軸心電極と前記外環導体の間に設置され、軸の向きに誘導放出する複数の層から成る同心円環状半導体層と、
を備え、前記同心円環状半導体層は、前記軸心電極の外側に形成されるP型環状半導体層と、前記P型環状半導体層の外側に形成されるP型環状制限層と、前記P型環状制限層の外側に形成されるP型環状活性作用層と、前記P型環状活性作用層の外側に形成されるN型環状制限層と、から成り、
前記同軸線型構造を有するレーザーダイオードは、軸の方向に沿って分布する分布型同軸環状ブラッグ回折格子のDFB効果によって達成されることを特徴とする同軸線型構造を有するレーザーダイオード。
A laser diode having a coaxial linear structure,
An axial electrode engraved with a predetermined lattice pattern;
An outer ring conductor;
A concentric annular semiconductor layer comprising a plurality of layers installed between the axial electrode and the outer ring conductor and stimulated emission in the axial direction;
The concentric annular semiconductor layer includes a P-type annular semiconductor layer formed outside the axial center electrode, a P-type annular limiting layer formed outside the P-type annular semiconductor layer, and the P-type annular semiconductor layer. A P-type annular active layer formed outside the limiting layer, and an N-type annular limiting layer formed outside the P-type cyclic active layer,
Laser diodes, laser diode having a coaxial line structure, characterized in that it is achieved by the DFB effect of the distributed coaxial annular Bragg gratings distributed along the direction of the axis having the coaxial line structure.
JP2008301031A 2007-11-28 2008-11-26 Method of manufacturing laser diode having coaxial line structure and light emitting device thereof Expired - Fee Related JP4931253B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW096145219 2007-11-28
TW096145219A TWI397229B (en) 2007-11-28 2007-11-28 The lighting device of the coaxial line laser diode with the fabrication method

Publications (2)

Publication Number Publication Date
JP2009135497A JP2009135497A (en) 2009-06-18
JP4931253B2 true JP4931253B2 (en) 2012-05-16

Family

ID=40669661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301031A Expired - Fee Related JP4931253B2 (en) 2007-11-28 2008-11-26 Method of manufacturing laser diode having coaxial line structure and light emitting device thereof

Country Status (3)

Country Link
US (1) US8005125B2 (en)
JP (1) JP4931253B2 (en)
TW (1) TWI397229B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989232B2 (en) * 2012-08-23 2015-03-24 The Regents Of The University Of California Nanoscale coaxial lasers
US20150226386A1 (en) * 2012-08-30 2015-08-13 The Regents Of The University Of California High-power, laser-driven, white light source using one or more phosphors
PL220754B1 (en) * 2012-10-02 2015-12-31 Telekomunikacja Polska Spółka Akcyjna Coaxial optical fiber
GB201315241D0 (en) 2013-08-27 2013-10-09 Nano Lit Technologies Ltd Improvements in or relating to lighting
EP3023023B1 (en) * 2014-11-18 2017-12-20 L'oreal Kit for illuminating the hair of a user and associated method
US10758415B2 (en) * 2018-01-17 2020-09-01 Topcon Medical Systems, Inc. Method and apparatus for using multi-clad fiber for spot size selection
JP2023506759A (en) 2019-12-12 2023-02-20 ブロリス センサー テクノロジー,ユーエイビー solid state device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750807B2 (en) * 1984-03-28 1995-05-31 東北大学長 Junction type semiconductor light emitting device
JPS62137886A (en) * 1985-12-12 1987-06-20 Fumio Inaba Optical fiber structure
US5663979A (en) * 1995-11-22 1997-09-02 Light Solutions Corporation Fiber stub end-pumped laser
CN1850580A (en) * 2005-04-22 2006-10-25 清华大学 Superlattice nano device and its manufacturing method
US7589880B2 (en) * 2005-08-24 2009-09-15 The Trustees Of Boston College Apparatus and methods for manipulating light using nanoscale cometal structures

Also Published As

Publication number Publication date
TWI397229B (en) 2013-05-21
TW200924331A (en) 2009-06-01
US8005125B2 (en) 2011-08-23
US20090135877A1 (en) 2009-05-28
JP2009135497A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4931253B2 (en) Method of manufacturing laser diode having coaxial line structure and light emitting device thereof
US8929415B2 (en) Photonic crystal cavities and related devices and methods
US5535230A (en) Illuminating light source device using semiconductor laser element
CN102718180A (en) Concentric ring core nano silicon micro-disk micro-cavity device and preparation method thereof
CN101888056B (en) Light trap adopted epitaxial material structure of ultrafine divergent angle high-power semiconductor laser
US11658453B2 (en) Concentric cylindrical circumferential laser
CN110620169B (en) Transverse current limiting high-efficiency light-emitting diode based on resonant cavity
TWI357699B (en) Semiconductor laser device
GB2439973A (en) Modifying the optical properties of a nitride optoelectronic device
US20080079351A1 (en) Light emitting apparatus
JP6334726B2 (en) Semiconductor light emitting device having an axis of symmetry
US9099597B2 (en) Light emitting diode element with porous SiC emitting by donor acceptor pair
CN106711747A (en) In-band pumping technology-based composite cavity structure fiber oscillator
CN104393485B (en) Laser array relevant device and preparation method thereof
Lin et al. High-luminance white-light point source using Ce, Sm: YAG double-clad crystal fiber
US11769858B2 (en) Light emitting device and method of making the same
CN101741005A (en) Method for manufacturing laser diode having coaxial long linear structure and luminous device thereof
Eden Emergence of plasma photonics
CN114300940A (en) Rare earth doped VCSEL external cavity feedback coherent array laser and preparation method thereof
US20140021504A1 (en) Light emitting device
CN220121024U (en) On-chip laser and photonic chip
CN113937195B (en) Micro-pattern light source based on resonant cavity light-emitting diode
PANG et al. A novel ring-shaped top-DBR etched microstructure VCSEL with a hollow beam
KR100848759B1 (en) Semiconductor laser diode chip having a plurality of waveguide
Kurahashi et al. Micro-ring laser with CH3NH3PbBr3/PEO composite coated inside microcapillary

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110908

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4931253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees