JP4931126B2 - Pile driving method - Google Patents

Pile driving method Download PDF

Info

Publication number
JP4931126B2
JP4931126B2 JP2006304010A JP2006304010A JP4931126B2 JP 4931126 B2 JP4931126 B2 JP 4931126B2 JP 2006304010 A JP2006304010 A JP 2006304010A JP 2006304010 A JP2006304010 A JP 2006304010A JP 4931126 B2 JP4931126 B2 JP 4931126B2
Authority
JP
Japan
Prior art keywords
pile
leader
data
reflector
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006304010A
Other languages
Japanese (ja)
Other versions
JP2008121219A (en
Inventor
昌則 田島
貴則 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2006304010A priority Critical patent/JP4931126B2/en
Publication of JP2008121219A publication Critical patent/JP2008121219A/en
Application granted granted Critical
Publication of JP4931126B2 publication Critical patent/JP4931126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、旋回または前後傾斜する杭リーダに沿わせて杭を保持し、ハンマにより杭頭部へ打撃を与えて杭を水底に打設する杭打船による杭打設方法及び杭打設システムに関する。   The present invention relates to a pile driving method and a pile driving system by a pile driving ship that holds a pile along a pile leader that turns or tilts forward and backward, and strikes the pile head with a hammer to drive the pile to the bottom of the water. About.

杭打船により鋼管杭を海上で打設する工事を行う際には、従来より、陸上または海上測量台の2ヶ所にセオドライト等の測量機を設置し、それぞれに測量員を配置して2方向から打設杭の杭天位置を視準し、無線連絡により杭打船のオペレータへ杭の位置入れ誘導を行っている。   When constructing steel pipe piles at sea using a pile driving vessel, surveyors such as theodolites have been installed at two locations on land or at sea surveying stations, and surveyors are assigned to each direction in two directions. , The pile top position of the pile pile is collimated and guided to the operator of the pile driver by wireless communication.

また、GPS等で船体の位置座標を測量し、船体の方位及び傾斜計測データと、2台の杭・リーダ間距離計を組み合わせた杭傾斜計測データと、杭深度計測データ及び杭リーダ旋回角計測データとにより杭頭部と杭下端部の杭芯座標を計算し、管理すべき任意の高さの杭芯座標を計算する方法がある(例えば、下記特許文献1参照)。   Also, the position coordinates of the hull are measured with GPS, etc., the hull orientation and tilt measurement data, the pile tilt measurement data combining the two pile-leader distance meters, the pile depth measurement data and the pile leader swivel angle measurement There is a method of calculating the pile core coordinates of the pile head and the lower end of the pile based on the data, and calculating the pile core coordinates of an arbitrary height to be managed (for example, see Patent Document 1 below).

他に、杭打船上にGPSとトータルステーションを設置し、GPSで測量した船上の座標上にトータルステーションを配置し、船上のトータルステーションにより、リーダの上下2ヶ所とハンマ部に取り付けた反射部材の座標を測量することで杭リーダの傾斜と杭頭部の座標を計算し、管理すべき任意の高さの杭芯座標を算定する方法がある(例えば、下記特許文献2参照)。
特開2003−65759号公報 特開2003−105762号公報
In addition, a GPS and a total station are installed on the pile driving ship, and the total station is placed on the coordinates on the ship measured by GPS. The total station on the ship measures the coordinates of the reflection member attached to the top and bottom of the leader and the hammer part. By doing so, there is a method for calculating the inclination of the pile leader and the coordinates of the pile head and calculating the pile core coordinates of an arbitrary height to be managed (for example, see Patent Document 2 below).
JP 2003-65559 A JP 2003-105762 A

上記従来の方法において、測量員を配置し陸上または海上測量台の2ヶ所から杭を視準し杭打船側へ無線連絡して杭の位置入れ誘導する方法は、十分な経験技術を持つ測量員を配置する必要があり、無線連絡による誘導のため位置入れに手間取り非効率的であるとともに、杭の位置入れ誘導はできるが、杭打船の位置入れ誘導ができない。   In the above-mentioned conventional method, surveying staff with sufficient experience skills are required to place surveyors, collimate the piles from two locations on the land or sea survey table, and wirelessly contact the pile driver to place the piles. It is necessary to arrange the position of the pile driving ship, and it is inefficient to place the place due to the guidance by wireless communication.

また、上記特許文献1において、杭・リーダ間距離計により杭傾斜を計測する方法は、測量した船体座標と各種センサの計測データを組み合わせて杭頭部と杭下端の座標を計算するため、特に、旋回式杭打船の場合には船体方位や旋回角の計測誤差が影響し、要求される精度で杭天位置の座標を計算できない場合がある。また、杭の打設が進み杭頭が下がると杭・リーダ間距離計の作動ができない領域が発生し、この時から杭下端部の座標は固定されているものと仮定し、杭下端部の座標と杭キャップの座標から杭傾斜を算出しているが、実際の杭下端部の挙動が異なる場合に杭天位置の座標計算に誤差が発生する。   Moreover, in the said patent document 1, since the method of measuring a pile inclination by the distance meter between piles and leaders calculates the coordinate of a pile head and a pile lower end combining the measured hull coordinate and the measurement data of various sensors, especially, In the case of a swivel type pile driving ship, the measurement error of the hull direction and the turning angle is affected, and the coordinates of the pile top position may not be calculated with the required accuracy. In addition, when the pile driving progresses and the pile head is lowered, an area where the pile-leader distance meter cannot operate is generated. From this time, it is assumed that the coordinates of the lower end of the pile are fixed. The pile inclination is calculated from the coordinates and the coordinates of the pile cap, but if the actual behavior of the lower end of the pile is different, an error occurs in the coordinate calculation of the pile top position.

また、上記特許文献2において、GPSで測量した船上の座標上にトータルステーションを配置し、船上のトータルステーションからリーダの上下2ヶ所とハンマに配置した反射部材の座標を測量し、杭リーダ傾斜および杭頭部の座標を計算する方法では、断続的な測量になるため同期補正処理や船体動揺の補正処理による誤差が生じ、杭天位置を要求される精度で計測できない場合がある。また、旋回式杭打船では、杭リーダの旋回や杭傾斜の状態によりトータルステーションから反射部材の視準ができない場合がある。   Further, in Patent Document 2, a total station is arranged on the coordinates on the ship measured by GPS, the coordinates of the reflecting members arranged on the top and bottom of the leader and the hammer are measured from the total station on the ship, and the pile leader inclination and the pile head are measured. In the method of calculating the coordinates of the part, since it is an intermittent survey, an error due to the synchronization correction process or the correction process of the hull motion occurs, and the pile top position may not be measured with the required accuracy. Moreover, in a turning-type pile driving ship, there is a case where the reflecting member cannot be collimated from the total station due to the turning of the pile leader or the state of the pile inclination.

本発明は、上述のような従来技術の問題に鑑み、杭打船による水上での杭打設工事において、高い精度で杭の設計打止め高における杭芯位置(杭天位置)の座標を計算し、杭を設計位置へ正確に打設可能な杭打設方法を提供することを目的とする。   The present invention calculates the coordinates of the pile core position (pile top position) at the design stop height of the pile with high accuracy in the pile driving construction on the water by the pile driving ship in view of the problems of the prior art as described above. It is another object of the present invention to provide a pile driving method capable of accurately driving a pile to a design position.

上記目的を達成するために、本発明による杭打設方法は、旋回または前後傾斜する杭リーダに沿わせて杭を保持し、前記杭を水底に打設する杭打船による杭打設方法であって、打設対象の杭の設計打止め高に対応する杭芯位置である杭天位置を位置入れ管理点とし、前記設計打止め高さ近傍の前記杭リーダ部分に全方位反射型の反射体を配置し、前記全方位反射型の反射体は、一対の半方位反射型の反射体から構成され、前記半方位反射型の反射体の一方を前記杭リーダの比較的下部に取り付け、他方を前記杭リーダの同じ高さ位置の180度反対側に取り付け、前記各半方位反射型の反射体は、前記杭リーダが傾斜したときに傾斜前の水平状態を保つように構成され、前記反射体をターゲットとしてトータルステーションで測量することで前記杭天位置の座標を計測し、前記座標計測データをもとに計算された杭位置に基づいて杭打設を行うことを特徴とする。
In order to achieve the above object, a pile driving method according to the present invention is a pile driving method by a pile driving ship that holds a pile along a pile leader that turns or tilts forward and backward and drives the pile to the bottom of the water. The pile top position, which is the pile core position corresponding to the design stop height of the pile to be placed, is set as a management point, and the omnidirectional reflection type reflection is applied to the pile leader portion in the vicinity of the design stop height. The omnidirectional reflector is composed of a pair of semi-azimuth reflectors, and one of the semi-azimuth reflectors is attached to the lower part of the pile leader, Are attached to the other side of the pile leader at the same height of 180 degrees, and each semi-reflective reflector is configured to maintain a horizontal state before tilting when the pile leader is tilted, By surveying at the total station with the body as the target Measuring the coordinates of Kikuiten position, and performs piling set based on the calculated pile position on the basis of the coordinate measurement data.

この杭打設方法によれば、杭打船による水上での杭打設工事において、打設対象の杭の杭天位置(設計打止め高に対応する杭芯位置)を位置入れ管理点とし、杭リーダ部分の設計打止め高さ近傍に配置した全方位反射型の反射体をターゲットとしてトータルステーションで杭天位置の座標を計測することで、杭天位置座標の計算に係わる杭リーダ傾斜や杭打船の船体方位等の計測誤差の影響を極力小さくできるので、高い精度で杭の杭天位置の座標を計算できる。このように高精度に計算された杭位置を参照して杭打設を行うので、杭を設計位置へ正確に打設することができる。なお、上記打設する杭は、鉛直杭、斜杭のいずれであってもよい。   According to this pile driving method, in pile driving work on the water by a pile driving ship, the pile top position of the pile to be driven (pile core position corresponding to the design stop height) is set as the inset control point, Pile leader tilt and pile driving related to the calculation of pile top position coordinates by measuring the coordinates of the pile top position at the total station using a omni-directional reflector located near the design stop height of the pile leader as a target. Since the influence of measurement errors such as the ship's hull direction can be minimized, the coordinates of the pile top position of the pile can be calculated with high accuracy. Since the pile driving is performed with reference to the pile position calculated with high accuracy in this way, the pile can be accurately driven to the design position. The pile to be placed may be either a vertical pile or a diagonal pile.

上記杭打設方法において、前記全方位反射型の反射体は、一対の半方位反射型の反射体から構成され、前記半方位反射型の反射体の一方を前記杭リーダの比較的下部に取り付け、他方を前記杭リーダの同じ高さ位置の180度反対側に取り付けることが好ましい。一対の半方位反射型の反射体を180度反対になるように取り付けることで、全方位反射型の反射体を構成でき、これにより、トータルステーションから杭リーダの位置や姿勢によらず反射体を確実に視準できるようになる。なお、半方位反射型の反射体は、その反射範囲が少なくとも180°あればよく、180°を超えてもよい。   In the pile driving method, the omnidirectional reflector is composed of a pair of semi-azimuth reflectors, and one of the semi-azimuth reflectors is attached to a relatively lower part of the pile leader. It is preferable to attach the other side to the opposite side of the same height position of the pile leader by 180 degrees. By attaching a pair of semi-azimuth reflection type reflectors so that they are opposite 180 degrees, an omnidirectional reflection type reflector can be constructed, which ensures that the reflectors are reliable from the total station regardless of the position and orientation of the pile leader. It becomes possible to collimate. Note that the semi-azimuth reflection type reflector has only to have a reflection range of at least 180 °, and may exceed 180 °.

また、前記各半方位反射型の反射体は、前記杭リーダが傾斜したときに傾斜前の水平状態を保つように構成されることが好ましく、杭リーダが傾斜しても、反射体の姿勢を一定に保つことができる。   Each of the semi-azimuth reflection type reflectors is preferably configured to maintain a horizontal state before the tilt when the pile leader is tilted, and the posture of the reflector is maintained even when the pile leader is tilted. Can be kept constant.

また、前記トータルステーションは、陸上に配置され、前記一対の半方位反射型の反射体のいずれか一方を視準可能な反射体として選択し、その選択した反射体の3次元位置を自動追尾し測量し、前記測量した3次元座標データを前記座標計測データとして無線でリアルタイムに前記杭打船側に伝送することが好ましい。   The total station is disposed on land, selects one of the pair of semi-directional reflectors as a collimable reflector, and automatically tracks and surveys the three-dimensional position of the selected reflector. Preferably, the measured three-dimensional coordinate data is wirelessly transmitted to the pile driver side in real time as the coordinate measurement data.

また、前記杭の杭頭部の深度、前記杭リーダの傾斜、前記杭リーダの旋回角、及び前記杭打船の船体の方位・傾斜の計測データと、事前登録された座標系データ及び打設設計データの登録データと、前記座標計測データと、に基づいて前記杭の杭頭部杭芯位置と杭天位置と杭下端部杭芯位置とを演算処理し、これらの演算結果に基づいて前記杭を設計位置に正確に打設するために前記杭位置及び姿勢をリアルタイムに誘導表示することが好ましい。   In addition, the pile head depth of the pile, the inclination of the pile leader, the turning angle of the pile leader, the measurement data of the azimuth / tilt of the hull of the pile driving ship, pre-registered coordinate system data and placement The pile head pile core position, the pile top position, and the pile lower end pile core position of the pile are calculated based on the registration data of the design data and the coordinate measurement data, and based on these calculation results, In order to accurately place the pile at the design position, it is preferable to guide and display the pile position and posture in real time.

また、前記杭の杭天位置を設計位置に位置入れするための前記杭打船の船体移動量をリアルタイムに誘導表示することが好ましい。   In addition, it is preferable that the hull movement amount of the pile driving ship for placing the pile top position of the pile at the design position is guided and displayed in real time.

また、前記杭の杭頭部の深度を深度計により計測する際に、前記杭打船の船上定位置において前記深度計を事前登録されたオフセット深度値にゼロリセットすることで、簡易に深度合わせを行うことができる。   In addition, when measuring the depth of the pile head with a depth meter, the depth meter is easily adjusted to zero by resetting the depth meter to a pre-registered offset depth value at a fixed position on the pile driving ship. It can be performed.

本発明の杭打設システムは、上述の杭打設方法を実行可能なものである。この杭打設システムによれば、高い精度で杭の設計打止め高における杭芯位置(杭天位置)の座標を計算し、杭を設計位置へ正確に打設可能な杭打船による杭打設システムを実現できる。   The pile driving system of the present invention is capable of executing the above-described pile driving method. This pile driving system calculates the coordinates of the pile core position (pile top position) at the design stop height of the pile with high accuracy, and pile driving by a pile driving ship that can accurately place the pile to the design position. Installation system can be realized.

本発明の杭打設方法によれば、杭打船による水上での杭打設工事において、高い精度で杭の設計打止め高における杭芯位置(杭天位置)の座標を計算し、杭を設計位置へ正確に打設可能となる。   According to the pile driving method of the present invention, in the pile driving work on the water by the pile driving ship, the coordinates of the pile core position (pile top position) at the design stop height of the pile are calculated with high accuracy, and the pile is It becomes possible to place it accurately at the design position.

以下、本発明を実施するための最良の形態について図面を用いて説明する。図1は本実施の形態による杭打設方法を実行可能な杭打設システムを概略的に示す図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing a pile driving system capable of executing the pile driving method according to the present embodiment.

図1に示すように、杭打設システムは、杭を打設する水域に移動する旋回式杭打船(以下、単に「杭打船」ともいう。)1と、杭打船1側に配置された測量用ターゲットの3次元位置を自動追尾し測量するように陸上に設置されたトータルステーション6と、トータルステーション6で得た測量データを杭打船1側に無線で伝送するように設置された無線データ伝送機7と、を備える。   As shown in FIG. 1, the pile driving system is arranged on a swivel type pile driving ship (hereinafter also simply referred to as “pile driving ship”) 1 that moves to the water area where the pile is driven, and on the pile driving ship 1 side. The total station 6 installed on land so as to automatically track and survey the three-dimensional position of the surveyed target, and the radio installed to transmit the survey data obtained by the total station 6 to the pile driver 1 side by radio A data transmitter 7.

旋回式杭打船1は、水面SAに浮かんで、鋼管杭3を保持しながらクレーン20により旋回または前後傾斜する杭リーダ2と、杭リーダ2に沿わせた鋼管杭3の杭頭部へ打撃を与えるハンマ4と、を備え、鋼管杭3を鉛直杭または斜杭として水底に打設可能である。   The swivel type pile driving boat 1 floats on the water surface SA and hits the pile head 2 of the steel pipe pile 3 along the pile leader 2 and the pile leader 2 that is turned or tilted forward and backward by the crane 20 while holding the steel pipe pile 3. The steel pipe pile 3 can be driven on the bottom of the water as a vertical pile or a slant pile.

図1のように、旋回式杭打船1の杭リーダ2の下部の左右所定位置に全方向反射型の反射体5をトータルステーション6の測量用ターゲットとして配置している。図1の反射体5の具体例について図12乃至図14を参照して説明する。   As shown in FIG. 1, an omnidirectional reflection type reflector 5 is arranged as a survey target of the total station 6 at a predetermined position on the left and right of the lower part of the pile leader 2 of the swivel type pile driving ship 1. A specific example of the reflector 5 in FIG. 1 will be described with reference to FIGS.

図12は、図1の反射体の具体例における各部材の位置関係を示す平面図(a)及び側面図(b)である。図13は、図12の反射体を杭リーダに取り付けた状態を示す側面図(a)及び平面図(b)である。図14は、図13のように杭リーダに取り付けた反射体の正面図である。   12A and 12B are a plan view and a side view showing the positional relationship between the members in the specific example of the reflector shown in FIG. FIG. 13 is a side view (a) and a plan view (b) showing a state in which the reflector of FIG. 12 is attached to a pile leader. FIG. 14 is a front view of the reflector attached to the pile leader as shown in FIG.

図12(a)、(b)のように、反射体5aは、複数の反射プリズム31〜35と、各反射プリズム31〜35を保持部41を介して保持する円板状の保持部材36と、図1の杭リーダ2に反射体5aを取り付けるための板状の取付部材37と、保持部材36にその中心で連結されたボルト部材38と、取付部材37にその一端で連結されたボルト部材39と、ボルト部材38にその下端側で取り付けられた円板状の重錘40と、杭リーダ2が前後に傾斜しても保持部材36が水平位置を保つように保持部材36とボルト部材39とを回転中心sで回動可能に連結するユニバーサルジョイント42と、を備える。   As shown in FIGS. 12A and 12B, the reflector 5 a includes a plurality of reflecting prisms 31 to 35, and a disk-shaped holding member 36 that holds the reflecting prisms 31 to 35 via the holding portion 41. 1, a plate-like attachment member 37 for attaching the reflector 5 a to the pile leader 2 of FIG. 1, a bolt member 38 connected to the holding member 36 at its center, and a bolt member connected to the attachment member 37 at one end thereof 39, a disc-shaped weight 40 attached to the bolt member 38 at its lower end side, and the holding member 36 and the bolt member 39 so that the holding member 36 maintains a horizontal position even when the pile leader 2 is tilted back and forth. And a universal joint 42 that is pivotally connected to the rotation center s.

各反射プリズム31〜35は、円錐形のコーナーキューブプリズムで構成され、円錐形の各中心線b〜fが図12(a)の回転中心sを通るとともに各反射点31a〜35aが保持部材36の円周上180度の範囲内に等間隔になるように保持されている。コーナーキューブプリズムとは、直交した3面の内部全反射を利用して入射する光の方向に関わらず、入射方向へ180°折り返すためのプリズムであり、反射光の方向を常に一定に保つことができる。   Each of the reflecting prisms 31 to 35 is configured by a conical corner cube prism, and each of the conical center lines b to f passes through the rotation center s of FIG. 12A and each of the reflecting points 31 a to 35 a is the holding member 36. Are held at equal intervals within a range of 180 degrees on the circumference. The corner cube prism is a prism for turning 180 degrees in the incident direction regardless of the direction of incident light by utilizing total internal reflection of three orthogonal surfaces, and can always keep the direction of reflected light constant. it can.

各反射プリズム31〜35は、各中心線b〜fが図12(b)のように保持部材36の面に平行でかつユニバーサルジョイント42の回転中心sと一致して同一高さになるように位置決められている。ボルト部材38とボルト部材39は、保持部材36の中心を直交して通る中心線aが回転中心sを通るように取り付けられる。   Each of the reflecting prisms 31 to 35 is arranged such that the center lines b to f are parallel to the surface of the holding member 36 and coincide with the rotation center s of the universal joint 42 as shown in FIG. Positioned. The bolt member 38 and the bolt member 39 are attached such that a center line a passing through the center of the holding member 36 orthogonally passes through the rotation center s.

図13(a)、(b)のように、上述の反射体5aと同様の構造で、各反射プリズム31〜35の位置を鏡面対称位置に配置した反射体5bを構成し、かかる一対の反射体5a、5bを取付部材37で杭リーダ2に取り付ける。すなわち、反射体5a、5bが杭リーダ2の左右に同一高さ位置になるように板状の取付部材37を仮止めし位置を決めてから溶接により取り付ける。   As shown in FIGS. 13 (a) and 13 (b), a reflector 5b having the same structure as the reflector 5a described above, in which the positions of the reflecting prisms 31 to 35 are arranged in mirror-symmetric positions, is configured, and the pair of reflections is made. The bodies 5 a and 5 b are attached to the pile leader 2 with the attachment member 37. That is, the plate-like attachment member 37 is temporarily fixed so that the reflectors 5a and 5b are at the same height on the left and right sides of the pile leader 2, and the position is determined by welding.

図12(a)のように、例えば、中央に位置する反射プリズム33が図1のトータルステーション6に最も指向している場合、トータルステーション6からの視準光・測距光mが反射プリズム33に入射し、反射点33aで入射方向に折り返し、反射された反射光nがトータルステーション6に向けて反射されてトータルステーション6に捕捉される。   As shown in FIG. 12A, for example, when the reflecting prism 33 located in the center is most directed to the total station 6 in FIG. 1, collimated light / ranging light m from the total station 6 enters the reflecting prism 33. Then, the light is turned back in the incident direction at the reflection point 33 a, and the reflected light n reflected is reflected toward the total station 6 and captured by the total station 6.

各反射プリズム31〜35の一個の反射範囲は、例えば、反射プリズム32では、図12(a)のように範囲gであり、90度であるので、反射体5aは、複数の反射プリズム31から35までの全体の反射範囲が少なくとも180度を満足するようになっている。同様に、反射体5bも全体の反射範囲が少なくとも180度を満足する。   One reflection range of each of the reflection prisms 31 to 35 is, for example, the range g of the reflection prism 32 as shown in FIG. 12A and 90 degrees, and thus the reflector 5a is separated from the plurality of reflection prisms 31. The total reflection range up to 35 satisfies at least 180 degrees. Similarly, the reflection body 5b also satisfies the entire reflection range of at least 180 degrees.

上述のことから、図13(b)に示すように、反射体5aは、図の右側の180度の反射範囲gに対応可能な半方位反射体に構成され、図の方向i,j,kのいずれの方向からでもトータルステーション6による視準と測距が可能である。また、反射体5bは、図の左側の180度の反射範囲hに対応可能な半方位反射体に構成され、図の方向p,q,rのいずれの方向からでもトータルステーション6による視準と測距が可能である。このように、上述の一対の反射体5a,5bにより全方位反射型の反射体5を構成できる。なお、反射体5a,5bは、180°の反射範囲g,hを超えるように構成してもよい。   From the above, as shown in FIG. 13B, the reflector 5a is configured as a semi-azimuth reflector that can correspond to the reflection range g of 180 degrees on the right side of the figure, and the directions i, j, k in the figure. The collimation and distance measurement by the total station 6 can be performed from any of these directions. In addition, the reflector 5b is configured as a semi-azimuth reflector that can correspond to the 180-degree reflection range h on the left side of the drawing, and the collimation and measurement by the total station 6 can be performed from any of the directions p, q, and r in the drawing. Distance is possible. In this way, the omnidirectional reflection type reflector 5 can be configured by the pair of reflectors 5a and 5b described above. The reflectors 5a and 5b may be configured to exceed the 180 ° reflection ranges g and h.

また、図14のように、杭リーダ2が前後に傾斜した場合、反射体5aは、重錘40の重量により、反射プリズム31〜35を搭載した保持部材36がユニバーサルジョイント42により回転中心sで回動し、傾斜前の水平状態を保つようになっており、反射体5aの姿勢を一定に保つことができる。この回転中心sは、上述のように、反射プリズム31〜35の各中心線b〜f(保持部材36から所定の高さ位置)と保持部材36の中心を通る中心線aとの交点であり、反射体5aの測量定点となる。同様に、反射体5bの回転中心が反射体5aの測量定点となる。なお、各反射点31a〜35aから回転中心sまでの離隔距離は、反射体プリズム定数としてトータルステーション測距値に加算補正される。   Further, as shown in FIG. 14, when the pile leader 2 is tilted back and forth, the reflector 5 a has the holding member 36 on which the reflecting prisms 31 to 35 are mounted at the rotation center s by the universal joint 42 due to the weight of the weight 40. It rotates and keeps the horizontal state before tilting, and the posture of the reflector 5a can be kept constant. As described above, the rotation center s is an intersection of the center lines b to f (predetermined height positions from the holding member 36) of the reflecting prisms 31 to 35 and the center line a passing through the center of the holding member 36. It becomes a surveying fixed point of the reflector 5a. Similarly, the rotation center of the reflector 5b becomes a surveying fixed point of the reflector 5a. In addition, the separation distance from each reflection point 31a-35a to the rotation center s is added and corrected to the total station distance measurement value as a reflector prism constant.

陸上側ではトータルステーション6が視準可能な反射体5aまたは5bを選択し、反射体5aまたは5bの3次元位置を自動追尾し測量する。測量した反射体5aまたは5bの3次元座標データ等の測量データを陸上側の無線データ伝送機7からリアルタイムに杭打船1側の無線データ受信機8に伝送する。   On the land side, the reflector 5a or 5b that can be collimated by the total station 6 is selected, and the three-dimensional position of the reflector 5a or 5b is automatically tracked and surveyed. Surveying data such as the three-dimensional coordinate data of the measured reflector 5a or 5b is transmitted from the land-side wireless data transmitter 7 to the wireless data receiver 8 on the pile driver 1 side in real time.

使用する自動追尾式のトータルステーション6は、測距及び測角(水平角、鉛直角)により測定対象の反射体5a,5bの位置座標を計算し、1km離れた位置にある反射体に対しても自動追尾してx、y、zの三次元方向において±3cmの高精度で位置測量が可能である。   The automatic tracking type total station 6 to be used calculates the position coordinates of the reflectors 5a and 5b to be measured by distance measurement and angle measurement (horizontal angle, vertical angle), and even for a reflector located at a distance of 1 km. Automatic tracking enables position surveying with high accuracy of ± 3 cm in the three-dimensional directions of x, y, and z.

また、反射体5a,5bは杭リーダ2の左右に配置されて全方向反射型の反射体5を構成しているので、杭打船1の船体の移動や杭リーダ2の旋回または傾斜に対してもトータルステーション6が追尾を失うことがない。   Further, the reflectors 5a and 5b are arranged on the left and right sides of the pile leader 2 to constitute the omnidirectional reflector 5 so that the hull of the pile driving ship 1 and the turning or tilting of the pile leader 2 are prevented. But the total station 6 never loses tracking.

杭打船1は、深度計測ワイヤ9を適切な張力で緊張し鋼管杭3の杭頭部までのワイヤ繰出長の変位を計測する杭頭部深度計10と、杭リーダ2の鉛直方向に対する傾斜角を計測する杭リーダ傾斜計11と、杭リーダ旋回部23で杭リーダ2を旋回させたとき杭リーダ2の旋回角を計測する杭リーダ旋回角度計12と、を備え、更に、各計測データと反射体5a,5bの3次元座標データを無線データ受信機8で受信し演算処理する打設管理情報処理機13をクレーン操作室22に備える。   The pile driving boat 1 includes a pile head depth meter 10 that measures the displacement of the wire feed length to the pile head of the steel pipe pile 3 by tensioning the depth measuring wire 9 with an appropriate tension, and the inclination of the pile leader 2 with respect to the vertical direction. A pile leader inclinometer 11 for measuring the angle, and a pile leader turning angle meter 12 for measuring the turning angle of the pile leader 2 when the pile leader 2 is turned by the pile leader turning portion 23, and each measurement data The crane operation room 22 is provided with a placement management information processing machine 13 for receiving and calculating the three-dimensional coordinate data of the reflectors 5a and 5b by the wireless data receiver 8.

また、旋回式杭打船1は、杭打船1の船体の方位及び傾斜を計測するジャイロコンパス14と、ジャイロコンパス14により計測された杭打船1の方位及び傾斜の計測データを受信し演算処理する操船位置情報処理機15と、を操船室21に備える。   Further, the swivel pile driver 1 receives and calculates the gyro compass 14 for measuring the orientation and inclination of the hull of the pile driver 1 and the measurement data of the orientation and inclination of the pile driver 1 measured by the gyro compass 14. The ship maneuvering room 21 is provided with a ship maneuvering position information processing device 15 for processing.

打設管理情報処理機13は、工事座標系データ、リーダ座標系データ、船体座標系データ等の座標系データや打設設計データを事前登録するとともに、操船位置情報処理機15との間で計測データ及び事前登録データを相互通信し、これらの各データを共有化できるようになっている。   The placement management information processor 13 pre-registers coordinate system data such as construction coordinate system data, leader coordinate system data, hull coordinate system data, and placement design data, and measures with the ship maneuvering position information processor 15. Data and pre-registration data can be communicated with each other, and each of these data can be shared.

上述のように、打設管理情報処理機13は、上記諸データに基づいて鋼管杭3の杭頭部杭芯位置3aと設計打止め高に対応する杭芯位置(杭天位置3b)と杭下端部杭芯位置3cの現在位置及び深度を計算し、打設位置誘導表示器16により設計位置へ正確に打設するための杭3の位置及び姿勢をリアルタイムに誘導表示する。   As described above, the placement management information processing device 13 determines the pile head pile position 3a of the steel pipe pile 3 and the pile core position (pile top position 3b) and the pile corresponding to the design stop height based on the various data. The current position and depth of the lower-end pile core position 3c are calculated, and the position and orientation of the pile 3 for placing accurately to the design position are guided and displayed in real time by the placement position guidance indicator 16.

また、操船位置情報処理機15は、打設する杭の杭天位置3bと杭打船1との現在位置関係を演算処理し、船体誘導表示器17により設計位置へ杭を打設するための杭打船1の船体位置をリアルタイムに誘導表示する。   Further, the ship maneuvering position information processing device 15 calculates the current position relationship between the pile top position 3b of the pile to be placed and the pile driving ship 1, and places the pile at the design position by the hull guidance indicator 17. The hull position of the pile driver 1 is guided and displayed in real time.

上述の図1,図12,図13の杭打設システムにより本実施の形態の杭打設方法を実行可能である。すなわち、旋回式杭打船1により旋回・前後傾斜する杭リーダ2に沿わせて杭3を保持し、ハンマ4により杭頭部へ打撃を与えて杭3を水底に打設する際に、打設する杭3の設計打止め高に対応する杭芯位置(杭天位置3b)を精度重視の位置入れ管理点とし、このため、設計打止め高さ近傍の杭リーダ2の下部に図1,図13のように反射体5a,5bから構成される全方位反射型の反射体5を配置し、反射体5aまたは5bをターゲットに陸上からトータルステーション6で測量することで、杭天位置3bの座標計算に関わる杭リーダ傾斜及びクレーン旋回角、船体方位の計測誤差の影響を極力小さくし、杭天位置3bの座標を高い精度で計測できる。   The pile placing method of the present embodiment can be executed by the pile placing system shown in FIGS. That is, when the pile 3 is held along the pile leader 2 that is swiveled and tilted forward and backward by the swivel type pile driving ship 1 and the pile 3 is driven to the bottom by hitting the pile head with the hammer 4, The pile core position (pile top position 3b) corresponding to the design stop height of the pile 3 to be set is set as a position management point with an emphasis on accuracy. As shown in FIG. 13, the omnidirectional reflection type reflector 5 composed of the reflectors 5 a and 5 b is arranged, and by measuring the total station 6 from the land with the reflector 5 a or 5 b as a target, the coordinates of the pile top position 3 b The influence of the measurement error of the pile leader inclination, crane turning angle and hull orientation related to the calculation can be reduced as much as possible, and the coordinates of the pile top position 3b can be measured with high accuracy.

トータルステーション6は、杭リーダ下部の左右所定位置に配置した反射体5a,5bから視準可能な反射体5aまたは5bを選択し、その3次元位置を自動追尾し測量し、測量した反射体5aまたは5bの3次元座標データを無線データ伝送機7でリアルタイムに杭打船1側に伝送する。   The total station 6 selects the reflector 5a or 5b that can be collimated from the reflectors 5a and 5b arranged at the left and right predetermined positions below the pile leader, and automatically tracks and measures the three-dimensional position of the reflector 5a or 5b. The three-dimensional coordinate data 5b is transmitted to the pile driver 1 side by the wireless data transmitter 7 in real time.

杭打船1側には、杭リーダ2に備えた杭頭部深度計10及び杭リーダ傾斜計11と、杭リーダ旋回角度計12と、これらにより得た計測データ及び反射体5aまたは5bの3次元座標データを受信し演算処理する打設管理情報処理機13と、船体の方位及び傾斜を計測するジャイロコンパス14と、ジャイロコンパスからの計測データを受信し演算処理する操船位置情報処理機15とが配置されている。   On the pile driving ship 1 side, a pile head depth meter 10 and a pile leader inclinometer 11 provided in the pile leader 2, a pile leader turning angle meter 12, measurement data obtained by these, and 3 of the reflector 5 a or 5 b A placement management information processor 13 that receives and calculates dimensional coordinate data, a gyrocompass 14 that measures the azimuth and inclination of the hull, and a ship maneuvering position information processor 15 that receives and calculates measurement data from the gyrocompass. Is arranged.

打設管理情報処理機13は座標系データや打設設計データを事前登録し、操船位置情報処理機15とで計測データ及び事前登録データを相互通信しデータを共有化することで、クレーン操作室22の打設管理情報処理機13では、上記諸データに基づいて打設する杭3の杭頭部杭芯位置3aと杭天位置3bと杭下端部杭芯位置3cとを演算処理し、杭3を設計位置へ正確に打設するための杭の位置及び姿勢を打設位置誘導表示器16にリアルタイムに誘導表示でき、また、操船室21の操船位置情報処理機15では、打設する杭の杭天位置3bを設計位置に位置入れするための杭打船1の船体移動量を船体誘導表示器17にリアルタイムに誘導表示できる。   The placement management information processing machine 13 pre-registers coordinate system data and placement design data, and mutually communicates the measurement data and the pre-registration data with the ship maneuvering position information processing machine 15, thereby sharing the data. In the placing management information processing machine 22, the pile head pile core position 3 a, pile top position 3 b and pile lower end pile core position 3 c of the pile 3 to be placed are calculated based on the various data, and the pile is piled up. The position and posture of the pile for accurately placing 3 on the design position can be guided and displayed on the placement position guidance indicator 16 in real time. The hull movement amount of the pile driving ship 1 for placing the pile top position 3b at the design position can be guided and displayed on the hull guidance display 17 in real time.

次に、図1の打設管理情報処理機13及び操船位置情報処理機15による計算処理について図2乃至図11を参照して説明する。図2は本実施の形態の杭打設方法による杭打設位置の誘導表示及び船体誘導表示を行うまでの演算処理フロー(ステップST01〜ST09)を示す図である。   Next, calculation processing by the placing management information processing machine 13 and the boat maneuvering position information processing machine 15 in FIG. 1 will be described with reference to FIGS. FIG. 2 is a diagram showing a calculation processing flow (steps ST01 to ST09) until the pile placement position guidance display and the hull guidance display are performed by the pile placement method of the present embodiment.

図2に示すように、まず、図1の打設管理情報処理機13に事前登録された(1)工事座標系データ、(2)リーダ座標系データ、(3)船体座標系データ、(4)打設設計データが読み出されて入力処理される(ST01)。打設対象の杭番が設定されると、上記事前登録された該杭番の設計諸データが読み込まれる(ST02)。   As shown in FIG. 2, first, (1) construction coordinate system data, (2) leader coordinate system data, (3) hull coordinate system data, (4) pre-registered in the placement management information processing machine 13 of FIG. ) The placement design data is read out and input (ST01). When the pile number to be placed is set, the pre-registered design data of the pile number is read (ST02).

次に、図1の杭打設システムのトータルステーション6、杭リーダ傾斜計11、ジャイロコンパス14、旋回角度計12及び杭頭部深度計10により測量及び計測処理を行い、次の各データを取得する(ST03)。
(1)トータルステーション測量データ
(2)杭リーダ傾斜角データ
(3)船体の方位及び傾斜データ
(4)クレーン旋回角データ
(5)深度計データ
Next, measurement and measurement processing are performed by the total station 6, the pile leader inclinometer 11, the gyrocompass 14, the turning angle meter 12, and the pile head depth meter 10 of the pile placing system of FIG. (ST03).
(1) Total station survey data
(2) Pile leader tilt angle data
(3) Hull heading and tilt data
(4) Crane turning angle data
(5) Depth meter data

次に、上記測量データ及び計測データに基づいて杭の深度を計算し(ST04)、杭リーダ及び船体の各基準点の座標を計算する(ST05)。   Next, the depth of the pile is calculated based on the survey data and measurement data (ST04), and the coordinates of each reference point of the pile leader and the hull are calculated (ST05).

そして、上記杭リーダの基準点の座標に基づいて杭の座標を計算し(ST06)、上記船体の基準点の座標に基づいて船体の座標を計算する(ST07)。これらの計算結果に基づいて打設位置誘導表示器16に打設位置の誘導表示がなされるとともに、船体誘導表示器17に杭を打設するための船体位置の誘導表示がなされる(ST08)。   Then, the coordinates of the pile are calculated based on the coordinates of the reference point of the pile leader (ST06), and the coordinates of the hull are calculated based on the coordinates of the reference point of the hull (ST07). On the basis of these calculation results, the guidance of the placement position is displayed on the placement position guidance display 16 and the guidance of the hull position for placing the pile on the hull guidance display 17 is made (ST08). .

次に、上記誘導表示された打設位置への誘導及び船体位置への誘導を行ってから、鋼管杭3を打設する(ST09)。   Next, the steel pipe pile 3 is driven after performing guidance to the placement position indicated by the guidance and guidance to the hull position (ST09).

上記鋼管杭3の打設が終了すると、上記ステップST02に戻り、次に打設する杭の杭番が設定され、同様のステップがすべての杭が打設されるまで繰り返される。   When the placement of the steel pipe pile 3 is completed, the process returns to step ST02, the pile number of the pile to be placed next is set, and the same steps are repeated until all the piles are placed.

図3は、本実施の形態における計測条件を説明するための図であり、(1)杭リーダ2の傾斜及び旋回関係を示す斜視図(a),(b)、及び、(2)工事座標を示す図(c)と、工事座標と杭打船1との関係を示す平面図(d)である。ここで、計測する船体の方位をθh、杭リーダ旋回角をθγ、杭リーダ2の前後方向への傾斜角をθyとする。   FIG. 3 is a diagram for explaining the measurement conditions in the present embodiment, (1) perspective views (a), (b), and (2) construction coordinates showing the inclination and turning relationship of the pile leader 2. FIG. 5C is a plan view showing the relationship between the construction coordinates and the pile driving boat 1. Here, the direction of the hull to be measured is θh, the pile leader turning angle is θγ, and the inclination angle of the pile leader 2 in the front-rear direction is θy.

なお、杭リーダ2の左右方向への傾斜角については、杭打船1が自動バラスト装置を備えており、杭打船1の船体傾斜が常に水平に自動調整されるため、本計算では0°として扱う。   As for the inclination angle of the pile leader 2 in the left-right direction, the pile driving ship 1 is equipped with an automatic ballast device, and the hull inclination of the pile driving ship 1 is always automatically adjusted to be horizontal. Treat as.

図4は、本実施の形態における座標系データの事前登録例を示す図であり、(1)工事座標系(X,Y)を示す図(a)、及び工事座標系データの例を示す表(b)、(2)リーダ座標系()を示す図(c)、及びリーダ座標系データの例を示す表(d)、(3)船体座標系(SxSy)を示す図(e)、及び船体座標系データの例を示す表(f)、である。 FIG. 4 is a diagram showing an example of pre-registration of coordinate system data in the present embodiment. (1) FIG. 4A shows a construction coordinate system (X, Y), and a table showing an example of construction coordinate system data. (B), (2) A diagram (c) showing a leader coordinate system ( x , y ), a table (d) showing examples of reader coordinate system data, and (3) a diagram showing a hull coordinate system ( Sx , Sy ) (E) and Table (f) showing an example of hull coordinate system data.

図4(a)の工事座標系(X−Y)では、座標回転角(Kθ)を設定することで、ジャイロコンパス計測方位(θh)をX軸からの角度に変換する。図4(c)のリーダ座標系()では、杭リーダ2の下部に測量のターゲットとなる反射体(5a、5b)が取り付けられ、その反射体5a,5bと同じ高さの杭リーダ2の中心部(S0)を座標原点とし、各点の位置関係を実測して登録する。船体座標系(SxSy)では、杭打船1の船上のクレーン旋回中心点(S1)を座標原点とし、各点の平面位置関係を実測して登録する。 In the construction coordinate system (XY) of FIG. 4A, the gyrocompass measurement azimuth (θh) is converted into an angle from the X axis by setting the coordinate rotation angle (Kθ). Figure 4 reader coordinate system (c) (x - y) So reflector comprising a surveying target at the bottom of the pile reader 2 (5a, 5b) are mounted, the reflectors 5a, of the same height as the 5b pile Using the central portion (S0) of the reader 2 as the coordinate origin, the positional relationship of each point is measured and registered. In the hull coordinate system ( Sx - Sy ), the crane turning center point (S1) on the pile driving boat 1 is used as the coordinate origin, and the planar positional relationship between the points is measured and registered.

なお、図4(d)、(f)の表における測点5a,5bは、図13の反射体5a、5bの各測量定点Sを意味する(以下でも同じ)。   Note that the survey points 5a and 5b in the tables of FIGS. 4D and 4F mean the surveying fixed points S of the reflectors 5a and 5b in FIG. 13 (the same applies below).

図5は、本実施の形態における打設設計データの事前登録例を示す図であり、打設設計データを説明するための平面図(a)、及び打設設計データの例を示す表(b)である。図5(b)のように、杭番ごとに打設位置や打設方法が異なるため杭の座標計算や目標位置及び目標姿勢の計算に必要な諸データを登録しておき、杭番が選定された場合に該当する杭番の諸データが選択されるようにする。   FIG. 5 is a diagram showing an example of pre-registration of placement design data in the present embodiment, a plan view (a) for explaining the placement design data, and a table (b) showing an example of the placement design data ). As shown in Fig. 5 (b), because the placement position and placement method differ for each pile number, various data necessary for pile coordinate calculation, target position and target posture calculation are registered, and the pile number is selected. When it is done, the data of the corresponding pile number is selected.

図6は、本実施の形態における工事座標上で求める座標計算対象点を示す表である。反射体の座標測量をもとにリーダ座標系の原点(S0)と船体座標系の原点(S1)の座標を計算し、これを基点に杭及び船体の各座標を計算する。   FIG. 6 is a table showing coordinate calculation target points obtained on the construction coordinates in the present embodiment. Based on the coordinate survey of the reflector, the coordinates of the origin (S0) of the reader coordinate system and the origin (S1) of the hull coordinate system are calculated, and the coordinates of the pile and the hull are calculated based on this.

図7は、本実施の形態における杭の深度計算の船上定位置による深度計リセットを説明するための図で、図1の杭リーダと杭頭部との相対的な位置関係を示す正面図(a)及び平面図(b)であり、更に、杭打設時の深度計算を説明するための図で、杭リーダと鋼管杭との相対的な位置関係を示す側面図(c)及び平面図(d)である。   FIG. 7 is a diagram for explaining resetting of a depth meter according to a fixed position on board of pile depth calculation in the present embodiment, and a front view showing a relative positional relationship between a pile leader and a pile head in FIG. It is a) and a top view (b), Furthermore, it is a figure for demonstrating the depth calculation at the time of pile driving, The side view (c) and top view which show the relative positional relationship of a pile leader and a steel pipe pile (D).

杭の深度合わせのための深度計10のリセットは、打設作業前に、例えば図7(a)、(b)のように、杭リーダ2を杭打船1の船上デッキ面1aに設けた盤木1bに格納したときの定位置で深度計測ワイヤ9の鋼管杭3の杭頭部までのワイヤ繰出長をゼロにリセットすることで行う。   For resetting the depth gauge 10 for adjusting the depth of the piles, for example, as shown in FIGS. 7A and 7B, the pile leader 2 is provided on the deck surface 1a of the pile driving ship 1 before the placing work. This is done by resetting the wire feed length to the pile head of the steel pipe pile 3 of the depth measuring wire 9 at a fixed position when stored in the board 1b.

杭の深度合わせは、従来では、打設前に杭の下端部を海面に合わせ、このときの杭下端深度が潮位値に一致するようオフセット深度値を設定しているが、波浪があると海面合わせが困難であり誤差が発生していた。本実施の形態の船上定位置による深度リセット方法によれば、オフセット深度値(H0)が事前登録されており、打設作業前に杭リーダ2が船上定位置にあるとき深度計10をゼロリセットするだけで簡易に深度合わせを行うことができる。なお、杭打工事では、杭の種類によりハンマのタイプを変更することがあり形状が変わるため、オフセット深度値(H0)は打設設計データの中で杭番に対応させて登録する。   Conventionally, the depth of the pile is adjusted so that the bottom end of the pile is aligned with the sea level before placing and the bottom depth of the pile at this time matches the tide level value. The alignment was difficult and an error occurred. According to the depth reset method based on the ship's home position according to the present embodiment, the offset depth value (H0) is pre-registered, and the depth gauge 10 is reset to zero when the pile leader 2 is at the ship's home position before placing work. You can easily adjust the depth just by doing. In the pile driving work, the hammer type may be changed depending on the type of pile, and the shape changes. Therefore, the offset depth value (H0) is registered corresponding to the pile number in the placement design data.

深度計10をリセットしたときの鋼管杭3の杭頭部杭芯位置3aの深度Zaは、次の式(1)で計算でき、深度計10をゼロリセットするので、Lw=0とすると、次の式(1’)で計算できる。   The depth Za of the pile head pile core position 3a of the steel pipe pile 3 when the depth meter 10 is reset can be calculated by the following equation (1), and the depth meter 10 is reset to zero. (1 ').

Za=Zp+H0+Lw (1)
Za=Zp+H0 (1’)
Za = Zp + H0 + Lw (1)
Za = Zp + H0 (1 ′)

但し、Zp:反射体の測量高さ(トータルステーション6の測量値)
Lw:深度計測ワイヤ9の繰出長の計測値
H0:オフセット深度値
However, Zp: Survey height of reflector (surveyed value of total station 6)
Lw: measured value of feeding length of depth measuring wire 9 H0: offset depth value

杭の打設は、図7(d)のように、図7(b)の状態から杭リーダ2を鋼管杭3とともに旋回させてから行う。打設時の杭3の深度は、杭リーダ2の下部に取り付けられた反射体5aまたは5bの測量高さと、深度計データと、杭リーダ傾斜データと、杭番に対応して事前登録された打設設計データの中の諸データをもとに、杭頭部杭芯位置3aの深度Zaは、次の式(2)で、杭天位置3bの深度Zbは次の式(3)で、杭下端部杭芯位置3cの深度Zcは式(4)で計算できる。   As shown in FIG. 7 (d), the pile driving is performed after the pile leader 2 is swung together with the steel pipe pile 3 from the state shown in FIG. 7 (b). The depth of the pile 3 at the time of placing was pre-registered corresponding to the survey height of the reflector 5a or 5b attached to the lower part of the pile leader 2, depth meter data, pile leader inclination data, and pile number. Based on various data in the placement design data, the depth Za of the pile head pile core position 3a is the following formula (2), and the depth Zb of the pile top position 3b is the following formula (3), The depth Zc of the pile lower end portion pile core position 3c can be calculated by Expression (4).

Za=Zp+(Lw+H0)・cos(θy)−Lk・sin(θy) (2)
Zb=設計打止め高さ(事前登録の打設設計データより) (3)
Zc=Za−Ln・cos(θy) (4)
Za = Zp + (Lw + H0) .cos (.theta.y) -Lk.sin (.theta.y) (2)
Zb = design stop height (from pre-registered placement design data) (3)
Zc = Za−Ln · cos (θy) (4)

但し、Zp:反射体の測量高さ(トータルステーション6の測量値)
Lw:深度計測ワイヤ9の繰出長の計測値
θy:杭リーダ傾斜角の計測値
H0:オフセット深度値(事前登録の打設設計データより)
Lk:リーダ芯から杭芯までの離隔距離(事前登録の打設設計データより)
Ln:杭長(事前登録の打設設計データより)
However, Zp: Survey height of reflector (surveyed value of total station 6)
Lw: measured value of feeding length of depth measuring wire 9 θy: measured value of pile leader inclination angle H0: offset depth value (from pre-registered design data)
Lk: Distance from the leader core to the pile core (from pre-registered design data)
Ln: Pile length (from pre-registered placement design data)

図8は、本実施の形態における各基準点の座標計算を説明するための図で、杭リーダ基準点S0の座標計算の説明図(a)及び船体基準点S1の座表計算の説明図(b)である。   FIG. 8 is a diagram for explaining the coordinate calculation of each reference point in the present embodiment, and is an explanatory diagram of the coordinate calculation of the pile leader reference point S0 and an explanatory diagram of the seat calculation of the hull reference point S1. b).

杭リーダ基準点S0の座標(X0,Y0,Z0)は、図8(a)のように、測量した反射体5bの座標値(Xp,Yp,Zp)に基づいて次の式(5)、(6)、(7)で計算できる。   The coordinates (X0, Y0, Z0) of the pile leader reference point S0 are based on the coordinate values (Xp, Yp, Zp) of the measured reflector 5b, as shown in FIG. It can be calculated by (6) and (7).

X0=Xp−Px2・cos(θβ−90°) (5)
Y0=Yp−Px2・sin(θβ−90°) (6)
Z0=Zp (7)
X0 = Xp- Px2 · cos (θβ -90 °) (5)
Y0 = Yp- Px2 · sin (θβ -90 °) (6)
Z0 = Zp (7)

但し、Px2 :事前登録データ
θβ=θγ−(360°−θh+Kθ)
However, Px2: pre-registration data θβ = θγ- (360 ° -θh + Kθ)

また、船上基準点(S1)の平面座標(X1,Y1)は、図8(b)のように、上記式(5)、(6)のX0,Y0の座標に基づいて次の式(8)、(9)で計算できる。   Further, the plane coordinates (X1, Y1) of the shipboard reference point (S1) are expressed by the following formula (8) based on the coordinates of X0, Y0 in the above formulas (5) and (6) as shown in FIG. ) And (9).

X1=X0+Lc・sin(θβ−90°) (8)
Y1=Y0−Lc・cos(θβ−90°) (9)
X1 = X0 + Lc · sin (θβ−90 °) (8)
Y1 = Y0−Lc · cos (θβ−90 °) (9)

但し、Lc:事前登録データ
θβ=θγ−(360°−θh+Kθ)
Where Lc: pre-registration data θβ = θγ− (360 ° −θh + Kθ)

図9は、本実施の形態における杭の座標計算を説明するための図で、杭リーダ基準点S0〜杭天位置3bの水平距離ybの計算を説明するための側面図(a)及び杭天位置3bの工事座標での計算を説明するための平面図(b)である。   FIG. 9 is a diagram for explaining the coordinate calculation of the pile in the present embodiment, and is a side view (a) and a pile ceiling for explaining the calculation of the horizontal distance yb of the pile leader reference point S0 to the pile ceiling position 3b. It is a top view (b) for demonstrating the calculation in the construction coordinates of the position 3b.

図9(a)のように、杭リーダ部基準点S0から杭天位置3bまでの水平離隔距離ybは、次の式(10)で計算できる。 As shown in FIG. 9A, the horizontal separation distance yb from the pile leader portion reference point S0 to the pile top position 3b can be calculated by the following equation (10).

yb=Lk/cos(θy)+(Zb−Z0)・tanθy (10) yb = Lk / cos (θy) + (Zb−Z0) · tanθy (10)

但し、Lk:事前登録データ
θy:杭リーダ傾斜角(図9(a)では、後傾で、「−」値)
However, Lk: Pre-registration data θy: Pile leader inclination angle (in FIG. 9A, it is a backward inclination and a “−” value)

なお、同様にして、杭頭部杭芯位置3a、杭下端部杭芯位置3cまでの各水平距離yaycも計算できる。 Similarly, the horizontal distances ya and yc to the pile head pile core position 3a and the pile lower end pile core position 3c can also be calculated.

図9(b)のように、杭天部位置3b(打設している杭の設計打止め高に対応する杭芯位置)の座標は、上記水平離隔距離ybと杭リーダ部基準点S0の座標に基づいて次の式(11)、(12)、(13)で計算できる。 As shown in FIG. 9 (b), the coordinates of the pile top position 3b (the pile core position corresponding to the design stop height of the pile being placed) are the horizontal separation distance yb and the pile leader reference point S0. Based on the coordinates, the following equations (11), (12), and (13) can be used for calculation.

Xb=X0−yb・sin(θβ−90°) (11)
Yb=X0+yb・cos(θβ−90°) (12)
Zb=設計打止め高さ(上記式(3)と同じ) (13)
但し、θβ=θγ−(360°−θh+Kθ)
Xb = X0− yb · sin (θβ−90 °) (11)
Yb = X0 + yb · cos (θβ−90 °) (12)
Zb = design stop height (same as the above formula (3)) (13)
However, θβ = θγ− (360 ° −θh + Kθ)

なお、杭頭部杭芯位置3aと杭下端部杭芯位置3cの各座標についても、上記杭天部の座標計算と同様の計算式で求めることができる。   In addition, about each coordinate of the pile head pile core position 3a and the pile lower end part pile core position 3c, it can obtain | require with the calculation formula similar to the coordinate calculation of the said pile top part.

図10は、本実施の形態における船体の座標計算を説明するための平面図である。図10のように、船上の任意点S2の工事座標による平面座標(X2,Y2)は、上記式(8)、(9)で計算した船上基準点S1の座標(X1,Y1)及び船体の方位θhに基づいて次の式(14)、(15)で計算できる。   FIG. 10 is a plan view for explaining the coordinate calculation of the hull in the present embodiment. As shown in FIG. 10, the plane coordinates (X2, Y2) by the construction coordinates of the arbitrary point S2 on the ship are the coordinates (X1, Y1) of the ship reference point S1 calculated by the above formulas (8) and (9) and the hull. Based on the azimuth θh, it can be calculated by the following formulas (14) and (15).

X2=X1-Sx2・sin(180°-θs)-Sy2・cos(180°-θs) (14)
Y2=Y1+Sx2・cos(180°-θs)-Sy2・sin(180°-θs) (15)
X2 = X1- Sx2 · sin (180 ° -θs) -Sy2 · cos (180 ° -θs) (14)
Y2 = Y1 + Sx2 · cos (180 ° -θs) -Sy2 · sin (180 ° -θs) (15)

但し、Sx2Sy2:事前登録データ
θs=θh−Kθ
However, Sx2 , Sy2 : Pre-registration data θs = θh−Kθ

なお、船上の他の点(S3、S4、S5)についても同様の計算式で求めることができる。   It should be noted that other points on the ship (S3, S4, S5) can be obtained by the same calculation formula.

図11は、本実施の形態における船体誘導表示例(a)と杭打設位置誘導表示例(b)を示す図である。上記演算処理結果をもとに、図11(a)のように、操船位置情報処理機15では船体誘導表示器17に船体の現在位置を表示するとともに打設する杭の杭天位置を設計位置に位置入れするための船体移動量をリアルタイムに誘導表示する。   FIG. 11 is a diagram showing a hull guidance display example (a) and a pile driving position guidance display example (b) in the present embodiment. Based on the calculation processing result, as shown in FIG. 11A, the ship maneuvering position information processing device 15 displays the current position of the hull on the hull guidance display 17 and sets the pile top position of the pile to be placed as the design position. The hull movement amount for entering the position is guided and displayed in real time.

すなわち、図11(a)の例では、杭打船の船体の現在位置(破線で示す)と目標位置が船体誘導表示器17の画面に例えば色分け表示されるとともに、上記式(14)、(15)による船体の上左端及び下右端の各操船移動量(船体移動量)が表示される。これらの操船移動量を参照して操船室21での操縦により杭打船を移動させると、リアルタイムに船体移動量が変化して表示される。   That is, in the example of FIG. 11A, the current position (indicated by a broken line) and the target position of the pile driver ship are displayed in a color-coded manner on the screen of the hull guidance display 17, and the above equations (14), ( The ship maneuvering movement amounts (hull movement amounts) at the upper left end and lower right end of the hull according to 15) are displayed. When the pile driving ship is moved by maneuvering in the maneuvering room 21 with reference to these ship maneuvering movement amounts, the hull movement amount is changed and displayed in real time.

また、図11(b)のように、打設管理情報処理機13では打設位置誘導表示器16に、打設する杭の現在位置及び姿勢を表示するとともに設計打設位置を目標にした杭の移動量をリアルタイムに誘導表示する。   In addition, as shown in FIG. 11 (b), the placement management information processing machine 13 displays the current position and posture of the pile to be placed on the placement position guidance display 16, and the pile targeted for the design placement position. The amount of movement is guided and displayed in real time.

すなわち、図11(b)の例では、打設位置誘導表示器16の右画面に杭の側面位置が表示され、左画面に杭の平面位置が表示され、それぞれ現在位置(破線で示す)と目標位置が例えば色分け表示されるとともに、上記式(11),(12)による杭下端の平面位置と杭天の平面位置の各杭移動量が左画面に表示され、上記式(11),(12),(13)による杭天の側面位置の杭移動量が右画面に表示される。上記船体の目標位置への移動後に、上記杭移動量を参照してハンマー4による杭打設を行うと、リアルタイムに上記杭移動量が変化して表示される。   That is, in the example of FIG. 11 (b), the side position of the pile is displayed on the right screen of the placement position guidance indicator 16, the plane position of the pile is displayed on the left screen, and the current position (indicated by a broken line) and For example, the target position is displayed in different colors, and the pile movement amounts of the bottom position of the pile and the top position of the pile top according to the above formulas (11) and (12) are displayed on the left screen, and the above formulas (11) and (11) The pile movement amount of the side position of the pile top according to 12) and (13) is displayed on the right screen. When the pile is driven by the hammer 4 with reference to the pile movement amount after the hull is moved to the target position, the pile movement amount is changed and displayed in real time.

以上のように、本実施の形態の杭打設方法によれば、杭リーダ2を旋回または前後傾斜させて鋼管杭3を打設する杭打設工事において、打設しようとする杭3の設計打止め高における杭芯位置(杭天位置3b)を精度重視の位置入れ管理点とし、高い精度で杭天位置3bの座標を算出し、設計位置へ正確に打設するための杭3の位置入れと船体位置入れとをリアルタイムに誘導表示するので、従来に比べて効率的な船体位置決めと正確な打設管理を行うことができる。   As described above, according to the pile placing method of the present embodiment, the pile 3 to be placed is designed in the pile placing work in which the pile leader 2 is turned or tilted forward and backward to place the steel pipe pile 3. The position of the pile 3 for accurately setting the position of the pile top position 3b with high accuracy by setting the pile core position (pile top position 3b) at the stop height as the position control point for accuracy Since insertion and hull positioning are guided and displayed in real time, it is possible to perform more efficient hull positioning and more accurate placement management than in the past.

従来の杭の位置入れでは、測量員を配置し陸上または海上測量台の2ヶ所から杭を視準し、杭打船側へ無線連絡して杭の位置入れ誘導しているが、この場合、十分な経験技術を持つ測量員を配置する必要があり無線連絡による誘導のため位置入れに手間取り非効率的であり、また、杭の位置入れ誘導はできるものの杭打船の位置入れ誘導ができないという問題があったのに対し、本実施の形態では、高い精度で杭天位置の座標を算出し設計位置へ正確に打設するための杭の位置入れと船体位置入れとをリアルタイムに誘導表示することにより、効率的な船体位置決めと正確な杭打設管理を行うことができる。   In conventional pile positioning, surveyors are placed, the piles are collimated from two locations on the land or at the sea level, and the piles are placed and guided wirelessly to the pile driver. It is necessary to arrange surveyors with a lot of experience, and it is inefficient to place the place due to the guidance by wireless communication. On the other hand, in this embodiment, the coordinates of the pile top position are calculated with high accuracy and the placement of the pile and the placement of the hull are guided and displayed in real time in order to accurately place them at the design position. Thus, efficient hull positioning and accurate pile driving management can be performed.

なお、本明細書において、「位置入れ」とは、杭を設計位置まで打設するために、現在位置から目標位置まで杭・船体を案内誘導し位置決めるまでの一連の動作を意味する。   In the present specification, “positioning” means a series of operations until the pile / hull is guided and positioned from the current position to the target position in order to drive the pile to the design position.

以上のように本発明を実施するための最良の形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、反射体5a、5bの杭リーダ2における取付位置は、適宜設定可能であり、例えばロープや他の部材等により遮られるおそれがある場合には、多少上下させてずらしてもよいことは勿論である。   As described above, the best mode for carrying out the present invention has been described. However, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, the attachment positions of the reflectors 5a and 5b in the pile leader 2 can be set as appropriate. For example, when there is a possibility that the reflectors 5a and 5b may be blocked by ropes or other members, the reflectors 5a and 5b may be slightly moved up and down. It is.

本実施の形態による杭打設方法を実行可能な杭打設システムを概略的に示す図である。It is a figure showing roughly the pile placing system which can perform the pile placing method by this embodiment. 本実施の形態の杭打設方法による杭打設位置の誘導表示及び船体誘導表示を行うまでの演算処理フローを示す図である。It is a figure which shows the arithmetic processing flow until it performs the guidance display and the hull guidance display of the pile placement position by the pile placement method of this Embodiment. 本実施の形態における計測条件を説明するための図であり、(1)杭リーダ2の傾斜及び旋回関係を示す斜視図(a),(b)、及び、(2)工事座標を示す図(c)と、工事座標と杭打船1との関係を示す平面図(d)である。It is a figure for demonstrating the measurement conditions in this Embodiment, (1) Perspective view (a), (b) which shows the inclination and turning relation of the pile leader 2, and (2) The figure which shows construction coordinates ( It is a top view (d) which shows the relationship between c) and a construction coordinate, and the pile driving ship 1. FIG. 本実施の形態における座標系データの事前登録例を示す図であり、(1)工事座標系(X,Y)を示す図(a)、及び工事座標系データの例を示す表(b)、(2)リーダ座標系()を示す図(c)、及びリーダ座標系データの例を示す表(d)、(3)船体座標系(SxSy)を示す図(e)、及び船体座標系データの例を示す表(f)、である。It is a figure which shows the prior registration example of the coordinate system data in this Embodiment, (1) The figure (a) which shows the construction coordinate system (X, Y), and the table (b) which shows the example of construction coordinate system data, (2) A diagram (c) showing the leader coordinate system ( x , y ), a table (d) showing an example of the reader coordinate system data, (3) a diagram (e) showing the hull coordinate system ( Sx , Sy ), And Table (f) showing an example of hull coordinate system data. 本実施の形態における打設設計データの事前登録例を示す図であり、打設設計データを説明するための平面図(a)、及び打設設計データの例を示す表(b)である。It is a figure which shows the prior registration example of placement design data in this Embodiment, and is the top view (a) for demonstrating placement design data, and the table | surface (b) which shows the example of placement design data. 本実施の形態における工事座標上で求める座標計算対象点を示す表である。It is a table | surface which shows the coordinate calculation object point calculated | required on the construction coordinate in this Embodiment. 本実施の形態における杭の深度計算の船上定位置による深度計リセットを説明するための図で、図1の杭リーダと杭頭部との相対的な位置関係を示す正面図(a)及び平面図(b)であり、更に、杭打設時の深度計算を説明するための図で、杭リーダと鋼管杭との相対的な位置関係を示す側面図(c)及び平面図(d)である。The front view (a) and plane which show the relative positional relationship of the pile leader of FIG. 1, and a pile head in the figure for demonstrating the depth meter reset by the ship fixed position of the depth calculation in this Embodiment It is a figure (b), and is a figure for explaining depth calculation at the time of pile driving, and is a side view (c) and a plan view (d) showing a relative positional relationship between a pile leader and a steel pipe pile is there. 本実施の形態における各基準点の座標計算を説明するための図で、杭リーダ基準点S0の座標計算の説明図(a)及び船体基準点S1の座表計算の説明図(b)である。It is a figure for demonstrating the coordinate calculation of each reference point in this Embodiment, and is explanatory drawing (a) of the coordinate calculation of the pile leader reference point S0, and explanatory drawing (b) of the seat calculation of the hull reference point S1. . 本実施の形態における杭の座標計算を説明するための図で、杭リーダ基準点S0〜杭天位置3bの水平距離ybの計算を説明するための側面図(a)及び杭天位置3bの工事座標での計算を説明するための平面図(b)である。It is a figure for demonstrating the coordinate calculation of the pile in this Embodiment, The side view (a) for demonstrating the calculation of the horizontal distance yb of the pile leader reference point S0-pile top position 3b, and construction of the pile top position 3b It is a top view (b) for demonstrating the calculation by a coordinate. 本実施の形態における船体の座標計算を説明するための平面図である。It is a top view for demonstrating the coordinate calculation of the hull in this Embodiment. 本実施の形態における船体誘導表示例(a)と杭打設位置誘導表示例(b)を示す図である。It is a figure which shows the hull guidance display example (a) and pile driving position guidance display example (b) in this Embodiment. 図1の反射体の具体例における各部材の位置関係を示す平面図(a)及び側面図(b)である。It is the top view (a) and side view (b) which show the positional relationship of each member in the specific example of the reflector of FIG. 図12の反射体を杭リーダに取り付けた状態を示す側面図(a)及び平面図(b)である。It is the side view (a) and top view (b) which show the state which attached the reflector of FIG. 12 to the pile leader. 図13のように杭リーダに取り付けた反射体の正面図である。It is a front view of the reflector attached to the pile leader like FIG.

符号の説明Explanation of symbols

1 旋回式杭打船、杭打船
2 杭リーダ
3 鋼管杭、杭
3a 杭頭部杭芯位置
3b 杭天位置、杭の設計打止め高に対応する杭芯位置
3c 杭下端部杭芯位置
4 ハンマ
5 全方位反射型反射体
5a 半方位反射型反射体(杭リーダ下部右側)
5b 半方位反射型反射体(杭リーダ下部左側)
6 トータルステーション
7 無線データ伝送機
8 無線データ受信機
9 深度計測ワイヤ
10 杭頭部深度計
11 杭リーダ傾斜計
12 旋回角度計
13 打設管理情報処理機
14 ジャイロコンパス
15 操船位置情報処理機
16 打設位置誘導表示器
17 船体誘導表示器
31〜35 反射プリズム
40 重錘
42 ユニバーサルジョイント
s 回転中心
S0 リーダ座標の原点
S1 船体座標の原点
S2 船体の船首・右舷位置
S3 船体の船尾・右舷位置
S4 船体の船尾・左舷位置
S5 船体の船首・左舷位置
Xp,Yp,Zp トータルステーションで測量した反射体の座標
Za 杭頭部杭芯位置の計算深度
Zb 杭天位置の深度(事前登録された設計打止め深度)
Zc 杭下端部杭芯位置の計算深度
Kθ 真北から工事座標X軸までの回転角(事前登録データ)
θh 船体の方位角計測データ
θγ クレーン旋回角計測データ
θy 杭リーダ傾斜角計測データ
θβ 杭の打設方向角計測データ
Lw 深度計測ワイヤ繰出長
Ln 杭長(事前登録データ)
α 船体の進入方向角(事前登録データ)
β 杭の打設方向角(事前登録データ)
H0 オフセット深度(事前登録データ)
Lk 杭リーダ中心からの杭芯までの離隔距離(事前登録データ)
Lc 杭リーダ中心から旋回中心点までの離隔距離(事前登録データ)
DESCRIPTION OF SYMBOLS 1 Pile-type pile driver, pile driver 2 Pile leader 3 Steel pipe pile, pile 3a Pile head pile core position 3b Pile top position, pile core position corresponding to pile design stop height 3c Pile bottom pile core position 4 Hammer 5 Omni-directional reflector 5a Semi-directional reflector (lower right of pile leader)
5b Semi-azimuth reflection type reflector (Pile leader lower left side)
6 Total Station 7 Wireless Data Transmitter 8 Wireless Data Receiver 9 Depth Measurement Wire 10 Pile Head Depth Meter 11 Pile Leader Inclinometer 12 Pivot Angle Meter 13 Setting Management Information Processing Machine 14 Gyro Compass 15 Ship Maneuvering Position Information Processing Machine 16 Setting Up Position guidance indicator 17 Hull guidance indicators 31-35 Reflective prism 40 Weight 42 Universal joint s Center of rotation S0 Origin point of leader coordinates S1 Origin point of hull coordinates S2 Bow / starboard position S3 of hull Stern / starboard position S4 of hull Stern / port position S5 Hull bow / port position Xp, Yp, Zp Reflector coordinates measured by total station Depth of pile head pile position Zb Depth of pile top position (pre-registered design stop depth)
Zc Depth of pile core position at bottom of pile Kθ Rotation angle from true north to construction coordinate X axis (pre-registered data)
θh Hull azimuth angle measurement data θγ Crane turning angle measurement data θy Pile leader tilt angle measurement data θβ Pile driving direction angle measurement data Lw Depth measurement wire feed length Ln Pile length (pre-registration data)
α Hull approach direction angle (pre-registration data)
β Pile direction angle (pre-registration data)
H0 offset depth (pre-registered data)
Lk Separation distance from pile leader center to pile core (pre-registration data)
Lc Separation distance from pile leader center to turning center point (pre-registration data)

Claims (6)

旋回または前後傾斜する杭リーダに沿わせて杭を保持し、前記杭を水底に打設する杭打船による杭打設方法であって、
打設対象の杭の設計打止め高に対応する杭芯位置である杭天位置を位置入れ管理点とし、前記設計打止め高さ近傍の前記杭リーダ部分に全方位反射型の反射体を配置し、
前記全方位反射型の反射体は、一対の半方位反射型の反射体から構成され、前記半方位反射型の反射体の一方を前記杭リーダの比較的下部に取り付け、他方を前記杭リーダの同じ高さ位置の180度反対側に取り付け、
前記各半方位反射型の反射体は、前記杭リーダが傾斜したときに傾斜前の水平状態を保つように構成され、
前記反射体をターゲットとしてトータルステーションで測量することで前記杭天位置の座標を計測し、前記座標計測データをもとに計算された杭位置に基づいて杭打設を行うことを特徴とする杭打設方法。
It is a pile driving method by a pile driving ship that holds a pile along a pile leader that turns or tilts forward and backward, and drives the pile to the bottom of the water,
An omnidirectional reflector is placed on the pile leader near the design stop height, with the pile top position corresponding to the pile stop position corresponding to the design stop height of the target pile being placed And
The omnidirectional reflector is composed of a pair of semi-azimuth reflectors, one of the semi-azimuth reflectors is attached to the lower part of the pile leader, and the other is attached to the pile leader. Attach to 180 degree opposite side of the same height position,
Each semi-azimuth reflection type reflector is configured to maintain a horizontal state before tilting when the pile leader is tilted,
The pile driving is characterized in that the coordinates of the pile top position are measured by measuring at a total station using the reflector as a target, and pile driving is performed based on the pile position calculated based on the coordinate measurement data. Installation method.
前記トータルステーションは、陸上に配置され、前記一対の半方位反射型の反射体のいずれか一方を視準可能な反射体として選択し、その選択した反射体の3次元位置を自動追尾し測量し、
前記測量した3次元座標データを前記座標計測データとして無線でリアルタイムに前記杭打船側に伝送する請求項に記載の杭打設方法。
The total station is disposed on land, selects one of the pair of semi-azimuth reflection type reflectors as a collimable reflector, automatically tracks and surveys the three-dimensional position of the selected reflector,
The pile driving method according to claim 1 , wherein the measured three-dimensional coordinate data is wirelessly transmitted to the pile driver side in real time as the coordinate measurement data.
前記杭の杭頭部の深度、前記杭リーダの傾斜、前記杭リーダの旋回角、及び前記杭打船の船体の方位・傾斜の計測データと、事前登録された座標系データ及び打設設計データの登録データと、前記座標計測データと、に基づいて前記杭の杭頭部杭芯位置と杭天位置と杭下端部杭芯位置とを演算処理し、これらの演算結果に基づいて前記杭を設計位置に正確に打設するために前記杭位置及び姿勢をリアルタイムに誘導表示する請求項1または2に記載の杭打設方法。 Measurement data of the pile head depth of the pile, the inclination of the pile leader, the turning angle of the pile leader, and the azimuth / tilt of the hull of the pile driving ship, pre-registered coordinate system data and placement design data The pile head pile core position, the pile top position and the pile lower end pile core position of the pile are calculated based on the registration data and the coordinate measurement data, and the pile is calculated based on the calculation results. The pile placing method according to claim 1 or 2 , wherein the pile position and posture are guided and displayed in real time in order to accurately place at the design position. 前記杭の杭天位置を設計位置に位置入れするための前記杭打船の船体移動量をリアルタイムに誘導表示する請求項1乃至のいずれか1項に記載の杭打設方法。 The pile placing method according to any one of claims 1 to 3 , wherein a hull movement amount of the pile driving ship for placing the pile top position of the pile at a design position is guided and displayed in real time. 前記杭の杭頭部の深度を深度計により計測する際に、前記杭打船の船上定位置において前記深度計を事前登録されたオフセット深度値にゼロリセットする請求項1乃至のいずれか1項に記載の杭打設方法。 When measuring the depth of the pile head of the pile by depth gauge, any of claims 1 to 4, zero reset to offset the depth values of the depth gauge has been pre-registered in the board position of the pile ship 1 The pile driving method according to the item. 請求項1乃至のいずれか1項に記載の杭打設方法を実行可能な杭打設システム。 A pile driving system capable of executing the pile driving method according to any one of claims 1 to 5 .
JP2006304010A 2006-11-09 2006-11-09 Pile driving method Active JP4931126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304010A JP4931126B2 (en) 2006-11-09 2006-11-09 Pile driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304010A JP4931126B2 (en) 2006-11-09 2006-11-09 Pile driving method

Publications (2)

Publication Number Publication Date
JP2008121219A JP2008121219A (en) 2008-05-29
JP4931126B2 true JP4931126B2 (en) 2012-05-16

Family

ID=39506273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304010A Active JP4931126B2 (en) 2006-11-09 2006-11-09 Pile driving method

Country Status (1)

Country Link
JP (1) JP4931126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556640A (en) * 2013-11-15 2014-02-05 中交天航港湾建设工程有限公司 Method for sinking vertical piles in shallow sea reclamation area

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473689B2 (en) * 2010-03-15 2014-04-16 五洋建設株式会社 Stake pile placement management method
JP5767131B2 (en) * 2012-02-08 2015-08-19 東亜建設工業株式会社 Pile driving construction management system
CN102587425A (en) * 2012-03-29 2012-07-18 温州建设集团有限公司 Measurement positioning and construction method for foundation piles
JP5378577B1 (en) * 2012-07-13 2013-12-25 関西工事測量株式会社 System and method for providing information to an operator of a pile driver
JP6012461B2 (en) * 2012-12-28 2016-10-25 新日鉄住金エンジニアリング株式会社 Construction method of rotary press-fit pile
JP6179115B2 (en) * 2013-02-05 2017-08-16 株式会社大林組 Method for placing members constituting retaining wall
DE112013005525B4 (en) * 2013-09-19 2018-02-15 Komatsu Ltd. measuring device
CN103541363B (en) * 2013-11-15 2015-07-22 中交天航港湾建设工程有限公司 Pile sinking device and pile sinking method based on shallow sea reclamation area inclined piles
WO2019165230A1 (en) 2018-02-23 2019-08-29 Clark Equipment Company Power machine with post driving implement
JP6619050B2 (en) * 2018-05-23 2019-12-11 東急建設株式会社 Position measuring system and position measuring method
CN109669203A (en) * 2019-01-22 2019-04-23 深圳市北斗云信息技术有限公司 A kind of GNSS 3 d pose positioning piling navigation aid system and method
CN109914408B (en) * 2019-03-13 2020-06-02 江苏科技大学 Pile driving ship and attitude adjusting, positioning control and pile driving method thereof
JP7213115B2 (en) * 2019-03-25 2023-01-26 大和ハウス工業株式会社 Pile construction management method, pile construction management system, and mobile terminal constituting pile construction management system
JP7178316B2 (en) * 2019-04-03 2022-11-25 日本車輌製造株式会社 Pile driver controller
JP6796170B2 (en) * 2019-07-30 2020-12-02 東急建設株式会社 Position measurement system and position measurement method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797030B2 (en) * 1987-01-21 1995-10-18 株式会社淺川組 Positioning method of pile driving by pile driving ship
JPH06988B2 (en) * 1987-03-24 1994-01-05 五洋建設株式会社 Posture display method for piles in pile driving ships
JP3173717B2 (en) * 1996-07-17 2001-06-04 株式会社大林組 Pile driving penetration control device
JPH11209978A (en) * 1998-01-20 1999-08-03 Ohbayashi Corp Construction work control device for pile drive
JP2002021077A (en) * 2000-07-03 2002-01-23 Unico Corporation Method for observing location of columnar object
JP4751539B2 (en) * 2001-08-28 2011-08-17 東亜建設工業株式会社 Management method of pile driving position by pile driver
JP3676277B2 (en) * 2001-09-27 2005-07-27 復建調査設計株式会社 Pile driving method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556640A (en) * 2013-11-15 2014-02-05 中交天航港湾建设工程有限公司 Method for sinking vertical piles in shallow sea reclamation area
CN103556640B (en) * 2013-11-15 2015-11-25 中交天航港湾建设工程有限公司 A kind of pile-sinking method based on shallow sea reclamation area soldier piles

Also Published As

Publication number Publication date
JP2008121219A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4931126B2 (en) Pile driving method
CN105339554B (en) Pile-driving method and system
US20180031685A1 (en) Method for underwater scanning of an object and target for underwater scanning of an object
CN102759352B (en) Survey setting point indicating device and surveying system
JP2008533479A (en) Posture measurement method and system for measuring the position and orientation of an object to be measured
US11747810B2 (en) Indoor positioning and navigation systems and methods
JP4933852B2 (en) Surveying system using GPS
CN103213657A (en) Ship draft amount detection system and detection method thereof
JP2856206B2 (en) Underwater rubble leveling device
JP2002090456A (en) Topographic measuring apparatus
JP6300152B2 (en) Crane ship hanging position measuring device and hanging position measuring method
CN103759743A (en) Azimuth benchmark transmission device for inertia measuring device and azimuth confirming method for inertia measuring device with large inclination angle
WO2019005939A1 (en) Method and apparatus for self-contained positioning of a mobile robot inside a tank
JP2012188836A (en) Installation device of underwater structure
CN105241442A (en) Inertial navigation/underwater acoustic combined navigation method based on virtual short base line positioning system
CN109669203A (en) A kind of GNSS 3 d pose positioning piling navigation aid system and method
JP2003105762A (en) Pile driving method
JP7419119B2 (en) working machine
CN214470600U (en) Space coordinate measuring device based on GNSS
US20170097228A1 (en) Measurement Apparatus to Locate an Orientation With Respect to a Surface
JP2003065759A (en) Managing method for piling position by pile driver crane
JPH06988B2 (en) Posture display method for piles in pile driving ships
JPS6133450B2 (en)
CN215340341U (en) Pile sinking positioning system suitable for operation in deep and distant sea areas
JP3121762B2 (en) How to set earthwork

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

R150 Certificate of patent or registration of utility model

Ref document number: 4931126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250