JP4930276B2 - Internal cooling structure for high temperature parts - Google Patents

Internal cooling structure for high temperature parts Download PDF

Info

Publication number
JP4930276B2
JP4930276B2 JP2007214587A JP2007214587A JP4930276B2 JP 4930276 B2 JP4930276 B2 JP 4930276B2 JP 2007214587 A JP2007214587 A JP 2007214587A JP 2007214587 A JP2007214587 A JP 2007214587A JP 4930276 B2 JP4930276 B2 JP 4930276B2
Authority
JP
Japan
Prior art keywords
cooling
bump
heat transfer
cooling structure
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007214587A
Other languages
Japanese (ja)
Other versions
JP2009047085A (en
Inventor
千由紀 仲俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007214587A priority Critical patent/JP4930276B2/en
Publication of JP2009047085A publication Critical patent/JP2009047085A/en
Application granted granted Critical
Publication of JP4930276B2 publication Critical patent/JP4930276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、航空用または産業用のガスタービンにおける動翼や静翼のような高温部品の内面冷却構造に関する。   The present invention relates to an internal surface cooling structure for high-temperature parts such as moving blades and stationary blades in an aeronautical or industrial gas turbine.

航空用または産業用のガスタービンにおける動翼や静翼のような高温部品は、運転中に外面が高温ガス(例えば1000℃以上)に曝されるため、高温部品の過熱を防ぐため、その内側に冷却ガス(例えば冷却用空気)を流し高温部品を内側から冷却する場合がある。
そこでこのような内面冷却構造の性能を把握しその冷却性能を高めるため、多くの研究が従来から行われている(例えば、特許文献1,2、非特許文献1,2)。
High temperature parts such as moving blades and stationary blades in aero or industrial gas turbines are exposed to high temperature gas (for example, 1000 ° C or higher) during operation. In some cases, a high temperature component is cooled from the inside by flowing a cooling gas (for example, cooling air).
Thus, many studies have been conducted in the past to understand the performance of such an internal cooling structure and enhance its cooling performance (for example, Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).

特許文献1の内面冷却構造は、図7に示すように、内側部分51と外側部分52を有する少なくとも1つの壁53と、壁の内側部分と外側部分の間に延び複数の流路54からなるメッシュ冷却構造55を形成する複数のピン56と、内側部分と外側部分の少なくとも一方に設けられた複数の乱流発生部57とからなるものである。   As shown in FIG. 7, the inner surface cooling structure of Patent Document 1 includes at least one wall 53 having an inner portion 51 and an outer portion 52, and a plurality of flow paths 54 extending between the inner portion and the outer portion of the wall. It comprises a plurality of pins 56 forming the mesh cooling structure 55 and a plurality of turbulent flow generating portions 57 provided on at least one of the inner part and the outer part.

特許文献2の翼冷却構造は、図8に示すように、静翼64の負圧側面を形成する背側壁部66と正圧側面を形成する腹側壁部67との間に設けられ、背側壁部66及び腹側壁部67の熱を冷却空気Yに伝達するピンフィン61と、背側壁部内面69に設けられると共にピンフィン61から放射状に設けられ冷却効率を促進するリブ62とを備えたものである。   As shown in FIG. 8, the blade cooling structure of Patent Document 2 is provided between a back side wall portion 66 that forms a suction side surface of a stationary blade 64 and an abdominal side wall portion 67 that forms a pressure side surface. The pin fin 61 which transmits the heat of the part 66 and the abdominal side wall part 67 to the cooling air Y, and the rib 62 which is provided in the back side wall part inner surface 69 and is provided radially from the pin fin 61 and promotes cooling efficiency are provided. .

非特許文献1は、対向面にディンプル(凹部)と凸部を有する流路の熱伝達に関する研究報告である。
非特許文献2は、ディンプル(凹部)と凸部(角、丸)を有するメッシュ冷却構造の熱伝達に関する研究報告である。
Non-Patent Document 1 is a research report on heat transfer in a flow path having dimples (concave portions) and convex portions on an opposing surface.
Non-Patent Document 2 is a research report on heat transfer of a mesh cooling structure having dimples (concave portions) and convex portions (corners, circles).

米国特許第6984102号明細書、“HOT GAS PATH COMPONENT WITH MESH AND TURBULATED COOLING”US Pat. No. 6,984,102, “HOT GAS PATH COMPONENT WITH MESH AND TURBULATED COOOLING” 特開2006−242050号公報、「ガスタービンの翼冷却構造」Japanese Unexamined Patent Publication No. 2006-242050, “Glass Turbine Blade Cooling Structure”

Gazi I. Mahmood and others, “Heat Transfer in a Channel with Dimples and Protrusions on Opposite Walls”, Journal of Thermophysics and Heat Transfer,Vol.15, No.3, 2001Gazi I.I. Mahmood and others, “Heat Transfer in a Channel with Dimpls and Propulsion on Opposite Walls”, Journal of Thermotransics and Heat Transforms. 15, no. 3, 2001 Ronald S. Bunker and others, “IN−WALL NETWORK (MESH) COOLING AUGMENTATION OF GAS TURBINE AIRFOILS”, Proceedings of ASME Turbo Expo 2004,2004Ronald S. Bunker and others, “IN-WALL NETWORK (MESH) COOLING AUGMENTATION OF GAS TURBINE AIRFILLS”, Proceedings of ASME Turbo Expo 2004, 2004

上述したように、従来の内面冷却構造は、高温側の熱を低温側に伝熱するため、あるいは両方から内部に熱を伝熱するために高温側と低温側を直接連結する伝熱部材(上述の例では、ピン18、ピンフィン41など)を用いていた。しかし、そのため高温部品の内部の空洞部分が少なく、軽量化が困難であった。
また、特に翼(動翼及び静翼)の後縁部は翼面の中でも温度が高くなる部分であり、高い冷却性能が求められるが、厚みが薄くかつ両面から高温ガスで加熱されるため、内部に冷却壁を設けることができない。そのため従来は、ピンフィンやリブなどで乱流促進による冷却強化を実施しており、この部分の温度をメタル許容値以下に抑えるという条件で冷却空気流量が決まっていた。従って、従来以上に冷却空気流量を低減するには、さらに冷却効果の高い構造を当該部に適用する必要があり、高性能冷却構造の研究が盛んに実施されていた。
As described above, the conventional inner surface cooling structure has a heat transfer member that directly connects the high temperature side and the low temperature side in order to transfer heat from the high temperature side to the low temperature side, or to transfer heat from both to the inside ( In the above example, the pin 18 and the pin fin 41 are used. However, because of this, there are few cavities inside the high-temperature parts, making it difficult to reduce the weight.
In addition, the trailing edge of the blades (moving blades and stationary blades) is a portion where the temperature is high among the blade surfaces, and high cooling performance is required, but because the thickness is thin and heated from both sides with high-temperature gas, A cooling wall cannot be provided inside. For this reason, conventionally, cooling enhancement by promoting turbulent flow is performed with pin fins or ribs, and the flow rate of cooling air is determined under the condition that the temperature of this portion is kept below the allowable metal value. Therefore, in order to reduce the cooling air flow rate more than before, it is necessary to apply a structure having a higher cooling effect to the part, and research on a high-performance cooling structure has been actively conducted.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、翼の後縁部のような薄肉部分も効果的に冷却することができ、内部の空洞部分が多く、軽量化が可能であり、かつ従来と比較して冷却空気量を削減することができる高温部品の内面冷却構造を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to effectively cool a thin wall portion such as the trailing edge of the wing, there are many hollow portions inside, and the weight can be reduced. An object of the present invention is to provide an internal surface cooling structure for a high-temperature component capable of reducing the amount.

本発明によれば、外面が高温ガスで加熱される高温部品の内面を高温ガスより低温度の冷却ガスで冷却する高温部品の内面冷却構造であって、
隙間を隔てて対向しその間に前記冷却ガスが流れる1対又は複数対の内面と、
該各内面に設けられ熱伝達率を高めるように配置された熱伝達促進部材と、を備え
前記熱伝達促進部材は、前記各内面に設けられたディンプル、バンプ、及びリブからなり、
ディンプルは、前記冷却ガスの流れ方向及びこれに直交する方向にそれぞれ一定のピッチで配置され、
バンプは、前記ディンプルに対して千鳥配置に前記流れ方向及びこれに直交する方向にそれぞれ一定のピッチで配置され、
リブは、前記流れ方向に直交する方向に延びかつ前記バンプ間を連結して配置されており、
互いに対向する内面の一方のディンプルと他方のバンプが整合し、または前記流れ方向及びこれに直交する方向において1/2ピッチ以内で整合しており、
前記バンプは、切頭円錐形状であり、その底部直径が頂部直径より大きく、高さが内面間の隙間の1/2未満である、ことを特徴とする高温部品の内面冷却構造が提供される。
According to the present invention, an inner surface cooling structure of a high-temperature component that cools the inner surface of a high-temperature component whose outer surface is heated with a high-temperature gas with a cooling gas lower in temperature than the high-temperature gas,
A pair or a plurality of pairs of inner surfaces facing each other with a gap therebetween and through which the cooling gas flows;
A heat transfer facilitating member provided on each inner surface and arranged to increase the heat transfer rate ,
The heat transfer promotion member is composed of dimples, bumps, and ribs provided on each inner surface,
The dimples are arranged at a constant pitch in the cooling gas flow direction and in a direction perpendicular thereto,
The bumps are arranged at a constant pitch in the flow direction and in a direction perpendicular to the flow direction in a staggered arrangement with respect to the dimples,
The rib extends in a direction perpendicular to the flow direction and is connected between the bumps.
One dimple and the other bump on the inner surfaces facing each other are aligned, or are aligned within ½ pitch in the flow direction and the direction orthogonal thereto,
The bump has a truncated conical shape, and has a bottom diameter larger than the top diameter and a height less than 1/2 of the gap between the inner surfaces. .

上記本発明の構成によれば、隙間を隔てて対向しその間に冷却ガスが流れる1対又は複数対の内面に、熱伝達率を高めるように熱伝達促進部材が配置されているので、冷却ガスと各内面との間の熱伝達率を高めることができる。   According to the above configuration of the present invention, the heat transfer promoting member is disposed on the inner surface of one or more pairs facing each other with a gap therebetween and through which the cooling gas flows, so that the heat transfer rate is increased. And the heat transfer coefficient between each inner surface can be increased.

また、この熱伝達促進部材をディンプル、バンプ及びリブで構成し、それぞれ一定のピッチで様々な冷却構造を併用するこことで、内面の全面にわたって高い冷却性能を発揮できる。
また、互いに対向する内面を直接連結する伝熱部材(例えばピン)を用いないので、高温部品の内部の空洞部分が多く、軽量化が可能である。
さらに、互いに対向する内面の一方のディンプルと他方のバンプが整合し、または流れ方向及びこれに直交する方向において1/2ピッチ以内で整合する構成により、冷却ガスが内面に沿って流れるだけでなく、内面に直交する流れ成分を有するので、膜冷却やインピンジ冷却を併用することができ、熱伝達率を一層高めることができる。
Moreover, this heat transfer promotion member is composed of dimples, bumps and ribs, and various cooling structures are used in combination at a constant pitch, so that high cooling performance can be exhibited over the entire inner surface.
Further, since heat transfer members (for example, pins) that directly connect the inner surfaces facing each other are not used, there are many hollow portions inside the high-temperature component, and the weight can be reduced.
Further, the structure in which one dimple and the other bump on the inner surfaces facing each other are aligned or aligned within a ½ pitch in the flow direction and the direction perpendicular thereto can not only cause the cooling gas to flow along the inner surface. Since it has a flow component orthogonal to the inner surface, film cooling and impingement cooling can be used together, and the heat transfer rate can be further increased.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は本発明による内面冷却構造を構成する高温部品の内面を示す図であり、図2は図1のA部の拡大図、図3は図2のB−B断面図である。
本発明を構成する高温部品の内面10は、熱伝達促進部材としてディンプル12、バンプ14及びリブ16をその表面に有する。
ディンプル12は、凹部であり、冷却ガス1(この例では冷却空気)の流れ方向(図1,2で左右方向)及びこれに直交する方向(図1,2で上下方向)にそれぞれ一定のピッチp1,p2で配置されている。なお、冷却ガス1は、冷却空気に限定されず、高温ガスより低温度の冷却ガスであればよい。
バンプ14は、突起部であり、ディンプル12に対して千鳥配置に冷却空気1の流れ方向及びこれに直交する方向にそれぞれ一定のピッチp1,p2で配置されている。
リブ16は、冷却空気1の流れ方向に直交する方向に延びかつバンプ14間を連結して配置されている。
FIG. 1 is a view showing an inner surface of a high temperature component constituting an inner surface cooling structure according to the present invention, FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is a sectional view taken along line BB in FIG.
The inner surface 10 of the high-temperature component constituting the present invention has dimples 12, bumps 14 and ribs 16 on its surface as heat transfer promoting members.
The dimples 12 are concave portions, each having a constant pitch in the flow direction of the cooling gas 1 (cooling air in this example) (the left-right direction in FIGS. 1 and 2) and the direction perpendicular thereto (up-down direction in FIGS. 1 and 2). They are arranged at p1 and p2. The cooling gas 1 is not limited to cooling air, and may be a cooling gas having a temperature lower than that of the high temperature gas.
The bumps 14 are protrusions, and are arranged in a staggered manner with respect to the dimples 12 at a constant pitch p1 and p2 in the flow direction of the cooling air 1 and in the direction perpendicular thereto.
The ribs 16 extend in a direction orthogonal to the flow direction of the cooling air 1 and are connected between the bumps 14.

この例において、ディンプル12は、直径d、深さh、曲面の直径Dの凹部であり、後述の例では、h=0.167d、D=1.667d、p1=1.667d、p2=1.667dである。
バンプ14は、底部直径d1、頂部直径d2、高さh1の切頭円錐形状であり、後述の例では、d1=d、d2=0.733d、h1=0.1333d、p1=1.667d、p2=1.667dである。
リブ16は、バンプ14間を連結する高さh2の矩形の棒状部材であり、後述の例では、h2=0.0833dである。
なお、本発明はこれらの寸法に限定されず、任意に変更することができる。また、この例ではバンプ14はディンプル12に対して1/2ピッチずれた千鳥配置であるが本発明はこれに限定されず、1/2ピッチ以外のピッチでずれた配置であってもよい。
In this example, the dimple 12 is a recess having a diameter d, a depth h, and a curved surface diameter D. In the example described later, h = 0.167d, D = 1.667d, p1 = 1.667d, p2 = 1. .667d.
The bump 14 has a truncated conical shape having a bottom diameter d1, a top diameter d2, and a height h1, and in the example described later, d1 = d, d2 = 0.733d, h1 = 0.133d, p1 = 1.667d, p2 = 1.667d.
The rib 16 is a rectangular bar-shaped member having a height h2 that connects the bumps 14, and in the example described later, h2 = 0.0833d.
In addition, this invention is not limited to these dimensions, It can change arbitrarily. Further, in this example, the bumps 14 are arranged in a staggered manner with a deviation of ½ pitch with respect to the dimple 12, but the present invention is not limited to this, and may be arranged with a deviation other than ½ pitch.

図4は、本発明の内面冷却構造の第1実施形態を示す図である。この図において、(A)は冷却空気の流れ方向のディンプル12の中心位置に沿った断面図であり、(B)はバンプ14の中心位置に沿った断面図である。
また、図5は図4の構成における空気流路の形状を示す斜視図である。
FIG. 4 is a view showing a first embodiment of the inner surface cooling structure of the present invention. In this figure, (A) is a cross-sectional view along the center position of the dimple 12 in the flow direction of the cooling air, and (B) is a cross-sectional view along the center position of the bump 14.
FIG. 5 is a perspective view showing the shape of the air flow path in the configuration of FIG.

図4、図5の内面冷却構造について、流路のレイノルズ数Reを約10に設定し、内面と流体間のヌセルト数NuをCFDを用いて解析した結果、平板の場合に較べて約1.32倍の値が得られた。
従って、図4、図5の内面冷却構造は少なくとも平板同士より高い熱伝達性能を有することが確認された。
4, the inner surface cooling structure of FIG. 5, and set the Reynolds number Re of the flow channel to about 104, as a result of the Nusselt number Nu between the inner surfaces and the fluid was analyzed using CFD, approximately as compared with the case of the flat plate 1 A value of .32 times was obtained.
Therefore, it was confirmed that the inner surface cooling structure of FIGS. 4 and 5 has a higher heat transfer performance than at least the flat plates.

図6は、本発明の内面冷却構造の第2実施形態を示す図である。この例では、互いに対向する内面の一方のディンプル12と他方のバンプ14が面全体で同一位置に整合している。
この例では、ディンプル12とバンプ14の位置が一致しているので、この部分で冷却空気が内面に沿って流れるだけでなく、内面に直交する流れ成分を有する。従って、膜冷却やインピンジ冷却に似た冷却構造を併用することができ、熱伝達率を第1実施形態よりも一層高めることができる。
なお、本発明はこの構成に限定されず、ディンプル12とバンプ14の位置が、流れ方向及びこれに直交する方向において1/2ピッチ以内で整合してもよい。
FIG. 6 is a view showing a second embodiment of the inner surface cooling structure of the present invention. In this example, one dimple 12 and the other bump 14 on the inner surfaces facing each other are aligned at the same position over the entire surface.
In this example, since the positions of the dimple 12 and the bump 14 coincide with each other, the cooling air not only flows along the inner surface but also has a flow component orthogonal to the inner surface. Therefore, a cooling structure similar to film cooling or impingement cooling can be used in combination, and the heat transfer coefficient can be further increased than in the first embodiment.
The present invention is not limited to this configuration, and the positions of the dimples 12 and the bumps 14 may be aligned within a ½ pitch in the flow direction and the direction orthogonal thereto.

上述した本発明の構成によれば、隙間Hを隔てて対向しその間に冷却ガス1(冷却空気)が流れる1対又は複数対の内面10に、熱伝達率を高めるように熱伝達促進部材(ディンプル12、バンプ14及びリブ16)が配置されているので、冷却空気1と各内面10との間の熱伝達率を高めることができる。   According to the above-described configuration of the present invention, the heat transfer promotion member (in order to increase the heat transfer rate on the pair or the plurality of pairs of inner surfaces 10 through which the cooling gas 1 (cooling air) flows with the gap H therebetween. Since the dimples 12, the bumps 14, and the ribs 16) are arranged, the heat transfer coefficient between the cooling air 1 and each inner surface 10 can be increased.

また、この熱伝達促進部材をディンプル12、バンプ14、及びリブ16で構成し、それぞれ一定のピッチp1、p2で様々な冷却構造を併用するこことで、全面にわたって高い冷却性能を発揮できる。
また、互いに対向する内面10を直接連結する伝熱部材(例えばピン)を用いないので、高温部品の内部の空洞部分が多く、軽量化が可能である。
さらに、互いに対向する内面10の一方のディンプル12と他方のバンプ14が整合し、または流れ方向及びこれに直交する方向において1/2ピッチ以内で整合する構成により、冷却空気が内面に沿って流れるだけでなく、内面に直交する流れ成分を有するので、膜冷却やインピンジ冷却を併用することができ、熱伝達率を一層高めることができる。
Further, the heat transfer promoting member is constituted by the dimples 12, the bumps 14, and the ribs 16, and various cooling structures are used in combination with the constant pitches p1 and p2, respectively, so that high cooling performance can be exhibited over the entire surface.
In addition, since heat transfer members (for example, pins) that directly connect the inner surfaces 10 facing each other are not used, there are many hollow portions inside the high-temperature component, and the weight can be reduced.
Further, the cooling air flows along the inner surface by the configuration in which one dimple 12 and the other bump 14 of the inner surface 10 facing each other are aligned or aligned within ½ pitch in the flow direction and the direction orthogonal thereto. In addition, since it has a flow component orthogonal to the inner surface, film cooling and impingement cooling can be used together, and the heat transfer rate can be further increased.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。
例えば、上述した例と相違し、以下の構成であってもよい。
(1)バンプはディンプルよりも径が小さくてもよい。
(2)バンプの上底径(頂部直径)と下底径(底部直径)の比率、リブとバンプの高さ比率、バンプと2枚の板の隙間間隔の比率、ディンプルの径とピッチの比率は、いずれも上述した例に限定されない。
(3)第1実施形態と第2実施形態の中間的な配置であってもよい。つまり、2枚の冷却構造構成要素の対向のさせ方において、流れと垂直方向のずらし量が、0ピッチ、0.5ピッチ以外の構造であってもよい。
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
For example, unlike the example described above, the following configuration may be used.
(1) The bump may have a smaller diameter than the dimple.
(2) The ratio of the upper base diameter (top diameter) to the lower base diameter (bottom diameter) of the bump, the height ratio of the rib to the bump, the ratio of the gap between the bump and the two plates, the ratio of the dimple diameter to the pitch Are not limited to the examples described above.
(3) An intermediate arrangement between the first embodiment and the second embodiment may be used. That is, in the method of making the two cooling structure components face each other, the shift amount in the direction perpendicular to the flow may be a structure other than 0 pitch or 0.5 pitch.

本発明による内面冷却構造を構成する部材内面を示す図である。It is a figure which shows the member inner surface which comprises the inner surface cooling structure by this invention. 図1のA部の拡大図である。It is an enlarged view of the A section of FIG. 図2のB−B断面図である。It is BB sectional drawing of FIG. 本発明の内面冷却構造の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the inner surface cooling structure of this invention. 図4の構成における空気流路の形状を示す斜視図である。It is a perspective view which shows the shape of the air flow path in the structure of FIG. 本発明の内面冷却構造の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the inner surface cooling structure of this invention. 特許文献1の内面冷却構造の模式図である。It is a schematic diagram of the internal surface cooling structure of patent document 1. FIG. 特許文献2の翼冷却構造の模式図である。It is a schematic diagram of the blade | wing cooling structure of patent document 2.

符号の説明Explanation of symbols

1 冷却ガス(冷却空気)、10 内面、
12 ディンプル、14 バンプ、
16 リブ
1 cooling gas (cooling air), 10 inner surface,
12 dimples, 14 bumps,
16 Ribs

Claims (3)

外面が高温ガスで加熱される高温部品の内面を高温ガスより低温度の冷却ガスで冷却する高温部品の内面冷却構造であって、
隙間を隔てて対向しその間に前記冷却ガスが流れる1対又は複数対の内面と、
該各内面に設けられ熱伝達率を高めるように配置された熱伝達促進部材と、を備え
前記熱伝達促進部材は、前記各内面に設けられたディンプル、バンプ、及びリブからなり、
ディンプルは、前記冷却ガスの流れ方向及びこれに直交する方向にそれぞれ一定のピッチで配置され、
バンプは、前記ディンプルに対して千鳥配置に前記流れ方向及びこれに直交する方向にそれぞれ一定のピッチで配置され、
リブは、前記流れ方向に直交する方向に延びかつ前記バンプ間を連結して配置されており、
互いに対向する内面の一方のディンプルと他方のバンプが整合し、または前記流れ方向及びこれに直交する方向において1/2ピッチ以内で整合しており、
前記バンプは、切頭円錐形状であり、その底部直径が頂部直径より大きく、高さが内面間の隙間の1/2未満である、ことを特徴とする高温部品の内面冷却構造。
An inner surface cooling structure for a high-temperature component that cools an inner surface of a high-temperature component whose outer surface is heated by a high-temperature gas with a cooling gas having a lower temperature than the high-temperature gas
A pair or a plurality of pairs of inner surfaces facing each other with a gap therebetween and through which the cooling gas flows;
A heat transfer facilitating member provided on each inner surface and arranged to increase the heat transfer rate ,
The heat transfer promotion member is composed of dimples, bumps, and ribs provided on each inner surface,
The dimples are arranged at a constant pitch in the cooling gas flow direction and in a direction perpendicular thereto,
The bumps are arranged at a constant pitch in the flow direction and in a direction perpendicular to the flow direction in a staggered arrangement with respect to the dimples,
The rib extends in a direction perpendicular to the flow direction and is connected between the bumps.
One dimple and the other bump on the inner surfaces facing each other are aligned, or are aligned within ½ pitch in the flow direction and the direction orthogonal thereto,
The bump has a frustoconical shape, and has a bottom diameter larger than the top diameter and a height less than half of the gap between the inner surfaces.
前記ディンプルは、内面形状が球面の凹部であり、その直径がバンプの底部直径と同一またはそれより大きく、その深さがバンプの高さより低い、ことを特徴とする請求項1に記載の高温部品の内面冷却構造。2. The high-temperature component according to claim 1, wherein the dimple is a concave portion having a spherical inner surface, the diameter is equal to or larger than the bottom diameter of the bump, and the depth is lower than the height of the bump. Internal cooling structure. 前記リブは、矩形の棒状部材であり、その高さがバンプの高さより低い、ことを特徴とする請求項1に記載の高温部品の内面冷却構造。The internal rib cooling structure for a high-temperature component according to claim 1, wherein the rib is a rectangular bar-shaped member, and the height thereof is lower than the height of the bump.
JP2007214587A 2007-08-21 2007-08-21 Internal cooling structure for high temperature parts Active JP4930276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214587A JP4930276B2 (en) 2007-08-21 2007-08-21 Internal cooling structure for high temperature parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214587A JP4930276B2 (en) 2007-08-21 2007-08-21 Internal cooling structure for high temperature parts

Publications (2)

Publication Number Publication Date
JP2009047085A JP2009047085A (en) 2009-03-05
JP4930276B2 true JP4930276B2 (en) 2012-05-16

Family

ID=40499525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214587A Active JP4930276B2 (en) 2007-08-21 2007-08-21 Internal cooling structure for high temperature parts

Country Status (1)

Country Link
JP (1) JP4930276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105401983A (en) * 2015-12-24 2016-03-16 河北工业大学 Upstream structure for improving outer cooling effect of component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243502B2 (en) * 2012-04-24 2016-01-26 United Technologies Corporation Airfoil cooling enhancement and method of making the same
KR101800128B1 (en) * 2016-07-04 2017-11-21 두산중공업 주식회사 Gas Turbine Blade
CN111397426A (en) * 2020-03-16 2020-07-10 南京理工大学 Enhanced heat transfer device for weakening heat stratification of pipeline section
CN112324517B (en) * 2020-10-19 2023-03-14 中国人民解放军海军工程大学 Design method of air film cooling hole with Coanda bulge
CN113356931B (en) * 2021-06-30 2022-12-09 西安交通大学 Modeling micro-pit structure for enhancing cooling performance of blade trailing edge slotting wall surface
CN115013075B (en) * 2022-08-10 2022-12-06 中国航发四川燃气涡轮研究院 Anti-slip pattern-shaped turbulence rib and turbine blade

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695320A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having auxiliary turbulators
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
US7186084B2 (en) * 2003-11-19 2007-03-06 General Electric Company Hot gas path component with mesh and dimpled cooling
US6984102B2 (en) * 2003-11-19 2006-01-10 General Electric Company Hot gas path component with mesh and turbulated cooling
US7217092B2 (en) * 2004-04-14 2007-05-15 General Electric Company Method and apparatus for reducing turbine blade temperatures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105401983A (en) * 2015-12-24 2016-03-16 河北工业大学 Upstream structure for improving outer cooling effect of component

Also Published As

Publication number Publication date
JP2009047085A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4930276B2 (en) Internal cooling structure for high temperature parts
EP1873354B1 (en) Leading edge cooling using chevron trip strips
JP6928995B2 (en) Tapered cooling channel for wings
EP1870561B1 (en) Leading edge cooling of a gas turbine component using staggered turbulator strips
US9551227B2 (en) Component cooling channel
JP4929097B2 (en) Gas turbine blade
US20190170445A1 (en) High temperature plate fin heat exchanger
US7513745B2 (en) Advanced turbulator arrangements for microcircuits
JP5898841B2 (en) Enhanced heat transfer in the internal cavity of a turbine engine airfoil
US8955333B2 (en) Heat exchange bulkhead
JP2018096376A (en) Vane cooling structure
JP6245740B2 (en) Gas turbine blade
US11414998B2 (en) Turbine blade and gas turbine
JP2005147130A (en) High temperature gas passage component with mesh type and vortex type cooling
JP6967920B2 (en) A method for forming a seal for a gas turbine engine having a shim base and a large number of cavities formed inside, and a seal for a gas turbine engine.
JP2009174531A (en) Turbine casing equipped with fake flange
EP2607624A1 (en) Vane for a turbomachine
US9903209B2 (en) Rotor blade and guide vane airfoil for a gas turbine engine
JP6169859B2 (en) Turbine bucket with core cavity with contoured bend
US9376960B2 (en) Heat transfer augmented fluid flow surfaces
JP5360265B2 (en) Internal cooling structure for high temperature parts
US20170138204A1 (en) Cooling structure and gas turbine
JP5029960B2 (en) Internal cooling structure for high temperature parts
JP5524137B2 (en) Gas turbine blade
JP6239127B2 (en) Turbine blade with an internal cooling system having a trip strip with reduced pressure drop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4930276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250