JP4930271B2 - Fuel fluid joint - Google Patents

Fuel fluid joint Download PDF

Info

Publication number
JP4930271B2
JP4930271B2 JP2007211077A JP2007211077A JP4930271B2 JP 4930271 B2 JP4930271 B2 JP 4930271B2 JP 2007211077 A JP2007211077 A JP 2007211077A JP 2007211077 A JP2007211077 A JP 2007211077A JP 4930271 B2 JP4930271 B2 JP 4930271B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel fluid
information
fuel
motomeko
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007211077A
Other languages
Japanese (ja)
Other versions
JP2008078125A (en
Inventor
康博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007211077A priority Critical patent/JP4930271B2/en
Publication of JP2008078125A publication Critical patent/JP2008078125A/en
Application granted granted Critical
Publication of JP4930271B2 publication Critical patent/JP4930271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Pipeline Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、いわゆる水素デリバリーシステムのような燃料電池への燃料流体供給システムにおいて用いられる燃料流体用継ぎ手に関するものである。   The present invention relates to a fuel fluid joint used in a fuel fluid supply system to a fuel cell such as a so-called hydrogen delivery system.

燃料電池は、燃料気体である水素及び酸素(空気)を供給することで発電体において起電力を発生させる装置であり、通常、電解質膜(プロトン伝導体膜)を気体電極で挟んだ構造を有し、所望の起電力を得る構造となっている。このような燃料電池は、電気自動車やハイブリット式車両への応用が期待されており、実用化に向けて開発が進められているが、かかる用途の他、軽量化や小型化が容易であるという利点を活かして、これとは全く異なる新たな用途への応用も検討されている。例えば携帯可能な電気機器において、現状の乾電池や充電式電池に代わる新たな電源としての用途等である。   A fuel cell is a device that generates an electromotive force in a power generator by supplying hydrogen and oxygen (air), which are fuel gases, and usually has a structure in which an electrolyte membrane (proton conductor membrane) is sandwiched between gas electrodes. Thus, a desired electromotive force is obtained. Such fuel cells are expected to be applied to electric vehicles and hybrid vehicles, and are being developed for practical use. In addition to these uses, it is easy to reduce weight and size. Taking advantage of this, application to new uses that are completely different from this is also being studied. For example, in a portable electric device, it is used as a new power source to replace the current dry battery or rechargeable battery.

ところで、前記いずれの用途においても、必要に応じて燃料電池に燃料気体である水素を手軽に安定供給できることが必要であり、いわゆる水素デリバリーシステムの構築が不可欠である。   By the way, in any of the above applications, it is necessary to easily and stably supply hydrogen, which is a fuel gas, to the fuel cell as necessary, and the construction of a so-called hydrogen delivery system is indispensable.

このような水素デリバリーシステムを構築する場合、燃料流体のサーバ(水素サーバ)と燃料電池間のインターフェースを確保することが重要である。例えば、燃料流体の貯蔵部をカートリッジ化して燃料カートリッジとし、これを介して水素サーバから燃料電池の発電体へと水素を供給するシステムでは、必要充填量や最適ガス流量、燃料カートリッジに用いられている吸蔵体の種類等の情報が不可欠であり、これら情報に応じてサーバ等を適正に制御する必要がある。   When constructing such a hydrogen delivery system, it is important to secure an interface between the fuel fluid server (hydrogen server) and the fuel cell. For example, in a system that supplies fuel from a hydrogen server to a power generator of a fuel cell via a fuel fluid storage unit made into a cartridge and used as a fuel cartridge, the required filling amount, optimum gas flow rate, and fuel cartridge are used. Information such as the type of the occlusion body is indispensable, and it is necessary to appropriately control the server and the like according to the information.

また、例えば燃料カートリッジの温度管理等も必要である。吸蔵体による燃料ガス(水素ガス)の吸蔵・放出を利用する場合、通常、吸蔵体は燃料流体の吸蔵時に発熱し、逆に放出時には吸熱するが、これに応じて、温度コントロールを行うことが好ましい。   Further, for example, temperature management of the fuel cartridge is necessary. When using occlusion / release of fuel gas (hydrogen gas) by the occlusion body, the occlusion body usually generates heat during occlusion of the fuel fluid and conversely absorbs heat when released, but the temperature can be controlled accordingly. preferable.

本発明は、これら種々の要求に応えることを目的に提案されたものである。すなわち、本発明は、各種情報を記憶、表示、伝達する機能を有する新規な燃料ガス用継ぎ手を提供することを目的とする。本発明はまた、温度コントロールが可能な燃料流体用継ぎ手を提供することを目的とする。   The present invention has been proposed for the purpose of meeting these various requirements. That is, an object of the present invention is to provide a novel fuel gas joint having a function of storing, displaying, and transmitting various types of information. Another object of the present invention is to provide a fuel fluid joint capable of temperature control.

上述の目的を達成するために、本発明の燃料流体用継ぎ手は、燃料流体流入口及び燃料流体流出口を有し、燃料流体供給サーバと発電体の間に介在される燃料流体用継ぎ手において、燃料流体を吸蔵する吸蔵体が収容された燃料流体貯蔵部を有し、情報の記憶、情報の表示、情報の伝達のうちの少なくとも1以上の機能を有すると共に、燃料流体流入側及び燃料流体流出側に流量計を有し、かつ放熱板の間隔または角度を調整することにより、内部の温度を制御する温度制御機構を有するものである。 In order to achieve the above-mentioned object, a fuel fluid joint according to the present invention has a fuel fluid inlet and a fuel fluid outlet, and is a fuel fluid joint interposed between a fuel fluid supply server and a power generator. A fuel fluid storage section that stores a storage body that stores fuel fluid, and has at least one of the functions of storing information, displaying information, and transmitting information. It has a flowmeter on the side and a temperature control mechanism that controls the internal temperature by adjusting the interval or angle of the heat sink .

前記構成を有する本発明の燃料流体用継ぎ手においては、必要充填量情報、充填回数情報、燃料流体流量情報、燃料流体残量情報、吸蔵体種類情報等の各種情報を記憶、表示、伝達することが可能であり、これら情報に基づいて燃料流体供給サーバ等を適正に制御することが可能となる。   In the fuel fluid joint of the present invention having the above-described configuration, various kinds of information such as necessary filling amount information, filling number information, fuel fluid flow rate information, fuel fluid remaining amount information, and occlusion body type information are stored, displayed, and transmitted. It is possible to properly control the fuel fluid supply server and the like based on these information.

また、本発明の燃料流体用継ぎ手は、上記構成に加えて温度制御機構を有することを特徴とするものである。上記温度制御機構を有することにより、温度コントロールが可能となり、例えば燃料流体貯蔵部の吸蔵体が発熱した場合には速やかに放熱を促すことが可能である。   In addition to the above-described structure, the fuel fluid joint of the present invention has a temperature control mechanism. By having the temperature control mechanism, it is possible to control the temperature. For example, when the occlusion body of the fuel fluid storage section generates heat, it is possible to promptly release heat.

本発明の燃料流体用継ぎ手によれば、各種情報を記憶、表示、伝達することが可能であり、これら情報に基づいて燃料流体供給サーバ等を適正に制御することが可能である。また、本発明の燃料流体用継ぎ手は、温度コントロールが可能であり、例えば燃料流体貯蔵部の吸蔵体が発熱した場合には速やかに放熱を促すことが可能である。   According to the fuel fluid joint of the present invention, various types of information can be stored, displayed, and transmitted, and the fuel fluid supply server and the like can be appropriately controlled based on the information. In addition, the fuel fluid joint according to the present invention can control the temperature. For example, when the occlusion body of the fuel fluid storage section generates heat, it is possible to promptly release heat.

以下、本発明を適用した燃料流体用継ぎ手について、図面を参照しながら詳細に説明する。   Hereinafter, a fuel fluid joint to which the present invention is applied will be described in detail with reference to the drawings.

図1は、燃料流体の一例として水素ガスを水素サーバから燃料電池の発電セルへ供給する水素デリバリーシステムの一例を示すものである。この水素デリバリーシステムにおいては、水素サーバ1から供給される水素を、燃料流体用継ぎ手に相当する水素デリバリー2を介して燃料電池の発電セル3に供給する。   FIG. 1 shows an example of a hydrogen delivery system that supplies hydrogen gas as an example of a fuel fluid from a hydrogen server to a power generation cell of a fuel cell. In this hydrogen delivery system, hydrogen supplied from a hydrogen server 1 is supplied to a power generation cell 3 of a fuel cell via a hydrogen delivery 2 corresponding to a fuel fluid joint.

上記水素デリバリー2は、水素ガスを吸蔵・放出する水素吸蔵体を収容した水素カートリッジ21を備え、連結部22において水素サーバ1の連結部11と接続され、水素ガスの授受が行われる。同様に、連結部23において発電セル3の連結部31と連結され、水素ガスの授受が行われる。したがって、水素サーバ1から供給される水素ガスは、一度水素デリバリー2の水素カートリッジ21に吸蔵され、流量を調整しながら発電セル3へと供給される。   The hydrogen delivery 2 includes a hydrogen cartridge 21 that contains a hydrogen storage body that stores and releases hydrogen gas. The hydrogen delivery 2 is connected to the connecting portion 11 of the hydrogen server 1 at a connecting portion 22 to exchange hydrogen gas. Similarly, in the connection part 23, it connects with the connection part 31 of the electric power generation cell 3, and transfer of hydrogen gas is performed. Accordingly, the hydrogen gas supplied from the hydrogen server 1 is once stored in the hydrogen cartridge 21 of the hydrogen delivery 2 and supplied to the power generation cell 3 while adjusting the flow rate.

ここで特徴的なのは、上記水素デリバリー2が、各種情報を記憶、表示、あるいは伝達する機能を有することである。例えば、本例の水素デリバリー2は、必要充填量情報、充填回数情報、燃料流体流量情報、燃料流体残量情報、吸蔵体種類情報等の情報を記憶することが可能であり、これを表示したり、さらには水素サーバ1側、あるいは燃料電池の発電セル3側へ伝達する機能を有する。   What is characteristic here is that the hydrogen delivery 2 has a function of storing, displaying, or transmitting various information. For example, the hydrogen delivery 2 of this example can store information such as necessary filling amount information, filling number information, fuel fluid flow rate information, fuel fluid remaining amount information, occlusion body type information, and the like. Furthermore, it has a function of transmitting to the hydrogen server 1 side or the power generation cell 3 side of the fuel cell.

これらの機能を具体的に説明すると、先ず、上記水素デリバリー2は、水素サーバ1と接続される水素ガス流入側及び発電セル3と接続される水素ガス流出側に、それぞれ流量計及び流入量メモリ(あるいは流出量メモリ)からなる流量計測部24a,24bを搭載している。ここで、水素サーバ1から供給される水素ガスの流量は、上記流量計測部24aの流量計で計測され、流入量メモリに記憶される。同様に、発電セル3へ供給される水素ガスの流量は、上記流量計測部24bの流量計で計測され、流出量メモリに記憶される。そして、これら流入量メモリと流出量メモリとから水素カートリッジ21における水素残量が算出され、残量表示部25に表示される。   When these functions are specifically described, first, the hydrogen delivery 2 has a flow meter and an inflow amount memory on the hydrogen gas inflow side connected to the hydrogen server 1 and the hydrogen gas outflow side connected to the power generation cell 3, respectively. The flow rate measuring units 24a and 24b composed of (or outflow amount memory) are mounted. Here, the flow rate of the hydrogen gas supplied from the hydrogen server 1 is measured by the flow meter of the flow rate measuring unit 24a and stored in the inflow amount memory. Similarly, the flow rate of the hydrogen gas supplied to the power generation cell 3 is measured by the flow meter of the flow rate measuring unit 24b and stored in the outflow amount memory. Then, the remaining amount of hydrogen in the hydrogen cartridge 21 is calculated from the inflow amount memory and the outflow amount memory and displayed on the remaining amount display unit 25.

上記残量が算出されれば、上記水素カートリッジ21への必要充填量を計算することができる。上記水素デリバリー2は、水素サーバ1へ情報を伝達するための情報伝達部26a及び発電セル3へ情報を伝達するための情報伝達部26bを有するが、この必要充填量情報は、情報伝達部26aを介して水素サーバ1へと伝達され、水素カートリッジ21への水素充填量が制御される。   If the remaining amount is calculated, the required filling amount to the hydrogen cartridge 21 can be calculated. The hydrogen delivery 2 includes an information transmission unit 26a for transmitting information to the hydrogen server 1 and an information transmission unit 26b for transmitting information to the power generation cell 3. The necessary filling amount information is stored in the information transmission unit 26a. To the hydrogen server 1 and the amount of hydrogen charged in the hydrogen cartridge 21 is controlled.

上記水素デリバリー2は、上記必要充填量情報の他、水素ガスの充填回数の表示や伝達も可能である。この充填回数情報は、水素デリバリー2の水素サーバ1への接続回数、あるいは上記流量計の動作回数によりカウントすることができる。例えば、水素デリバリー2が水素サーバ1に接続された時に接点の接続回数を電気的、あるいは機械的にカウントし、充填回数メモリ27において記憶する。この記憶された充填回数情報は、充填回数表示部28において表示されるとともに、水素サーバ1から水素デリバリー2に水素ガスを供給し吸蔵させる時に、上記情報伝達部26aを介して水素サーバ1側へと伝達される。水素サーバ1は、この伝達された充填回数情報に基づいて供給圧力等を適正な値に調整する。水素カートリッジ21に収容される吸蔵体は、一般的に、吸蔵・放出を繰り返すうちに水素吸蔵能がある程度劣化する。このような場合、劣化の程度に応じて最適供給圧を設定することが望ましく、上記充填回数情報に基づく供給圧力の調整は有効である。   In addition to the necessary filling amount information, the hydrogen delivery 2 can display and transmit the number of filling times of hydrogen gas. This filling number information can be counted by the number of times the hydrogen delivery 2 is connected to the hydrogen server 1 or the number of operations of the flow meter. For example, when the hydrogen delivery 2 is connected to the hydrogen server 1, the connection number of contacts is counted electrically or mechanically and stored in the filling number memory 27. The stored number-of-fills information is displayed on the number-of-fills display unit 28, and when hydrogen gas is supplied from the hydrogen server 1 to the hydrogen delivery 2 and stored, the hydrogen server 1 is passed through the information transmission unit 26a. Communicated. The hydrogen server 1 adjusts the supply pressure and the like to an appropriate value based on the transmitted number-of-fills information. In general, the occlusion body accommodated in the hydrogen cartridge 21 deteriorates to some extent in the hydrogen occlusion capacity while repeating occlusion / release. In such a case, it is desirable to set the optimum supply pressure in accordance with the degree of deterioration, and adjustment of the supply pressure based on the filling number information is effective.

なお、上記水素カートリッジ21を交換した場合には、上記充填回数情報はリセットされ、新たにカウントされる。この充填回数情報のリセットは、例えば水素カートリッジ21を水素デリバリー2から取り外した時にこれを検知し、充填回数メモリ27に記憶された充填回数をリセットすればよい。   When the hydrogen cartridge 21 is replaced, the filling number information is reset and newly counted. The filling number information may be reset when the hydrogen cartridge 21 is removed from the hydrogen delivery 2, for example, and the filling number stored in the filling number memory 27 may be reset.

上記水素デリバリー2は、上記の他、水素カートリッジ21に収容される吸蔵体の種類を記憶、表示し、水素サーバ1等へ伝達する機能も有する。水素カートリッジ21に収容される水素吸蔵体の種類が異なると、最適供給圧や充填可能容量等が異なることが多く、したがって、吸蔵体の種類に応じて水素サーバ1の供給圧力等を適正に設定することが望ましい。そこで、水素カートリッジ21に収容される吸蔵体の種類をメモリに記憶しておき、これを吸蔵体種類表示部29に表示する。また、水素デリバリー2が水素サーバ1と接続された時に、吸蔵体種類情報を上記情報伝達部26aを介して水素サーバ1側に伝達し、これに応じて水素サーバ1の供給圧や充填容量等を調整する。このとき、上記吸蔵体の種類は、吸蔵体を水素カートリッジ21に入れた時点でメモリに入力すればよい。   In addition to the above, the hydrogen delivery 2 also has a function of storing and displaying the type of the occlusion body accommodated in the hydrogen cartridge 21 and transmitting it to the hydrogen server 1 and the like. When the type of the hydrogen storage body accommodated in the hydrogen cartridge 21 is different, the optimum supply pressure, the chargeable capacity, and the like are often different. Therefore, the supply pressure of the hydrogen server 1 is appropriately set according to the type of the storage body. It is desirable to do. Therefore, the type of the occlusion body accommodated in the hydrogen cartridge 21 is stored in the memory and displayed on the occlusion body type display unit 29. Further, when the hydrogen delivery 2 is connected to the hydrogen server 1, the occlusion body type information is transmitted to the hydrogen server 1 side through the information transmission unit 26a, and the supply pressure, the filling capacity, etc. of the hydrogen server 1 are correspondingly transmitted. Adjust. At this time, the type of the occlusion body may be input to the memory when the occlusion body is put in the hydrogen cartridge 21.

以上は、主に水素デリバリー2側の情報の記憶、表示、伝達に関するものであるが、例えば燃料電池の発電セル3側の情報を水素デリバリー2側に伝達し、これに基づいて水素デリバリー2を制御するようにすることも可能である。具体的には、発電セル3からの必要流量情報に基づき、水素デリバリー2からの供給ガス流量を調整する。   The above mainly relates to storage, display, and transmission of information on the hydrogen delivery 2 side. For example, information on the power generation cell 3 side of the fuel cell is transmitted to the hydrogen delivery 2 side, and the hydrogen delivery 2 is determined based on this information. It is also possible to control. Specifically, the supply gas flow rate from the hydrogen delivery 2 is adjusted based on the necessary flow rate information from the power generation cell 3.

図2は、水素デリバリー2及び発電セル3間におけるガス流量調整機構を示すものである。水素デリバリー2から燃料電池の発電セル3への水素ガスの供給は、水素デリバリー2に設けられた連結部23と発電セル3の連結部31とを連結することによって行われる。水素デリバリー2の連結部23は、発電セル3の連結部31に挿入されることによって流路が連通されており、O−リング33によって密閉状態が保たれている。発電セル3の連結部31の中心には、ガス流量情報ピン34が設けられており、その先端が水素デリバリー2の連結部23の開口部23aに挿入された形になっている。したがって、水素デリバリー2からの水素ガスは、水素デリバリー2の開口部23aを通り、当該開口部23aとガス流量情報ピン34の間隙を通って、発電セル3側の連結部31に設けられたガス導入孔35から発電セル3へと供給される。   FIG. 2 shows a gas flow rate adjusting mechanism between the hydrogen delivery 2 and the power generation cell 3. The supply of hydrogen gas from the hydrogen delivery 2 to the power generation cell 3 of the fuel cell is performed by connecting a connection portion 23 provided in the hydrogen delivery 2 and a connection portion 31 of the power generation cell 3. The connecting portion 23 of the hydrogen delivery 2 is inserted into the connecting portion 31 of the power generation cell 3 so that the flow path is communicated, and the sealed state is maintained by the O-ring 33. A gas flow rate information pin 34 is provided at the center of the connecting portion 31 of the power generation cell 3, and its tip is inserted into the opening 23 a of the connecting portion 23 of the hydrogen delivery 2. Therefore, the hydrogen gas from the hydrogen delivery 2 passes through the opening 23a of the hydrogen delivery 2, passes through the gap between the opening 23a and the gas flow rate information pin 34, and is provided in the connecting portion 31 on the power generation cell 3 side. It is supplied to the power generation cell 3 from the introduction hole 35.

このとき、上記ガス流量情報ピン34の先端形状が先細り形状とされており、この発電セル3側のガス流量情報ピン34の長さによって水素デリバリー2側のニードル(開口部23a)の絞り量を決定するような構造とされている。例えば、発電セル3側のガス流量情報ピン34の長さが長くなれば、水素デリバリー2側の開口部23aとの間隔が小さくなり、水素ガスの流量が少なくなる。逆に、発電セル3側のガス流量情報ピン34の長さが短くなれば、水素デリバリー2側の開口部23aとの間隔が大きくなり、水素ガスの流量が多くなる。したがって、発電セル3の適正流量に応じて上記ガス流量情報ピン34の長さを決定しておけば、水素デリバリー2と発電セル3とを連結したときに、自ずと最適流量に設定されることになる。   At this time, the tip shape of the gas flow rate information pin 34 is tapered, and the throttle amount of the needle (opening 23a) on the hydrogen delivery 2 side is determined by the length of the gas flow rate information pin 34 on the power generation cell 3 side. The structure is determined. For example, if the length of the gas flow rate information pin 34 on the power generation cell 3 side is increased, the distance from the opening 23a on the hydrogen delivery 2 side is reduced, and the flow rate of hydrogen gas is reduced. Conversely, if the length of the gas flow rate information pin 34 on the power generation cell 3 side is shortened, the distance from the opening 23a on the hydrogen delivery 2 side is increased, and the flow rate of hydrogen gas is increased. Therefore, if the length of the gas flow rate information pin 34 is determined in accordance with the appropriate flow rate of the power generation cell 3, the optimal flow rate is automatically set when the hydrogen delivery 2 and the power generation cell 3 are connected. Become.

本例の水素デリバリー2には、上述の情報記憶、情報表示、情報伝達の機能の他、内部温度を検出し制御する温度制御機構を備えている。以下、この温度制御機構について説明する。   The hydrogen delivery 2 of this example is provided with a temperature control mechanism for detecting and controlling the internal temperature in addition to the above-described information storage, information display, and information transmission functions. Hereinafter, this temperature control mechanism will be described.

上記温度制御機構は、例えば、水素デリバリー2内部の温度を検出し、バイメタルや形状記憶合金等を用い、放熱板の角度や間隔の調整により温度コントロールを行うものである。図3は、形状記憶合金のコイルを用いた温度制御機構の一例を示すものである。本例では、温度が上昇したときに伸び(間隔が開き)、冷却されたときに縮む(間隔が狭まる)ように形状記憶させた形状記憶合金製のコイルバネ41に1ターン毎に多数の冷却フィン(放熱板)42を取り付け、温度コントロールを行うような構造を採用している。   The temperature control mechanism detects, for example, the temperature inside the hydrogen delivery 2 and uses a bimetal, a shape memory alloy, or the like to control the temperature by adjusting the angle and interval of the heat sink. FIG. 3 shows an example of a temperature control mechanism using a shape memory alloy coil. In this example, a number of cooling fins are provided for each turn on a coil spring 41 made of a shape memory alloy that is stretched (intervals open) when the temperature rises and contracts (intervals narrows) when cooled. A (heat radiating plate) 42 is attached and a structure for controlling the temperature is adopted.

この温度制御機構では、温度が低い状態では、図3(A)に示すように、コイルバネ41は縮んだ状態を保ち、各冷却フィン42は互いに密接して、いわば閉じた状態となっている。この状態では放熱効率が悪く、放熱効果は少ない。これに対して、水素デリバリー2の温度が上昇すると、図3(B)に示すように、形状記憶合金製のコイルバネ41が開き、コイルバネ41の1ターン毎に取り付けられた冷却フィン42同士の間隔が開き、実質的な放熱面積が増大する。これによって放熱効果が増し、水素デリバリー2の温度を下げる方向に機能する。   In this temperature control mechanism, when the temperature is low, as shown in FIG. 3A, the coil spring 41 is kept in a contracted state, and the cooling fins 42 are in close contact with each other, that is, in a closed state. In this state, the heat dissipation efficiency is poor and the heat dissipation effect is small. On the other hand, when the temperature of the hydrogen delivery 2 rises, as shown in FIG. 3 (B), the coil spring 41 made of shape memory alloy is opened, and the spacing between the cooling fins 42 attached every turn of the coil spring 41 is increased. Opens and the substantial heat radiation area increases. This increases the heat dissipation effect and functions to lower the temperature of the hydrogen delivery 2.

なお、上記の構造を採用した場合、水素デリバリー2の温度が低すぎる場合の温度制御が難しい。そこで、そのような場合には、発電セル3の発熱を利用して、温度コントロールを行えばよく、上記放熱機構と組み合わせることで、広い温度範囲での温度制御が可能となる。   In addition, when said structure is employ | adopted, temperature control when the temperature of the hydrogen delivery 2 is too low is difficult. Therefore, in such a case, the temperature control may be performed using the heat generated by the power generation cell 3, and the temperature control in a wide temperature range is possible by combining with the heat dissipation mechanism.

また、温度制御機構の構成としては、これに限らず、例えばペルチェ素子に電流を流すことで温度制御を行うことも可能である。図4は、ペルチェ素子を利用した温度制御機構の一例を示すものである。すなわち、この温度制御機構では、水素デリバリー2の表面にペルチェ素子を組み込んだペルチェモジュール43を貼り付け、ペルチェ素子に流す電流を制御する電流制御部44を接続しておく。また、水素デリバリー2の表面には、温度センサ45を併せて貼り付けておく。そして、温度センサ45からの温度情報に応じて、ペルチェ素子に所定の向きの電流を流し、冷却または加熱を行う。ペルチェ素子は、流す電流の方向によって冷却と加熱が切り替わる。そこで、水素デリバリー2の温度が高い場合には、これを冷却するように所定の方向に電流を流す。水素デリバリー2の温度が低い場合には、逆方向に電流を流し、水素デリバリー2を加熱する。   Further, the configuration of the temperature control mechanism is not limited to this, and for example, temperature control can be performed by passing a current through the Peltier element. FIG. 4 shows an example of a temperature control mechanism using a Peltier element. That is, in this temperature control mechanism, a Peltier module 43 incorporating a Peltier element is attached to the surface of the hydrogen delivery 2, and a current control unit 44 that controls the current flowing through the Peltier element is connected. In addition, a temperature sensor 45 is attached to the surface of the hydrogen delivery 2 together. And according to the temperature information from the temperature sensor 45, the electric current of a predetermined direction is sent through a Peltier device, and it cools or heats. In the Peltier element, cooling and heating are switched depending on the direction of the flowing current. Therefore, when the temperature of the hydrogen delivery 2 is high, an electric current is passed in a predetermined direction so as to cool it. When the temperature of the hydrogen delivery 2 is low, an electric current is passed in the reverse direction to heat the hydrogen delivery 2.

次に、燃料充填器(水素サーバ1)からカートリッジ(水素デリバリー2)へ水素ガスを充填する場合のシーケンス例について説明する。本例は、水素吸蔵体を収容した携帯型の水素カートリッジ(水素デリバリー2)に高圧水素タンクを持つ燃料充填器(水素サーバ1)から水素を充填する場合の例である。   Next, a sequence example in the case of filling hydrogen gas from the fuel filler (hydrogen server 1) to the cartridge (hydrogen delivery 2) will be described. In this example, hydrogen is filled from a fuel filling device (hydrogen server 1) having a high-pressure hydrogen tank into a portable hydrogen cartridge (hydrogen delivery 2) containing a hydrogen storage body.

先ず、水素サーバ1側は、下記のような制御パラメータと管理アイテムを有する。
・水素デリバリー2に使用されている吸蔵体の種類毎の充填圧力、充填容量、充填時の許容最高温度等
・水素デリバリー2の容量と充填ガス量の最大値
・効率的な充填を行うための充填量と時間との関係曲線
First, the hydrogen server 1 side has the following control parameters and management items.
・ Filling pressure, filling capacity, maximum allowable temperature during filling, etc. for each type of occlusion material used in hydrogen delivery 2 ・ Maximum capacity of hydrogen delivery 2 and amount of filling gas ・ For efficient filling Relationship curve between filling amount and time

一方、水素デリバリー2側は、水素サーバ1に関する下記の情報を有する。
・使われている吸蔵体の種類
・水素カートリッジ21の最大容量
・周囲温度
・水素カートリッジ21内の温度
On the other hand, the hydrogen delivery 2 side has the following information regarding the hydrogen server 1.
・ The type of occlusion material used ・ Maximum capacity of the hydrogen cartridge 21 ・ Ambient temperature ・ The temperature inside the hydrogen cartridge 21

水素デリバリー2を水素サーバ1に接続し、水素ガスの充填を行う際には、水素サーバ1に水素デリバリー2を接続し、充填を開始する。このとき、先ず、水素サーバ1から水素デリバリー2側に対して接続確認信号を送信する。ここで水素デリバリー2側から接続確認信号の返信が無ければ、アラームを発して水素ガスの充填を中止する。水素デリバリー2側から接続確認信号が来た場合には、水素デリバリー2の水素カートリッジ21の仕様、例えば吸蔵体の種類や容量等を確認する。水素デリバリー2側は、水素サーバ1に対して前記仕様の情報を送信する。水素サーバ1は、水素デリバリー2から送られた情報と予め用意された各種パラメータを基にして、充填圧力、許容充填量等を計算し、充填のための制御を決定する。   When the hydrogen delivery 2 is connected to the hydrogen server 1 and hydrogen gas is charged, the hydrogen delivery 2 is connected to the hydrogen server 1 and filling is started. At this time, first, a connection confirmation signal is transmitted from the hydrogen server 1 to the hydrogen delivery 2 side. If no connection confirmation signal is returned from the hydrogen delivery 2 side, an alarm is issued and the filling of hydrogen gas is stopped. When a connection confirmation signal is received from the hydrogen delivery 2 side, the specifications of the hydrogen cartridge 21 of the hydrogen delivery 2 such as the type and capacity of the occlusion body are confirmed. The hydrogen delivery 2 side transmits information on the specifications to the hydrogen server 1. The hydrogen server 1 calculates the filling pressure, the allowable filling amount, etc. based on the information sent from the hydrogen delivery 2 and various parameters prepared in advance, and determines the control for filling.

次いで、水素サーバ1は水素デリバリー2側に充填開始のメッセージを送信し、水素デリバリー2は水素サーバ1に充填開始の確認メッセージを送信する。これにより、先に定めた充填制御方法に従い水素ガスの充填を開始する。水素ガス充填中、水素サーバ1は水素デリバリー2に対して、適当な時間間隔で水素カートリッジ21内外の温度や圧力等を問い合わせる。そして、充填中に異常な温度上昇や圧力変化があった場合には、直ちに充填を中止する。   Next, the hydrogen server 1 transmits a filling start message to the hydrogen delivery 2 side, and the hydrogen delivery 2 transmits a filling start confirmation message to the hydrogen server 1. Thereby, the filling of hydrogen gas is started in accordance with the previously defined filling control method. During the hydrogen gas filling, the hydrogen server 1 inquires of the hydrogen delivery 2 about the temperature and pressure inside and outside the hydrogen cartridge 21 at an appropriate time interval. If an abnormal temperature rise or pressure change occurs during filling, the filling is immediately stopped.

全てのシーケンスが終了した時点で、水素サーバ1 は水素デリバリー2側に充填終了メッセージを送信する。水素デリバリー2は、水素サーバ1側に充填終了確認のメッセージを送信する。これにより水素サーバ1は、バルブや圧力調整弁等をクローズする。水素デリバリー2側も同様にクローズし、それを水素サーバ1側に返信する。水素ガスの充填全工程が終了したことを確認した後、水素カートリッジ取り外し可能であることを知らせる。以上が水素デリバリー2(水素カートリッジ21)への充填シーケンスの例である。   When all the sequences are completed, the hydrogen server 1 transmits a filling completion message to the hydrogen delivery 2 side. The hydrogen delivery 2 transmits a message for confirming the completion of filling to the hydrogen server 1 side. Thereby, the hydrogen server 1 closes a valve, a pressure regulating valve, and the like. Similarly, the hydrogen delivery 2 side is closed, and this is returned to the hydrogen server 1 side. After confirming that the entire hydrogen gas filling process has been completed, it is notified that the hydrogen cartridge can be removed. The above is an example of the filling sequence to the hydrogen delivery 2 (hydrogen cartridge 21).

なお、上記において、水素サーバ1と水素デリバリー2の間の通信は、例えば連結部の水素ガス流路を利用して光の通信によって行う。図5は、光の通信によって情報の授受を行うようにした場合の水素サーバ及び水素デリバリーの構成例を示すものである。   In addition, in the above, communication between the hydrogen server 1 and the hydrogen delivery 2 is performed by optical communication using, for example, a hydrogen gas flow path of the connecting portion. FIG. 5 shows a configuration example of a hydrogen server and a hydrogen delivery when information is exchanged by optical communication.

図5に示すように、水素サーバ51は、水素タンク52を備えるとともに、この水素タンク52の圧力を調整する圧力調整機構53及びバルブ54を備え、これらを入出力回路55によって制御するような構成を有している。この入出力回路55には、圧力センサ56及び温度センサ57の情報が入力されるとともに、水素デリバリーとの間の情報の授受を行う受光部58からの信号が増幅回路59及び復調回路60を介して入力されるようになっている。また、逆に入出力回路55からの信号が、変調回路62及び増幅回路61を経て、発光部63へと出力されるようになっている。   As shown in FIG. 5, the hydrogen server 51 includes a hydrogen tank 52, a pressure adjusting mechanism 53 that adjusts the pressure of the hydrogen tank 52, and a valve 54, and these are controlled by an input / output circuit 55. have. Information from the pressure sensor 56 and the temperature sensor 57 is input to the input / output circuit 55, and a signal from the light receiving unit 58 that transmits and receives information to and from the hydrogen delivery is passed through the amplification circuit 59 and the demodulation circuit 60. To be entered. Conversely, a signal from the input / output circuit 55 is output to the light emitting unit 63 via the modulation circuit 62 and the amplification circuit 61.

上記水素サーバ51は、固定情報としてタンク容量、許容最大圧力、吸蔵体の種類、過去の使用回数等を持ち、さらには、接続の有無の判断、センサ読み込み、固定情報の処理、残量の計算、充填条件の計算、充填時間の算出等の演算処理機能を有する。   The hydrogen server 51 has, as fixed information, a tank capacity, an allowable maximum pressure, a type of occlusion body, the number of times of past use, and the like, and further, determination of presence / absence of connection, sensor reading, processing of fixed information, calculation of remaining amount And an arithmetic processing function such as calculation of filling conditions and calculation of filling time.

一方、水素デリバリー71も、通信のための受光部72及び発光部73を備え、水素ガスの流路である燃料受け渡し管74を介して光による情報の伝達が可能である。したがって、上記充填シーケンスにおける情報の伝達は、上記水素サーバ51の受光部58及び発光部63と、この水素デリバリー71の受光部72及び発光部73間での信号のやり取りによって行われる。   On the other hand, the hydrogen delivery 71 also includes a light receiving part 72 and a light emitting part 73 for communication, and information can be transmitted by light through a fuel delivery pipe 74 that is a hydrogen gas flow path. Therefore, transmission of information in the filling sequence is performed by exchanging signals between the light receiving unit 58 and the light emitting unit 63 of the hydrogen server 51 and the light receiving unit 72 and the light emitting unit 73 of the hydrogen delivery 71.

最後に、燃料電池の発電セル3の基本的な構成及び起電力が発生するメカニズムについて説明する。燃料電池の発電セルは、例えば図6、図7に示すように、燃料気体である水素が接する燃料極81と、同じく空気(酸素)が接する空気極82とを電解質83を介して重ね合わせてなるものであり、その両側を集電体84で挟み込むことにより構成されている。集電体84は、集電性能が高く酸化水蒸気雰囲気下でも安定な緻密質のグラファイトなどからなり、燃料極81と対向する面には水素が供給される水平方向の溝84aが、空気極82と対向する面には空気が供給される垂直方向の溝84bが形成されている。   Finally, a basic configuration of the power generation cell 3 of the fuel cell and a mechanism for generating an electromotive force will be described. For example, as shown in FIGS. 6 and 7, a power generation cell of a fuel cell has a fuel electrode 81 in contact with hydrogen, which is a fuel gas, and an air electrode 82 in contact with air (oxygen) through an electrolyte 83. And is configured by sandwiching both sides thereof with a current collector 84. The current collector 84 is made of dense graphite or the like that has high current collecting performance and is stable even in an oxidative steam atmosphere. A horizontal groove 84 a to which hydrogen is supplied is provided on the surface facing the fuel electrode 81, and the air electrode 82. A vertical groove 84b through which air is supplied is formed on the surface facing the surface.

上記燃料極81や空気極82は、図7に示すように、電解質83を挟んで形成されており、それぞれガス拡散電極81a,82aと触媒層81b,82bとからなる。ここで、ガス拡散電極81a,82aは、多孔質材料などからなり、触媒層81b,82bは、例えば白金などの電極触媒を担持させたカーボン粒子と電解質の混合物からなる。   As shown in FIG. 7, the fuel electrode 81 and the air electrode 82 are formed with an electrolyte 83 sandwiched therebetween, and are composed of gas diffusion electrodes 81a and 82a and catalyst layers 81b and 82b, respectively. Here, the gas diffusion electrodes 81a and 82a are made of a porous material, and the catalyst layers 81b and 82b are made of a mixture of carbon particles carrying an electrode catalyst such as platinum and an electrolyte.

燃料電池は、以上を基本単位(燃料電池セル)として、例えばこれを複数積層したスタック構造を有しており、これら複数の燃料電池セルが直列接続されることにより所定の電圧を得るような構成となっている。   The fuel cell has the above-described basic unit (fuel cell), for example, a stack structure in which a plurality of the fuel cells are stacked, and a configuration in which a predetermined voltage is obtained by connecting the plurality of fuel cells in series. It has become.

上記構成の燃料電池においては、水素ガスを上記燃料極81と接するように集電体84に形成された溝84a内に流入させるとともに、空気(酸素)を上記空気極82と接するように溝84b内に流入させると、燃料極81側では反応式
2 →2H+ +2e-
で示される反応が起こるとともに、空気極82側では反応式
1/2O2 +2H+ +2e- →H2 O+反応熱Q
で示される反応が起こり、全体では
2 +1/2O2 →H2
で示される反応が起こることになる。すなわち、燃料極81にて水素が電子を放出してプロトン化し、電解質83を通って空気極82側に移動し、空気極82にて電子の供給を受けて酸素と反応する。かかる電気化学反応に基いて起電力が得られる。
In the fuel cell configured as described above, hydrogen gas is allowed to flow into the groove 84a formed in the current collector 84 so as to be in contact with the fuel electrode 81, and air (oxygen) is supplied to the groove 84b so as to be in contact with the air electrode 82. When flowing into the fuel electrode 81, the reaction formula H 2 → 2H + + 2e
And the reaction formula 1 / 2O 2 + 2H + + 2e → H 2 O + reaction heat Q on the air electrode 82 side.
The reaction shown by this occurs, and as a whole, H 2 + 1 / 2O 2 → H 2 O
The reaction indicated by will occur. That is, hydrogen emits electrons and protonates at the fuel electrode 81, moves to the air electrode 82 side through the electrolyte 83, and receives the supply of electrons at the air electrode 82 to react with oxygen. An electromotive force is obtained based on the electrochemical reaction.

なお、上述の実施の形態において、燃料としては水素ガスに限らず、液化水素、メタン、エタン、プロパン、イソブタン、n―ブタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、メタノール、その他の燃料を用いることが可能である。   In the above embodiment, the fuel is not limited to hydrogen gas, but liquefied hydrogen, methane, ethane, propane, isobutane, n-butane, hexane, heptane, octane, nonane, decane, methanol, and other fuels are used. It is possible.

本発明を適用した燃料流体用継ぎ手(水素デリバリー)を用いた水素デリバリーシステムの一例を示す模式図である。It is a schematic diagram which shows an example of the hydrogen delivery system using the joint (hydrogen delivery) for fuel fluid to which this invention is applied. ガス流量調整機構の一例を示す要部概略断面図である。It is a principal part schematic sectional drawing which shows an example of a gas flow volume adjustment mechanism. 形状記憶合金を用いた温度調整機構の一例を示す模式図であり、(A)はコイルバネが縮んだ状態を示し、(B)はコイルバネが開いた状態を示す。It is a schematic diagram which shows an example of the temperature control mechanism using a shape memory alloy, (A) shows the state which the coil spring contracted, (B) shows the state which the coil spring opened. ペルチェ素子を用いた温度調整機構の一例を示す模式図である。It is a schematic diagram which shows an example of the temperature adjustment mechanism using a Peltier device. 光による情報伝達機構の一例を示すブロック図である。It is a block diagram which shows an example of the information transmission mechanism by light. 燃料電池の基本的な構造例を示す分解斜視図である。It is a disassembled perspective view which shows the basic structural example of a fuel cell. 燃料電池の電極の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the electrode of a fuel cell.

符号の説明Explanation of symbols

1…水素サーバ、2…水素デリバリー、3…発電セル、21…水素カートリッジ、22,23…連結部、25…残量表示部、26a,26b…情報伝達部、28…充填回数表示部、29…吸蔵体種類表示部、41…コイルバネ、42…冷却フィン、43…ペルチェモジュール、44…電流制御部、45…温度センサ DESCRIPTION OF SYMBOLS 1 ... Hydrogen server, 2 ... Hydrogen delivery, 3 ... Power generation cell, 21 ... Hydrogen cartridge, 22, 23 ... Connection part, 25 ... Remaining amount display part, 26a, 26b ... Information transmission part, 28 ... Filling frequency display part, 29 ... occlusion body type display unit, 41 ... coil spring, 42 ... cooling fin, 43 ... Peltier module, 44 ... current control unit, 45 ... temperature sensor

Claims (8)

燃料流体流入口及び燃料流体流出口を有し、燃料流体供給サーバと発電体の間に介在される燃料流体用継ぎ手において、
燃料流体を吸蔵する吸蔵体が収容された燃料流体貯蔵部を有し、情報の記憶、情報の表示、情報の伝達のうちの少なくとも1以上の機能を有すると共に、
燃料流体流入側及び燃料流体流出側に流量計を有し、かつ
放熱板の間隔または角度を調整することにより、内部の温度を制御する温度制御機構を有する
料流体用継ぎ手。
In a fuel fluid joint having a fuel fluid inlet and a fuel fluid outlet and interposed between the fuel fluid supply server and the power generator,
A fuel fluid storage section in which a storage body for storing a fuel fluid is accommodated, and has at least one function of storing information, displaying information, and transmitting information;
Have flow meters on the fuel fluid inflow side and fuel fluid outflow side , and
It has a temperature control mechanism that controls the internal temperature by adjusting the spacing or angle of the heat sink
Fuel fluid fittings.
前記流量計により計測される流入量及び流出量を記憶するメモリを有し、流入量メモリと流出量メモリから残量を算出して表示する
求項1記載の燃料流体用継ぎ手。
It has a memory that stores the inflow and outflow measured by the flow meter, and calculates and displays the remaining amount from the inflow and outflow memories.
Motomeko first fuel fluid joint according.
前記発電体からの情報により必要流量が調整される
求項1記載の燃料流体用継ぎ手。
The required flow rate is adjusted by information from the power generator.
Motomeko first fuel fluid joint according.
前記発電体に設けられたガス流量情報ピンにより前記必要流量が調整される
求項3記載の燃料流体用継ぎ手。
The required flow rate is adjusted by a gas flow rate information pin provided on the power generator.
Motomeko 3 fuel fluid joint according.
前記ガス流量情報ピンの長さにより流出口の絞り量が調整される
求項4記載の燃料流体用継ぎ手。
The throttle amount of the outlet is adjusted by the length of the gas flow rate information pin.
Motomeko 4 fuel fluid joint according.
前記放熱板の間隔または角度の調整は、バイメタルまたは形状記憶合金により行う
求項記載の燃料流体用継ぎ手。
Adjustment of the space | interval or angle of the said heat sink is performed with a bimetal or a shape memory alloy.
Motomeko first fuel fluid joint according.
前記温度制御機構は、形状記憶合金からなるコイルバネに放熱板を取り付けた構造を有する
求項記載の燃料流体用継ぎ手。
The temperature control mechanism has a structure in which a heat sink is attached to a coil spring made of a shape memory alloy.
Fuel fluid joint Motomeko 6 wherein.
前記温度制御機構は、温度センサとペルチェ素子とから構成される
求項記載の燃料流体用継ぎ手。
The temperature control mechanism includes a temperature sensor and a Peltier element.
Motomeko 7 fuel fluid joint according.
JP2007211077A 2001-10-02 2007-08-13 Fuel fluid joint Expired - Lifetime JP4930271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211077A JP4930271B2 (en) 2001-10-02 2007-08-13 Fuel fluid joint

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001306288 2001-10-02
JP2001306288 2001-10-02
JP2007211077A JP4930271B2 (en) 2001-10-02 2007-08-13 Fuel fluid joint

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002267843A Division JP4281315B2 (en) 2001-10-02 2002-09-13 Fuel fluid joint

Publications (2)

Publication Number Publication Date
JP2008078125A JP2008078125A (en) 2008-04-03
JP4930271B2 true JP4930271B2 (en) 2012-05-16

Family

ID=39349945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211077A Expired - Lifetime JP4930271B2 (en) 2001-10-02 2007-08-13 Fuel fluid joint

Country Status (1)

Country Link
JP (1) JP4930271B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337908B1 (en) * 2011-12-01 2013-12-09 기아자동차주식회사 Hydrogen safety charging system and method using real-time tank deformation data of fuel cell vehicle
CN104133493A (en) * 2014-06-17 2014-11-05 北京航天发射技术研究所 Data processing method for mass measurement of filled gas of filling tank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2604228B2 (en) * 1989-03-30 1997-04-30 三洋電機株式会社 Hydrogen gas sensor
US5953922A (en) * 1998-01-20 1999-09-21 Stetson; Ned T. Metal hydride hydrogen storage container with valved ports
JP2000046587A (en) * 1998-07-31 2000-02-18 Equos Research Co Ltd Display unit for fuel cell vehicle
JP2000106206A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Fuel cell system
JP2001042950A (en) * 1999-08-02 2001-02-16 Denso Corp Hydrogen gas pressure buffer device and hydrogen gas pressure buffering method

Also Published As

Publication number Publication date
JP2008078125A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4281315B2 (en) Fuel fluid joint
TWI302603B (en) Fuel gauge for fuel cartridges
EP2789073B1 (en) Systems and methods for managing a fuel cell
CN102449837B (en) Solid electrolyte fuel cell
US6758981B2 (en) Method and apparatus for by-product removal in a hydrogen generation system
US20020160237A1 (en) Electrochemical conversion system
US20060216557A1 (en) Fuel cell system and method of operating fuel cell system
JP4930271B2 (en) Fuel fluid joint
CN102035005B (en) Solid oxide fuel cell device
CN102035006B (en) Solid oxide fuel cell device
CN102195059A (en) Solid oxide fuel cell
KR20110033955A (en) Hydrogen generation device and fuel cell system equipped with same
JP4296741B2 (en) Cogeneration system
US7867297B2 (en) Reactor, fuel cell system and electronic equipment
US6686076B2 (en) Electrochemical conversion system
JP2002333100A (en) Hydrogen remaining amount detecting device and hydrogen supply method for hydrogen storage tank
EP1273057B1 (en) Electrochemical conversion system using hydrogen storage materials
CN102263276A (en) Fuel cell system and a method for controlling the fuel cell system
JP2004281072A (en) Fuel cell power generation device
JPH06314569A (en) Hybrid fuel cell
JP5151345B2 (en) Fuel container and power generation system
JP5233094B2 (en) Hydrogen generation system, fuel cell system and fuel cell vehicle
KR20070035854A (en) Fuel cell system having fuel concentration measuring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4930271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term