JP4929968B2 - Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same - Google Patents

Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same Download PDF

Info

Publication number
JP4929968B2
JP4929968B2 JP2006282029A JP2006282029A JP4929968B2 JP 4929968 B2 JP4929968 B2 JP 4929968B2 JP 2006282029 A JP2006282029 A JP 2006282029A JP 2006282029 A JP2006282029 A JP 2006282029A JP 4929968 B2 JP4929968 B2 JP 4929968B2
Authority
JP
Japan
Prior art keywords
hollow body
floating bush
spindle
axial direction
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006282029A
Other languages
Japanese (ja)
Other versions
JP2008095931A (en
Inventor
成香 吉本
正明 宮武
秀夫 小澤
琢哉 平山
博嗣 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2006282029A priority Critical patent/JP4929968B2/en
Publication of JP2008095931A publication Critical patent/JP2008095931A/en
Application granted granted Critical
Publication of JP4929968B2 publication Critical patent/JP4929968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、浮動ブッシュを用いた静圧気体軸受機構並びに斯かる静圧気体軸受機構を用いた軸回転装置、特に、小径のドリル等の切削工具を高速で回転させることができるスピンドルモータに関する。   The present invention relates to a static pressure gas bearing mechanism using a floating bush and a shaft rotating device using such a static pressure gas bearing mechanism, and more particularly to a spindle motor capable of rotating a cutting tool such as a small-diameter drill at high speed.

吉本成香、他2名、「浮動ブシュ静圧気体ジャーナル軸受に関する研究」(第1報,スロット絞りを用いた場合)、日本機械学会論文集(C編)56巻521号(1990−1)p116−121Naruyoshi Yoshimoto and two others, "Study on floating bush hydrostatic gas journal bearings" (1st report, using slot restriction), Transactions of the Japan Society of Mechanical Engineers (C), Volume 56, No. 521 (1990-1), p116 -121 吉本成香、他1名、「浮動ブッシュを用いた可変絞り形静圧気体ジャーナル軸受に関する研究」(静的特性)、日本機械学会論文集(C編)61巻591号(1995−11)p321−327Naruyoshi Yoshimoto and one other, "Study on Variable-Throttle Hydrostatic Gas Journal Bearing Using Floating Bush" (Static Characteristics), Transactions of the Japan Society of Mechanical Engineers (C) Vol.61 No.591 (1995-11) p321 327

孔明けドリル等の切削工具を高速で回転させるスピンドルモータでは、情報機械の小型化、高性能化により微細加工の高精度化、高速化の要求が高まっており、特に、電子回路のプリント基板に対する孔明け用のドリル最小径は、100μm以下となり、これに伴い孔明け用のスピンドルには、切削速度を確保し加工効率を上げるために、高速回転と高精度回転とが求められている。   In spindle motors that rotate cutting tools such as drilling drills at high speeds, there is a growing demand for higher precision and higher speeds in microfabrication due to downsizing and higher performance of information machines. The minimum drill diameter for drilling is 100 μm or less, and accordingly, a spindle for drilling is required to have high-speed rotation and high-precision rotation in order to ensure cutting speed and increase processing efficiency.

スピンドルモータにおいてスピンドルを回転自在に支持するために自成絞り又はオリフィス絞りを用いた静圧気体軸受では、軸受剛性、軸受隙間距離、軸受隙間での減衰特性、軸の慣性モーメント等により決定される1次共振速度の約2倍で自励振動(ホワール現象)が発生しスピンドルの回転動作が不安定となり、そのスピンドルの最高回転速度は、軸受剛性、軸受隙間距離、軸受隙間での減衰特性、軸の慣性モーメント等により異なるが、おおよそ15万rpmであって、それ以上になると、自励振動によってスピンドルの回転動作が不安定となる。   In a static pressure gas bearing that uses a self-formed throttle or orifice throttle to rotatably support the spindle in a spindle motor, it is determined by bearing rigidity, bearing gap distance, damping characteristics in the bearing gap, shaft inertia moment, etc. About twice as much as the primary resonance speed, self-excited vibration (Whirl phenomenon) occurs and the rotation of the spindle becomes unstable. The maximum rotation speed of the spindle is the bearing rigidity, bearing gap distance, damping characteristics in the bearing gap, Although it depends on the moment of inertia of the shaft, etc., it is approximately 150,000 rpm, and if it exceeds that, the rotational operation of the spindle becomes unstable due to self-excited vibration.

例えば非特許文献1及び2で提案されている浮動ブッシュを用いた静圧気体軸受機構では、比較的高い剛性と優れた高速安定性とを得ることができるとされているが、斯かる静圧気体軸受機構は、浮動ブッシュの外周面及び内周面周りの軸受隙間への高圧空気の給気が浮動ブッシュの両端面側からのみに限られているため、外周面及び内周面における軸受隙間での浮動ブッシュの径方向の振動の減衰を効果的に得ることが困難であって、浮動ブッシュを用いた提案の静圧気体軸受機構においても、より高い1次共振速度とすることができず、その安定限界速度は、1300rps程度であって、15万rpm以上を得ることができない。   For example, in the static pressure gas bearing mechanism using the floating bush proposed in Non-Patent Documents 1 and 2, it is said that relatively high rigidity and excellent high-speed stability can be obtained. In the gas bearing mechanism, the supply of high-pressure air to the bearing clearance around the outer peripheral surface and inner peripheral surface of the floating bush is limited only from both end surfaces of the floating bush. It is difficult to effectively attenuate the vibration of the floating bush in the radial direction, and even in the proposed hydrostatic gas bearing mechanism using the floating bush, a higher primary resonance speed cannot be achieved. The stability limit speed is about 1300 rps, and 150,000 rpm or more cannot be obtained.

加えて、非特許文献1及び2に記載の静圧気体軸受機構では、浮動ブッシュの外周面及び内周面周りへの高圧空気の給気を浮動ブッシュの両端面側から行うために、構造が複雑となり、製造原価の増大の要因となる。   In addition, in the static pressure gas bearing mechanism described in Non-Patent Documents 1 and 2, since the high pressure air is supplied from the both end surfaces of the floating bush to the outer peripheral surface and the inner peripheral surface of the floating bush, the structure is It becomes complicated and increases the manufacturing cost.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、比較的高い剛性と優れた高速安定性とを得ることができる浮動ブッシュの特長を利用でき、しかも、より高い1次共振速度とすることができて、安定限界速度を更に向上させることができると共に簡単な構造とし得る静圧気体軸受機構並びにこれを用いた軸回転装置及びスピンドルモータを提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to utilize the features of the floating bush that can obtain relatively high rigidity and excellent high-speed stability, and more An object is to provide a static pressure gas bearing mechanism capable of achieving a high primary resonance speed, further improving the stability limit speed, and having a simple structure, and a shaft rotating device and a spindle motor using the same. .

本発明の静圧気体軸受機構は、中空体と、この中空体に対して径方向及び軸方向において隙間をもって当該中空体の内部に配されている浮動ブッシュと、中空体及び浮動ブッシュに対して径方向及び軸方向において隙間をもって中空体の内部に配されていると共に中空体に対して回転自在である軸と、中空体の外部から中空体の内部への高圧空気の給気のための給気通路と、中空体の内部から中空体の外部への高圧空気の排気のための排気通路とを具備しており、浮動ブッシュは、軸方向に配列されていると共に円筒状の多孔質金属焼結体からなる少なくとも二個の浮動ブッシュ体を具備しており、軸は、二個の浮動ブッシュ体に対して径方向において隙間をもって当該二個の浮動ブッシュ体を貫通していると共に少なくとも一方の端部が中空体の外部に突出してなる軸本体と、軸本体に一体的に形成されていると共に二個の浮動ブッシュ体の間に当該二個の浮動ブッシュ体に対して軸方向において隙間をもって配されたフランジ部とを具備しており、中空体と軸との間に浮動状態で配された浮動ブッシュを介して軸を中空体に対して浮動状態で相対的に回転自在に支持するようになっている。   The static pressure gas bearing mechanism of the present invention includes a hollow body, a floating bush disposed inside the hollow body with a gap in a radial direction and an axial direction with respect to the hollow body, and the hollow body and the floating bush. A shaft that is arranged inside the hollow body with a gap in the radial direction and the axial direction and that is rotatable with respect to the hollow body, and supply of high-pressure air from the outside of the hollow body to the inside of the hollow body An air passage and an exhaust passage for exhausting high-pressure air from the inside of the hollow body to the outside of the hollow body, and the floating bush is arranged in the axial direction and has a cylindrical porous metal structure. At least two floating bush bodies made of a ligated body, and the shaft passes through the two floating bush bodies in a radial direction with respect to the two floating bush bodies and at least one of the floating bush bodies. Inside edge A shaft body that protrudes to the outside of the body, and a flange that is integrally formed with the shaft body and that is disposed between the two floating bush bodies with a gap in the axial direction with respect to the two floating bush bodies The shaft is supported so as to be relatively rotatable in a floating state with respect to the hollow body via a floating bush arranged in a floating state between the hollow body and the shaft. .

本発明の静圧気体軸受機構によれば、軸は、中空体と当該軸との間に浮動状態で配された浮動ブッシュを介して中空体に対して径方向及び軸方向において浮動状態で相対的に回転自在に支持されるようになっており、斯かる浮動ブッシュの二個の浮動ブッシュ体の夫々は、内部に多数の細孔を有すると共に表面で斯かる多数の細孔が開口した多孔質金属焼結体からなっているために、給気通路から中空体の内部へ給気された高圧空気を浮動ブッシュ体の内部の多数の細孔に導入でき、この導入された高圧空気を多数の細孔から再び両隙間に給気することができるために、両隙間を確実に確保でき、而して、両隙間距離を大きくしても高い剛性を維持できて、安定限界速度を更に向上させることができる。   According to the hydrostatic gas bearing mechanism of the present invention, the shaft is relatively floated in the radial direction and the axial direction with respect to the hollow body via the floating bush arranged in a floating state between the hollow body and the shaft. Each of the two floating bush bodies of the floating bush has a large number of pores inside and a porous surface with a large number of such pores open on the surface. Since it is made of a sintered metal, high-pressure air supplied from the air supply passage into the hollow body can be introduced into a large number of pores inside the floating bush body. Since the air can be supplied to both gaps again from the small pores, both gaps can be secured reliably, and even if the gap distance is increased, high rigidity can be maintained and the stability limit speed can be further improved. Can be made.

本発明の軸回転装置は、上記の静圧気体軸受機構と中空体の内部に設けられていると共に中空体に対して軸を相対的に回転させる回転手段とを具備している。   The shaft rotating device of the present invention includes the above-described static pressure gas bearing mechanism and a rotating means that is provided inside the hollow body and rotates the shaft relative to the hollow body.

軸回転装置の好ましい例としての本発明のスピンドルモータは、中空体、この中空体に対して径方向及び軸方向において隙間をもって当該中空体の内部に配されている浮動ブッシュ、中空体及び浮動ブッシュに対して径方向及び軸方向において隙間をもって配されていると共に中空体に対して回転自在であるスピンドル、中空体の外部から中空体の内部への高圧空気の給気のための給気通路及び中空体の内部から中空体の外部への高圧空気の排気のための排気通路を有した静圧気体軸受機構と、中空体の内部に設けられていると共に中空体に対してスピンドルを相対的に回転させる回転手段とを具備しているスピンドルモータであって、浮動ブッシュは、軸方向に配列されていると共に円筒状の多孔質金属焼結体からなる少なくとも二個の浮動ブッシュ体を具備しており、スピンドルは、二個の浮動ブッシュ体に対して径方向において隙間をもって当該二個の浮動ブッシュ体を貫通していると共に少なくとも一方の端部が中空体の外部に突出してなるスピンドル本体と、スピンドル本体に一体的に形成されていると共に二個の浮動ブッシュ体の間に当該二個の浮動ブッシュ体に対して軸方向において隙間をもって配されたフランジ部とを具備しており、静圧気体軸受機構は、中空体とスピンドルとの間に浮動状態で配された浮動ブッシュを介してスピンドルを中空体に対して浮動状態で相対的に回転自在に支持するようになっている。   A spindle motor of the present invention as a preferred example of a shaft rotating device includes a hollow body, a floating bush disposed in the hollow body with a gap in a radial direction and an axial direction with respect to the hollow body, the hollow body, and the floating bush A spindle that is arranged with a gap in the radial direction and in the axial direction and is rotatable with respect to the hollow body, an air supply passage for supplying high-pressure air from the outside of the hollow body to the inside of the hollow body, and A static pressure gas bearing mechanism having an exhaust passage for exhausting high-pressure air from the inside of the hollow body to the outside of the hollow body, and a spindle that is provided inside the hollow body and is relatively positioned relative to the hollow body A spindle motor having a rotating means for rotating, wherein the floating bush is arranged in the axial direction and has at least two floats made of a cylindrical porous metal sintered body. The spindle has a bush body, and the spindle penetrates the two floating bush bodies with a gap in the radial direction, and at least one end protrudes outside the hollow body. And a flange portion formed integrally with the spindle body and disposed between the two floating bush bodies with a gap in the axial direction with respect to the two floating bush bodies. The hydrostatic gas bearing mechanism is configured to support the spindle so as to be relatively rotatable in a floating state with respect to the hollow body via a floating bush arranged in a floating state between the hollow body and the spindle. ing.

浮動ブッシュ体は、好ましくは、その円筒状の外周面に少なくとも一つの環状溝を有している。   The floating bush preferably has at least one annular groove on its cylindrical outer peripheral surface.

斯かる環状溝を有していると、浮動ブッシュ体の内部の細孔への高圧空気の導入を確実に行い得、給気通路からの高圧空気を浮動ブッシュ体の内部の多数の細孔により確実に導入でき、而して、高圧空気を多数の細孔から再び両隙間に給気することができる結果、両隙間距離を大きくしてもより高い剛性を維持できて、安定限界速度をより向上させることができる。   By having such an annular groove, high-pressure air can be reliably introduced into the pores inside the floating bush body, and the high-pressure air from the air supply passage can be introduced by the numerous pores inside the floating bush body. As a result, high pressure air can be supplied to both gaps again from a large number of pores, so that even if the gap distance is increased, higher rigidity can be maintained, and the stability limit speed can be further increased. Can be improved.

多孔質金属焼結体は、少なくとも錫、燐及び銅を含み、更に、必要によりニッケル、クロム及びマンガンのうちの少なくとも一方を含んでいる金属粉末と、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んでいる無機質粉末とを混合、焼結してなるものを好ましい一例として挙げることができ、したがって、好ましくは本発明の静圧気体軸受機構の多孔質金属焼結体からなる浮動ブッシュ体は、金属部分は、少なくとも錫、燐及び銅を含んでおり、無機質部分は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んでおり、また他の好ましい例では本発明の静圧気体軸受機構の浮動ブッシュ体は、金属部分は、ニッケル、クロム及びマンガンのうちの少なくとも一つを更に含んでいるとよいが、本発明はこれらに限定されない。斯かる金属粉末と無機質粉末との混合物の焼成により多数の細孔からなる通路が浮動ブッシュ体内に形成される。更に、焼成後の多孔質金属焼結体の円筒状の外周面及び内周面並びに環状の両端面を含む表面に切削加工又は研削加工を施すことにより、多孔質金属焼結体の表面で開口する多孔質金属焼結体内の細孔に当該開口で絞りを形成することができ、このように表面に切削加工又は研削加工が施された多孔質金属焼結体からなる浮動ブッシュ体を用いることにより、浮動ブッシュ体内に導入された高圧空気を浮動ブッシュ体内の多数の細孔から表面の絞りを介して再び両隙間に噴出させて給気することができる結果、両隙間距離を大きくしても極めて高い剛性を維持できて、安定限界速度を更に向上させることができる。円筒状の外周面に環状溝を有した浮動ブッシュ体の場合には、環状溝を規定する多孔質金属焼結体の環状溝壁面には、当該環状溝壁面での開口では絞られない細孔として高圧空気が容易にこの絞られない開口を介して浮動ブッシュ体内の細孔に導入されるように、切削加工又は研削加工を施さないようにするとよい。浮動ブッシュ体内の多数の細孔の各径は、例示すれば平均80μm程度であって、切削加工又は研削加工後の絞られた細孔の各開口径は、例示すれば平均30μm程度である。   The porous metal sintered body contains at least tin, phosphorus, and copper, and further includes a metal powder containing at least one of nickel, chromium, and manganese, and graphite, boron nitride, fluorinated graphite, and fluoride. A preferable example is a product obtained by mixing and sintering an inorganic powder containing at least one of calcium, aluminum oxide, silicon oxide, and silicon carbide. Therefore, the static pressure of the present invention is preferably used. The floating bush body made of a porous metal sintered body of a gas bearing mechanism includes a metal portion containing at least tin, phosphorus and copper, and an inorganic portion including graphite, boron nitride, graphite fluoride, calcium fluoride, and oxidation. It contains at least one of aluminum, silicon oxide and silicon carbide, and in another preferred example, the float of the hydrostatic gas bearing mechanism of the present invention. Bush bodies, metal parts, nickel, may further comprise at least one of chromium and manganese, the invention is not limited thereto. By firing such a mixture of metal powder and inorganic powder, a passage composed of a large number of pores is formed in the floating bush. Furthermore, the surface of the porous metal sintered body is opened by cutting or grinding the surface including the cylindrical outer peripheral surface and inner peripheral surface and both end faces of the porous metal sintered body after firing. The aperture can be formed in the pores in the porous metal sintered body by the opening, and the floating bush body made of the porous metal sintered body whose surface is cut or ground is used. As a result, the high pressure air introduced into the floating bush can be supplied again from a large number of pores in the floating bush through the surface restriction and supplied to both the gaps. Extremely high rigidity can be maintained, and the stability limit speed can be further improved. In the case of a floating bush body having an annular groove on a cylindrical outer peripheral surface, the pores of the porous metal sintered body defining the annular groove are not narrowed by the opening in the annular groove wall surface. It is recommended that no cutting or grinding be performed so that high-pressure air can be easily introduced into the pores in the floating bush through this non-squeezed opening. Each diameter of a large number of pores in the floating bush is, for example, an average of about 80 μm, and each opening diameter of the narrowed pores after cutting or grinding is an average of about 30 μm.

回転手段は、フランジ部に固着されたタービン翼と、このタービン翼に高圧空気を給気する給気手段とを有したエアーモータを具備していても、これに代えて又はこれと共にフランジ部に固着された回転子と、この回転子を回転させる固定子とを有した電動モータを具備していてもよい。   The rotating means may include an air motor having a turbine blade fixed to the flange portion and an air supply means for supplying high-pressure air to the turbine blade. An electric motor having a fixed rotor and a stator for rotating the rotor may be provided.

本発明によれば、比較的高い剛性と優れた高速安定性とを得ることができる浮動ブッシュの特長を利用でき、しかも、より高い1次共振速度とすることができて、安定限界速度を更に向上させることができると共に簡単な構造とし得る静圧気体軸受機構並びにこれを用いた軸回転装置及びスピンドルモータを提供することができる。   According to the present invention, the characteristics of the floating bush capable of obtaining relatively high rigidity and excellent high-speed stability can be utilized, and a higher primary resonance speed can be obtained, and the stability limit speed can be further increased. It is possible to provide a static pressure gas bearing mechanism which can be improved and can have a simple structure, and a shaft rotating device and a spindle motor using the same.

次に本発明を、図に示す好ましい実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれら例に何等限定されないのである。   Next, the present invention will be described in more detail based on an example of a preferred embodiment shown in the drawings. The present invention is not limited to these examples.

図1から図4において、本例の軸回転装置としてのスピンドルモータ1は、静圧気体軸受機構2と回転手段3とを具備している。   1 to 4, a spindle motor 1 as a shaft rotating device of this example includes a static pressure gas bearing mechanism 2 and a rotating means 3.

静圧気体軸受機構2は、中空体11と、中空体11に対して径方向A及び軸方向Bにおいて隙間13をもって当該中空体11の内部14に配されている浮動ブッシュ15と、中空体11及び浮動ブッシュ15に対して径方向A及び軸方向Bにおいて隙間16をもって中空体11の内部14に配されていると共に中空体11に対して軸心Cを中心として方向Rに回転自在である軸としてのスピンドル17と、中空体11の外部18から中空体11の内部14への高圧空気の給気のための給気通路19と、中空体11の内部14から中空体11の外部18への高圧空気の排気のための排気通路20とを具備している。   The hydrostatic gas bearing mechanism 2 includes a hollow body 11, a floating bush 15 disposed in the inside 14 of the hollow body 11 with a gap 13 in the radial direction A and the axial direction B with respect to the hollow body 11, and the hollow body 11. A shaft that is arranged in the inside 14 of the hollow body 11 with a gap 16 in the radial direction A and the axial direction B with respect to the floating bush 15 and that is rotatable in the direction R about the axis C with respect to the hollow body 11. As a spindle 17, an air supply passage 19 for supplying high-pressure air from the outside 18 of the hollow body 11 to the inside 14 of the hollow body 11, and from the inside 14 of the hollow body 11 to the outside 18 of the hollow body 11. And an exhaust passage 20 for exhausting high-pressure air.

中空体11は、外側中空部材31と、外側中空部材31の内側に配された内側中空部材32とを具備しており、外側中空部材31は、円筒部材33と、円筒部材33の両端面に固着された蓋部材34及び35とを具備しており、内側中空部材32は、円筒部材33の円筒状の内周面36に固着された一対の円筒部材37及び38と、一対の円筒部材37及び38の対面する一端部間に配されていると共に当該一端部に固着された環状部材39と、円筒部材37及び38の他端部に固着された蓋部材40及び41とを具備している。   The hollow body 11 includes an outer hollow member 31 and an inner hollow member 32 disposed inside the outer hollow member 31, and the outer hollow member 31 is formed on the cylindrical member 33 and both end surfaces of the cylindrical member 33. The inner hollow member 32 includes a pair of cylindrical members 37 and 38 fixed to the cylindrical inner peripheral surface 36 of the cylindrical member 33, and a pair of cylindrical members 37. And 38, an annular member 39 disposed between the facing one end portions and fixed to the one end portion, and lid members 40 and 41 fixed to the other end portions of the cylindrical members 37 and 38. .

浮動ブッシュ15は、軸方向Bに配列されていると共に円筒状の多孔質金属焼結体からなる二個の浮動ブッシュ体45及び46を具備しており、少なくとも錫、燐及び銅を含んだ金属部分と、この金属部分に混合されていると共に黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んだ無機質部分とを有している浮動ブッシュ体45及び46の夫々は、その円筒状の外周面47に環状溝48を有している。   The floating bush 15 includes two floating bush bodies 45 and 46 that are arranged in the axial direction B and are formed of a cylindrical porous metal sintered body, and includes at least tin, phosphorus, and copper. And an inorganic portion mixed with the metal portion and containing at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. Each of the floating bush bodies 45 and 46 has an annular groove 48 on its cylindrical outer peripheral surface 47.

内部に多数の細孔を有すると共に当該多数の細孔の夫々が全表面で開口した浮動ブッシュ体45は、その外周面47と円筒部材37の内周面50との間に10μm程度の径方向Aの隙間51をもち、しかも、その一方の環状の端面52と蓋部材40の環状の内側面53との間に10μm程度の軸方向Bの隙間54をもって内側中空部材32の内部14に円筒部材37と同心に配されており、内部に多数の細孔を有すると共に当該多数の細孔の夫々が全表面で開口する浮動ブッシュ体46は、その外周面47と円筒部材38の内周面55との間に10μm程度の径方向Aの隙間56をもち、しかも、その一方の環状の端面57と蓋部材41の環状の内側面58との間に同じく10μm程度の軸方向Bの隙間59をもって内側中空部材32の内部14に円筒部材38と同心に配されている。   The floating bush body 45 having a large number of pores inside and having each of the numerous pores opened on the entire surface has a radial direction of about 10 μm between the outer peripheral surface 47 and the inner peripheral surface 50 of the cylindrical member 37. A cylindrical member is formed in the inside 14 of the inner hollow member 32 with a gap 51 of A and a gap 54 in the axial direction B of about 10 μm between one annular end surface 52 and the annular inner side surface 53 of the lid member 40. 37, the floating bush body 46 having a large number of pores therein and each of the numerous pores opening on the entire surface has an outer peripheral surface 47 and an inner peripheral surface 55 of the cylindrical member 38. Further, a gap 56 in the radial direction A of about 10 μm is provided, and an gap B in the axial direction B of about 10 μm is similarly provided between the one annular end surface 57 and the annular inner side surface 58 of the lid member 41. Inside the inner hollow member 32 It is arranged in the cylindrical member 38 concentric to.

スピンドル17は、二個の浮動ブッシュ体45及び46の円筒状の内周面65及び66に対して径方向Aにおいて外周面67が10μm程度の隙間68及び69をもって当該二個の浮動ブッシュ体45及び46を貫通していると共に中空体11の外部18に突出した一方の端部70を有した軸本体としてのスピンドル本体71と、スピンドル本体71に一体的に形成されていると共に二個の浮動ブッシュ体45及び46の互いに対面する他方の環状の端面72及び73間に当該二個の浮動ブッシュ体45及び46の環状の端面72及び73に対して側面74及び75が軸方向Bにおいて10μm程度の隙間76及び77をもって配された円環状のフランジ部78とを具備している。   The spindle 17 has two floating bush bodies 45 with gaps 68 and 69 having an outer peripheral surface 67 of about 10 μm in the radial direction A with respect to the cylindrical inner peripheral surfaces 65 and 66 of the two floating bush bodies 45 and 46. And a spindle main body 71 as a shaft main body having one end 70 protruding to the outside 18 of the hollow body 11 and two floats integrally formed with the spindle main body 71. Side surfaces 74 and 75 are approximately 10 μm in the axial direction B with respect to the annular end surfaces 72 and 73 of the two floating bush bodies 45 and 46 between the other annular end surfaces 72 and 73 of the bush bodies 45 and 46 facing each other. And an annular flange portion 78 disposed with gaps 76 and 77.

スピンドル本体71は、他方の端部81で円環状の隙間82をもって蓋部材40を貫通しており、端部70とフランジ部78との間の部位83で円環状の隙間84をもって蓋部材41を貫通していると共に端部70側で円環状の隙間85をもって蓋部材35を貫通している。端部81は、端部70と同様に、円環状の隙間をもって蓋部材34を貫通していてもよい。   The spindle main body 71 penetrates the lid member 40 with an annular gap 82 at the other end 81, and the lid member 41 with an annular gap 84 at a portion 83 between the end 70 and the flange portion 78. It penetrates through the lid member 35 with an annular gap 85 on the end 70 side. Similarly to the end portion 70, the end portion 81 may penetrate the lid member 34 with an annular gap.

フランジ部78は、環状部材39の環状の内周面91に対して外周面92で円環状の隙間93をもって環状部材39と同心に配されている。   The flange portion 78 is arranged concentrically with the annular member 39 with an annular gap 93 on the outer peripheral surface 92 with respect to the annular inner peripheral surface 91 of the annular member 39.

隙間82、84及び85の夫々は、隙間68及び69の径方向Aの幅よりも十分に大きな径方向Aの幅を有している。   Each of the gaps 82, 84, and 85 has a width in the radial direction A that is sufficiently larger than the width in the radial direction A of the gaps 68 and 69.

浮動ブッシュ体45では、環状溝48を規定する環状溝壁面49を除いて、外周面47、端面52及び72並びに内周面65に切削加工又は研削加工が施されて、内部の多数の細孔の当該外周面47、端面52及び72並びに内周面65での開口が絞られており、浮動ブッシュ体46も同様に、環状溝48を規定する環状溝壁面49を除いて、外周面47、端面57及び73並びに内周面66に切削加工又は研削加工が施されて、内部の多数の細孔の当該外周面47、端面57及び73並びに内周面66での開口が絞られている。   In the floating bush 45, the outer peripheral surface 47, the end surfaces 52 and 72, and the inner peripheral surface 65 are cut or ground except for the annular groove wall surface 49 that defines the annular groove 48, so that a large number of pores inside. The outer peripheral surface 47, the end surfaces 52 and 72, and the inner peripheral surface 65 are narrowed. Similarly, the floating bush body 46 has the outer peripheral surface 47, except for the annular groove wall surface 49 defining the annular groove 48. Cutting or grinding is performed on the end surfaces 57 and 73 and the inner peripheral surface 66, and openings at the outer peripheral surface 47, the end surfaces 57 and 73, and the inner peripheral surface 66 of a large number of internal pores are narrowed.

給気通路19は、円筒部材33及び円筒部材37に穿孔された貫通孔95と、円筒部材33及び円筒部材38に穿孔された貫通孔96とを具備しており、貫通孔95及び96の夫々は、その一端で浮動ブッシュ体45及び46の夫々の環状溝48に対面して内部14において隙間51及び56の夫々で開口しており、貫通孔95及び96の夫々の他端には、高圧空気供給用のプラグ97及び98の夫々の一端部が嵌装されており、プラグ97及び98の夫々は、配管99を介して高圧空気源に接続されている。   The air supply passage 19 includes a through hole 95 formed in the cylindrical member 33 and the cylindrical member 37, and a through hole 96 formed in the cylindrical member 33 and the cylindrical member 38. The through holes 95 and 96 are respectively provided. Is open to the respective annular grooves 48 of the floating bush bodies 45 and 46 at one end thereof and is opened in the gaps 51 and 56 in the interior 14 respectively. One end of each of the air supply plugs 97 and 98 is fitted, and each of the plugs 97 and 98 is connected to a high-pressure air source via a pipe 99.

給気通路19は、高圧空気源に接続されたプラグ97及び98からの高圧空気を貫通孔95及び96を介して内部14の隙間51及び56において軸方向Bのほぼ中央部、換言すれば環状溝48が位置する部位の夫々に給気するようになっている。   The air supply passage 19 is formed in such a manner that the high-pressure air from the plugs 97 and 98 connected to the high-pressure air source passes through holes 95 and 96 in the gaps 51 and 56 in the inside 14 in the substantially central portion in the axial direction B, that is, in an annular shape. Air is supplied to each portion where the groove 48 is located.

排気通路20は、外側中空部材31の内部において蓋部材34及び蓋部材40間の中空部110と、一端では外部18に開口すると共に他端では中空部110に開口して円筒部材33に穿孔された複数の貫通孔111と、一端では中空部110に開口すると共に他端では内部14に開口して蓋部材40に穿孔された複数の貫通孔112と、外側中空部材31の内部において蓋部材35及び蓋部材41間の中空部113と、一端では外部18に開口すると共に他端では中空部113に開口して円筒部材33に穿孔された複数の貫通孔114と、一端では中空部113に開口すると共に他端では内部14に開口して蓋部材41に穿孔された複数の貫通孔115と、フランジ部78の外周面92に対面して一端では隙間93に開口すると共に他端では外部18にして円筒部材33及び環状部材39に穿孔された図示しない複数の貫通孔とを具備している。   The exhaust passage 20 has a hollow portion 110 between the lid member 34 and the lid member 40 inside the outer hollow member 31, and opens to the outside 18 at one end and opens to the hollow portion 110 at the other end and is drilled in the cylindrical member 33. A plurality of through-holes 111, one end opening into the hollow portion 110 and the other end opening into the interior 14 and drilling in the lid member 40, and the lid member 35 inside the outer hollow member 31. And the hollow portion 113 between the cover member 41, one end opening to the outside 18 and the other end opening to the hollow portion 113 and drilling through the cylindrical member 33, and one end opening to the hollow portion 113. At the other end, a plurality of through-holes 115 opened in the inner part 14 and perforated in the lid member 41 are opposed to the outer peripheral surface 92 of the flange portion 78 and at one end opened to the gap 93 and at the other end. And and a plurality of through-holes (not shown) drilled in the cylindrical member 33 and the annular member 39 and the outside 18.

排気通路20は、内部14の浮動ブッシュ体45側の高圧空気を、一方では、貫通孔112、中空部110及び貫通孔111を介して、他方では、隙間93に開口すると共に円筒部材33に穿孔された図示しない複数の貫通孔を介して夫々外部18に排気し、内部14の浮動ブッシュ体46側の高圧空気を、一方では、貫通孔115、中空部113及び貫通孔114を介して、他方では、隙間93に開口すると共に円筒部材33に穿孔された図示しない複数の貫通孔を介して夫々外部18に排気するようになっている。   The exhaust passage 20 opens high-pressure air on the floating bush body 45 side of the interior 14 on the one hand through the through hole 112, the hollow portion 110 and the through hole 111, and on the other hand, opens into the gap 93 and perforates the cylindrical member 33. The air is exhausted to the outside 18 through a plurality of through holes (not shown), and the high-pressure air on the floating bush body 46 side of the inside 14 is on the one hand through the through hole 115, the hollow portion 113, and the through hole 114. Then, the air is exhausted to the outside 18 through a plurality of through holes (not shown) opened in the gap 93 and drilled in the cylindrical member 33.

以上の静圧気体軸受機構2は、内側中空部材32とスピンドル17との間に浮動状態で配された浮動ブッシュ体45及び46を介してスピンドル17を内側中空部材32に対して浮動状態で相対的に方向Rに回転自在に支持するようになっている。   The above-described hydrostatic gas bearing mechanism 2 is configured such that the spindle 17 is floated relative to the inner hollow member 32 via the floating bush bodies 45 and 46 arranged in a floating state between the inner hollow member 32 and the spindle 17. Thus, it is rotatably supported in the direction R.

中空体11の内部14に設けられていると共に中空体11に対してスピンドル17を相対的に方向Rに回転させる回転手段3は、フランジ部78の外周面92に固着された複数のタービン翼121と、タービン翼121に対して高圧空気を給気する給気手段122とを有したエアーモータ123を具備しており、給気手段122は、配管124を介して高圧空気源に接続されていると共に外側中空部材31及び環状部材39に、互いに対向して嵌装された一対のノズル125を有しており、ノズル125からタービン翼121に向かって噴射する高圧空気によりタービン翼121を介してフランジ部78を方向Rに回転させるようにようになっており、フランジ部78を方向Rに回転させた高圧空気は、前記の隙間93に開口すると共に円筒部材33に穿孔された図示しない貫通孔を介して外部18に排出されるようになっている。   The rotating means 3 that is provided in the inside 14 of the hollow body 11 and rotates the spindle 17 in the direction R relative to the hollow body 11 includes a plurality of turbine blades 121 fixed to the outer peripheral surface 92 of the flange portion 78. And an air motor 123 having air supply means 122 for supplying high-pressure air to the turbine blades 121, and the air supply means 122 is connected to a high-pressure air source via a pipe 124. In addition, the outer hollow member 31 and the annular member 39 have a pair of nozzles 125 fitted in opposition to each other, and the high-pressure air injected from the nozzle 125 toward the turbine blades 121 is flanged via the turbine blades 121. The portion 78 is rotated in the direction R, and the high-pressure air obtained by rotating the flange portion 78 in the direction R opens into the gap 93 and is cylindrical. And it is discharged to the outside 18 through a through hole (not shown) drilled in wood 33.

浮動ブッシュ体45側と浮動ブッシュ体46側とがほぼ同一に構成された以上のスピンドルモータ1では、回転手段3によりフランジ部78が方向Rに回転されることによりスピンドル本体71もまた同方向に回転される。斯かるスピンドル17の方向Rの回転において、給気通路19により内部14に高圧空気が給気されると、斯かる高圧空気は、隙間51、54、56及び59からなる隙間13並びに隙間68、69、76及び77からなる隙間16に給気されて、浮動ブッシュ体45及び46を内側中空部材32とスピンドル17との間で浮動させる結果、スピンドル17は、浮動ブッシュ体45及び46を介して内側中空部材32に対して浮動状態で相対的に方向Rに回転自在に支持される。   In the above spindle motor 1 in which the floating bush body 45 side and the floating bush body 46 side are substantially the same, the spindle body 71 is also moved in the same direction by rotating the flange portion 78 in the direction R by the rotating means 3. It is rotated. In the rotation of the spindle 17 in the direction R, when high-pressure air is supplied to the interior 14 through the supply passage 19, the high-pressure air is converted into the gap 13 including the gaps 51, 54, 56 and 59, and the gap 68, As a result of being supplied to the gap 16 consisting of 69, 76 and 77 and causing the floating bush bodies 45 and 46 to float between the inner hollow member 32 and the spindle 17, the spindle 17 passes through the floating bush bodies 45 and 46. The inner hollow member 32 is supported so as to be rotatable relative to the direction R in a floating state.

そして、給気通路19により内部14に給気された高圧空気は、図5の流れPで示すように、環状溝48並びに外周面47と内周面50との間の表面絞り及び外周面47と内周面55との間の表面絞りを介して隙間51及び56に直接噴出される一方、環状溝48における浮動ブッシュ体45及び46の環状溝壁面49の絞られていない多数の開口から浮動ブッシュ体45及び46の内部の細孔にも部分的に導入される結果、斯かる細孔に導入された高圧空気は、図5の流れQで示すように、浮動ブッシュ体45及び46の表面の絞られた開口から隙間13及び隙間16に再び噴出されて、而して、給気通路19により内部14に給気された高圧空気は、隙間13及び隙間16を維持すると共に、隙間51、54、56、59、68、69、76及び77のいずれかの隙間幅の変動ではその変動をなくすようにし、隙間13及び16を確実に安定的に保持でき、したがって両隙間幅を大きくしても高い剛性を維持できて、スピンドル17の方向Rについての回転に対する安定限界速度を更に向上させることができる。   The high-pressure air supplied to the interior 14 by the air supply passage 19 is, as shown by the flow P in FIG. 5, the annular groove 48, the surface restriction between the outer peripheral surface 47 and the inner peripheral surface 50, and the outer peripheral surface 47. Is directly ejected into the gaps 51 and 56 through a surface restriction between the inner circumferential surface 55 and the inner peripheral surface 55, while floating from a large number of openings in the annular groove wall surface 49 of the floating bush bodies 45 and 46 in the annular groove 48. As a result of being partially introduced also into the pores inside the bush bodies 45 and 46, the high-pressure air introduced into the pores becomes the surface of the floating bush bodies 45 and 46 as shown by the flow Q in FIG. The high-pressure air that is jetted out again from the narrowed opening into the gap 13 and the gap 16 and is supplied to the interior 14 by the air supply passage 19 maintains the gap 13 and the gap 16, and the gap 51, 54, 56, 59, 68, 69, The fluctuations in the gap width of either 6 or 77 can be eliminated, and the gaps 13 and 16 can be reliably held stably. Therefore, even if both gap widths are increased, high rigidity can be maintained, and the spindle 17 The stability limit speed with respect to the rotation in the direction R can be further improved.

上記の例では、エアーモータ123をもって回転手段3を構成したが、これに代えて、図6に示すように、回転手段3は、フランジ部78に固着された回転子131と、回転子131を回転させるべく円筒部材33に固着された固定子133とを有した電動モータ134を具備していてもよい。   In the above example, the rotating means 3 is configured with the air motor 123. Instead, as shown in FIG. 6, the rotating means 3 includes a rotor 131 fixed to the flange portion 78 and a rotor 131. An electric motor 134 having a stator 133 fixed to the cylindrical member 33 for rotation may be provided.

更に、上記の例では、浮動ブッシュ体45及び46をスピンドル17の方向Rについての回転と共に回転できるように内側中空部材32に非拘束としたが、これに代えて、図7に示すように、蓋部材34に係止ピン141の一端部を植設すると共に係止ピン141の他端部を浮動ブッシュ体45の端面52に形成された凹所142に遊嵌させて、係止ピン141を介して浮動ブッシュ体45を内側中空部材32に拘束させて、浮動ブッシュ体45をスピンドル17の方向Rについての回転と共に一定以上回転できないようにしてもよい。浮動ブッシュ体46もまた、浮動ブッシュ体45と同様に、スピンドル17の方向Rについての回転と共に一定以上回転できないようにしてもよい。   Furthermore, in the above example, the floating bush bodies 45 and 46 are not constrained to the inner hollow member 32 so as to be able to rotate together with the rotation in the direction R of the spindle 17, but instead, as shown in FIG. One end portion of the locking pin 141 is implanted in the lid member 34 and the other end portion of the locking pin 141 is loosely fitted in the recess 142 formed in the end surface 52 of the floating bush body 45 so that the locking pin 141 is inserted. The floating bush body 45 may be constrained by the inner hollow member 32 to prevent the floating bush body 45 from rotating more than a certain amount together with the rotation in the direction R of the spindle 17. Similarly to the floating bush body 45, the floating bush body 46 may not be able to rotate more than a certain amount together with the rotation in the direction R of the spindle 17.

浮動ブッシュ15は、上記例では、二個の浮動ブッシュ体45及び46を具備しているが、複数個のフランジ部78を軸方向Bに離れてスピンドル本体71に一体的に形成する場合には、それに対応して浮動ブッシュ15は、フランジ部78間に配される浮動ブッシュ体を含めて三個以上の浮動ブッシュ体を具備していてもよく、この場合、フランジ部78間に配される浮動ブッシュ体は、主として径方向Aに関してスピンドル17を浮動状態で回転自在に支持することになる。また、上記では、環状溝壁面49に切削加工又は研削加工が施されないで、斯かる環状溝壁面49で開口する浮動ブッシュ体45及び46の内部の細孔は、当該環状溝壁面で絞られていないとしたが、これに代えて、環状溝壁面49にも切削加工又は研削加工を施して環状溝壁面49で開口する浮動ブッシュ体45及び46の内部の細孔は、当該環状溝壁面49で絞られていてもよく、こうして絞られた開口から浮動ブッシュ体45及び46の内部の細孔に高圧空気が導入されるようにし、この導入された高圧空気を浮動ブッシュ体45及び46の内部の細孔を介して絞られた開口をもった表面から隙間13及び隙間16に噴出させてもよい。   In the above example, the floating bush 15 includes the two floating bush bodies 45 and 46. However, when the plurality of flange portions 78 are separated from each other in the axial direction B and are formed integrally with the spindle main body 71, the floating bush 15 is formed in a single body. Correspondingly, the floating bush 15 may include three or more floating bush bodies including the floating bush body disposed between the flange portions 78. In this case, the floating bush 15 is disposed between the flange portions 78. The floating bush body supports the spindle 17 so as to be rotatable in a floating state mainly in the radial direction A. Further, in the above, the annular groove wall surface 49 is not subjected to cutting or grinding, and the pores inside the floating bush bodies 45 and 46 opened by the annular groove wall surface 49 are narrowed by the annular groove wall surface. However, instead of this, the pores inside the floating bush bodies 45 and 46 opened by the annular groove wall surface 49 by cutting or grinding the annular groove wall surface 49 are also formed in the annular groove wall surface 49. The high-pressure air may be introduced into the pores inside the floating bush bodies 45 and 46 from the openings thus restricted, and the introduced high-pressure air is introduced into the inside of the floating bush bodies 45 and 46. You may make it eject to the clearance gap 13 and the clearance gap 16 from the surface with the opening restrict | squeezed through the pore.

本発明の実施の形態の好ましい一例の断面図である。It is sectional drawing of a preferable example of embodiment of this invention. 図1に示す例のII−II線矢視断面説明図である。It is II-II arrow directional cross-sectional explanatory drawing of the example shown in FIG. 図1に示す例のIII−III線矢視断面説明図である。FIG. 3 is a cross-sectional explanatory view taken along the line III-III of the example shown in FIG. 1. 図1に示す例の浮動ブッシュ体の斜視図である。It is a perspective view of the floating bush body of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 本発明の実施の形態の好ましい他の例の断面図である。It is sectional drawing of another preferable example of embodiment of this invention. 本発明の実施の形態の好ましい更に他の例の一部の断面図である。FIG. 10 is a partial cross-sectional view of still another preferred example of an embodiment of the present invention.

符号の説明Explanation of symbols

1 スピンドルモータ
2 静圧気体軸受機構
3 回転手段
11 中空体
13、16 隙間
14 内部
15 浮動ブッシュ
17 スピンドル
18 外部
19 給気通路
20 排気通路
DESCRIPTION OF SYMBOLS 1 Spindle motor 2 Static pressure gas bearing mechanism 3 Rotating means 11 Hollow body 13, 16 Crevice 14 Inside 15 Floating bush 17 Spindle 18 Outside 19 Supply passage 20 Exhaust passage

Claims (7)

中空体と、この中空体に対して径方向及び軸方向において隙間をもって当該中空体の内部に配されている浮動ブッシュと、中空体及び浮動ブッシュに対して径方向及び軸方向において隙間をもって中空体の内部に配されていると共に中空体に対して回転自在である軸と、中空体の外部から中空体の内部への高圧空気の給気のための給気通路と、中空体の内部から中空体の外部への高圧空気の排気のための排気通路とを具備しており、浮動ブッシュは、軸方向に配列されていると共に円筒状の多孔質金属焼結体からなって、貫通孔を有した少なくとも二個の浮動ブッシュ体を具備しており、軸は、各貫通孔において二個の浮動ブッシュ体に対して径方向において隙間をもって当該二個の浮動ブッシュ体の各貫通孔を貫通していると共に少なくとも一方の端部が中空体の外部に突出してなる軸本体と、軸本体に一体的に形成されていると共に二個の浮動ブッシュ体の間に当該二個の浮動ブッシュ体に対して軸方向において隙間をもって配されたフランジ部とを具備しており、中空体と軸との間に浮動状態で配された浮動ブッシュを介して軸を中空体に対して浮動状態で相対的に回転自在に支持するようになっており、内部に多数の細孔を有する各浮動ブッシュ体は、少なくとも一つの環状溝を有している円筒状の外周面と、この環状溝を規定する環状溝壁面と、軸方向における一方の環状の端面と、軸方向における他方の環状の端面と、前記貫通孔を規定する円筒状の内周面とを具備しており、多数の細孔は、環状溝壁面において絞られることなく開口していると共に円筒状の外周面と、一方の環状の端面と、他方の環状の端面と、円筒状の内周面とにおいて絞られて開口している静圧気体軸受機構。 A hollow body, a floating bush disposed inside the hollow body with a gap in the radial direction and the axial direction with respect to the hollow body, and a hollow body with a gap in the radial direction and the axial direction with respect to the hollow body and the floating bush A shaft which is arranged inside and rotatable about the hollow body, an air supply passage for supplying high-pressure air from the outside of the hollow body to the inside of the hollow body, and a hollow from the inside of the hollow body and comprising an exhaust passage for the exhaust of the high pressure air to the body of the external floating bush, I Do a cylindrical porous metal sintered body with being arranged in the axial direction, the through-hole At least two floating bush bodies, and the shaft passes through the through holes of the two floating bush bodies in a radial direction with respect to the two floating bush bodies in each through hole. And at least A shaft main body having one end projecting outside the hollow body, and the shaft main body formed integrally with the shaft main body and between the two floating bush bodies in the axial direction. And a flange portion arranged with a gap, and supports the shaft so as to be relatively rotatable in a floating state with respect to the hollow body via a floating bush arranged in a floating state between the hollow body and the shaft. Each floating bush body having a large number of pores therein includes a cylindrical outer peripheral surface having at least one annular groove, an annular groove wall surface defining the annular groove, a shaft One annular end surface in the direction, the other annular end surface in the axial direction, and a cylindrical inner peripheral surface defining the through hole, and a large number of pores are constricted in the annular groove wall surface. Without opening and cylindrical outer peripheral surface One and the end face of the annular, the other annular end face and a cylindrical narrowed in the inner peripheral surface opening to which the externally pressurized gas bearing mechanism. 浮動ブッシュ体は、少なくとも錫、燐及び銅を含んだ金属部分と、この金属部分に混合されていると共に黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んだ無機質部分とを有している請求項1に記載の静圧気体軸受機構。The floating bush body includes a metal portion containing at least tin, phosphorus and copper, and is mixed with the metal portion and is made of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide. The hydrostatic gas bearing mechanism according to claim 1, further comprising an inorganic portion including at least one of the following. 請求項1又は2に記載の静圧気体軸受機構と、中空体の内部に設けられていると共に中空体に対して軸を相対的に回転させる回転手段とを具備している軸回転装置。3. A shaft rotating device comprising: the static pressure gas bearing mechanism according to claim 1; and a rotating means that is provided inside the hollow body and rotates the shaft relative to the hollow body. 回転手段は、フランジ部に固着されたタービン翼と、このタービン翼に高圧空気を給気する給気手段とを有したエアーモータ又はフランジ部に固着された回転子と、この回転子を回転させる固定子とを有した電動モータを具備している請求項3に記載の軸回転装置。The rotation means includes an air motor having a turbine blade fixed to the flange portion and an air supply means for supplying high-pressure air to the turbine blade, or a rotor fixed to the flange portion, and rotates the rotor. The shaft rotation device according to claim 3, comprising an electric motor having a stator. 中空体、この中空体に対して径方向及び軸方向において隙間をもって当該中空体の内部に配されている浮動ブッシュ、中空体及び浮動ブッシュに対して径方向及び軸方向において隙間をもって配されていると共に中空体に対して回転自在であるスピンドル、中空体の外部から中空体の内部への高圧空気の給気のための給気通路及び中空体の内部から中空体の外部への高圧空気の排気のための排気通路を有した静圧気体軸受機構と、中空体の内部に設けられていると共に中空体に対してスピンドルを相対的に回転させる回転手段とを具備しているスピンドルモータであって、浮動ブッシュは、軸方向に配列されていると共に円筒状の多孔質金属焼結体からなって、貫通孔を有した少なくとも二個の浮動ブッシュ体を具備しており、スピンドルは、各貫通孔において二個の浮動ブッシュ体に対して径方向において隙間をもって当該二個の浮動ブッシュ体の各貫通孔を貫通していると共に少なくとも一方の端部が中空体の外部に突出してなるスピンドル本体と、スピンドル本体に一体的に形成されていると共に二個の浮動ブッシュ体の間に当該二個の浮動ブッシュ体に対して軸方向において隙間をもって配されたフランジ部とを具備しており、内部に多数の細孔を有する各浮動ブッシュ体は、少なくとも一つの環状溝を有している円筒状の外周面と、この環状溝を規定する環状溝壁面と、軸方向における一方の環状の端面と、軸方向における他方の環状の端面と、前記貫通孔を規定する円筒状の内周面とを具備しており、多数の細孔は、環状溝壁面において絞られることなく開口していると共に円筒状の外周面と、一方の環状の端面と、他方の環状の端面と、円筒状の内周面とにおいて絞られて開口しており、静圧気体軸受機構は、中空体とスピンドルとの間に浮動状態で配された浮動ブッシュを介してスピンドルを中空体に対して浮動状態で相対的に回転自在に支持するようになっているスピンドルモータ。A hollow body, a floating bush disposed in the hollow body with a gap in the radial direction and the axial direction with respect to the hollow body, and a gap in the radial direction and the axial direction with respect to the hollow body and the floating bush. And a spindle that is rotatable with respect to the hollow body, an air supply passage for supplying high-pressure air from the outside of the hollow body to the inside of the hollow body, and exhaust of high-pressure air from the inside of the hollow body to the outside of the hollow body A spindle motor comprising a static pressure gas bearing mechanism having an exhaust passage for the motor and a rotating means provided inside the hollow body and rotating the spindle relative to the hollow body. The floating bush includes at least two floating bush bodies that are arranged in the axial direction and are formed of a cylindrical porous metal sintered body and that have through holes. A spindle in which each through hole penetrates each through hole of the two floating bush bodies with a gap in the radial direction with respect to the two floating bush bodies, and at least one end protrudes outside the hollow body. A main body and a flange portion formed integrally with the spindle main body and disposed between the two floating bush bodies with a gap in the axial direction with respect to the two floating bush bodies; Each floating bush body having a large number of pores therein includes a cylindrical outer peripheral surface having at least one annular groove, an annular groove wall surface defining the annular groove, and one annular end face in the axial direction. And the other annular end surface in the axial direction and a cylindrical inner peripheral surface defining the through hole, and a large number of pores are opened without being constricted on the annular groove wall surface. Both the cylindrical outer peripheral surface, the one annular end surface, the other annular end surface, and the cylindrical inner peripheral surface are squeezed and opened, and the hydrostatic gas bearing mechanism includes a hollow body and a spindle. A spindle motor adapted to rotatably support the spindle in a floating state relative to the hollow body via a floating bush arranged in a floating state between the two. 回転手段は、フランジ部に固着されたタービン翼と、このタービン翼に高圧空気を給気する給気手段とを有したエアーモータ又はフランジ部に固着された回転子と、この回転子を回転させる固定子とを有した電動モータを具備している請求項5に記載のスピンドルモータ。The rotation means includes an air motor having a turbine blade fixed to the flange portion and an air supply means for supplying high-pressure air to the turbine blade, or a rotor fixed to the flange portion, and rotates the rotor. The spindle motor according to claim 5, comprising an electric motor having a stator. 浮動ブッシュ体は、少なくとも錫、燐及び銅を含んだ金属部分と、この金属部分に混合されていると共に黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んだ無機質部分とを有している請求項5又は6に記載のスピンドルモータ。The floating bush body includes a metal portion containing at least tin, phosphorus and copper, and is mixed with the metal portion and is made of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide. The spindle motor according to claim 5, further comprising an inorganic portion including at least one of the following.
JP2006282029A 2006-10-16 2006-10-16 Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same Active JP4929968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282029A JP4929968B2 (en) 2006-10-16 2006-10-16 Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282029A JP4929968B2 (en) 2006-10-16 2006-10-16 Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same

Publications (2)

Publication Number Publication Date
JP2008095931A JP2008095931A (en) 2008-04-24
JP4929968B2 true JP4929968B2 (en) 2012-05-09

Family

ID=39378983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282029A Active JP4929968B2 (en) 2006-10-16 2006-10-16 Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same

Country Status (1)

Country Link
JP (1) JP4929968B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101662125B1 (en) * 2009-10-16 2016-10-04 보르그워너 인코퍼레이티드 Method for determining bearing play of exhaust-gas-turbocharger friction bearings

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572737B2 (en) * 1995-06-26 2004-10-06 日本精工株式会社 Hydrostatic gas bearing device
JP2001227543A (en) * 2000-02-14 2001-08-24 Ntn Corp Static pressure gas bearing spindle
JP4442012B2 (en) * 2000-09-29 2010-03-31 オイレス工業株式会社 Porous static pressure gas bearing and manufacturing method thereof
JP2006275281A (en) * 2005-03-01 2006-10-12 Saitama Univ Gas bearing

Also Published As

Publication number Publication date
JP2008095931A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
US8038385B2 (en) Spindle device with rotor jetting driving fluid
WO2014087708A1 (en) Seal device and rotary machine
US20110038716A1 (en) Thrust bearing, especially for a turbocharger
US4521190A (en) Air bearing device in dental handpiece
JP4146151B2 (en) Hydrostatic gas bearing and spindle device using the same
US7284460B2 (en) Balancer
US6502989B1 (en) Dynamic pressure bearing and spindle motor with the bearing
JP4929968B2 (en) Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same
US8882446B2 (en) Bearing system for rotor in rotating machines
JP6276810B2 (en) Air turbine drive spindle
JP2008119788A (en) High-speed air spindle
JP2015530537A (en) Bearing device and exhaust gas turbocharger
JP2010116944A (en) Floating bush bearing type bearing device and supercharger of internal combustion engine equipped therewith
JP2019148179A (en) Centrifugal fan
JP5891743B2 (en) Static pressure gas bearing spindle and electrostatic coating device
JP2003049828A (en) Fluid dynamic pressure bearing and spindle motor
US7438476B2 (en) Hydraulic dynamic bearing and spindle motor
US20210039215A1 (en) Fan-equipped motor
JP2003194045A (en) Dynamic pressure bearing device
US6243187B1 (en) Polygonal mirror device
JP2008025604A (en) Driving device for air spindle
JPH05272495A (en) Manufacture of impeller for centrifugal compression device
JP2006275281A (en) Gas bearing
CN214304895U (en) High-speed low-noise vertical machining center
RU2098639C1 (en) Pneumatic grinding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4929968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250