JP2008025604A - Driving device for air spindle - Google Patents

Driving device for air spindle Download PDF

Info

Publication number
JP2008025604A
JP2008025604A JP2006195413A JP2006195413A JP2008025604A JP 2008025604 A JP2008025604 A JP 2008025604A JP 2006195413 A JP2006195413 A JP 2006195413A JP 2006195413 A JP2006195413 A JP 2006195413A JP 2008025604 A JP2008025604 A JP 2008025604A
Authority
JP
Japan
Prior art keywords
air
air supply
rotating shaft
main body
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006195413A
Other languages
Japanese (ja)
Inventor
Hikari Sato
光 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2006195413A priority Critical patent/JP2008025604A/en
Publication of JP2008025604A publication Critical patent/JP2008025604A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device for an air spindle which can prevent the generation of vibrations, noises, etc. and can keep a high speed and highly accurate rotation. <P>SOLUTION: The driving device 1 for the air spindle comprises a rotary spindle 3, a first plate member 4, and a second plate member 5, which are supported by air bearings 6A to 6C in a floating state from a body 2, a first air supply passage 2g penetrating from the outer surface of the body to a hollow portion, second air supply passages 2a to 2c penetrating from the outer surface of the body to each of the respective air bearings 6, first air discharge passages 2d to 2f penetrating from the respective air bearings 6A to 6C to the outer surface of the body, groove portions 3a provided on the outer surface of the body, third air supply passages 3b, 3c penetrating from the bottom portions of the groove portions to one end of the rotary spindle, and second air discharge passages 4a, 4b provided on the first plate member so as to communicate with the third air supply passages. Air penetrates the first air supply passage, the groove portions, the third air supply passages, and the second air discharge passages in this order, and then gushes outward. As a result, the first plate member, etc. rotate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エアスピンドル用駆動装置に関し、特に、サブミクロンクラスの高回転精度が得られ、超精密加工や超精密測定器等に使用されるエアスピンドル用駆動装置に関する。   The present invention relates to a drive device for an air spindle, and more particularly, to a drive device for an air spindle that can obtain submicron-class high rotational accuracy and is used in ultraprecision machining, ultraprecision measuring instruments, and the like.

従来、超精密加工や超精密測定器、例えば、回転砥石を備えた切削機械、磁気ヘッド、回転粘度計等に、ハウジングの中空部に挿嵌され、空気軸受により浮動状態に支承されたエアスピンドル(空気軸)が用いられ、このエアスピンドルの回転駆動手段として、回転軸にロータを直接ビルトインしたモータや、カップリングを介したベルト等の駆動装置が使用されている。   Conventionally, an air spindle that is inserted into a hollow portion of a housing and supported in a floating state by an air bearing in ultra-precision machining or an ultra-precision measuring instrument such as a cutting machine equipped with a rotating grindstone, a magnetic head, or a rotational viscometer. (Air shaft) is used, and a driving device such as a motor having a rotor built in the rotating shaft directly or a belt via a coupling is used as a rotation driving means of the air spindle.

しかし、回転軸に直接モータのロータをビルトインする駆動手段は、他のものに比較して振動が少なく、高速、高出力であるが、モータのスペースが必要でコンパクトにならない、モータが発熱する、コストが高いなどの問題がある。また、カップリングを介したベルト駆動は、滑りやトルクスリップによる低周波振動の問題があるとともに、機械加工中の騒音も高いため、振動が小さく、騒音を低減することのできるエアスピンドル用駆動装置が求められていた。   However, the drive means that directly builds in the rotor of the motor on the rotating shaft has less vibration compared to the other, high speed and high output, but the motor space is not required and compact, the motor generates heat, There are problems such as high costs. In addition, the belt drive via the coupling has the problem of low frequency vibration due to slipping and torque slip, and the noise during machining is high, so the vibration is small and the noise can be reduced. Was demanded.

そこで、上記問題を解決するため、特許文献1には、ハウジングの中空部に挿嵌され、空気軸受により浮動状態に支承された中空回転軸の頭頂部に、円板状噴射プレートを中空回転軸の軸心に対して垂直方向に軸承し、この円板状噴射プレートの内部に、中空回転軸の軸心を通る気体通路と、この気体通路の両先端部に該気体通路に直交し、かつ、中空回転軸の軸心に対し点対称に分岐路を設け、この分岐路に先端が円板状噴射プレートの側壁を貫通する気体排出路を設け、中空回転軸に圧縮気体を供給し、気体通路、分岐路及び気体排出路を経由して圧縮気体を円板状噴射プレート外へ排出することにより円板状噴射プレートを回転させ、中空回転軸を連れ回り回転するエアスピンドルが提案されている。   Therefore, in order to solve the above problem, Patent Document 1 discloses that a disc-shaped injection plate is inserted into the top of a hollow rotary shaft that is inserted into a hollow portion of a housing and supported in a floating state by an air bearing. A gas passage that passes through the axis of the hollow rotary shaft, and is perpendicular to the gas passage at both ends of the gas passage, and , A branch path is provided point-symmetrically with respect to the axis of the hollow rotary shaft, a gas discharge path whose tip penetrates the side wall of the disk-shaped injection plate is provided in this branch path, and compressed gas is supplied to the hollow rotary shaft, There has been proposed an air spindle that rotates a disk-shaped injection plate by discharging compressed gas out of the disk-shaped injection plate via a passage, a branch path, and a gas discharge path, and rotates around a hollow rotating shaft. .

特開2005−147379号公報JP 2005-147379 A

しかし、上記特許文献1に記載のエアスピンドルにおいては、円板状噴射プレートに圧縮気体を供給するにあたって、中空回転軸への圧縮気体の導入をロータリージョイントを介して行っているため、このジョイント部で振動、騒音、発熱、摩擦損失等が発生し、高速かつ高精度の回転を得ることができないという問題があった。   However, in the air spindle described in Patent Document 1, since the compressed gas is introduced into the hollow rotating shaft when the compressed gas is supplied to the disc-shaped injection plate, the joint portion is used. Vibration, noise, heat generation, friction loss, etc. occur, and there is a problem that high-speed and high-precision rotation cannot be obtained.

そこで、本発明は、上記従来のエアスピンドルにおける問題点に鑑みてなされたものであって、従来ジョイント部で発生していた諸問題を解消し、高速かつ高精度の回転を維持することができるエアスピンドル用駆動装置を提供することを目的とする。   Therefore, the present invention has been made in view of the problems in the conventional air spindle described above, and can solve various problems that have occurred in the conventional joint portion and maintain high-speed and high-precision rotation. An object is to provide a drive device for an air spindle.

上記目的を達成するため、本発明は、エアスピンドル用駆動装置であって、本体の中空部に挿嵌され、第1の空気軸受により浮動状態に支承される回転軸と、該回転軸の一端に固定され、前記本体に対して浮動状態となるように、第2の空気軸受により支承される第1の板状部材と、前記回転軸の他端に固定され、前記本体に対して浮動状態となるように、第3の空気軸受により支承される第2の板状部材と、前記本体の外表面から前記中空部まで貫通する第1の空気供給路と、前記本体の外表面から前記第1の空気軸受、前記第2の空気軸受及び前記第3の空気軸受の各々まで貫通する第2の空気供給路と、前記第1の空気軸受、前記第2の空気軸受及び前記第3の空気軸受の各々から前記本体の外表面まで貫通する第1の空気排出路と、前記回転軸の外周面上に、前記第1の空気供給路と連通するように設けられる溝部と、該溝部の底部から前記回転軸の前記一端まで貫通する第3の空気供給路と、前記第1の板状部材に、前記第3の空気供給路と連通するように設けられる第2の空気排出路とを備え、前記第1の空気供給路を介して供給された空気が、前記溝部、前記第3の空気供給路、前記第2空気排出路の順に通過した後、外部に噴出することにより、前記第1の板状部材、前記回転軸及び前記第2の板状部材が回転することを特徴とする。   In order to achieve the above object, the present invention is an air spindle driving device, which is inserted into a hollow portion of a main body and supported in a floating state by a first air bearing, and one end of the rotating shaft. The first plate-like member supported by the second air bearing and fixed to the other end of the rotary shaft so as to be in a floating state with respect to the main body, and in a floating state with respect to the main body The second plate-like member supported by the third air bearing, the first air supply passage penetrating from the outer surface of the main body to the hollow portion, and the first air supply path from the outer surface of the main body. The first air bearing, the second air bearing, and the third air bearing, the second air supply passage penetrating to each of the first air bearing, the second air bearing, and the third air bearing, the first air bearing, the second air bearing, and the third air. A first air exhaust passage extending from each of the bearings to the outer surface of the body; A groove portion provided on the outer peripheral surface of the rotary shaft so as to communicate with the first air supply passage; a third air supply passage penetrating from the bottom of the groove portion to the one end of the rotary shaft; A plate-like member having a second air discharge path provided so as to communicate with the third air supply path, and the air supplied through the first air supply path is the groove section, After passing through the third air supply path and the second air discharge path in this order, the first plate member, the rotation shaft, and the second plate member rotate by being ejected to the outside. It is characterized by.

そして、本発明によれば、第1の空気供給路を介して供給された空気が、回転軸の外周面上の溝部、第3の空気供給路、第1の板状部材の空気排出路の順に通過した後、外部に噴出することにより、第1の板状部材、回転軸及び第2の板状部材が回転し、この際、回転軸は、第1及び第2の板状部材以外の部材とは完全に非接触の状態となるため、従来のロータリージョイントを用いた場合のような振動、騒音等が生じることがなく、高速かつ高精度の回転を維持することができる。また、ロータリージョイントを不要としたことにより、従来必要であったロータリージョイント回りの保守管理が不要となり、摩擦粉が発生することもなく、グリース等による汚染問題も解消され、エアスピンドル用駆動装置全体の部品点数も低減することができる。   And according to this invention, the air supplied via the 1st air supply path is the groove part on the outer peripheral surface of a rotating shaft, a 3rd air supply path, and the air discharge path of a 1st plate-shaped member. After sequentially passing, the first plate member, the rotation shaft, and the second plate member rotate by ejecting to the outside. At this time, the rotation shaft is a member other than the first and second plate members. Since it is in a completely non-contact state with the member, vibrations, noises, and the like as in the case of using a conventional rotary joint do not occur, and high-speed and high-precision rotation can be maintained. In addition, by eliminating the need for a rotary joint, maintenance work around the rotary joint, which was necessary in the past, is no longer necessary, friction powder is not generated, and contamination problems due to grease, etc. are eliminated. The number of parts can be reduced.

前記エアスピンドル用駆動装置において、前記第1乃至第3の空気軸受を、多孔質焼結層を有する軸受とすることができる。   In the air spindle drive device, the first to third air bearings may be bearings having a porous sintered layer.

また、前記エアスピンドル用駆動装置において、前記回転軸と前記第1の板状部材とが一体に形成されていてもよく、前記回転軸と前記第2の板状部材とが一体に形成されるように構成することもできる。   In the air spindle driving device, the rotation shaft and the first plate member may be integrally formed, and the rotation shaft and the second plate member are formed integrally. It can also be configured as follows.

さらに、前記エアスピンドル用駆動装置において、前記第2の空気供給路の一部を、前記本体の外表面から前記第2の空気軸受及び第3の空気軸受まで各々貫通するようにT字状に設けることができる。これにより、第2の空気軸受及び第3の空気軸受に同時に空気を供給することができるとともに、回転軸の加工が容易となる。   Furthermore, in the air spindle driving device, a part of the second air supply path is formed in a T shape so as to penetrate from the outer surface of the main body to the second air bearing and the third air bearing. Can be provided. Thereby, while being able to supply air to a 2nd air bearing and a 3rd air bearing simultaneously, the process of a rotating shaft becomes easy.

また、前記エアスピンドル用駆動装置において、前記第1の空気排出路を、前記第1の空気軸受と前記第2の空気軸受との境界部、及び前記第1の空気軸受と前記第3の空気軸受との境界部の各々から前記本体の外表面に貫通するようにV字状に設けることができる。これにより、空気の滞留しやすい上記両境界部から効率よく、また、第1乃至第3の空気軸受から同時に空気を本体の外部に排出することができる。   Further, in the air spindle driving device, the first air discharge path is formed at a boundary portion between the first air bearing and the second air bearing, and the first air bearing and the third air. It can provide in a V shape so that it may penetrate from the boundary part with a bearing to the outer surface of the said main body. Thereby, the air can be efficiently discharged from both the boundary portions where the air tends to stay, and can be simultaneously discharged from the first to third air bearings to the outside of the main body.

前記エアスピンドル用駆動装置において、前記第3の空気供給路を、前記回転軸の軸線方向に延設されるように構成することができる。これにより、第3の空気供給路を最短にすることができるとともに、回転軸の加工も容易となる。   In the air spindle drive device, the third air supply path may be configured to extend in the axial direction of the rotating shaft. Thereby, while being able to make the 3rd air supply path shortest, the process of a rotating shaft also becomes easy.

また、前記エアスピンドル用駆動装置において、前記第2の空気排出路を、前記回転軸の軸線方向に対して垂直に延設することができる。これにより、第2の空気排出路を最短にすることができ、効率よく第1の板状部材を回転させることができるとともに、第1の板状部材の加工も容易となる。   In the air spindle driving device, the second air discharge path can be extended perpendicularly to the axial direction of the rotary shaft. Accordingly, the second air discharge path can be shortened, the first plate member can be efficiently rotated, and the processing of the first plate member is facilitated.

以上のように、本発明によれば、振動、騒音等の発生を防止することができ、高速かつ高精度の回転を維持することなどが可能なエアスピンドル用駆動装置を提供することができる。   As described above, according to the present invention, it is possible to provide an air spindle drive device that can prevent generation of vibration, noise, and the like, and that can maintain high-speed and high-precision rotation.

次に、本発明の実施の形態について、図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1乃至図3は、本発明にかかるエアスピンドル用駆動装置の一実施の形態を示し、この装置1は、大別して、本体2と、回転軸3と、円板部材(第1の板状部材)4と、スラストプレート(第2の板状部材)5と、回転軸3、円板部材4及びスラストプレート5を本体2に対して浮動状態に支承する空気軸受6(6A〜6C)と、空気軸受6(6A〜6C)に空気を供給するための給気口8等と、円板部材4を回転させるための空気を供給する給気口10等で構成される。   1 to 3 show an embodiment of an air spindle driving device according to the present invention. This device 1 is roughly divided into a main body 2, a rotating shaft 3, a disc member (first plate-like shape). Member) 4, a thrust plate (second plate-like member) 5, an air bearing 6 (6 </ b> A to 6 </ b> C) that supports the rotating shaft 3, the disk member 4, and the thrust plate 5 in a floating state with respect to the main body 2. The air supply port 8 (6A to 6C) for supplying air to the air bearing 6 and the air supply port 10 for supplying air for rotating the disk member 4 are configured.

本体2は、図1及び図2(c)に示すように、中空円筒状に形成され、外周面に、給気口8を備える。給気口8は、空気軸受6B、6Cに空気を供給するために備えられ、空気供給路2a〜2cを通じて空気軸受6B、6Cに空気が供給される。また、図示を省略するが、本体2の外周面には、空気軸受6Aに空気を供給するための別の給気口が備えられ、給気口と空気軸受6Aを連絡する空気供給路が形成される。また、本体2には、空気軸受6A〜6Cに供給された空気を排出するための空気排出路2d〜2fと、排気口9とが設けられる。   As shown in FIG. 1 and FIG. 2 (c), the main body 2 is formed in a hollow cylindrical shape and includes an air supply port 8 on the outer peripheral surface. The air supply port 8 is provided to supply air to the air bearings 6B and 6C, and air is supplied to the air bearings 6B and 6C through the air supply paths 2a to 2c. Although not shown, the outer peripheral surface of the main body 2 is provided with another air supply port for supplying air to the air bearing 6A, and an air supply path that connects the air supply port and the air bearing 6A is formed. Is done. Further, the main body 2 is provided with air discharge paths 2d to 2f for discharging the air supplied to the air bearings 6A to 6C, and an exhaust port 9.

本体2は、図3(b)に示すように、もう一つの給気口10を備え、この給気口10は、空気供給路2gを介して回転軸3の溝部3aに連通する。尚、給気口10、及び、図2(c)に示した給気口8等には、図示しない空気ポンプ及びチューブを介して空気が供給される。   As shown in FIG. 3B, the main body 2 includes another air supply port 10, and this air supply port 10 communicates with the groove portion 3 a of the rotating shaft 3 through the air supply path 2 g. Air is supplied to the air supply port 10 and the air supply port 8 shown in FIG. 2C via an air pump and a tube (not shown).

回転軸3は、図2及び図3に示すように、中空円筒状に形成され、本体2の中空部に挿嵌され、空気軸受6Aによって、浮動状態に支承される。また、回転軸3の外周面に一周にわたって、本体2の空気供給路2gと連通する溝部3aが形成される。また、溝部3aの底部には空気供給路3bが穿設され、空気供給路3bから回転軸3の軸線方向に平行に空気供給路3cが延設される。   As shown in FIGS. 2 and 3, the rotary shaft 3 is formed in a hollow cylindrical shape, is fitted into the hollow portion of the main body 2, and is supported in a floating state by the air bearing 6A. Further, a groove portion 3 a communicating with the air supply path 2 g of the main body 2 is formed on the outer peripheral surface of the rotating shaft 3 over the entire circumference. An air supply path 3b is formed in the bottom of the groove 3a, and an air supply path 3c extends from the air supply path 3b in parallel to the axial direction of the rotary shaft 3.

円板部材4は、中央部に中空部を有する円板状に形成され、空気軸受6Bによって、本体2に対して浮動状態に支承される。円板部材4は、図3(a)に示すボルト11を介して回転軸3の左端部に固定され、回転軸3の空気供給路3cと連通して外部に空気を排出するための2対の空気排出路4a、4bを備える。これらの空気排出路4a、4bは、円板部材4の中心に対して点対称に形成されている。   The disc member 4 is formed in a disc shape having a hollow portion at the center, and is supported in a floating state with respect to the main body 2 by the air bearing 6B. The disc member 4 is fixed to the left end portion of the rotating shaft 3 via a bolt 11 shown in FIG. 3A, and communicates with the air supply path 3c of the rotating shaft 3 to discharge air to the outside. Air discharge passages 4a and 4b. These air discharge paths 4 a and 4 b are formed point-symmetrically with respect to the center of the disk member 4.

スラストプレート5は、中央部に中空部を有する円板状に形成され、空気軸受6Cによって、本体2に対して浮動状態に支承される。このスラストプレート5は、図示しないボルトを介して回転軸3の右端部に固定される。   The thrust plate 5 is formed in a disk shape having a hollow portion at the center, and is supported in a floating state with respect to the main body 2 by the air bearing 6C. The thrust plate 5 is fixed to the right end portion of the rotary shaft 3 via a bolt (not shown).

空気軸受6A〜6Cは、多孔質焼結層を有し、空気軸受6B、6Cへは、給気口8から空気供給路2a〜2cを介して常時空気が供給され、本体2と、円板部材4及びスラストプレート5の各々との間に一定の圧力の空気が介在し、本体2に対して、円板部材4及びスラストプレート5が浮動状態で支承される。また、空気軸受6Aへは、図示しない給気口から本体2内の空気供給路(不図示)を介して常時空気が供給され、本体2と回転軸3との間に一定の圧力の空気が介在し、本体2に対して回転軸3が浮動状態で支承される。   The air bearings 6A to 6C have a porous sintered layer, and air is always supplied to the air bearings 6B and 6C from the air supply port 8 through the air supply paths 2a to 2c. A constant pressure of air is interposed between the member 4 and the thrust plate 5, and the disc member 4 and the thrust plate 5 are supported in a floating state with respect to the main body 2. Air is always supplied to the air bearing 6A from an air supply port (not shown) through an air supply path (not shown) in the main body 2 so that air with a constant pressure is supplied between the main body 2 and the rotary shaft 3. The rotary shaft 3 is supported in a floating state with respect to the main body 2.

次に、上記構成を有するエアスピンドル用駆動装置1の動作について、図面を参照しながら説明する。尚、以下の説明においては、エアスピンドル用駆動装置1を研磨加工に利用する場合を例にとって説明する。   Next, the operation of the air spindle drive device 1 having the above-described configuration will be described with reference to the drawings. In the following description, the case where the air spindle driving device 1 is used for polishing will be described as an example.

図2(c)において、スラストプレート5の右表面に、ボルト、治具等を介して研磨対象となるワーク(不図示)を固定する。   In FIG. 2C, a workpiece (not shown) to be polished is fixed to the right surface of the thrust plate 5 via bolts, jigs and the like.

図示しない空気ポンプを駆動し、チューブ等を介して給気口8から空気供給路2a〜2cを通して空気軸受6B、6Cへ空気を供給する。また、同様に、空気軸受6Aにも別の吸気口(不図示)から空気を供給する。これにより、本体2と、回転軸3、円板部材4及びスラストプレート5の各々との間に3〜20μmの空気層が形成され、回転軸3、円板部材4及びスラストプレート5の各々が本体2に対して浮動状態に支承される。尚、空気軸受6A〜6Cからの空気は、空気排出路2d〜2fを介して排気口9から本体2の外部に排出される。   An air pump (not shown) is driven to supply air from the air supply port 8 to the air bearings 6B and 6C through the air supply passages 2a to 2c via a tube or the like. Similarly, air is supplied to the air bearing 6A from another intake port (not shown). Thereby, an air layer of 3 to 20 μm is formed between the main body 2 and each of the rotating shaft 3, the disk member 4 and the thrust plate 5, and each of the rotating shaft 3, the disk member 4 and the thrust plate 5 is The main body 2 is supported in a floating state. Air from the air bearings 6A to 6C is discharged from the exhaust port 9 to the outside of the main body 2 through the air discharge paths 2d to 2f.

次に、研磨加工を行うため、円板部材4を回転させる。図3(b)において、図示しない空気ポンプを駆動し、チューブ等を介して給気口10から空気を導入すると、導入された空気は、空気供給路2g、溝部3a、空気供給路3b、3cを経て、円板部材4の2対の空気排出路4a、4bを通過し、図2(b)に示すように、矢印X方向に噴出する。この噴出空気の反力により、円板部材4は、矢印Y方向に回転する。同時に、回転軸3及びスラストプレート5も同方向に回転する。   Next, the disk member 4 is rotated for polishing. In FIG. 3B, when an air pump (not shown) is driven and air is introduced from the air supply port 10 via a tube or the like, the introduced air is supplied to the air supply path 2g, the groove 3a, the air supply paths 3b, 3c. After passing through, it passes through two pairs of air discharge passages 4a and 4b of the disk member 4, and as shown in FIG. The disk member 4 rotates in the arrow Y direction by the reaction force of the blown air. At the same time, the rotating shaft 3 and the thrust plate 5 also rotate in the same direction.

円板部材4の回転により、円板部材4に装着されたワークも回転し、ワークに研磨パッドを当接させてワークの表面を研磨する。   The work mounted on the disk member 4 is also rotated by the rotation of the disk member 4, and the surface of the work is polished by bringing a polishing pad into contact with the work.

ワークの研磨加工が終了すると、空気ポンプを停止して給気口10への空気の導入を停止し、円板部材4等の回転を停止させた後、空気軸受6A〜6Cへの空気の供給も停止する。   When the polishing of the workpiece is completed, the air pump is stopped, the introduction of air into the air supply port 10 is stopped, the rotation of the disk member 4 and the like is stopped, and then the air is supplied to the air bearings 6A to 6C Also stop.

尚、上記実施の形態においては、空気軸受6A〜6Cを多孔質焼結層を有するものとしたが、本発明は、必ずしも多孔質焼結層を有するものに限定されず、本体2に対して回転軸3、円板部材4及びスラストプレート5を3〜20μm程度の空気層を介在させて支承することができる空気軸受を使用することができる。   In the embodiment described above, the air bearings 6A to 6C have the porous sintered layer. However, the present invention is not necessarily limited to the one having the porous sintered layer. An air bearing that can support the rotating shaft 3, the disk member 4, and the thrust plate 5 with an air layer of about 3 to 20 μm interposed therebetween can be used.

また、回転軸3と、円板部材4及びスラストプレート5とは、互いにボルト等で一体化する構造ではなく、回転軸3と、円板部材4又はスラストプレート5のいずれか一方とを一体構造とすることもできる。   Further, the rotating shaft 3, the disk member 4 and the thrust plate 5 are not integrally structured with bolts or the like, but the rotating shaft 3 and either the disk member 4 or the thrust plate 5 are integrally structured. It can also be.

さらに、空気軸受6A〜6Cへの空気供給路2a〜2cについても、T字状ではなく、種々の経路を取ることができ、各々の空気軸受6A〜6Cに対して個別に空気供給路を設けてもよい。同様に、空気排出路2d〜2fについても、各々の空気軸受6A〜6Cに対して個別に設けてもよい。   Further, the air supply paths 2a to 2c to the air bearings 6A to 6C are not T-shaped but can take various paths, and an air supply path is provided for each of the air bearings 6A to 6C. May be. Similarly, the air discharge paths 2d to 2f may be provided individually for the air bearings 6A to 6C.

また、空気供給路3cについても、必ずしも回転軸3の軸線方向に延設される構成に限定されず、空気排出路4a、4bについても、円板部材4の円滑な回転を維持することができれば、図示の延設方向に限定されない。   Further, the air supply path 3c is not necessarily limited to the configuration extending in the axial direction of the rotating shaft 3, and the air discharge paths 4a and 4b can be maintained as long as the disk member 4 can be smoothly rotated. It is not limited to the extending direction of illustration.

本発明にかかるエアスピンドル用駆動装置の一実施の形態を示す外観斜視図である。1 is an external perspective view showing an embodiment of an air spindle driving device according to the present invention. 本発明にかかるエアスピンドル用駆動装置の一実施の形態を示す図であって、(a)は正面図、(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図である。It is a figure which shows one Embodiment of the drive device for air spindles concerning this invention, Comprising: (a) is a front view, (b) is the sectional view on the AA line of (a), (c) is (a). It is a BB sectional view taken on the line. 本発明にかかるエアスピンドル用駆動装置の一実施の形態を示す図であって、(a)は図3(a)の側面図、(b)は(a)のC−C線断面図である。It is a figure which shows one Embodiment of the drive device for air spindles concerning this invention, Comprising: (a) is a side view of Fig.3 (a), (b) is CC sectional view taken on the line of (a). .

符号の説明Explanation of symbols

1 エアスピンドル用駆動装置
2 本体
2a〜2c 空気供給路
2d〜2f 空気排出路
2g 空気供給路
3 回転軸
3a 溝部
3b 空気供給路
3c 空気供給路
4 円板部材
4a 空気排出路
4b 空気排出路
5 スラストプレート
6(6A〜6C) 空気軸受
8 給気口
9 排気口
10 給気口
11 ボルト
DESCRIPTION OF SYMBOLS 1 Air spindle drive 2 Main body 2a-2c Air supply path 2d-2f Air discharge path 2g Air supply path 3 Rotating shaft 3a Groove part 3b Air supply path 3c Air supply path 4 Disc member 4a Air discharge path 4b Air discharge path 5 Thrust plate 6 (6A to 6C) Air bearing 8 Air supply port 9 Air exhaust port 10 Air supply port 11 Bolt

Claims (7)

本体の中空部に挿嵌され、第1の空気軸受により浮動状態に支承される回転軸と、
該回転軸の一端に固定され、前記本体に対して浮動状態となるように、第2の空気軸受により支承される第1の板状部材と、
前記回転軸の他端に固定され、前記本体に対して浮動状態となるように、第3の空気軸受により支承される第2の板状部材と、
前記本体の外表面から前記中空部まで貫通する第1の空気供給路と、
前記本体の外表面から前記第1の空気軸受、前記第2の空気軸受及び前記第3の空気軸受の各々まで貫通する第2の空気供給路と、
前記第1の空気軸受、前記第2の空気軸受及び前記第3の空気軸受の各々から前記本体の外表面まで貫通する第1の空気排出路と、
前記回転軸の外周面上に、前記第1の空気供給路と連通するように設けられる溝部と、
該溝部の底部から前記回転軸の前記一端まで貫通する第3の空気供給路と、
前記第1の板状部材に、前記第3の空気供給路と連通するように設けられる第2の空気排出路とを備え、
前記第1の空気供給路を介して供給された空気が、前記溝部、前記第3の空気供給路、前記第2空気排出路の順に通過した後、外部に噴出することにより、前記第1の板状部材、前記回転軸及び前記第2の板状部材が回転することを特徴とするエアスピンドル用駆動装置。
A rotating shaft that is inserted into the hollow portion of the main body and is supported in a floating state by the first air bearing;
A first plate member fixed to one end of the rotating shaft and supported by a second air bearing so as to float with respect to the main body;
A second plate-like member fixed to the other end of the rotating shaft and supported by a third air bearing so as to float with respect to the main body;
A first air supply path penetrating from the outer surface of the main body to the hollow portion;
A second air supply path that penetrates from the outer surface of the main body to each of the first air bearing, the second air bearing, and the third air bearing;
A first air exhaust passage penetrating from each of the first air bearing, the second air bearing and the third air bearing to an outer surface of the main body;
A groove provided on the outer peripheral surface of the rotating shaft so as to communicate with the first air supply path;
A third air supply path that penetrates from the bottom of the groove to the one end of the rotating shaft;
A second air discharge path provided in the first plate-like member so as to communicate with the third air supply path;
The air supplied through the first air supply path passes through the groove, the third air supply path, and the second air discharge path in this order, and then is ejected to the outside. An air spindle driving device, wherein the plate member, the rotating shaft, and the second plate member rotate.
前記第1乃至第3の空気軸受は、多孔質焼結層を有することを特徴とする請求項1に記載のエアスピンドル用駆動装置。   The air spindle driving device according to claim 1, wherein the first to third air bearings have a porous sintered layer. 前記回転軸と前記第1の板状部材とが、又は、前記回転軸と前記第2の板状部材とが一体に形成されることを特徴とする請求項1又は2に記載のエアスピンドル用駆動装置。   The air spindle according to claim 1 or 2, wherein the rotary shaft and the first plate-like member, or the rotary shaft and the second plate-like member are integrally formed. Drive device. 前記第2の空気供給路の一部は、前記本体の外表面から前記第2の空気軸受及び第3の空気軸受まで各々貫通するようにT字状に設けられることを特徴とする請求項1、2又は3に記載のエアスピンドル用駆動装置。   The part of the second air supply path is provided in a T shape so as to penetrate from the outer surface of the main body to the second air bearing and the third air bearing, respectively. The drive device for an air spindle according to 2 or 3. 前記第1の空気排出路は、前記第1の空気軸受と前記第2の空気軸受との境界部、及び前記第1の空気軸受と前記第3の空気軸受との境界部の各々から前記本体の外表面に貫通するようにV字状に設けられることを特徴とする請求項1乃至4のいずれかに記載のエアスピンドル用駆動装置。   The first air discharge path extends from the boundary portion between the first air bearing and the second air bearing, and from the boundary portion between the first air bearing and the third air bearing. 5. The air spindle driving device according to claim 1, wherein the air spindle driving device is provided in a V shape so as to penetrate the outer surface of the air spindle. 前記第3の空気供給路は、前記回転軸の軸線方向に延設されることを特徴とする請求項1乃至5のいずれかに記載のエアスピンドル用駆動装置。   6. The air spindle driving device according to claim 1, wherein the third air supply path extends in an axial direction of the rotating shaft. 7. 前記第2の空気排出路は、前記回転軸の軸線方向に対して垂直に延設されることを特徴とする請求項1乃至6のいずれかに記載のエアスピンドル用駆動装置。   The air spindle driving device according to any one of claims 1 to 6, wherein the second air discharge path extends perpendicularly to an axial direction of the rotating shaft.
JP2006195413A 2006-07-18 2006-07-18 Driving device for air spindle Withdrawn JP2008025604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195413A JP2008025604A (en) 2006-07-18 2006-07-18 Driving device for air spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195413A JP2008025604A (en) 2006-07-18 2006-07-18 Driving device for air spindle

Publications (1)

Publication Number Publication Date
JP2008025604A true JP2008025604A (en) 2008-02-07

Family

ID=39116446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195413A Withdrawn JP2008025604A (en) 2006-07-18 2006-07-18 Driving device for air spindle

Country Status (1)

Country Link
JP (1) JP2008025604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025607A (en) * 2006-07-18 2008-02-07 Oiles Ind Co Ltd Driving device for air spindle
CN101813130A (en) * 2010-05-07 2010-08-25 浙江工业大学 Air flotation device following motion trail of lifting point at overlength distance without being influenced by disturbing force of air tube
CN101839280A (en) * 2010-05-07 2010-09-22 浙江工业大学 Combined air flotation device unaffected by disturbance of air pipes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025607A (en) * 2006-07-18 2008-02-07 Oiles Ind Co Ltd Driving device for air spindle
CN101813130A (en) * 2010-05-07 2010-08-25 浙江工业大学 Air flotation device following motion trail of lifting point at overlength distance without being influenced by disturbing force of air tube
CN101839280A (en) * 2010-05-07 2010-09-22 浙江工业大学 Combined air flotation device unaffected by disturbance of air pipes

Similar Documents

Publication Publication Date Title
US4766788A (en) Superprecision lathe
EP2100697B1 (en) Spindle device with rotor jetting driving fluid
JP4146151B2 (en) Hydrostatic gas bearing and spindle device using the same
CN101229590A (en) Ultra-sophisticated aerostatic motorized spindle system
KR20120117156A (en) Ultrasonic spindle device
WO2016194594A1 (en) Spindle
JP2008025604A (en) Driving device for air spindle
JP4989140B2 (en) Air spindle drive
JP2009068649A (en) Spindle device
JP2006167821A (en) Attachment fitting method and spindle device
JP6170680B2 (en) spindle
JPS6315096B2 (en)
JP5932319B2 (en) Spindle unit
KR100414907B1 (en) High Speed Spindle System Used Hybrid Air Bearing
JP2009068547A (en) Spindle device
JP2009068546A (en) Spindle device
KR100609631B1 (en) combined bearings for air spindle with single body
JPH09222119A (en) Rotary bearing device and rotational driving method using it
JPH1019043A (en) Static pressure bearing spindle
JP2006167823A (en) Spindle device
JP2007078037A (en) Hydrostatic thrust bearing device
JPH069761B2 (en) Hydrostatic gas bearing device
JP2009068542A (en) Spindle device
JP2009068545A (en) Spindle device
JP2004330384A (en) Rotary main shaft device and working device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006