JP4929494B2 - Circulation type heat absorption / dissipation device using underground heat - Google Patents

Circulation type heat absorption / dissipation device using underground heat Download PDF

Info

Publication number
JP4929494B2
JP4929494B2 JP2006345550A JP2006345550A JP4929494B2 JP 4929494 B2 JP4929494 B2 JP 4929494B2 JP 2006345550 A JP2006345550 A JP 2006345550A JP 2006345550 A JP2006345550 A JP 2006345550A JP 4929494 B2 JP4929494 B2 JP 4929494B2
Authority
JP
Japan
Prior art keywords
water tank
heat
conductive layer
sand
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006345550A
Other languages
Japanese (ja)
Other versions
JP2008156867A (en
Inventor
輝幸 福原
義人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokukon Co Ltd
University of Fukui
Original Assignee
Hokukon Co Ltd
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokukon Co Ltd, University of Fukui filed Critical Hokukon Co Ltd
Priority to JP2006345550A priority Critical patent/JP4929494B2/en
Publication of JP2008156867A publication Critical patent/JP2008156867A/en
Application granted granted Critical
Publication of JP4929494B2 publication Critical patent/JP4929494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Road Paving Structures (AREA)

Description

本発明は、地中熱利用の循環型吸放熱装置に関するものである。より詳しくは、熱媒液を貯留し得るコンクリート製の水槽を地中に浅く埋設して施工コストの低減を達成できながら、相対的に温度の高い周辺地盤から該熱媒液への熱移動を効率的に生じさせることができる一方、相対的に温度の低い周辺地盤に対して前記熱媒液からの熱移動を効率的に生じさせることができ、これによって、車道や駐車場等の放熱されるべき領域における融雪や、舗装部等の吸熱されるべき領域における冷却を効率よく行なうことのできる地中熱利用の循環型吸放熱装置に関するものである。   The present invention relates to a circulation type heat absorbing / dissipating device using underground heat. More specifically, a concrete aquarium that can store the heat transfer fluid can be buried in the ground shallow to achieve a reduction in construction costs, while heat transfer from the relatively high temperature surrounding ground to the heat transfer fluid can be achieved. While it can be generated efficiently, heat transfer from the heat transfer fluid can be efficiently generated with respect to the surrounding ground with relatively low temperature. The present invention relates to a circulating heat absorbing / dissipating device using ground heat that can efficiently perform snow melting in a region to be heated and cooling in a region to be absorbed, such as a pavement.

地表から5mまでの深さの地中熱を利用して無散水融雪を行うシステムとして、例えば特開2006−2539号公報が開示するものが提案されている。   As a system for performing non-sprinkling snow melting using underground heat at a depth of 5 m from the ground surface, for example, a system disclosed in Japanese Patent Application Laid-Open No. 2006-2539 has been proposed.

該システムは、不要となった既設の浄化槽を、熱媒液を貯蔵する手段として用いるもので、融雪エリアに敷設されるものであり、その内部を熱媒液が流れる吸放熱パイプと、地中に埋設され前記熱媒液を貯蔵し得る浄化槽と、この浄化槽内の熱媒液を吸放熱パイプの入口部に送ると共に該吸放熱パイプの出口部からの熱媒液を前記浄化槽内に戻すポンプ部とを具える構成を採用していた。   The system uses an existing septic tank that is no longer necessary as a means for storing the heat transfer fluid, and is laid in a snow melting area, and the heat absorbing and radiating pipe through which the heat transfer fluid flows, A septic tank that is embedded in the heat storage medium and can store the heat transfer medium liquid, and a pump that sends the heat transfer medium liquid in the septic tank to the inlet part of the heat absorption / radiation pipe and returns the heat transfer medium liquid from the outlet part of the heat absorption / radiation pipe The structure which comprises a part was adopted.

かかる無散水融雪システムによるときは、相対的に温度の高い周辺地盤から浄化槽への熱移動が生ずることを利用し、前記吸放熱パイプを通過する過程で融雪のために冷却された熱媒液が浄化槽に流入し該浄化槽内に貯留されている熱媒液の温度が低下した場合、該熱移動によって熱媒液を温め無散水で融雪を行なう構成のものであった。   When using such a non-sprinkling snow melting system, heat transfer from the surrounding ground having a relatively high temperature to the septic tank is utilized, and the heat transfer liquid cooled for snow melting in the process of passing through the heat absorbing and radiating pipe is When the temperature of the heat transfer liquid flowing into the septic tank and stored in the septic tank decreases, the heat transfer liquid is warmed by the heat transfer and snow melting is performed with non-sprinkling water.

しかしながら、かかる無散水融雪システムは、既存の浄化槽を再利用する方式のものであったために、該浄化槽は、その外表面が土に直接接した状態で地中に埋設されているに過ぎず、周辺地盤から浄化槽への熱移動効率の面で改良の余地があった。
特開2006−2539号公報
However, since this non-sprinkling snow melting system was of a system that reuses an existing septic tank, the septic tank was only buried in the ground with its outer surface in direct contact with the soil, There was room for improvement in terms of heat transfer efficiency from the surrounding ground to the septic tank.
JP 2006-2539 A

本発明は、前記従来の問題点に鑑みて開発されたものであり、施工コストの低減を達成できながら、車道や駐車場等の放熱されるべき領域における融雪や、舗装部等の吸熱されるべき領域における冷却を効率よく行なうことのできる地中熱利用の循環型吸放熱装置に関するものである。   The present invention has been developed in view of the above-described conventional problems, and while achieving reduction in construction cost, it is possible to absorb heat from snow melting in a region to be radiated, such as a roadway or a parking lot, and a pavement. The present invention relates to a circulation type heat absorption / dissipation device using underground heat that can efficiently perform cooling in a power region.

前記課題を解決するため、本発明は以下の手段を採用する。
即ち、本発明に係る地中熱利用の循環型吸放熱装置(以下、循環型吸放熱装置という)は、その上面部が地表から0.5〜2mの深さに存し且つその下面部が地表から5mまでの深さに存するように地中に埋設されて熱媒液を貯留し得るコンクリート製の水槽と、放熱されるべき領域又は吸熱されるべき領域に埋設され、前記熱媒液が内部に流れる吸放熱パイプと、前記水槽内の熱媒液を前記吸放熱パイプに送ると共に、該吸放熱パイプ内の熱媒液を前記水槽内に戻すポンプとを具える。そして、前記水槽の前記上面部を除き、前記水槽の少なくとも側面を覆う如く、熱伝導率が5W/(m・k)以上の砂利及び/又は砂からなる高熱伝導層が設けられており、該高熱伝導層は、前記側面を、その上下幅の下側部分をなす50〜80%の幅部分は少なくとも覆うことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
That is, the circulating heat absorbing / dissipating device using ground heat according to the present invention (hereinafter referred to as the circulating heat absorbing / dissipating device) has an upper surface portion at a depth of 0.5 to 2 m from the ground surface and a lower surface portion. A concrete water tank that is buried in the ground so as to exist at a depth of 5 m from the ground surface and can store the heat transfer liquid, and is embedded in an area to be radiated or an area to be absorbed, and the heat transfer liquid is The heat absorbing / dissipating pipe flowing inside, and the pump for sending the heat transfer medium in the water tank to the heat absorbing / dissipating pipe and returning the heat transfer medium in the heat absorbing / dissipating pipe to the water tank. And, excluding the upper surface portion of the water tank, a high heat conductive layer made of gravel and / or sand having a thermal conductivity of 5 W / (m · k) or more is provided so as to cover at least the side surface of the water tank, The high heat conductive layer is characterized in that the side surface covers at least a width portion of 50 to 80% forming a lower portion of the vertical width thereof.

前記循環型吸放熱装置において、前記水槽の側面を覆う前記高熱伝導層を、前記水槽の側面の、前記地表から1mの深さの範囲部分を除く下側部分に設けるのがよい。   In the circulation type heat absorbing / dissipating device, it is preferable that the high heat conductive layer covering the side surface of the water tank is provided on a lower side portion of the side surface of the water tank except a range portion having a depth of 1 m from the ground surface.

前記循環型吸放熱装置において、前記水槽の上面部が地表から1〜2mの深さにあるとき、前記水槽の側面を覆う高熱伝導層を、側面視で、前記水槽の側面の上部は薄く下部は厚く設けるのがよい。   When the upper surface of the water tank is at a depth of 1 to 2 m from the ground surface, the high heat conductive layer covering the side surface of the water tank is thin and the upper part of the side surface of the water tank is thin and lower when viewed from the side. Should be thick.

前記各循環型吸放熱装置において、前記水槽の下面部を設置するための基礎部は、上下端が開放した収容部が設けられてなるコンクリート基礎の該収容部に、砂利及び/又は砂からなる高熱伝導層を充填されたものとして構成するのがよい。   In each of the circulation type heat absorbing / dissipating devices, the foundation for installing the lower surface of the water tank is made of gravel and / or sand in the accommodating portion of the concrete foundation provided with the accommodating portion whose upper and lower ends are opened. It is preferable that the high thermal conductive layer is filled.

前記各循環型吸放熱装置において、前記水槽の上面に、合成樹脂発泡体からなる断熱材層を設けるのがよい。   In each of the circulation type heat absorbing / dissipating devices, a heat insulating material layer made of a synthetic resin foam may be provided on the upper surface of the water tank.

前記各循環型吸放熱装置において、前記高熱伝導層を構成する砂利層の内部間隙に、前記高熱伝導層を構成する砂が充填されたものとして構成するのがよい。   In each of the circulation type heat absorbing / dissipating devices, it is preferable that an internal gap of a gravel layer constituting the high thermal conductive layer is filled with sand constituting the high thermal conductive layer.

前記各循環型吸放熱装置において、前記コンクリート製の水槽は、熱伝導率が5W/(m・k)以上の砂利と砂との混合物を主骨材として用いて構成するのがよい。   In each of the circulation type heat absorbing / dissipating devices, the concrete water tank is preferably configured using a mixture of gravel and sand having a thermal conductivity of 5 W / (m · k) or more as a main aggregate.

前記各循環型吸放熱装置において、前記砂利として珪石を用いると共に前記砂として珪砂を用いるのがよい。   In each of the circulation type heat sinks, it is preferable to use silica stone as the gravel and silica sand as the sand.

前記水槽として防火水槽を用いることができる。   A fireproof water tank can be used as the water tank.

本発明は以下の如き優れた効果を奏する。
(1) 本発明に係る循環型吸放熱装置によるときは、熱媒液を貯留し得るコンクリート製の水槽を地中に浅く埋設してよいため、施工コストの低減を達成できながら、相対的に温度の高い周辺地盤から該熱媒液への熱移動を効率的に生じさせることができる一方、相対的に温度の低い周辺地盤に対して前記熱媒液からの熱移動を効率的に生じさせることができ、これによって、車道や駐車場等の放熱されるべき領域における融雪や、舗装部等の吸熱されるべき領域における冷却を効率よく行なうことができる。
The present invention has the following excellent effects.
(1) When using the circulation type heat absorbing / dissipating device according to the present invention, a concrete water tank that can store the heat transfer fluid may be buried in the ground shallowly, while achieving a reduction in construction cost, relatively Heat transfer from the surrounding ground having a high temperature to the heat transfer fluid can be efficiently generated, while heat transfer from the heat transfer solution to the surrounding ground having a relatively low temperature is efficiently generated. Thus, it is possible to efficiently perform snow melting in a region where heat is to be radiated, such as a roadway or a parking lot, and cooling in a region where heat is to be absorbed, such as a pavement.

(2) 本発明に係る循環型吸放熱装置において、高熱伝導層を、水槽の側面の、地表から1m深さの範囲部分を除く下側部分に設けることにより、地表熱の影響を受けることなく地中熱をより効率的に活用できる利点がある。 (2) In the circulation type heat absorbing / dissipating device according to the present invention, the high heat conductive layer is provided on the lower portion of the side surface of the aquarium except for the range of a depth of 1 m from the ground surface without being affected by the surface heat. There is an advantage that geothermal heat can be used more efficiently.

(3) 本発明に係る循環型吸放熱装置において、水槽の上面部が地表から1〜2mの深さにある場合において、水槽の側面を覆う熱伝導層を、側面視で、水槽の側面の上部は薄く下部は厚く設けることにより、施工コストの低減を図りつつ地中温度を有効活用できる利点がある。 (3) In the circulation type heat absorbing / dissipating device according to the present invention, when the upper surface of the water tank is at a depth of 1 to 2 m from the ground surface, the heat conduction layer covering the side surface of the water tank is By providing the upper part thin and the lower part thick, there is an advantage that the underground temperature can be effectively utilized while reducing the construction cost.

(4) 水槽の下面部を設置するための基礎部を、上下端が開放した収容部が設けられてなるコンクリート基礎の該収容部に、砂利及び/又は砂からなる高熱伝導層が充填された構成とすることにより、水槽の下面部を通しての効率的な熱移動も確保されることになる。 (4) A high heat conduction layer made of gravel and / or sand was filled in the receiving part of the concrete foundation provided with a receiving part with the upper and lower ends opened, as a foundation part for installing the lower surface part of the water tank. By adopting the configuration, efficient heat transfer through the lower surface of the water tank is also ensured.

(5) 水槽の上面に、合成樹脂発泡体からなる断熱層を設ける場合は、地表熱の影響を受けやすい上面部を効果的に断熱でき、地表熱の影響を遮断できることになる。 (5) When a heat insulating layer made of a synthetic resin foam is provided on the upper surface of the water tank, the upper surface portion that is easily affected by surface heat can be effectively insulated, and the influence of surface heat can be blocked.

(6) 高熱伝導層を構成する砂利層の内部間隙に、高熱伝導層を構成する砂を充填させる場合は、高熱伝導層による熱移動の効率を向上させ得る利点がある。 (6) When the internal gap of the gravel layer constituting the high heat conduction layer is filled with the sand constituting the high heat conduction layer, there is an advantage that the efficiency of heat transfer by the high heat conduction layer can be improved.

(7) 水槽を、熱伝導率が5W/(m・k)以上の砂利(好ましくは珪石)と砂(好ましくは珪砂)の混合物を主骨材とするコンクリート製とする場合は、所要の熱効率を確保できながら水槽を小型化できることになり、循環型吸放熱装置をよりコンパクトに構成できる利点がある。 (7) If the water tank is made of concrete with a main aggregate of gravel (preferably silica) and sand (preferably silica sand) with a thermal conductivity of 5 W / (m · k) or more, the required thermal efficiency As a result, the water tank can be reduced in size while the circulation type heat absorbing / dissipating device can be configured more compactly.

図1〜3において本発明に係る循環型吸放熱装置1は、地中に浅く埋設されたコンクリート製の水槽2と、放熱されるべき領域又は吸熱されるべき領域(以下吸放熱領域という)3に埋設される吸放熱パイプ5と、該吸放熱パイプ5と前記水槽2との間で熱媒液(水、不凍液等)6を循環させるポンプ7とを具え、前記水槽2の上面部9を除き、前記水槽2の少なくとも側面10を覆う如く側部の高熱伝導層11が設けられてなるものである。   1 to 3, a circulation type heat absorbing / dissipating device 1 according to the present invention includes a concrete water tank 2 buried shallowly in the ground, and a region to be radiated or a region to be absorbed (hereinafter referred to as a heat absorbing / dissipating region) 3. And a pump 7 for circulating a heat transfer fluid (water, antifreeze liquid, etc.) 6 between the heat absorbing and radiating pipe 5 and the water tank 2, and an upper surface portion 9 of the water tank 2. Except for the above, the high heat conductive layer 11 on the side is provided so as to cover at least the side surface 10 of the water tank 2.

前記コンクリート製の水槽2は通常の骨材を用いた普通コンクリート製でもよいのであるが、本実施例においては、熱伝導率の高い骨材、例えば熱伝導率が5W/(m・k)以上の熱伝導率を有する骨材、好ましくは熱伝導率が約6W/(m・k)である珪石と珪砂の混合物を骨材とするコンクリート製としている。本実施例においては、珪石と珪砂の割合を50対50、より好ましくは46対54に設定している。因みに、普通コンクリートの熱伝導率は約1.6W/(m・k)であるのに対して、珪石と珪砂の混合物を骨材とするコンクリートの熱伝導率は約3.26W/(m・k)である。   The concrete water tank 2 may be made of ordinary concrete using ordinary aggregate, but in this embodiment, the aggregate has high thermal conductivity, for example, thermal conductivity of 5 W / (m · k) or more. The aggregate is preferably made of concrete having an aggregate of a mixture of quartzite and quartz sand having a thermal conductivity of about 6 W / (m · k). In the present embodiment, the ratio of silica stone and silica sand is set to 50:50, more preferably 46:54. Incidentally, the heat conductivity of ordinary concrete is about 1.6 W / (m · k), whereas the heat conductivity of concrete composed of a mixture of silica and silica sand is about 3.26 W / (m · k). k).

かかる構成の水槽2は、例えば図3に示すように、地面を掘削して形成した施工空間13の底部に設けた基礎部15上で構築された後、土砂16を埋め戻すことによって、地中に浅く埋設状態とされるものである。該水槽2は、本実施例においては、図1〜3に示すように、該基礎部15上において、プレキャストコンクリート製の箱型暗渠部材状の中間部材17の複数個を水密を確保して相互を接合すると共に、該中間部材の接合体19の両端を閉塞するように、プレキャストコンクリート製の端面部材20,20を接合してなるものであり、例えば一端に位置する中間部材17aには、水槽2内への出入口となるマンホール21が設けられ、該マンホール21に連通するように、円筒状をなす筒状部材22が立設され、該筒状部材22の上端が蓋体23で閉蓋されている。   For example, as shown in FIG. 3, the water tank 2 having such a configuration is constructed on the foundation portion 15 provided at the bottom of the construction space 13 formed by excavating the ground, and then backfilled with the earth and sand 16, In other words, it is buried shallowly. In this embodiment, as shown in FIGS. 1 to 3, the aquarium 2 has a plurality of precast concrete box-shaped culvert member-like intermediate members 17 on the foundation portion 15 to ensure watertightness. In addition, the end members 20 and 20 made of precast concrete are joined so as to close both ends of the joined body 19 of the intermediate member. For example, the intermediate member 17a located at one end includes a water tank. 2 is provided with a manhole 21 serving as an entrance and exit, and a cylindrical member 22 having a cylindrical shape is erected so as to communicate with the manhole 21, and the upper end of the cylindrical member 22 is closed with a lid 23. ing.

前記基礎部15は、本実施例においては図1〜4に示すように、その長辺に沿って連続する2本の帯状のコンクリート基礎26,26の内側に、熱伝導率が5W/(m・k)以上の砂利27及び/又は砂29からなる高熱伝導層11が充填され構成されている。そして、該基礎部15の上面30は水平に形成され、前記水槽2の下面部31に密接されている。該砂利27としては珪石を用い、該砂29としては珪砂を用いており、本実施例においては、珪石と珪砂の割合を50対50、より好ましくは46対54に設定することによって、図4(B)に示すように、砂利層32の内部間隙33に砂29を充填し、熱移動の効率を向上させている。   In the present embodiment, as shown in FIGS. 1 to 4, the foundation portion 15 has a thermal conductivity of 5 W / (m) inside the two strip-shaped concrete foundations 26, 26 continuous along the long side. K) The high thermal conductive layer 11 composed of the above gravel 27 and / or sand 29 is filled and configured. The upper surface 30 of the base portion 15 is formed horizontally and is in close contact with the lower surface portion 31 of the water tank 2. Silica stone is used as the gravel 27, and silica sand is used as the sand 29. In this embodiment, the ratio of the silica stone and the silica sand is set to 50:50, more preferably 46:54. As shown in (B), sand 29 is filled in the internal gap 33 of the gravel layer 32 to improve the efficiency of heat transfer.

このように構築された水槽2の上面部9は、地表36から0.5〜2mの深さに存するように、本実施例においては約1mに設定されている。又、該水槽2の下面部31は、地表36から5mまでの深さに存するように、本実施例においては約3.4mの深さに存するように設定されている。   The upper surface portion 9 of the water tank 2 constructed in this way is set to about 1 m in the present embodiment so as to be at a depth of 0.5 to 2 m from the ground surface 36. Further, the lower surface portion 31 of the water tank 2 is set to have a depth of about 3.4 m in the present embodiment so as to have a depth of 5 m from the ground surface 36.

地表36からの深さが0.5mよりも小さいと、土被り厚さが0.5mよりも小さくなるので、地表36からの熱の影響が大きくなって水槽2内の熱媒体の熱効率が悪くなって好ましくない。又、地表36からの深さが2mを越えると、土被り厚さが2mを越えて地表36からの熱の影響がないからである。そして、水槽の下面部31の深さが地表36から5mを越えると、施工コストの上昇を招くことになって好ましくないからである。   If the depth from the ground surface 36 is smaller than 0.5 m, the earth covering thickness is smaller than 0.5 m, so that the influence of the heat from the ground surface 36 is increased and the heat efficiency of the heat medium in the water tank 2 is poor. It is not preferable. Further, if the depth from the ground surface exceeds 2 m, the earth covering thickness exceeds 2 m and there is no influence of heat from the ground surface. And if the depth of the lower surface part 31 of a water tank exceeds 5 m from the ground surface 36, it will cause an increase in construction cost and is not preferable.

前記吸放熱領域3は本実施例においては、図2、図5〜6に示すように、歩道面38を構成するコンクリートパネル37を、整地された歩道路盤39上に所要枚数敷き並べて形成されており、該コンクリートパネル37は、熱伝導率が5W/(m・k)以上の骨材、好ましくは珪石と砂利の混合物(本実施例においては、珪石と珪砂の割合が50対50、より好ましくは46対54に設定されている)を骨材としたコンクリート製の矩形板状のパネルとして形成されている。そして図7に示すように、該コンクリートパネル37の内部には、前記熱媒液6が内部に流れる吸放熱パイプ5が蛇行状態に埋設されている。かかる構成を有するコンクリートパネル37を、図5〜6に示すように、整地された歩道路盤39上に所要枚数敷き並べ、該吸放熱パイプ5の一方の端部40を、地下に埋設してある一方の管体41に接続すると共に、他方の端部42を他方の管体43に接続し、歩道の吸放熱領域3を構築する。   In the present embodiment, as shown in FIGS. 2 and 5 to 6, the heat absorbing / dissipating region 3 is formed by arranging a required number of concrete panels 37 constituting a sidewalk surface 38 on a leveled walking board 39. The concrete panel 37 is an aggregate having a thermal conductivity of 5 W / (m · k) or more, preferably a mixture of silica and gravel (in this embodiment, the ratio of silica and silica sand is 50:50, more preferably Is set as 46:54) and is formed as a rectangular rectangular panel made of concrete. As shown in FIG. 7, the heat absorbing and radiating pipe 5 through which the heat transfer liquid 6 flows is embedded in the concrete panel 37 in a meandering state. As shown in FIGS. 5 to 6, a required number of concrete panels 37 having such a configuration are laid out on a leveled road board 39, and one end 40 of the heat absorbing / dissipating pipe 5 is buried underground. While connecting to one pipe body 41, the other end part 42 is connected to the other pipe body 43, and the heat absorption / radiation area 3 of a sidewalk is constructed.

前記一方の管体41の端部分41a及び前記他方の管体43の端部分43aは、共に、所要間隔を置いて前記水槽2内で配設され、前記熱媒液6中で開放されている。本実施例においては、一方の管体41の開口45が上に位置し、他方の管体43の開口46が下に位置している。そして、前記ポンプ7は前記一方の管体41又は前記他方の管体43の中間所要部位に配設されており、本実施例においては、他方の管体43に配設されている。該ポンプ7を駆動することにより、前記水槽2内の熱媒液6が前記吸放熱パイプ5の一方の端部40(図5)に送られると共に、前記吸放熱パイプ5の他方の端部42からの熱媒液6が前記水槽2内に戻される。   The end portion 41 a of the one tube body 41 and the end portion 43 a of the other tube body 43 are both disposed in the water tank 2 at a required interval and opened in the heat transfer liquid 6. . In the present embodiment, the opening 45 of one tube body 41 is positioned on the upper side, and the opening 46 of the other tube body 43 is positioned on the lower side. The pump 7 is disposed at an intermediate required portion of the one tube body 41 or the other tube body 43. In the present embodiment, the pump 7 is disposed on the other tube body 43. By driving the pump 7, the heat transfer fluid 6 in the water tank 2 is sent to one end 40 (FIG. 5) of the heat absorbing / dissipating pipe 5 and the other end 42 of the heat absorbing / dissipating pipe 5. Is returned to the water tank 2.

なお本実施例においては、水槽2内の水は、その上側が温かく下が冷たいため、前記ポンプ7の順駆動によって、冬期においては、上に位置する開口45を流入口として、温かい水を前記吸放熱パイプ5に送給する共に、下に位置する開口46から熱媒液を水槽2内に戻す。逆に夏期にあっては、前記ポンプ7の逆駆動によって、下に位置する開口46としての流入口から、水槽内の熱媒液6を前記吸放熱パイプ5に送給すると共に前記上に位置する開口45としての流出口より熱媒液を水槽2内に戻す構成を採用している。   In this embodiment, the water in the aquarium 2 is warm on the upper side and cold on the lower side. Therefore, in the winter season, the warm water is supplied to the upper opening 45 as the inlet by the forward drive of the pump 7. While feeding to the heat absorption and radiation pipe 5, the heat transfer fluid is returned into the water tank 2 from the opening 46 located below. On the contrary, in the summer, by reverse driving of the pump 7, the heat transfer fluid 6 in the water tank is supplied to the heat-absorbing and radiating pipe 5 from the inlet as the opening 46 positioned below and positioned above the The structure which returns a heat-medium liquid in the water tank 2 from the outflow port as the opening 45 to perform is employ | adopted.

前記水槽2の側面10を覆う前記側部の高熱伝導層11は、本実施例においては図1〜2に示すように、側面視で、該側面10の上部は薄く下部は厚く設けられ、例えば階段状に設けられている。該熱伝導層11は、熱伝導率が5W/(m・k)以上の砂利及び/又は砂からなり、本実施例においては図4(B)に示すと同様に、珪石からなる砂利層32の内部間隙33に珪砂からなる砂29を充填させ、熱移動の効率を向上させている。   In the present embodiment, as shown in FIGS. 1 and 2, the side high thermal conductive layer 11 covering the side surface 10 of the water tank 2 is provided with a thin upper portion on the side surface 10 and a thick lower portion, for example, It is provided in steps. The thermal conductive layer 11 is made of gravel and / or sand having a thermal conductivity of 5 W / (m · k) or more. In this embodiment, as shown in FIG. 4B, the gravel layer 32 made of silica stone. The inner gap 33 is filled with sand 29 made of silica sand to improve heat transfer efficiency.

かかる構成を有する高熱伝導層11を設けるに際しては、図8に示すように、前記施工空間13の底部において、例えば約30cm厚さで約100cm幅の断面長方形状を呈する1段目の高熱伝導層11aを、前記側面10を取り囲むように形成する。その後、該1段目の高熱伝導層11aの上面50の高さにまで土砂16を埋め戻す。その後、図9に示すように、該上面50上において約30cm厚さで幅が約88cmの2段目の高熱伝導層11bを、前記側面10を取り囲むように形成する。その後、該2段目の高熱伝導層11bの上面51の高さにまで土砂16を埋め戻す。これを順次繰り返して、図1〜2、図10に示すように、3段目の高熱伝導層11c、4段目の高熱伝導層11d、5段目の高熱伝導層11e、6段目の高熱伝導層11f、7段目の高熱伝導層11g、8段目の高熱伝導層11hを、上に向かうにつれて小幅となるように形成する。なお、該8段目の高熱伝導層11hの幅は約13cmに設定されている。最上段の8段目の高熱伝導層11hを形成した後、その上面53の高さにまで土砂16を埋め戻す。   When providing the high thermal conductive layer 11 having such a configuration, as shown in FIG. 8, at the bottom of the construction space 13, for example, the first high thermal conductive layer having a rectangular cross section of about 30 cm thickness and about 100 cm width is provided. 11 a is formed so as to surround the side surface 10. Thereafter, the earth and sand 16 is backfilled to the height of the upper surface 50 of the first stage high thermal conductive layer 11a. Thereafter, as shown in FIG. 9, a second high thermal conductive layer 11 b having a thickness of about 30 cm and a width of about 88 cm is formed on the upper surface 50 so as to surround the side surface 10. Then, the earth and sand 16 is backfilled to the height of the upper surface 51 of the second stage high thermal conductive layer 11b. This is sequentially repeated, and as shown in FIGS. 1 and 2 and FIG. 10, the third stage high thermal conductive layer 11c, the fourth stage high thermal conductive layer 11d, the fifth stage high thermal conductive layer 11e, and the sixth stage high thermal conductivity layer. The conductive layer 11f, the seventh-stage high heat conductive layer 11g, and the eighth-stage high heat conductive layer 11h are formed so as to become narrower as they go upward. The width of the eighth stage high thermal conductive layer 11h is set to about 13 cm. After forming the uppermost 8th stage high thermal conductive layer 11h, the earth and sand 16 is backfilled to the height of the upper surface 53 thereof.

その後、前記水槽2の上面部9に、例えば20mm厚さの合成樹脂発泡体等からなる断熱材層(その熱伝導率は例えば0.028W/(m・k))55を設ける。水槽2の該上面部9は地表熱の影響を受けやすいために、本実施例においては、上面部9に高熱伝導層11を設けないだけでなく、水槽2内の熱が地表36側に移動しにくいようにするために積極的に断熱材層55を設けているのである。又本実施例においては、前記のようにマンホール21が設けられているため、前記筒状部材22の外面56を覆うように断熱材層55を設け、又、前記蓋体23の下面57を覆うように断熱材層55を設けている。   Thereafter, a heat insulating material layer (having a thermal conductivity of, for example, 0.028 W / (m · k)) 55 made of, for example, a synthetic resin foam having a thickness of 20 mm is provided on the upper surface portion 9 of the water tank 2. Since the upper surface portion 9 of the water tank 2 is easily affected by surface heat, in this embodiment, not only the high heat conductive layer 11 is not provided on the upper surface portion 9, but the heat in the water tank 2 moves to the surface 36 side. The heat insulating material layer 55 is positively provided to make it difficult to perform. In this embodiment, since the manhole 21 is provided as described above, the heat insulating material layer 55 is provided so as to cover the outer surface 56 of the cylindrical member 22, and the lower surface 57 of the lid 23 is covered. Thus, the heat insulating material layer 55 is provided.

然る後、前記水槽2の上部及びその周辺の全体に亘って土砂16を埋め戻す。これにより、水槽2の上面部9が地表36から約1mの深さに存し、且つ水槽2の下面部31が地表36から約3.4mの深さに存する循環型吸放熱装置1が構成されることになる。   Thereafter, the earth and sand 16 is backfilled over the upper part of the water tank 2 and the entire periphery thereof. Thereby, the circulation type heat absorbing / dissipating device 1 in which the upper surface portion 9 of the water tank 2 exists at a depth of about 1 m from the ground surface 36 and the lower surface portion 31 of the water tank 2 exists at a depth of about 3.4 m from the ground surface 36 is configured. Will be.

かかる構成を有する循環型吸放熱装置1の作用を、冬期の融雪時の作用と、夏期の舗装部冷却時の作用に分けて、図2に基づいて説明する。   The operation of the circulation type heat absorbing / dissipating device 1 having such a configuration will be described based on FIG. 2 by dividing it into an operation at the time of snow melting in winter and an operation at the time of cooling the pavement in summer.

即ち冬期にあっては、前記水槽2が埋設されている周辺の地盤(以下周辺地盤という)58の地中温度は、融雪を要する吸放熱領域3の表面温度(前記コンクリートパネル37による舗装部59の表面61の温度)よりも相対的に高い。そのため、前記ポンプ7の駆動によって、前記吸放熱パイプ5を通過する過程で融雪のために冷却された熱媒液6が前記水槽2に流入することにより、該水槽2内に貯留されている熱媒液6の温度を低下させることになるが、相対的に温度の高い周辺地盤58から該水槽2への熱移動が生じ、水槽2内の熱媒液6は徐々に温められることになる。そして、このように温められた熱媒液は前記吸放熱パイプ5に送られる。かかる熱移動は、前記のように、水槽の側面10を覆うように設けられている側部の高熱伝導層11と水槽の下面部31に密接して配置されている前記下部の高熱伝導層11によって効率よく行なわれることになる。本発明者が例えば北陸地方で実験した結果によれば、該周辺地盤の温度は、冬期にあっては6〜8℃であり、夏期にあっては6〜14℃であった。   That is, in the winter season, the underground temperature of the surrounding ground (hereinafter referred to as the surrounding ground) 58 in which the water tank 2 is embedded is the surface temperature of the heat absorbing / dissipating area 3 that requires snow melting (the pavement 59 by the concrete panel 37). Relative to the temperature of the surface 61). Therefore, when the pump 7 is driven, the heat medium liquid 6 that has been cooled for melting snow in the process of passing through the heat absorbing and radiating pipe 5 flows into the water tank 2, and thus the heat stored in the water tank 2. Although the temperature of the liquid medium 6 is lowered, heat transfer from the peripheral ground 58 having a relatively high temperature to the water tank 2 occurs, and the heat medium liquid 6 in the water tank 2 is gradually warmed. Then, the heating medium liquid warmed in this way is sent to the heat absorbing and radiating pipe 5. As described above, the heat transfer is performed in close contact with the side high heat conductive layer 11 provided to cover the side surface 10 of the water tank and the lower surface part 31 of the water tank, and the lower high heat conductive layer 11. Will be performed efficiently. According to the results of experiments conducted by the inventor, for example, in the Hokuriku region, the temperature of the surrounding ground was 6 to 8 ° C. in the winter and 6 to 14 ° C. in the summer.

逆に夏期にあっては、水槽2が埋設されている周辺の地盤(周辺地盤)58の地中温度は、吸熱されるべき領域の表面温度(冷却されるべき舗装部59の表面61の温度)よりも相対的に低い。このため、前記ポンプ7の駆動によって、前記吸放熱パイプ5を通過して舗装部の表面61を冷却させる過程で上昇された媒体液6が水槽2に流入することにより、該水槽2内に貯留されている熱媒液の温度を上昇させることになるが、相対的に温度の低い周辺地盤58に対して前記水槽2からの熱移動が生じ、水槽2内の熱媒液6は徐々に温度が低下する。そして、このように冷やされた熱媒液6は前記吸放熱パイプ5に送られる。かかる熱移動も、前記のように、水槽の側面10を覆うように設けられている側部の高熱伝導層11と水槽の下面部31に密接して配置されている前記下部の高熱伝導層11とによって効率よく行なわれることになる。   Conversely, in the summer, the underground temperature of the surrounding ground (peripheral ground) 58 where the water tank 2 is buried is the surface temperature of the region to be endothermic (the temperature of the surface 61 of the pavement 59 to be cooled). ) Is relatively lower. For this reason, when the pump 7 is driven, the liquid medium 6 raised in the process of cooling the surface 61 of the pavement through the heat absorbing and radiating pipe 5 flows into the water tank 2 and is stored in the water tank 2. However, heat transfer from the water tank 2 occurs with respect to the surrounding ground 58 having a relatively low temperature, and the heat medium liquid 6 in the water tank 2 gradually increases in temperature. Decreases. Then, the heat medium liquid 6 cooled in this way is sent to the heat absorbing and radiating pipe 5. As described above, the heat transfer is also performed in close contact with the side high heat conductive layer 11 provided to cover the side surface 10 of the water tank and the bottom surface part 31 of the water tank, and the lower high heat conductive layer 11. It will be done efficiently.

なお本実施例においては、前記のように、水槽の側面10を覆う如く設けられた側部の高熱伝導層11は、側面視で、該水槽2の側面10の上部は薄く下部は厚く設けているが、その理由は次の通りである。即ち本実施例においては、前記水槽2の上面部9が地表36から1mの深さにあり、水槽2の下面部31が地表36から3.4mの深さにあるため、該側面10が地表36からの熱の影響を殆ど受けないと共に、地表36に近いほど地中温度が、冬期にあっては低く、夏期にあっては高い傾向にある。そこで、前記側面10の上部については、前記高熱伝導層11を厚く形成しても熱移動量が特に多くなるわけではないことに鑑み、施工コストの低減を図るために、砂利や砂(珪石や珪砂)の使用量を削減しているのである。   In the present embodiment, as described above, the high thermal conductive layer 11 on the side portion provided so as to cover the side surface 10 of the water tank is provided with the upper part of the side face 10 of the water tank 2 being thin and the lower part being thick. The reason is as follows. That is, in this embodiment, the upper surface portion 9 of the water tank 2 is at a depth of 1 m from the ground surface 36 and the lower surface portion 31 of the water tank 2 is at a depth of 3.4 m from the ground surface 36. As the temperature is closer to the ground surface 36, the underground temperature tends to be lower in winter and higher in summer. Therefore, in view of the fact that the amount of heat transfer does not particularly increase even when the high thermal conductive layer 11 is formed thick, the gravel or sand (silica stone or The amount of silica sand) is being reduced.

又本実施例においては、前記水槽2を、珪石等の熱伝導率の高い骨材を用いたコンクリート製としているため、普通コンクリート製の水槽とは異なり、該水槽2を通しての熱移動も、より効率的に行なわれることとなる。   In the present embodiment, the water tank 2 is made of concrete using an aggregate having high thermal conductivity such as quartz stone. Therefore, unlike the water tank made of ordinary concrete, the heat transfer through the water tank 2 is further improved. It will be done efficiently.

又本実施例においては、前記高熱伝導層11を構成する砂利層の内部間隙に砂が充填されているために、該高熱伝導層11には断熱層となる空気層が殆ど存在せず、従って、前記熱移動がより効率的に行なわれることとなる。   Further, in this embodiment, since the internal gaps of the gravel layer constituting the high heat conductive layer 11 are filled with sand, the high heat conductive layer 11 has almost no air layer as a heat insulating layer. The heat transfer is performed more efficiently.

本発明は、前記実施例で示したものに限定されるものでは決してなく、「特許請求の範囲」の記載内で種々の設計変更が可能であることはいうまでもない。その一例を挙げれば次のようである。   The present invention is by no means limited to those shown in the above-described embodiments, and it goes without saying that various design changes can be made within the scope of the claims. One example is as follows.

(1) 図11〜12、図13は、前記水槽2の側面10を高熱伝導層11で覆う場合の他の態様を示すものである。 (1) FIGS. 11 to 12 and FIG. 13 show other modes when the side surface 10 of the water tank 2 is covered with the high thermal conductive layer 11.

図11〜12は、該水槽2の上面部9が地表36から0.5〜1mの深さにある場合を示しており、該高熱伝導層11が、該水槽2の側面10の、地表から1m深さの範囲部分を除く下側部分62に設けられている。図11は、上面部9が地表36から0.5mの深さにある場合を示し、高熱伝導層11が前記側面10の上下幅の50%の幅部分をなす下側部分62に設けられている。又図12は、上面部9が地表36から0.8mの深さにある場合を示し、高熱伝導層11が前記側面10の上下幅の80%の幅部分をなす下側部分62に設けられている。   11 to 12 show a case where the upper surface portion 9 of the water tank 2 is at a depth of 0.5 to 1 m from the ground surface 36, and the high heat conductive layer 11 is from the ground surface of the side surface 10 of the water tank 2. It is provided in the lower portion 62 excluding the range portion having a depth of 1 m. FIG. 11 shows a case where the upper surface portion 9 is at a depth of 0.5 m from the ground surface 36, and the high heat conductive layer 11 is provided in the lower portion 62 that forms a width portion of 50% of the vertical width of the side surface 10. Yes. 12 shows the case where the upper surface portion 9 is at a depth of 0.8 m from the ground surface 36, and the high thermal conductive layer 11 is provided in the lower portion 62 which forms a width portion of 80% of the vertical width of the side surface 10. ing.

又図13は、前記水槽2の上面部9が地表36から1〜2mの深さにある場合、例えば2mの深さにある場合を示しており、水槽2の側面10の全体に亘って、側面視で同厚さで高熱伝導層11が設けられている。   FIG. 13 shows a case where the upper surface portion 9 of the aquarium 2 is at a depth of 1 to 2 m from the ground surface 36, for example, a depth of 2 m, and over the entire side surface 10 of the aquarium 2, The high thermal conductive layer 11 is provided with the same thickness in a side view.

このように、水槽2の側面10を高熱伝導層11で覆う構成は、水槽2の埋設深さが関係しており、前記上面部9が地表36から0.5〜1mの深さにある場合は、地表熱の影響を受けやすいために、該高熱伝導層11が、該水槽2の側面10の、地表から1m深さの範囲部分は少なくとも除いた下側部分62に設けられているのである。図11〜12においては一段で設けられているが、図14に示すように、側面視で上側ほど薄い複数段で設けられたり、図15に示すように一様変化状態に設けることもある。又、前記水槽2の上面部9が地表36から1〜2mの深さにある場合は、前記図13に示すように、水槽2の側面10の全体に亘って、側面視で同厚さで高熱伝導層11が設けられられたり、図16に示すように、側面視で、前記水槽2の側面10の上部は薄く下部は厚く設けられる。そして何れの場合も、高熱伝導層11は、前記側面10を、その上下幅の下側部分をなす50〜80%の幅部分は少なくとも覆うように設けられるのである。   Thus, the structure which covers the side surface 10 of the water tank 2 with the high heat conductive layer 11 relates to the embedding depth of the water tank 2, and the upper surface portion 9 is at a depth of 0.5 to 1 m from the ground surface 36. Because of being easily affected by surface heat, the high heat conductive layer 11 is provided in the lower portion 62 of the side surface 10 of the water tank 2 except at least a range portion having a depth of 1 m from the ground surface. . 11 to 12 are provided in a single stage, but as shown in FIG. 14, they may be provided in a plurality of stages that are thinner toward the upper side as viewed from the side, or may be provided in a uniformly changed state as shown in FIG. Moreover, when the upper surface part 9 of the said water tank 2 exists in the depth of 1-2 m from the ground surface 36, as shown in the said FIG. 13, it has the same thickness by the side view over the whole side surface 10 of the water tank 2. The high heat conductive layer 11 is provided or, as shown in FIG. 16, the upper side of the side surface 10 of the water tank 2 is thin and the lower part is thick as viewed from the side. In any case, the high thermal conductive layer 11 is provided so as to cover at least the side portion 10 with a width portion of 50 to 80% forming the lower portion of the vertical width thereof.

(2) 本発明において、水槽2の側面10の上部は薄く下部は厚く設けるとは、施工性を考慮して、図1〜2に示すように高熱伝導層11を階段状に設けるのが好ましいが、図17に示すように一様変化状態に設けることもある。又、階段状に設ける場合、図18に示すように2段階で設けることもある。 (2) In the present invention, providing the upper part of the side surface 10 of the water tank 2 thinly and the thicker the lower part thereof is preferable in consideration of workability, as shown in FIGS. However, it may be provided in a uniform change state as shown in FIG. Moreover, when providing in step shape, as shown in FIG. 18, it may provide in two steps.

(3) 前記吸放熱パイプ5は、図7に示すようなコンクリートパネル37に埋設されることの他、現場打ちによって形成されたコンクリート層に埋設されることもある。 (3) In addition to being embedded in the concrete panel 37 as shown in FIG. 7, the heat absorbing / dissipating pipe 5 may be embedded in a concrete layer formed by in-situ casting.

(4) 前記水槽2を設置する際、図19に示すように、基礎部15の四角枠状の周囲部分のみをコンクリート基礎26として構成し、その間の、上下端が開放した収容部64に高熱伝導層11を充填した場合を示すものである。又図20は、並行した2本のコンクリート基礎26,26を設け、その間の、上下端が開放した収容部64に、高熱伝導層11を充填した場合を示すものである。これらの場合、該コンクリート基礎26を、例えば熱伝導率が5W/(m・k)以上の熱伝導率を有する骨材、好ましくは熱伝導率が約6W/(m・k)である珪石と珪砂の混合物を骨材とする基礎コンクリートとするのがよい。 (4) When installing the water tank 2, as shown in FIG. 19, only the square frame-shaped peripheral portion of the foundation portion 15 is configured as the concrete foundation 26, and the storage portion 64 with the upper and lower ends opened between them is heated. The case where the conductive layer 11 is filled is shown. FIG. 20 shows a case where two parallel concrete foundations 26 and 26 are provided in parallel, and the high heat conduction layer 11 is filled in the accommodating portion 64 between which the upper and lower ends are opened. In these cases, the concrete foundation 26 is composed of, for example, an aggregate having a thermal conductivity of 5 W / (m · k) or more, preferably silica stone having a thermal conductivity of about 6 W / (m · k). It is better to use foundation concrete with a mixture of silica sand.

又前記水槽2は、その下面部31の全体を、図21に示すように、コンクリート基礎26からなる基礎部15上に設置することもある。この場合、該コンクリート基礎26を、例えば熱伝導率が5W/(m・k)以上の熱伝導率を有する骨材、好ましくは熱伝導率が約6W/(m・k)である珪石と珪砂の混合物を骨材とするコンクリート基礎とするのがよい。   Further, the water tank 2 may be installed on the foundation portion 15 made of a concrete foundation 26 as shown in FIG. In this case, the concrete foundation 26 is made of, for example, an aggregate having a thermal conductivity of 5 W / (m · k) or more, preferably silica stone and quartz sand having a thermal conductivity of about 6 W / (m · k). It is better to use a concrete foundation with an aggregate of

基礎部15をコンクリート基礎26を用いて形成する場合、該コンクリート基礎26は、現場打ちコンクリートを用いて形成されることの他、プレキャストコンクリート板を敷設して形成されることもある。   When the foundation portion 15 is formed using the concrete foundation 26, the concrete foundation 26 may be formed by laying a precast concrete plate in addition to being formed using the cast-in-place concrete.

(5) 前記水槽2は、コンクリート基礎26が設けられることなく、高熱伝導層11のみからなる基礎部上に設置されることもある。 (5) The water tank 2 may be installed on the foundation part which consists only of the high heat conductive layer 11 without the concrete foundation 26 being provided.

(6) 本発明で用いる熱伝導率が5W/(m・k)以上の砂利及び/砂には、鉄鉱石や御影石を用いたものも含まれる。 (6) Gravel and / or sand having a thermal conductivity of 5 W / (m · k) or more used in the present invention includes those using iron ore or granite.

(7) 前記高熱伝導層11は、珪石等の砂利のみからなるものも含む。 (7) The high thermal conductive layer 11 includes those composed only of gravel such as silica.

(8) 前記水槽2は、前記した直方体状の他、立方体状や円筒状等であってもよい。又該水槽2は現場打ち施工によって構築してもよい。又、水槽2の下面部31は、内部清掃等の為に、吸管挿入用凹部が設けられることもある。 (8) The water tank 2 may have a cubic shape, a cylindrical shape, or the like in addition to the rectangular parallelepiped shape described above. The water tank 2 may be constructed by on-site construction. Further, the lower surface portion 31 of the water tank 2 may be provided with a suction tube insertion recess for internal cleaning or the like.

(9) 前記水槽2は、防火水槽を用いて構成することもできる。 (9) The water tank 2 can also be configured using a fireproof water tank.

本発明に係る循環型吸放熱装置を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the circulation type heat absorbing / dissipating device according to the present invention. 本発明に係る循環型吸放熱装置を説明する横断面図である。It is a cross-sectional view explaining the circulation type heat absorbing / dissipating device according to the present invention. 施工空間の底部に設けた基礎部上で構築した水槽を示す斜視図である。It is a perspective view which shows the water tank constructed | assembled on the foundation part provided in the bottom part of construction space. 基礎部の構成を示す斜視図である。It is a perspective view which shows the structure of a base part. 吸放熱領域を説明する平面図である。It is a top view explaining a heat absorption / radiation area. その断面図である。FIG. 吸放熱領域を構成するコンクリートパネルを示す斜視図である。It is a perspective view which shows the concrete panel which comprises a heat absorption / radiation area. 1段目の高熱伝導層を形成した状態を示す断面図である。It is sectional drawing which shows the state in which the high heat conductive layer of the 1st step was formed. 2段目の高熱伝導層を形成した状態を示す断面図である。It is sectional drawing which shows the state in which the 2nd high heat conductive layer was formed. 高熱伝導層の全体を形成して水槽を地中に埋設した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which formed the whole high heat conductive layer and embedded the water tank in the ground. 水槽の側面を高熱伝導層で覆った他の態様を示す断面図である。It is sectional drawing which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. 水槽の側面を高熱伝導層で覆ったその他の態様を示す断面図である。It is sectional drawing which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. 水槽の側面を高熱伝導層で覆ったその他の態様を示す断面図である。It is sectional drawing which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. 水槽の側面を高熱伝導層で覆ったその他の態様を示す部分断面図である。It is a fragmentary sectional view which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. 水槽の側面を高熱伝導層で覆ったその他の態様を示す部分断面図である。It is a fragmentary sectional view which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. 水槽の側面を高熱伝導層で覆ったその他の態様を示す部分断面図である。It is a fragmentary sectional view which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. 水槽の側面を高熱伝導層で覆ったその他の態様を示す部分断面図である。It is a fragmentary sectional view which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. 水槽の側面を高熱伝導層で覆ったその他の態様を示す部分断面図である。It is a fragmentary sectional view which shows the other aspect which covered the side surface of the water tank with the high heat conductive layer. コンクリート基礎を四角枠状に形成した基礎部を示す斜視図と断面図である。It is the perspective view and sectional drawing which show the foundation part which formed the concrete foundation in the shape of a square frame. 並行した2本のコンクリート基礎を具える基礎部を示す斜視図である。It is a perspective view which shows the foundation part which provides the two concrete foundations in parallel. 水槽の下面部の全体をコンクリート基礎からなる基礎部上に当接状態とした断面図である。It is sectional drawing which made the whole lower surface part of a water tank contact state on the foundation part which consists of concrete foundations.

符号の説明Explanation of symbols

1 循環型吸放熱装置
2 水槽
3 吸放熱領域
5 吸放熱パイプ
6 熱媒液
7 ポンプ
9 水槽の上面部
10 水槽の側面
11 高熱伝導層
12 骨材
15 基礎部
16 土砂
26 コンクリート基礎
27 砂利
29 砂
31 水槽の下面部
32 砂利層
33 内部間隙
36 地表
37 コンクリートパネル
41 一方の管体
42 他方の端部
43 他方の管体
45 一方の管体の開口
46 他方の管体の開口
55 断熱材層
58 周辺地盤
59 舗装部
64 収容部
DESCRIPTION OF SYMBOLS 1 Circulation type heat absorption / radiation device 2 Water tank 3 Absorption / radiation area 5 Absorption / radiation pipe 6 Heat transfer fluid 7 Pump 9 Water tank upper surface part 10 Water tank side surface 11 High heat conduction layer 12 Aggregate 15 Foundation part 16 Earth and sand 26 Concrete foundation 27 Gravel 29 Sand 31 Bottom surface of water tank 32 Gravel layer 33 Internal gap 36 Ground surface 37 Concrete panel 41 One tube body 42 The other end portion 43 The other tube body 45 One tube body opening 46 The other tube body opening
55 Thermal insulation layer 58 Surrounding ground 59 Pavement 64 Storage

Claims (9)

その上面部が地表から0.5〜2mの深さに存し且つその下面部が地表から5mまでの深さに存するように地中に埋設されて熱媒液を貯留し得るコンクリート製の水槽と、放熱されるべき領域や吸熱されるべき領域に埋設され、前記熱媒液が内部に流れる吸放熱パイプと、前記水槽内の熱媒液を前記吸放熱パイプに送ると共に該吸放熱パイプ内の熱媒液を前記水槽内に戻すポンプとを具え、
前記水槽の前記上面部を除き、前記水槽の少なくとも側面を覆う如く、熱伝導率が5W/(m・k)以上の砂利及び/又は砂からなる高熱伝導層が設けられており、該高熱伝導層は、前記側面を、その上下幅の下側部分をなす50〜80%の幅部分は少なくとも覆うことを特徴とする地中熱利用の循環型吸放熱装置。
Concrete tank that is embedded in the ground so that its upper surface part is at a depth of 0.5-2m from the ground surface and its lower surface part is at a depth of 5m from the ground surface, and can store heat transfer fluid And a heat absorbing / dissipating pipe embedded in a region to be radiated and a region to be absorbed, and the heat transfer fluid flowing inside, and sending the heat transfer fluid in the water tank to the heat absorbing / dissipating pipe and in the heat absorbing / dissipating pipe And a pump for returning the heat transfer fluid into the water tank,
Except for the upper surface portion of the water tank, a high heat conductive layer made of gravel and / or sand having a thermal conductivity of 5 W / (m · k) or more is provided so as to cover at least the side surface of the water tank. The layer covers at least the width side of 50 to 80% forming the lower side of the vertical width of the side surface.
前記水槽の側面を覆う前記高熱伝導層が、前記水槽の側面の、前記地表から1mの深さの範囲部分を除く下側部分に設けられていることを特徴とする請求項1記載の地中熱利用の循環型吸放熱装置。   2. The underground according to claim 1, wherein the high thermal conductive layer covering the side surface of the aquarium is provided in a lower portion of the side surface of the aquarium except a range portion having a depth of 1 m from the ground surface. Circulation type heat absorption / dissipation device using heat. 前記水槽の上面部が地表から1〜2mの深さにあるとき、前記水槽の側面を覆う高熱伝導層が、側面視で、前記水槽の側面の上部は薄く下部は厚く設けられていることを特徴とする請求項1記載の地中熱利用の循環型吸放熱装置。   When the upper surface portion of the water tank is at a depth of 1 to 2 m from the ground surface, the high heat conductive layer covering the side surface of the water tank is provided with a thin upper portion on the side surface of the water tank and a thick lower portion in side view. The circulation type heat absorbing / dissipating device using geothermal heat according to claim 1, wherein 前記水槽の下面部を設置するための基礎部は、上下端が開放した収容部が設けられてなるコンクリート基礎の該収容部に、砂利及び/又は砂からなる高熱伝導層が充填されていることを特徴とする請求項1、2又は3記載の地中熱利用の循環型吸放熱装置。   The foundation part for installing the lower surface part of the water tank is filled with gravel and / or sand with a high heat conductive layer in the accommodation part of the concrete foundation provided with the accommodation part with the upper and lower ends open. The circulating heat absorbing and radiating device using ground heat according to claim 1, 2, or 3. 前記水槽の上面部に、合成樹脂発泡体からなる断熱材層を設けたことを特徴とする請求項1、2又は3記載の地中熱利用の循環型吸放熱装置。   4. The circulating heat absorption / dissipation device using geothermal heat according to claim 1, wherein a heat insulating material layer made of a synthetic resin foam is provided on an upper surface of the water tank. 前記高熱伝導層を構成する砂利層の内部間隙に、前記高熱伝導層を構成する砂が充填されていることを特徴とする請求項1、2又は3記載の地中熱利用の循環型吸放熱装置。   4. The circulating heat absorption / dissipation using ground heat according to claim 1, wherein sand constituting the high thermal conductivity layer is filled in an internal gap of a gravel layer constituting the high thermal conductivity layer. apparatus. 前記コンクリート製の水槽は、熱伝導率が5W/(m・k)以上の砂利と砂との混合物を主骨材として用いて構成されていることを特徴とする請求項1〜6の何れかに記載の循環型吸放熱装置。   The concrete water tank is configured by using a mixture of gravel and sand having a thermal conductivity of 5 W / (m · k) or more as a main aggregate. The circulation type heat absorbing / dissipating device described in 1. 前記砂利は珪石であり且つ前記砂は珪砂であることを特徴とする請求項1〜7の何れかに記載の循環型吸放熱装置。   The circulation type heat absorbing / dissipating device according to claim 1, wherein the gravel is silica stone and the sand is silica sand. 前記水槽として防火水槽を用いることを特徴とする請求項1〜8の何れかに記載の循環型吸放熱装置。   The circulation type heat absorbing / dissipating device according to claim 1, wherein a fireproof water tank is used as the water tank.
JP2006345550A 2006-12-22 2006-12-22 Circulation type heat absorption / dissipation device using underground heat Active JP4929494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345550A JP4929494B2 (en) 2006-12-22 2006-12-22 Circulation type heat absorption / dissipation device using underground heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345550A JP4929494B2 (en) 2006-12-22 2006-12-22 Circulation type heat absorption / dissipation device using underground heat

Publications (2)

Publication Number Publication Date
JP2008156867A JP2008156867A (en) 2008-07-10
JP4929494B2 true JP4929494B2 (en) 2012-05-09

Family

ID=39658091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345550A Active JP4929494B2 (en) 2006-12-22 2006-12-22 Circulation type heat absorption / dissipation device using underground heat

Country Status (1)

Country Link
JP (1) JP4929494B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305456B2 (en) * 2009-08-18 2013-10-02 株式会社技研 Circulating snow melting system using geothermal and groundwater heat
CN105803895A (en) * 2016-05-03 2016-07-27 中国京冶工程技术有限公司 System for cooling and thawing frozen airport pavement by utilizing ground source heat pump and construction method
CN113213309A (en) * 2021-05-28 2021-08-06 普朗克电梯有限公司 High-stability cargo elevator without machine room
CN115506199B (en) * 2022-10-09 2024-04-19 浙江名博建设有限公司 Sponge type road pavement structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161208A (en) * 1981-03-28 1982-10-04 Suwashi Snow melting and freeze preventing apparatus of road
JPH0244048B2 (en) * 1982-03-19 1990-10-02 Konishiroku Photo Ind CHOKUSETSUHOJIHAROGENKAGINSHASHINKANKOZAIRYO
JPS631027A (en) * 1986-06-20 1988-01-06 Toshiba Corp Apparatus for manufacturing semiconductor
JPH03233007A (en) * 1990-02-07 1991-10-17 Kensetsusho Hokurikuchihou Kensetsukyoku Shallow-layer, heat-storing type snow thawing device
JPH10280310A (en) * 1997-04-02 1998-10-20 Nippon Steel Corp Snow-thawing device by use of underground heat-accumulation system
JPH11293639A (en) * 1998-04-13 1999-10-26 Copros Snow melting tank
JP2001081712A (en) * 1999-09-10 2001-03-27 East Japan Railway Co Snow melting method using geothermal heat
JP3693176B2 (en) * 2003-06-30 2005-09-07 有限会社藤島建設 Rainwater underground filtration water supply system

Also Published As

Publication number Publication date
JP2008156867A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
US4024910A (en) Rock channel heat storage
JP2007333295A (en) Heat storage system
JP4929494B2 (en) Circulation type heat absorption / dissipation device using underground heat
JPH11182943A (en) Underground heat exchanger
JP2008308963A (en) Ground surface snow melting system
JP2006207919A (en) Cooling/heating device and method using underground heat
JP6327648B2 (en) Water heat snow melting device, water heat snow melting system, and control method thereof
JPH07190503A (en) Method and apparatus for collecting terrestrial heat
JP4702556B2 (en) Solar heat underground heat storage method and equipment
JP2001107307A (en) Snow melting antifreezer
JP4833107B2 (en) Snow melting pavement, gap member used therefor, and method of constructing snow melting pavement
KR101996552B1 (en) Pile and Slab complex type ground heat exchanger
JP5624533B2 (en) Installation method of underground heat exchange pipes in structures
JPH11336008A (en) Heat exchanging pile and heater
JP5196354B2 (en) Heat exchange type well equipment
JP4351014B2 (en) Snow melting system in heat insulation foundation building.
CN107201701B (en) Full-wall ventilation type frozen soil ventilation embankment
JP3928085B2 (en) Non-watering snow melting system and method of operating the system
KR101220448B1 (en) Heat Exchanging File Structure And Construction Method Thereof
JP2009097831A (en) Geothermy collecting block, pile, and geothermy utilizing system
JP2002188108A (en) Snow melting device and piping unit block used for the same
JPH11117215A (en) Snow-melting panel
JP6312268B2 (en) Snow melting system for building exterior
JP2009046919A (en) Snow melting underground water tank and its embedding method
AU2003204209B2 (en) Underfloor climate control apparatus-improvements/modifications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

R150 Certificate of patent or registration of utility model

Ref document number: 4929494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250